
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024 4129

On Efficient Shortest Path Computation on Terrain

Surface: A Direction-Oriented Approach
Victor Junqiu Wei , Raymond Chi-Wing Wong , Cheng Long , Senior Member, IEEE,

David M. Mount , and Hanan Samet , Fellow, IEEE

Abstract—With the advance of the geo-positioning technology,
the terrain surface data has become increasingly popular and has
drawn much research attention from both academia and industry.
Answering a shortest-path query for a given source and a given
destination on a terrain surface is a fundamental problem and
has many applications including Geographical Information System
and 3D virtual games. We observe that all existing exact algorithms
are only aware of the position of the source point and is unaware of
the information of the destination point. Motivated by this, in this
paper, we propose an efficient algorithm, namely direction-oriented
algorithm (DIO Algorithm), for answering shortest-path queries on
a terrain surface. The algorithm properly guides the search along
a direction towards the destination instead of blindly searching all
possible directions from the source point. To this end, we convert the
geodesic shortest path problem to a shortest obstacle-free euclidean
path problem in the 2D planar unfolding of the terrain surface.
Based on this conversion, we derive for each part of the terrain
surface a lower bound on the length of the shortest path from the
source to the destination passing through the part with a novel
method. The lower bounds provide useful information that can
be used to decide the visiting order of the parts on the terrain
surface and guides the search of finding the destination quickly.
Our experiments verified that our algorithm runs faster than the
state-of-the-art by more than one order of magnitude.

Index Terms—Shortest path queries, location-based services,
spatial database, terrain surfaces.

I. INTRODUCTION

D
UE to the advance of the geo-positioning and computer

technologies, terrain surfaces have emerged as an impor-

tant data object and has attracted much attention from both

academia and industry [1], [2], [3], [4], [5], [6], [7], [8]. It has

been used in many applications such as Microsoft’s Bing Maps

and Google Earth in industry. Terrain surface data is usually

represented by a set of faces, each of which corresponds to a

triangle. Each face (or triangle) has three line segments called

Manuscript received 16 May 2023; revised 4 January 2024; accepted 23
January 2024. Date of publication 22 February 2024; date of current version
12 July 2024. The work of Hanan Samet was supported in part by the NSF
under Grant IIS-18-16889, Grant IIS-20-41415, and Grant IIS-21-14451. The
work of Victor Junqiu WEI was supported in part by the HKUST-WeBank Joint
Laboratory Project under Grant WEB24EG01-A. Recommended for acceptance
by K. Zheng. (Corresponding author: Victor Junqiu Wei.)

Victor Junqiu Wei and Raymond Chi-Wing Wong are with The Hong Kong
University of Science and Technology, Hong Kong (e-mail: victorwei@ust.hk;
raywong@cse.ust.hk).

Cheng Long is with Nanyang Technological University, Singapore 639798
(e-mail: c.long@ntu.edu.sg).

David M. Mount and Hanan Samet are with the University of Maryland,
College Park, MD 20742 USA (e-mail: mount@umd.edu; hjs@umd.edu).

Digital Object Identifier 10.1109/TKDE.2024.3363147

Fig. 1. Example of terrain surface.

edges, which are connected with each other at three vertices. An

example of a piece of terrain surface data is shown in Fig. 1,

where we have 22 faces, 35 edges and 14 vertices.

The geodesic distance between two given locations (or points)

on the surface of the terrain is the length of the shortest path/route

from one point to the other traveling along the surface. For

example, in Fig. 1, s and t are two points on the terrain surface

and the shortest path from point s to point t is shown as a

sequence of dashed line segments and denoted by GP . In Fig. 1,

the euclidean distance between point s and point t, denoted by

EP , is the length of the straight line segment between these two

points. Note that the geodesic distance is usually quite different

from the euclidean distance. According to [1], the ratio of the

geodesic shortest distance and the euclidean distance is up to

300% on the real terrain datasets in their study. Clearly, GP is

much larger than EP in Fig. 1.

