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Intuitively, we are positing that because diameter simply consists
of estimating the distance between two points on the circle, partici-
pants will be able to make this estimation more accurately than they
can do for more complex metrics like perimeter or area. Regarding
spatio-temporal variation, we hypothesize that questions depicting
spatial variation on a single map will yield more accurate estimates
of relative size than questions depicting temporal variation using
side by side map snapshots, which require participants to look back
and forth between two separate maps with identical background
con�gurations.

Our main contributions are the �ndings we show that indicate
some combinations of shape and metric are more conducive to accu-
rate human judgements than others.We also detail ourmethodology
which can easily be extended to test di�erent shapes and metrics, or
new attributes altogether, depending on the context under study.We
also provide recommendations for applying our �ndings in future
map visualization design, especially in spatio-temporal mapping of
epidemiological data.

The rest of the paper is organized as follows. In Section 2 we
present a review of previous work. We then describe the system
used to contextualize our research questions in Section 3, and our
methodology in Section 4. Finally, we present results in Section 5,
a discussion of the �ndings in Section 6, avenues for future work
in Section 7, and conclusions in Section 8.

2 Related work

In this section we outline related work in visual perception as it
pertains to mapping and map visualization.

2.1 Visualization and Visual Perception

Visualizations are a common method for representing data in an
easily digestible manner, which has gained new interest in recent
monitoring of disease spread and pandemics [32, 33]. Visualized
data can be encoded in any number of ways, which varies depending
on the type of visualization and the data. However, all visualizations
rely on visual perception as a key underlying principle.

Visual Perception. There is a sizeable body of work dealing with
visual perception and visualizations, including perceptual corre-
spondence between data and its visualization [8]. Healy et al. [19]
gives a survey of visual attention and memory, explaining princi-
ples related to the visual system, and what it sees and misses in
di�erent scenarios. Heer et al. [20] shows that Amazon Mechanical
Turk (MTurk), the same crowdsourcing platform we use, is a viable
way to conduct many visualization perception studies.

Illusions in Visualizations. When presenting data in visual form,
one must be cognizant of the phenomenon of visual illusions. There
are many such illusions, including the widely studied Ebbinghaus
Illusion, where the perceived size of a circle can be in�uenced by
the surrounding circles, as well as a number of other factors [26].
Visual illusions have been studied under a variety of conditions in
the psychology literature [9], as well as in the data visualization
�eld [22, 28] and more recently in the context of virtual reality (VR)
[1, 13]. In the latter, characteristics of data are represented visually
using shape, surface properties, and motion through VR. This can
lead to illusions in how geometric structures are perceived due to

their properties in the VR world [1]. From the data visualization
perspective, there is recent work [22] detailing the systematic bias
in tri-variate scatter plots, when encoding a third dimension of
information in size or color. Visual perception is shown to be sensi-
tive to choice in size or color range, which leads to misjudgements.
All of this work serves as motivation for studying which kinds
of objects and object properties lead to the most accurate visual
perceptions in data visualization.

2.2 Spatial, Temporal, and Cartographic
Visualizations

Many works have focused on developing or modifying spatial vi-
sualizations in novel ways, to allow for easier human perception
[2, 12]. In particular, Drocourt et al. [12] develop an algorithm for
visualizing the advancement/retreat of glaciers in Greenland using
radial lines and nested rings. They use a nonlinear mapping to
generate angular coordinates from Cartesian coordinates, which
allows for consistent spatial perception. Their work represents a
unique use of circles in spatial visualization, where arc length (a
segment of the circumference of a circle) conveys vital information.
In our work, we �nd that the circumference of a circle is one of
the most visually challenging metrics for participants to estimate
accurately on maps (out of the 3 metrics and 2 shapes we tested
across both spatial and temporal questions).

