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A B S T R A C T   

Graphenes have unique physicochemical properties that can be engineered for pollutant adsorption and their 
dielectric properties can facilitate subsequent microwave regeneration. First, graphenes have the potential for 
high-level control of oxygen content at the edges of the material without compromising the conjugated electronic 
structure of the basal plane. Because the basal plane contains lightly functionalized sp2-hybridized carbon atoms 
while sp3-hybridized ones are on the periphery of the sheets. Edges of graphenes can be oxidized while the basal 
plane can still be electronically stable with conjugated π-electrons perpendicular to the graphene lattice. For this, 
graphenes can be oxidized to attain controlled dispersion in water without disrupting the conjugated electron 
network on the basal plane, which is critical for pollutant adsorption. Graphenes have sheet-like surfaces that 
form dynamic, porous aggregates in water and can facilitate synthetic organic compound adsorption by the 
complex interplay of ‘pore’ accessibility and favorable intermolecular interactions. Thus, studying the role of 
oxidation of graphenes can help unravel the interplay between inter-sheet distance and the adsorption of syn
thetic organic compounds. Second, the sp2 hybridized basal planes of graphenes have mobile π-electrons that are 
expedient for rapid dielectric heating, which can be harvested for rapid and efficient microwave regeneration. 
Fundamental research on graphene chemistry can lead to a paradigm shift in the water treatment industry to
wards the safe and sustainable deployment of regenerable nano-scale adsorbents. This article presents a 
perspective on how to approach edge functionalization of graphene with an aspiration to advance their safe and 
sustainable use in water treatment.   

1. Introduction 

Anthropogenic activities are disrupting the natural aquatic 
ecosystem at a rate that has never been seen in the history of mankind 
(Saulnier-Talbot and Lavoie, 2018). This has cascading consequences on 
human civilization where more than one billion people with no access to 
safe drinking water and, millions of people dying from diseases related 
to unsafe drinking water (Rockström et al., 2014). Thousands of human- 
made, toxic pollutants are entering natural water resources at an 
increasing rate (Arenas-Sánchez et al., 2016). These contemporary 
challenges are beyond the capabilities of materials we use for water 
treatment that date back to the Victorian era. Advancing the funda
mental knowledge of material science can help accomplish water 
treatment applications of modern, groundbreaking materials such as 
graphenes (Mauter et al., 2018). 

Graphene, a Nobel Prize decorated material, had our community’s 

attention because of its unique physicochemical and electronic proper
ties. Today, graphene, graphene-based nanomaterials, and composites 
have been studied as materials for biomedical applications, energy 
storage, different classes of sensors, preparation of stable oil–water 
emulsions, electronics, and environmental applications (Contreras Ortiz 
et al., 2019; Kuziel et al., 2020; Yu et al., 2017). Especially, for envi
ronmental applications, the exceptional properties of graphene can be 
transformative, particularly for water treatment, where it can be used as 
an adsorbent (Ersan et al., 2017). To date, several graphene-based ad
sorbents have been developed through nanomodification of graphene 
such as covalent and non-covalent functionalization, defect formation, 
element doping and alterations of morphology by wrinkles, folds and 
nanoholes formation (e.g., holey graphene) (Bai et al., 2010; Farhan 
et al., 2023; Rout et al., 2023; Wang et al., 2024; 2016; Yu et al., 2020). 
After about one decade of research, we have a much better under
standing of the material; however, the translation of graphene-based 
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technologies into water treatment is still in its early stages, and more 
work is needed. By effective and regenerable use of graphene-based 
adsorbents, we could minimize energy and material demand, prevent 
extra loads on landfills or incinerators, lessen the associated health and 
ecological risks and therefore contribute to the sustainable practice of 
graphene-enabled water treatment. 