Answering shortest-path queries on the terrain surface is a

common building block in many algorithms and has a wide range

of applications. Here, we list a few of them. (1) In Geographic

Information System (GIS), hikers would like to find the shortest

path on the terrain surface to design a proper hiking trail [9].

In addition, many vehicles (e.g., Google Map camera cars and

military vehicles) have their route planning based on the shortest

path query on the terrain surface [10], [11]. (2) In some online 3D

virtual games such as INGRESS and PokemonGo, the shortest

path on the terrain surface provides a proper route for the players

to travel from one place to another in mountainous areas. (3)

In military tactical analysis, computing the shortest path on the

terrain surface is very important for guiding the movement of the

troops and equipment [12]. (4) With the rise of the Metaverse,

3D modeling of buildings and infrastructures in urban areas and

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4130 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

mountains, hills and valleys in the rural areas become more

and more popular [13], [14]. The shortest path on the terrain

surface [13], [14] provides a route/path for people to travel from

one place to another in their own virtual world.

While there are a large number of research studies for the

shortest path query on terrain surfaces [5], [7], [8], [15], [16],

[17], [18], [19], [20], [21], [22], the methods proposed so far are

still not efficient enough, which we elaborate on below. There are

two branches of existing studies. The first branch targets exact

algorithms. There are totally four exact algorithms [15], [16],

[17], [22]. All of these algorithms operate on-the-fly without

pre-computing an index structure. LetN denote the total number

of vertices defining the terrain surface. The time complexities of

these four algorithms are O(N2 logN), O(N2), O(N2 logN)
and O(N2 logN), which are prohibitively expensive when N

is large. For example, according to [8], the algorithm proposed

in [16], which has the lowest time complexity among these four

algorithms, took more than 300 seconds on a terrain with 200 K

vertices only.

The second branch targets approximation algorithms. Two

representative on-the-fly approximation algorithms are [7], [8].

[7] computes the shortest network path on the terrain surface

where the path returned passes through the edges of the terrain

only. Therefore, the length of the path returned could be much

larger than that of the shortest geodesic path. [8] finds a path

on the terrain surface with an approximate ratio at most (1 + ε).
The algorithm takesO((N +N ′) log(N +N ′)) time, whereN ′

is the number of additional auxiliary points introduced to the

terrain surface. But they are still not efficient enough to satisfy

the real-time requirements of many applications. According to

the experimental results in [8], the algorithm ran for more than

100 seconds on a terrain with 200 K vertices even for a setting

with a very loose error parameter ε = 0.25. There are also three

existing index-based approximation algorithms [20], [21], [23],

which build a pre-computed indexing structure to accelerate the

query processing. However, these two algorithms only provide

approximate shortest paths and have huge time overheads and

bulky space cost (of the indexing structures). Thus, they are

infeasible to be applied to the cases where (1) the exact answer

is required, or (2) the memory budget cannot afford to hold the

bulky index. This motivates us to design an index-free exact

shortest path algorithm in this paper.

We observe that all existing on-the-fly algorithms are only

aware of the position of the source point and is unaware of the

information of the destination point. As such, they explore all

directions blindly which incurs a large execution time. Motivated

by this, in this paper, we propose a destination-aware algo-

rithm, namely direction-oriented algorithm (DIO Algorithm),

for computing the exact shortest geodesic path online. It does not

incur additional space consumption with an indexing structure

or any preprocessing overhead. Our algorithm first considers

the terrain surface in the planar unfolding [24] by which we

mean that the terrain surface is unfolded into a 2D plane. As

such, this allows us to reformulate the shortest path problem

as a obstacle-free shortest euclidean path problem. We propose

a new data structure, called visibility tree, which allows us to

answer these queries. This is a rooted tree, whose root node

corresponds to the start point s. Each non-root node in the tree

corresponds to a vertex or an edge segment on the terrain surface.