Temporal visualizations can be constructed in a number of di�er-
ent ways [7], but often treat time as an additional axis, or include
animation or interactivity to convey changes over time. Examples
include Hao et al. [17], which develops an interactive display of
large molecule datasets in biology. Other previous work has studied
the e�ectiveness of di�erent temporal encoding mechanisms, in-
cluding small multiples, cartograms, and proportional symbols [29].
In our study, the system we use to generate the images we present
to participants is a spatio-temporal map interface that uses propor-
tional symbols to convey metrics, meaning it incorporates aspects
of both spatial and temporal visualization. We further describe the
context in which we compare spatial and temporal visualization
queries in Section 4.1.1.

Cartographic visualization has evolved substantially with the
rise of modern post-computing mapping [24]. In particular, the
rapid development of mapping applications spawned the study of
cartographic interaction, which is the subject of Roth [31]. The
link between scienti�c visualization and cartographic visualization
is thoroughly discussed in Maceachren and Kraak and Fairbairn
et al. [14, 25].

2.3 Role of Shapes and Encoding Metrics in Map
Visualization

One of the key aspects of cartographic visualization that we test
in our study is choice of shape. We know that the observable size
of a circle can be in�uenced by factors such as the size di�erence
between a target circle and adjacent circles in a close proximity
[15]. However, many visualizations use circles as the primary shape
to represent data, especially in a geographical context [3, 27]. There
are several works that study the perception of shapes in a geograph-
ical context [6, 23, 36]. Many of these works indicate that choice
of shape is important, in addition to other factors like background
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Success Rate (%)
Shape type Circle 25.5

Square 28.1

Encoding metric Diameter/Side length 29.7

Perimeter 21.1
Area 29.7

Variation Spatial 32.3

Temporal 21.4

Table 1: Overall summary of participant performance across

attributes of interest for the sixteen participants who passed

the attention check question. Note these attributes are not

disjoint.

Spatial Results Temporal Results
Circle Square Circle Square

Diameter/Side length 40.6 37.5 25.0 15.6
Perimeter 15.6 43.8 12.5 12.5
Area 37.5 18.8 21.9 40.6

Table 2: Success rate (%) of participants estimating shapes

across 3 attributes of interest. Results are given as the average

over 2 questions for each combination of attributes. There

are 12 disjoint combinations tested.

5.1 Opinion Questions

Out of the sixteen participants, seven said circles were the easiest
to estimate, �ve said squares were easiest, and the remaining four
said they were of equal di�culty. For the encoding metrics, six
participants found circumference/perimeter to be the easiest, �ve
said diameter/side length was easiest, one thought area was easiest,
and four found them to be of the same di�culty.

5.2 Analysis of Map Query Questions

A summary of the overall participant performance is presented
in Table 1 and a summary of the performance for each disjoint
combination of conditions is presented in Table 2. Each participant
answered two questions for each combination of shape, metric, and
spatial/temporal question type. This means that for each scenario
(such as Circle-Area-Spatial or Circle-Diameter-Temporal) a par-
ticipant could have answered 0, 1, or 2 of the questions correctly.
We aggregate these to determine the number of correct responses
per participant for each of the tests we perform (Circle vs. Square,
Spatial vs. Temporal, etc.).

For all statistical tests we apply the Bonferroni correction [21] to
adjust the signi�cance level required to reject the null hypothesis,
since we are performing multiple hypothesis tests on the same
dataset. Rather than testing all possible combinations of shape,
metric, and question type, we select a few based on the RQs out-
lined in Section 1 and the participant feedback discussed in Section
5.1. We �rst perform the Shapiro-Wilk test for normality for each
pair of scenarios we test, which showed in each case that the data
was not normally distributed (p < 0.05). As a result, we used the
non-parametric test Wilcoxen Signed Rank test to test each of the
following hypothesis.