In anticipation of employing graphenes, there must be a long and 
windy journey of technology maturation if we can envision its pragmatic 
use today. Graphene nanosheets can be integrated into municipal water 
treatment systems as suspended adsorbents, similar to powdered acti
vated carbon. The mixing can facilitate mass transfer and minimize 
intraparticle diffusion times. It is important to note, though, that sub
sequent separation would be required to ensure their recovery from 
treated water. Graphenes can also be integrated to municipal or do
mestic systems in fixed beds in the form of graphene-based macro
structures such as aerogels, sponges, pellets, composites, beads, or 
granules (Hirani et al., 2022; Khalil et al., 2022; Low et al., 2024; Masud 
et al., 2021; Schmidt et al., 2023; Zhao et al., 2012). Fixed-bed reactors 
are generally restrained by reduced surface areas, lower mass transfer 
rates, and large hydraulic head demand. On the other hand, the fixed- 
bed configuration eliminates the need for future separation and in
troduces the ability of adsorbent regeneration. Regardless of the envi
sioned application, understanding fundamental mechanisms that govern 
the adsorption and regeneration will empower the pursuit of graphene- 
enabled water treatment. This perspective article aims to discuss 
possible advances in modern knowledge of graphene edge chemistry 
that are expedient for water treatment. Specifically, we will review (i) 
the role of graphene edge functionalization in improving key properties 
that are relevant to water treatment applications: dispersion in water 
and selective adsorption in the presence of natural organic matter 
(NOM) and (ii) discuss some research gaps that could enhance our un
derstanding of graphene edge and surface chemistry to develop micro
wave regenerable carbon nanoadsorbents. 

2. Edge-tailored graphenes for adsorption of synthetic organic 
compounds 

Graphenes are two-dimensional quantum materials with negligible 
masses when compared to their electron densities (Keimer and Moore, 
2017). Their electron density is localized above and below the hexago
nal plane as a result of sp2 hybridization and the carbon atoms display 
different bonding energies depending on their location within their 
structures. Graphenes have edge atoms, corners, and defects unlike 
other common carbon allotropes; their functionalization presents an 
opportunity to increase the oxygen content without completely 

deteriorating their π-electron network on the basal plane, which is 
critical for pollutant adsorption. There are possibly countless opportu
nities to harvest these properties for water treatment, but this section 
will discuss three of them. First, there is the possibility of high-level 
control of oxygen content at the edges of the material without 
compromising the conjugated electronic structure of the basal plane. 
The oxygen content of graphene is important for controlled dispersion in 
water, whereas the integrity of the basal plane is important for pollutant 
adsorption. According to the well-celebrated Lerf-Klinowski model, 
graphenes are archetypal bipartite systems with lightly functionalized 
sp2-hybridized carbons such as hydroxyl and epoxy groups whereas the 
edges of the graphenes can host sp3-hybridized carbon atoms. The 
reactivity of the edge carbon atoms of graphene differs from the rela
tively stable basal plane. Edges of graphenes in the absence of a reactant 
have metastable σ and π bonds with unsaturated sp2 orbitals, whereas 
the basal plane is electronically stable with conjugated π electrons 
perpendicular to the graphene lattice (Bellunato et al., 2016; He et al., 
1998). The split of σ bonds between adjacent carbon atoms in the p- 
conjugation network results in the formation of edges in graphene. As 
represented in Fig. 1, mainly, two types of edge configurations, named 
zigzag and armchair edges, are possible based on the orientation of the 
edge along the basal plane structure. However, a perfect zigzag or 
armchair is difficult to obtain, and the edges, in reality, have more 
complex geometries, a combination of both zigzag and armchair seg
ments known as a “chiral edge”. The conjugation system and bond en
ergies are different on a zig-zag edge compared to an armchair one, 
resulting significant differences in reactivity of these sites as shown in 
Fig. 1 (Radovic and Bockrath, 2005; Suenaga and Koshino, 2010; Zhang 
et al., 2013). In addition to that, local defects, such as imperfections and 
vacancies, which can break the conjugated network, can also be 
considered as edges. The edge reactivity and electronic properties of 
graphene are highly dependent on the edge chemistry and geometrical 
shape. Armchair edges can form triple bonds (carbyne) to reduce elec
tron energy, whereas zigzag edges have pz electrons on each outer car
bon atom, resulting in a chemically reactive radical singlet configuration 
(carbene) that contributes to the energetic “edge state”. Furthermore, 
the edge functionalization with various atoms or groups and the for
mation of defects can alter the chemical and electronic properties of 
graphene (Acik and Chabal, 2011; Girit et al., 2009; Hyun et al., 2015; 
Jia et al., 2011; Wagner et al., 2013). For example, the binding of 
hydrogen atoms to graphene edges can stabilize the dangling bonds and 
influence the electronic properties by inducing localized states at the 
Fermi level, which can modify the electronic properties by altering band 
structures and magnetic and thermal properties, making graphene 
suitable for electronic and spintronic applications (He et al., 2014; Li 