Our algorithm visits the nodes in a tree in a best-first fashion until

the node o ‘containing’ t is visited. The geodesic path could be

traced back by using the path from the root to o in the tree. A

key component of our algorithm is to decide the priority of each

node to be visited. In our algorithm, the priority is given to the

edge segment or vertex o with a smaller estimated lower bound

of the length of the shortest s-t path passing through o. The

lower bound is derived based on the visibility information and

the 2D geometry. As such, our algorithm is destination-oriented

and the search is guided along a direction towards the position

of t instead of searching all directions around s blindly. Our

experiments verified that our method of estimating the lower

bound is effective and our algorithm for the shortest path query

outperforms the state-of-the-art by a notable margin.

Our contributions are threefold. First of all, we propose using

a data structure called visibility tree and each node in the tree

corresponds to a vertex or an edge segment on the terrain surface.

We also develop a lower bound estimation method to calculate

the lower bound of the length of the shortest s-t path passing

through a given edge segment or a vertex. The lower bound

serves as the priority of visiting each node in the visibility

tree (i.e., correspondingly each edge segment or each vertex

on the terrain surface). Our lower bound estimation method is

lightweight and we theoretically prove the correctness of our

lower bound estimation method. Second, based on this lower

bound estimation method, we develop a novel exact shortest path

computation algorithm, in which the lower bound estimation

algorithm guides the search towards the destination quickly.

Third, we conducted a thorough empirical study whose results

demonstrate that our algorithm significantly outperforms all ex-

isting exact shortest path computation algorithms on the terrain

surface by more than an order of magnitude.

The remainder of the paper is organized as follows. Section II

reviews the related studies of our work. Section III formally

presents our problem and introduces many notations to be

used later. Section IV presents our shortest path computation

algorithm. Section V presents our empirical study. Finally, Sec-

tion VI concludes this paper. Besides, it is worth mentioning

that in this study, we also discuss the extension of our algorithm

to a variant of the terrain surface studied in this paper, namely

weighted terrain surfaces and also conducted a case study of the

geodesic path computation. For the sake of limited space, we

refer the readers to our technical report [25] for the extension

and case study.

II. RELATED WORK

A. Exact Algorithms for Geodesic Shortest Path Queries

To the best of our knowledge, all existing exact geodesic

shortest path algorithms are on-the-fly algorithms [15], [16],

[17], [22] where no pre-computed data structures are required.

The first algorithm in this category is the MMP algorithm [15].

The MMP algorithm visits all faces in the descending order

of their distance to the source point and its time complexity

is O(N2 logN), where N is the number of vertices on the

terrain surface. Later on, the VS algorithm [22] further improved

the MMP algorithm by introducing some pruning rules to filter

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH 4131

out some irrelevant faces. As such, the query processing could

be accelerated. The third algorithm, namely CH [16], cuts and

unfolds the terrain surface into a 2D plane and the unfolded

surface in the 2D plane is a star-shaped polygon which has

the source point as its center. As such, the geodesic distance

between any point on the terrain surface and the source point is

equal to their euclidean distance on this 2D polygon. Besides,

their shortest path on this 2D polygon could be converted to

their shortest geodesic path on the original terrain surface. The

time complexity of the CH algorithm is O(N2). However, one

drawback of CH is that it must process the whole terrain, which

is more than necessary when the source and the destination

are close to each other. Motivated by this, ICH [4] further

improved CH algorithm. It incrementally establishes the 2D

polygon in a BFS fashion and visits each part of the polygon

in the ascending order of their distance to the source point. The

empirical performance of ICH is highly boosted despite that its

time complexity is O(N2 logN).
Our algorithm also interprets the geodesic shortest path al-

gorithm as a shortest euclidean path problem through the 2D

unfolding. But our key innovations consist of (1) a tree structure

for encoding the shortest path information in the 2D unfolding

(each node of which corresponds to a vertex or an edge segment

on the terrain surface) and (2) the destination-aware priority

estimation for each vertex or edge segment in the unfolding

(where the priority is the length of the shortest path from s

to t passing through this vertex or edge segment). It is worth

mentioning that it is non-trivial to estimate this priority for

the geometric objects (i.e., vertices and edge segments) with

favorable theoretical guarantee since the complicated geometric

properties of these objects together with the terrain surface im-

poses many challenges. As such, significant research effort and

more advanced techniques are highly required for such a design

which will be demonstrated in our algorithm and theoretical

analysis.