Shape. In our �rst test we aimed to �nd out if squares are easier
to estimate than circles. For each participant we count the number
of correctly answered questions which used the circle shape, and
then number of correctly answered questions which used the square
shape. We then use the Wilcoxen Signed Rank test to determine
if the median di�erence is zero (null hypothesis) or if it is not
zero (alternative hypothesis). We discard the ties and �nd p > U ,
indicating no signi�cant di�erence in median between the two
groups. This means our survey showed that varying the shape type,

circle vs. square, did not signi�cantly a�ect viewers’ ability to glean

accurate information from the map visualization.

Spatial/Temporal. In the next test we aimed to �nd out if spatial
type questions are easier to estimate than temporal ones. For each
participant we count the number of correctly answered spatial and
temporal questions and use the one tailed Wilcoxen Signed Rank
test to determine if the median di�erence between scores for spatial
and temporal questions is zero or greater than zero. We discard the
ties, and �nd that ? < U , meaning that spatial type questions are
signi�cantly easier than temporal type questions. This means when

presented with side by side maps capturing temporal variation, users

have more trouble discerning the information encoded, as compared

to a similar visualization that varies spatially (on the same map).

Encoding Metric. In the opinion questions we found that par-
ticipants reported having the easiest time estimating circumfer-
ence/perimeter and diameter/side length for metrics and circle
for shape. To explore this phenomenon in the context of spatio-
temporal map visualization, we test to see if one of these twometrics
(diameter or perimeter) is easier to estimate accurately for circles.
We again use the Wilcoxen Signed Rank test to determine if the
median di�erence between scores for Circle-Diameter and Circle-
Perimeter questions is zero or greater than zero. We discard the ties
and �nd that ? < U , meaning that the diameter of a circle is sig-
ni�cantly easier to estimate than perimeter of a circle. Our �nding
that diameter of a circle in our spatio-temporal interface is easier to

estimate than circumference of a circle in the same setting is consistent

with the literature on visualization that indicates that people tend to

perceive the size of a circle proportionally to its diameter [30].

5.3 Demographics

The majority of the participants, eleven, where between the ages of
21-30. Three were between the ages of 31-40 and two were between
41-50. Half of the participants were male and the other half are
female. We had one individual with a high school degree or equiva-
lent, three who had an associates degree, seven with a bachelors
degree, and �ve who hold a masters or professional degree.

5.4 Summary

Based on the results of our three tests and the opinions of the par-
ticipants, it is clear that no particular shape or metric is easier to
estimate across the board. We found that squares were slightly (but
not statistically signi�cantly) easier to estimate than circles. On the
other hand, the opinion questions indicated that more participants
thought circles were easier to estimate than squares. This potential
disconnect between what participants think is easier to estimate
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and what they are better at estimating in practice is an interest-
ing avenue of future study. For spatial and temporal questions, we
found that the spatial questions were signi�cantly easier to estimate
than temporal questions, supporting our hypothesis that the visual
separation and extra distance between the snapshots provided in
the temporal questions made them more di�cult than the spatial
questions, which presented only a single map to look at. For circle
questions in particular, we observed that participants estimated di-
ameter signi�cantly more accurately than they estimated perimeter.
This is also in line with our hypothesis that metrics requiring less
mental manipulation, like diameter, would be easier to estimate
than metrics requiring more complex manipulations, like unfolding
the circumference of the circle and estimating its length.

6 Discussion

Looking at the overall results, squares yield slightly higher per-
formance than circles, diameter/side length and area have better
performance than perimeter, and spatial questions have better per-
formance than temporal ones. Looking at the disjoint combinations,
we see that side length and perimeter perform similarly for squares
in both spatial and temporal questions. This �ts with the intuition
that for squares, perimeter is simply a 4x multiple of side length,
which should be just as easy (or di�cult) to estimate. No such sim-
ple relationship exists for circles, which show more mixed results
depending on the encoding metric and question type.