Fig.1. Comparison of oxygen binding energies at the edge and on the basal plane of graphene surface signifying the affinity of single- and double-coordinated carbon 
atoms with oxygen (Radovic and Bockrath, 2005; Suenaga and Koshino, 2010). The background of the image shows a scanning transmission electron microscope 
(STEM) annular dark field (ADF) image of the edge region of a single layer graphene sheet (reproduced with permission from Springer Nature Publishing Group, 
Copyright 2010) (Suenaga and Koshino, 2010). The right-hand side of the image is the hexagonal network of carbon atoms, and the black blank area on the left-hand 
side is the vacuum region during imaging. 
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et al., 2015; Wang et al., 2014). Similarly, oxygen and nitrogen func
tionalization at the edges has been shown to introduce p-type and n-type 
doping characteristics tuning the electronic and optical properties of 
graphenes, respectively, which are critical for fabricating graphene- 
based electronic devices (Li et al., 2015). Also, holey graphenes have 
been created by forming nanoholes on the basal plane of graphene. 
These nanoholes provide active sites like the edges and also act as a 
sieve, allowing ions and smaller molecules to pass through. These 
unique properties make them promising materials for water treatment 
for targeted and selective pollutant removal (Wang et al., 2024). 
Oxygen-containing functionalities on graphene edges can improve the 
hydrophilicity of graphene as well as provide active sites for the 
adsorption of both organic (polar and monopolar) and certain inorganic 
contaminants. Therefore, based on the oxygen binding energy on 
different configurations of graphene edges and basal plane (Fig. 1), 
when the oxygen content of graphene sheets is systematically increased, 
carboxylic acid groups can first react with the carbon atoms on the pe
riphery and leave a higher degree of conjugation. 

Additionally, the hydroxyl and epoxy groups can appear on the basal 
plane, by decreasing the level of conjugation (Fig. 1). Molecular dy
namic simulations confirm the structurally optimized homo-oxidant 
framing by using the edge-localized, non-bonding molecular orbitals 
or via carbyne and carbene intermediate formation at armchair or zigzag 
sites, respectively (Basiuk et al., 2017; Goswami et al., 2019; Radovic 
and Bockrath, 2005; Sheka and Popova, 2013; Zhang et al., 2013). 
However, little experimental evidence is available to show the synthesis 
of edge-oxidized graphenes. Functionalizing the graphenes with edge- 
localized C-O bonding may sound theoretically achievable, but experi
mental work is needed to prove the cornerstone of this approach. 

Second, graphene nanosheets have large surfaces i.e., theoretically 
around 2,600 m2 g−1 for two-sided, single layer sheets. They form dy
namic, porous aggregates in water that can be controlled by their flake 
size, oxygen content, and water chemistry. These properties can facili
tate adsorption by the complex interplay of ‘pore’ accessibility and 
favorable intermolecular interactions such as π-π electron 
donor–acceptor interactions, Coulombic interactions, H-bonding, and 
non-specific van der Waals forces (e.g., London dispersion forces) (Ersan 
et al., 2017). The presence of oxygen-containing functional groups on 
edges can further provide active adsorption sites for some polar and 
polarizable organics as well as ionic compounds. For example, the 
dissociation of carboxylic groups to −COO− can facilitate the adsorption 
of cationic contaminants such as heavy metals (e.g., Pb+2, Hg+2) and 
cationic organic compounds (e.g., cationic dyes). Similarly, the dissoci
ation of −C−OH groups to −C+ can provide adsorption sites for anionic 
compounds such as arsenate (e.g., AsO4

3−), anionic dyes, and some pes
ticides (Rout et al., 2023; Tolkou et al., 2020). 

The adsorption coefficients of synthetic organic compounds (KD) 
have already been studied in the literature for low molecular weight 
synthetic organic compounds (<300 g mol−1) and are reported in clean 
systems as −1 to 6 L−1 g at 0.1 % of adsorbate solubility under equi
librium conditions (Ersan et al., 2017). However, adsorption of synthetic 
organic compounds by edge-tailored graphenes under natural organic 
matter (NOM) competition is not well-studied, although NOM is ubiq
uitous in natural source waters and causes adsorption capacity losses 
due to pore blockage and active site competition (Ersan et al., 2019). If 
selective edge oxidation is studied, the inner sheet distance of graphenes 
can be adjusted to sieve out bulky NOM molecules and minimize the 
penalty for pollutant adsorption capacity. It should be noted that the 
natural source waters and treated waters will have differences in size 
and hydrophobicities (SUVA254) thus, representative NOMs would be 
key to test for this. Similarly, some graphenes show faster adsorption 
kinetics than activated carbons due to their open, sheet like morphol
ogies, which could have important engineering benefits such as shorter 
retention times and better utilization of adsorption sites. The lack of 
inner pore diffusion, though, can be replaced by inner sheet diffusion 
but may increase the rate, by which adsorbates are adsorbed by 