B. Approximation Algorithms for Geodesic Shortest Path

Queries

All existing on-the-fly approximation algorithms [8], [26],

[27] follow the same framework. Specifically, they all introduce

some auxiliary points, namely Steiner points, on the terrain

surface and also some auxiliary edges, namely Steiner edges,

and obtain a so-called Steiner graph G based on the points and

edges introduced. In the query phase, it creates an edge between

the source point s (resp. the destination point t) and each Steiner

point on the face that s (resp. t) lies on and inserts it into the

graph G and performs Dijkstra’s algorithm from s to t. The

time complexity of each on-the-fly approximation algorithm is

O((N +N ′) log(N +N ′)), where N ′ is the number of Steiner

points introduced. Their differences lie on the method that they

use for introducing the Steiner points and Steiner edges.

Later on, index-based algorithms [19], [21], [23], [28] for the

geodesic shortest path computation were proposed to further

accelerate the query processing. The first attempt in this cate-

gory is a Single-Source All-Destination algorithm [28], where

the source point must be known apriori and kept fixed in the

query phase. SP-Oracle [19] builds an indexing structure for the

shortest path query processing on the Steiner graph of Unfixed

Scheme. Inspired by [29], [30], [31], SE-Oracle and EAR-

Oracle [21], [23] indexes the geodesic distances and paths by

using the techniques called Well-Separated Pair Decomposition

and Highway Network, respectively. The index-based algorithms

have the overhead of preprocessing time and the additional

storage consumption for the bulky indexing structure. Further-

more, the approximation algorithms could only find approximate

results which prevent their usage in the applications where the

exact distances are highly required. Our notion of distance is

related to the Chessboard distance which is the basis of other

approximations [32], [33] especially for image dilation [34],

[35] but is not discussed further here.

C. Other Related Studies

We review some other related studies [2], [3], [4], [5], [6], [7],

[8], [36], [37], [38], [39], [40], [41], [42] on the terrain surface

in this section. Specifically, [2], [3], [4], [36] study the kNN

queries, reverse kNN queries and dynamic kNN queries, respec-

tively. [5] studies the problem of finding the shortest geodesic

path satisfying a slope constraint. It is worth mentioning that

although the algorithm in [5] could be applied to the geodesic

shortest path finding without this constraint, there is no guarantee

that it can return the exact geodesic shortest path [5], [21], [23],

[40], [41], [42] and its performance is inferior to that proposed

in [4]. Besides, a plethora of research effort [37], [38], [39] has

been put on the problem of energy-efficient path planning for

autonomous unmanned vehicles (AUV). But in their problem

setting, the AUV can only pass through several pre-defined links

connecting two pre-selected nodes on the terrain surface, and

the pre-selected nodes and pre-defined links comprise a terrain

graph. Thus, their techniques do not apply to our problem since

it is very unlikely that the geodesic shortest path only passes the

pre-defined links. Given a polygon on a 2D plane, the euclidean

shortest path problem aims to find the shortest path between

a given source point and a given destination point inside the

polygon where the path is only allowed to pass through the

interior of the 2D polygon. A lot of research effort [43], [44],

[45], [46] has been devoted into this research problem. The

shortest path finding problem on terrain surfaces studied in this

paper is a generic version of the obstacle-free shortest path

finding problem on the 2D euclidean space. In our problem,

besides the shortest path finding in the interior of a 2D polygon,

we also need to find the optimal unfolding of the 3D terrain

surface where the shortest distance from s to t in this unfolding

is equal to their geodesic distance on the original terrain surface.

It is a challenging task to find the optimal unfolding since there

can be quite a number of distinct ways of unfolding of the terrain

surface. To this end, we develop a novel data structure called vis-

ibility tree which encodes both the unfolding information that is

dynamically maintained in the procedure of our direction-aware

search and the shortest path information on the partially unfolded

terrain surface. Note that all algorithms in this section have a

different problem setting from our problem.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4132 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

TABLE I
NOTATIONS

III. PROBLEM DEFINITION

Consider a terrain surface T . Let V be the set of all vertices

on T , and E be the set of all edges on T . For example, in Fig. 1,

each solid point is a vertex and each solid line segment is an

edge. The size of a terrain surface T , denoted by N , is defined

to be the total number of vertices (That isN = |V |). Each vertex

v ∈ V has three coordinate values, denoted by xv, yv and zv .