6.1 Limitations

For this study we surveyed 25 participants using MTurk. However,
with 9 participants failing the attention check question, we only
retained 16 responses to use in analysis. With this relatively small
sample size, we were only able to �nd signi�cant di�erences be-
tween a few combinations of shape, metric, and spatial/temporal
question type. By design, our survey is also limited in its ability to
test temporal queries in particular. We chose to design the tempo-
ral question to test one aspect of temporal changes, the change in
shape size while center point holds steady, and ignore other aspects
that make temporal questions challenging. This includes the need
to remember, rather than reference, the previous representation.
In our study participants could look back and forth between one
snapshot and another to estimate the di�erence. However, even
with this advantage, we found that performance on spatial ques-
tions was signi�cantly better than on the temporal snapshots. We
attribute this to the added distance between the query and reference
shape for the temporal questions, which came about as a result of
presenting two maps side by side with a small visual break between
them. A future study could be designed to incorporate animation,
which better captures the complexities of temporal queries, and is
already supported in the CoronaViz map query interface.

We also consider that by deploying the survey on a crowd-source
platform like MTurk, we have no control over the resolution of the
screens used while taking the survey. This is an inherent limitation
to all visualization studies deployed in this manner, and is discussed
extensively in Heer and Bostock [20]. In the context of spatio-
temporal visualization on a production COVID-19 visualization
system, variation in the size and quality of screen used to view the

system is expected, and so this setting for the study is natural to
the context of interest, even though it introduces uncertainty.

Finally, in designing the questions, we made trade-o�s with re-
spect to allowing or controlling variation of distance between the
reference and query point. We decided to keep the distances within
some reasonable bounds, rather than allowing complete variation.
Ideally, the distances should be held constant from question to ques-
tion to eliminate possible confounding e�ects, but this undermines
the natural variability intrinsic to a real system like CoronaViz.
Since we did notice that temporal questions led to signi�cantly
worse performance than spatial ones, we suggest as future work
a study that explicitly measures the e�ects of reference-query dis-
tance in a map setting like this one.

7 Future Work

There are a few avenues of future work that we believe would
enhance the results presented in this study. One aspect of the Coro-
naViz interface that we did not address directly here is the presen-
tation of multiple metrics per location using concentric shapes of
di�erent colors. It would be interesting to study how well people
are able to estimate the relative sizes of the outer and inner shape,
to determine if this is indeed a useful way to convey multiple data
values per location. For the purposes of this study, we used static
images taken from a graphical interface. This gave the user a vi-
sual to compare the encoded object to another one at all times. To
account for this, future studies can be conducted where a user is
shown a temporal animation or a GIF from the graphical interface
and asked to determine how the object changed over time instead of
having the original reference object statically viewable. For spatial
questions, a user might be asked to compare the relative sizes of
objects that are either close together or distant. Further research
should be conducted to �nd what shapes and metrics allow for the
most accurate perception, as we have shown that data encoded as
circles by convention may not be the best in all scenarios.

8 Conclusion

Previous work has shown that visual perception can be in�uenced
by a number of factors, including the type of shape being viewed
and the background it is viewed on. With this in mind, we studied
how well people are able to visually estimate the relative sizes of
di�erent shapes in cartographic visualizations taken from a real
system for visualizing COVID-19 data. We varied the choice of
shape, metric by which numbers are encoded visually, and type of
variation depicted across the reference and query shapes: either
spatial variation or temporal variation (via side by side snapshots).
We found that when using circles as the visualization shape, diame-
ter was signi�cantly easier to estimate than circumference. We also
found that participants more accurately estimated relative sizes
for spatial queries than for temporal ones, which we believe is
attributable to the increased distance between the reference and
query object in the temporal question setup. Ultimately, we have
shown that choice of shape and metric makes a measurable dif-
ference in how map visualizations are perceived by viewers. As
a result, we hope that these �ndings spur further research along
the lines we have suggested and encourage scientists as well as
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cartographers to consider carefully how they present numerical
data in spatio-temporal map visualizations.
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