graphenes (Bi et al., 2024). However, the effects of edge modification on 
inner sheet distance are not well reported in the literature. Lastly, the 
increased ionic strength of solutions could result in “salting out” of 
compounds from water and change the homoaggregation state of edge- 
modified graphene sheets (Ersan et al., 2019). In brief, graphenes can be 
used for pollutant adsorption and their surface chemistries can be tuned 
to control the sheet stacking distances (homoaggregation) for selective 
adsorption under NOM competition and high ionic strength solutions 
(Fig. 2). More research is needed to unravel these mechanistic insights. 

Third, the sp2 hybridized basal plane of graphenes has mobile, con
jugated π-electrons that could measure carrier mobility at room tem
perature as large as µ > 10,000 cm2 V−1s−1 that is expedient for 
dielectric heating (Gosling et al., 2021). The reactivity of graphenes to 
microwave irradiation can be harvested for rapid and efficient regen
eration. However, compared to the first two properties, the fundamental 
knowledge of how to deploy microwaves for graphene regeneration is 
even more limited, and research is in its infancy. Research in this area 
can contribute to the generation of seminal knowledge and advance our 
understanding of graphene-microwave interactions. In summary, syn
thetic organic compound adsorptive properties in natural waters, ag
gregation, and dielectric reactivity of graphenes rely on the sp2- 
hybridized electron-rich surface, disposition, and quantity of surficial 
oxygen-containing functional groups, thus, crucial advances can be 
made if precise graphene chemistry is studied mechanistically for 
environmentally relevant synthetic organic compound and pertinent 
water treatment conditions. 

The number of synthetic organic compounds in natural source waters 
are in the order of 10,000s. In addition, the emergence of new classes of 
organic pollutants, such as per- and polyfluoroalkyl substances over
whelm the policy makers and water treatment industries. To understand 
the effects of synthetic organic compound properties on adsorption by 
edge-tailored graphenes, comprehensive testing of the emerging and 
environmentally pertinent synthetic organic compounds will be needed. 
However, performing adsorption experiments for thousands of synthetic 
organic compounds would be costly, laborious, and time-consuming. 
Therefore, one possible approach is to utilize the existing database of 
graphenes and graphene oxides and form a mechanistic link between the 
disposition of oxygen-containing functional groups and their ability to 
adsorb pollutants. In other words, forming a mathematical connection 
between the edge vs. bulk oxidized graphene oxides with respect to 
compound properties may enable the utilization of a decade of adsorp
tion literature to quickly reveal insights regarding the adsorption pro
pensity of synthetic organic compounds by edge-oxidized graphene 
oxides. However, this requires systematic experimental work to ensure 
that the graphene properties are changed in a controlled fashion, elim
inating the fluctuations caused by graphene’s purity, synthesis, and 
other variables. 

3. Theoretical computational boundaries for edge 
functionalization 

To better understand the theroretical limits on edge- 
functionalization, initial theoretical computations are presented in 
Fig. 3 based on some simplifying assumptions. Roughly 0.5–4.0 % of the 
graphene atoms were computed to be on edges depending on the flake 
size within 100–1,000 nm flakes. Therefore, if oxygen content is pre
cisely increased then the shifts in synthetic organic compound adsorp
tion under NOM loading can be monitored as a function of graphene 
characteristics and reveal edge oxidation mechanism. The increasing 
surface oxygen concurrently changes graphene polarity, flake size, and 
stacking distance. In addition, the roles of folds, and defects are not fully 
understood; hence, more research would need to focus on unfolding the 
imperfections of graphene oxidation. These create a complex model to 
decode; however, systematic adsorption data that is complemented with 
material characterization can provide mechanistic insights to help 
advance our understanding. The comparison between edge vs. bulk 
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graphene oxides can be accomplished by systematically oxidizing the 
surface with small increments of oxidizing and reducing conditions 
while testing the total oxygen content and inner sheet distance. 