Consider two points s and t on the terrain surface T . A path,

denoted by πg(s, t), from s to t on the terrain surface consists

of a sequence S of line segments. Each line segment l in S
lies on a face of the terrain surface and each pair of adjacent

line segments share one end-point. The length of a given line

segment l is denoted by |l|. The length of the path πg(s, t) is

the sum of the lengths of the line segments in S (i.e.,
∑

l∈S |l|).
Based on the concepts above, we have the definition of geodesic

shortest path.

Definition 1 (Geodesic Shortest Path): The geodesic shortest

path between s and t, denoted by Πg(s, t), is defined to be the

path with the shortest length between the two points on T .

We denote the euclidean distance between s and t by d(s, t).
(i.e., d(s, t) =

√

(xs − xt)2 + (ys − yt)2 + (zs − zt)2). Then,

we further have a definition called geodesic distance.

Definition 2 (Geodesic Distance): The geodesic distance be-

tween s and t, denoted by dg(s, t), is defined to be the length of

Πg(s, t).
Besides, in this paper, by ‘point’, we refer to an arbitrary point

on the terrain surface, which may or may not be a vertex of the

terrain surface. For example, in Fig. 1, s and t are two points on

the terrain surface but neither of them is a vertex of the terrain

surface.

Consider the example in Fig. 1. The geodesic shortest path

between two points s and t is denoted by GP . The geodesic

distance between s and t is equal to the sum of the lengths of all

line segments on GP .

Now, we are ready to formally define the problem.

Problem 1. (Shortest Path on Terrain Surface) Given a terrain

surface T and two points s and t on T , find the shortest path

Πg(s, t) from s to t on the terrain surface T . The notations in

the paper are summarized in Table I.

IV. DIO ALGORITHM

In this section, we present our proposed algorithm, namely

direction-oriented algorithm (DIO Algorithm), for the shortest

geodesic path query. We present that our problem is equivalent to

a visibility problem in a 2D euclidean space in Section IV-A and

then demonstrate the proposed Visibility Tree in Section IV-B.

Next, we present two key components in the Visibility Tree

construction, namely lower bound estimation and children prop-

agation, in Section IV-C and IV-D respectively. Section IV-E

presents the overall pseudocode of our algorithm. Then, Sec-

tion IV-F presents theoretical analysis of the correctness and the

time complexity of our algorithm.

A. Shortest Geodesic Path as a Visibility Problem

We demonstrate in the section that our geodesic shortest path

problem is equivalent to a visibility problem in 2D euclidean

space. Consider the example shown in Fig. 2. Fig. 2(a) shows

a terrain surface, the shortest geodesic path from s to t and the

shortest geodesic path from s to t′. Fig. 2(b) shows a planar

unfolding [24] of the terrain surface in which each face is

unfolded into the same plane. Note that in this figure, the original

vertex v11 is split into three vertices in the unfolding and we

denote them by v11(a), v11(b) and v11(c). Thus, as could be

observed from Fig. 2(b), all faces unfolded form a polygon and

the we call this unfolded terrain surface the planar unfolding of

T . If we consider the space outside the polygon as obstacles,

we define the shortest euclidean path from s to any point p,

denoted by P(s, p), as the shortest path from s to p without any

collision with the obstacles. In Fig. 2(b), the shortest euclidean

path P(s, t′) from s to t′ is the line segment st′ and the shortest

euclidean path P(s, t) from s to t consists of three line segments

(sv1, v1v2 and v2t) marked in a dashed line. Then, we proceed

to show a lemma which connects the shortest geodesic path and

the shortest euclidean path in the unfolding.

Lemma 1: The shortest geodesic path Πg(s, p) from s to any

point p on the terrain surface T coincides with the shortest

euclidean path P(s, p) in the unfolding of T .

Proof: For the sake of limited space, we refer the readers to

our technical report for the proof [25]. �

By this observation, the shortest geodesic path finding prob-

lem could be converted to the shortest euclidean path finding

problem in the planar unfolding. Given a point p in a planar

unfolding of a terrain surface, we call another point p′ in the

planar unfolding visible to p if the line segment pp′ is within

the planar unfolding. In our algorithm, the planar unfolding is

decomposed into several disjoint regions and each region R has

an associated point p which is either the point s or a vertex of

the unfolded terrain. Given a region R whose associated point

is p, we call R is a traceable region if (1) any point p′ in the

region is visible to p, and (2) the shortest euclidean path from

s to any point p′ in the region passes through the point p. For

the ease of the presentation, we call this associated point p the

light point of the regionR since for each traceable region (which

our algorithm considers only), each point inside is visible to p.

Similarly, each vertex v is also associated with a light point p.

We call v is a traceable vertex if (1) it is visible to the light point

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH 4133

Fig. 2. Illustration of DIO algorithm.

p, and (2) the shortest euclidean path from s to v passes through

the light point p.

Example 1 (Traceable Regions, Light Points and Traceable

Vertices): In Fig. 2(c), there are five disjoint regions. The first

one is the white region and s is the light point of the region.

Any point pw in the white region is visible to s and as such,

the shortest euclidean path from s to pw is the line segment

spw. The second one is the red region. v1 is the only vertex on

the boundary of the white region which is adjacent to the red

region and it is the light point of this region. Any point pr in the

red region is visible to v1 but not visible to s and the shortest

euclidean path from s to pr is (s, v1, pr). The third region is

the green region. v2 is the only vertex on the boundary of the

red region which is adjacent to the green region and it is the

light point of the green region. Any point pg in the green region

is visible to v2 but not visible to v1 and the shortest euclidean

path from s to pg is (s, v1, v2, pg). The last two regions are the

yellow and blue regions. v4 (resp. v7) is the light point of the

yellow (resp. blue) region and any point py (resp., pb) in the

yellow (resp., blue) region is visible to v4 (resp., v7) but not

visible to v2. As such, the shortest euclidean path from s to py
(resp., pb) is (s, v1, v2, v4, py) (resp., (s, v1, v2, v7, pb)). Thus,

we obtain that each of the five regions is a traceable region

and v1 and v2 are both traceable vertices. Besides, v1 and v2
are also the light points of the red region and the green region,

respectively. �

Consider an arbitrary destination point t in a traceable region.

The idea of our algorithm is to find the shortest euclidean path

from s to t in the unfolding of T . To this end, we find the

light point p of the region R that t lies on and then, we could

repeatedly find the light point p′ of p and so on so forth until we

find s. Finally, the sequence of the light points found together

with t forms the shortest euclidean path. Consider the point t in

Fig. 2(b). It lies on the green region whose light point is v2. The

light point of v2 is v1 and the light point of v1 is s. Finally, we

obtain that the shortest euclidean path from s to t is (s, v1, v2, t).
It is worth mentioning that our algorithm does not explicitly

create the unfolding, light points and regions and the information

is established and maintained through a tree-like structure called

Visibility Tree to be shown in the next section.

B. Visibility Tree & Back-Tracing Algorithm

This section presents a tree-like structure, namely Visibility

Tree, which encodes the visibility information in the planar

unfolding. We also present a Back-Tracing Algorithm which

utilizes the visibility tree to find the shortest euclidean path in

the unfolding and also the geodesic shortest path on the original

terrain surface.

We first introduce a key concept called edge segment as fol-

lows. We call an edge a heterogeneous edge if the edge has over-

lap with more than one region and we call it homogeneous edge

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4134 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

otherwise. As could be observed from Fig. 2(c), the edges v2v10,

v2v9 and v8v9 are all heterogeneous edges and the edges v12v13,

v9v10 and v6v7 are all homogeneous edges. Each homogeneous

edge is naturally considered as an edge segment in our algorithm.