Increasing the oxygen content of graphenes by up to 0.5–4.0 wt% can 
be hypothesized to keep the inner sheet distance relatively unchanged 
because most edges can be assumed as oxidized. The increase in C-O 

bonding will increase the overall polarity (the conceptualization can be 
seen in Fig. 4); therefore, the inner sheet sieving mechanism may 
maintain the adsorption of small molecular weight synthetic organic 
compounds under NOM competition. This is speculated because large 
NOM molecules will not compete with synthetic organic compounds for 
the same adsorption sites at the “inner sheet” locations. Increasing the 

Fig.2. Schematic depiction of adsorption of synthetic organic compound under NOM competition (top). Adsorption isotherms of phenanthrene in nanopure water 
and 3 mg L−1 NOM by activated carbon (a) and graphene (b), respectively (Ersan et al., 2016). 

Fig.3. Assumptions, definitions, and theoretical computations for the percentage of C-atoms on the edge of graphene as a function of flake edge length.  
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oxygen content to greater than 4.0 wt% can increase their dispersion in 
water due to polar interactions. Although this can reveal some adsorp
tion sites, this may not increase the overall adsorption of synthetic 
organic compounds under NOM competition because the oxidized sites 
would be expected to host water clusters and repel hydrophobic syn
thetic organic compounds, unlike the slightly oxidized (or edge- 
functionalized) graphenes. 

4. Dielectric regeneration of graphene nanosheets by 
microwave irradiation 

The electronic structure of graphene nanosheets allows the conver
sion of microwave energy into heat efficiently more than typical lossy 
materials that are used in industrial applications such as silicon carbide 
and activated carbon (Fig. 5) (Apul et al., 2016; Bozkurt and Apul, 2020; 
Lafaille et al., 2021; Menéndez et al., 2010). Due to the hyperreactivity 
of graphenes during microwave irradiation, the fundamental aspects of 
microwave-graphene interactions can be rewarding for energy-efficient 
heating applications. For example, microwave heating can become an 
alternative to conventional rotary kilns and multiple hearth furnaces at 
thermal regeneration facilities because microwaves can selectively heat 
spent graphenes and achieve desorption and thermolysis of synthetic 
organic compounds. Therefore, it is construed that microwave-induced 
graphene regeneration could minimize the energy demand and 

contribute to the sustainable practice of graphene-enabled water treat
ment. There are ongoing synthesis efforts of graphene beads, sponges, 
and pellets in literature, and hence this research can be complementary 
to recovering spent graphenes (Allgayer et al., 2020; Yousefi et al., 
2019). It should be noted that full-scale microwave reactors at 2.45 GHz 
have been safely implemented in industrial applications for four decades 
and they provide rapid, efficient, and targeted heating with no start-up 
delays (Falciglia et al., 2018; Hong et al., 2004; Krouzek et al., 2018). 
For this, an array of controlled edge-tailored graphenes can be used to 
systematically reveal key microwave interactions. An ambient atmo
sphere could thermally anneal graphene oxides by decomposing oxygen- 
containing functional groups and can produce H2O, CO, and CO2 (Hu 
et al., 2012; McAllister et al., 2007; Pei and Cheng, 2012). 

High oxidation levels of graphenes can be detrimental to microwave 
reactivity despite increasing polar C-O bonds, which would indicate the 
importance of the π-electron system for microwave reactivity. Deoxy
genation of graphene under microwave irradiation was reported at 
temperatures ~1,000 ◦C in a nitrogen environment, whereas graphene 
did not show any notable reaction or changes in C: O ratios at lower 
temperatures (Chen et al., 2016). Another possible reaction pathway 
under aggressive heating is incidental oxidation of the surface due to 
localized heating under microwave irradiation in the ambient atmo
sphere due to hot spots (Chen et al., 2016). Therefore, to preclude 
thermally induced redox reactions, deoxygenation, oxidation, and 

Fig.4. Conceptualization of edge vs. bulk oxidation with examples of quantitatively comparing inner sheet distances and oxygen content. Inner sheet distances 
acquired from Sekimoto et al., 2017. 

Fig.5. Heating profiles of graphene oxide (new data) vs. typical microwave absorbing materials tested using the same sample mass in quartz dishes mixed in quartz 
sand under 2.45 GHz microwave irradiation for up to 2 min from our previous study (Lafaille et al., 2021). 
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subsequent gas build-up between sheets: (i) graphenes with less oxygen- 
containing functional groups on the basal plane need to be used as the 
starting material and (ii) moderate heating temperatures below 
annealing point (i.e., ~400 ◦C) must be reached at (iii) slower rates 
(<10 ◦C) during microwave irradiation. Additionally, optimum condi
tions for temperature limits, as well as microwave power, frequency, and 
exposure time, need to be considered to preserve the graphenic structure 
of graphene-based adsorbents during microwave-assisted regeneration. 
Previous studies have reported that maintaining the temperature below 
the sublimation point, i.e., ~3,600 ◦C in a vacuum, is critical during 
thermal exposure of graphenes (Jing et al., 2021). However, for practical 
applications, it is important to control the temperature up to ~600 ◦C to 
prevent oxidative damage and preserve the graphenic structure, espe
cially in atmospheric conditions (Liu et al., 2019). Previously, a typical 
microwave power range of 300–800 W, and a standard frequency of 
2.45 GHz have been effectively used for microwave-assisted synthesis of 
carbon-based nanomaterials without causing any damage to structural 
properties (Adeola et al., 2023). Microwave irradiation exposure typi
cally varies based on the organic contaminant type, load, and micro
wave settings (Peyravi et al., 2022; Shoushtarian et al., 2020). 

Moreover, the electronic structure of graphenes can catalyze the 
thermolysis of adsorbed organic compounds and cause partial trans
formation at temperatures significantly lower than the analyte’s ex
pected thermolysis temperatures as a function of synthetic organic 
compound reactivity, volatility, and microwave energy input. Micro
wave regeneration experiments can demonstrate the catalytic impact of 
graphene’s electronic structure on decomposition vs. desorption of ad
sorbates for a suite of environmentally pertinent and structurally related 
compounds. This can enable harvesting the microwave energy very 
efficiently to degrade adsorbates, so repetitive use of the material can be 
possible while minimizing the risks associated with released synthetic 
organic compounds or harmful transformation byproducts during 
regeneration if complete thermal mineralization can be accomplished. 
This research can particularly be rewarding if a rise in temperatures can 
thermolyze compounds that are considered persistent (e.g., per- and 
polyfluoroalkyl substances) while regenerating the spent graphene 
nanosheets. 

During microwave regeneration, intermolecular attractive forces 
between the graphene surface and the adsorbates would be overcome, 
and the molecules would be liberated from the graphene surface without 
degradation first (Fig. 6). This is because the intermolecular interactions 
are typically much weaker than the covalent bonds that form organic 

molecules. This can lead to the speculation that thermolysis takes place 
in the gas phase and graphenes only play the role of converting micro
waves to heat. Therefore, if efficient thermal diffusion and good gas 
phase control are accomplished, then engineering practices could be 
more desirable. On the other hand, extremely hot spots on the graphene 
surface can generate •OH radicals and contribute to the destruction of 
the compounds via oxidation (Fig. 6). The oxidation pathways would be 
much more complicated than pyrolysis, and a systematic evaluation of 
radical quenchers and proper controls would be needed to reveal these 
pathways. Compounds can be carefully selected for microwave regen
eration at temperatures based on their boiling points and oxidation 
potential. All in all, more research in simplified conditions can instigate 
new discoveries but the work must bridge the long-term engineering 
vision. 

5. Environmental and engineering implications 

Global water scarcity is an increasing contemporary challenge of 
providing access to safe, sustainable, and equitable drinking water and it 
is becoming relevant to more people day by day. We need a paradigm 
shift to overcome it in the coming decades. This perspective discussed 
one possible research pathway to advance cutting-edge knowledge for 
graphene-based water treatment systems that aim at utilizing the unique 
properties of graphene nanosheets. This route is a steep learning curve 
for material scientists and environmental/chemical engineers, but it 
may be rewarding. Advancing the knowledge in this discipline will have 
direct implications on our understanding of other graphitic carbon 
materials and will help advance the edge chemistry literature for similar 
2-D materials. In addition, microwave-induced graphene regeneration 
for nanomaterials needs to be at the forefront of research, which can 
facilitate discussion about implementing microwaves for granular acti
vated carbon regeneration. Microwave irradiation is a mature, field- 
proven, and safe technology and can contribute to the global regener
ation industry. Currently, the regeneration industry aims to recover 
roughly 80–85 % of the substrate because of physical losses, accidental 
carbon burning, and losses to reactor walls. The ability to integrate 
microwaves into the existing regeneration infrastructure either by ex- 
situ regeneration plants or accomplishing it in situ via implanted an
tennas in packed columns can minimize the loss of adsorbents during 
transport, downtime during carbon switch and regeneration, and the 
overall cost of the regeneration process. 

Fig.6. Conceptual model for regeneration mechanism of edge-tailored graphenes during microwave irradiation of phenanthrene-laden graphene.  
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