Each heterogeneous edge e is decomposed into several disjoint

edge segments, each of which is the overlap between e and one

region in our algorithm. Consider the heterogeneous edge v8v9.

It is decomposed into three disjoint edge segments eI , eII and

eIII , where eI is the overlap between v8v9 and the white region,

eII is the overlap between v8v9 and the red region and eIII is

the overlap between v8v9 and the green region. In this figure,

we use the hollow point to indicate each endpoint of each edge

segment.

Next, we are ready to present the Visibility Tree which indexes

all vertices and edge segments. The visibility information and

the shortest euclidean path information is naturally encoded in

this tree structure. In this tree structure, the root corresponds to

the source point s and any other node corresponds to either a

vertex or an edge segment in the planar unfolding. Consider a

node o in the Visibility Tree, we denote the corresponding vertex

or edge segment of o in the unfolding by c(o). We highlight three

components of a node o in the tree as follows. (1) a light point

so of o, which is the light point of c(o) if c(o) is a vertex and

is the light point of the region containing c(o) otherwise, (2) an

associated distancedo (which is equal to the length of the shortest

euclidean path from s to so), and (3) its parent node, denoted

by ro, of o. Let A(o) denote the set containing all ancestors of

o in the tree. Each node o in the Visibility Tree satisfies three

properties: (1) visible property: Any point p on c(o) is visible to

so, (2) traceable property: each vertex or edge segment which

has intersection with the path from s to any point on c(o) (no

matter c(o) is a vertex or an edge segment) must belong to the

set {c(o′)|o′ ∈ A(o)}, and (3) co-located property: if o is not the

root node, there must be a face containing both c(o) and c(op),
where op is the parent of o.

Consider a node o which corresponds to a vertex in the un-

folding, we denote the corresponding vertex of o on the original

terrain by v(o). In addition to the tree structure, we store a hash

table called the vertex table. The table stores a unique node called

corresponding node for each vertex on the original terrain. We

call a node o the corresponding node of a vertex v if v(o) is v

and the value of D(o) = do + d(so, c(o)) is the smallest among

all nodes whose corresponding vertex on the original terrain is

v (i.e., argminD(o′){o
′|v(o′) = v}).

Example 2 (Visibility Tree): Consider the tree shown in

Fig. 2(d) which is the tree structure of the vertices and edge

segments in Fig. 2(c). In this figure, we use a square to denote

that the node corresponds to an edge segment and use a circle

to denote that the node corresponds to a vertex. There are

totally 45 nodes in the tree, namely o1, o2,......, and o45. We

put the corresponding vertex or edge segment of each node in

the unfolding next to the node. In Fig. 2(d), the light point of

each white node is s. Similarly, the light points of nodes in other

colors are shown in the figure.

Consider the node o45 (whose corresponding edge segment

is ea). Its light point is v2 and its associated distance do45

is equal to |sv1|+ |v1v2|. Its parent ro45 is o41. Let p de-

note a point on ea. We proceed to show that o45 satisfies the

three properties mentioned above. Since p is visible to v2 in

Fig. 2(c), o satisfies the visible property. A(o45) consists of

o1, o4, o13, o22, o28, o34, o36, o41 and their corresponding ver-

tices or edge segments are s, v10v13, v1, v2, v3v8, v4v8, v4v7,

eh, respectively. It could be verified through Fig. 2(b) that the

shortest euclidean path from s to p intersects with each of

them. Thus, o45 satisfies the traceable property. o41 (whose

corresponding edge segment is eh) is the parent of o45 in the

tree, eh lies on the same face as ea and also intersects with the

path P(s, p). As such, we obtain that o45 satisfies the co-located

property.

Table II shows the vertex table which contains the corre-

sponding node of each vertex. Consider the vertex v11. There

are three nodes in the tree whose corresponding vertex is v11 on

the original terrain and they are node o10, node o16 and node

o20 (i.e., v(o10) = v(o16) = v(o20) = v11). Note that the light

point of all three points is s and the associated distance of the

three nodes is 0. The corresponding vertices of o10, node o16
and node o20 in the unfolding are v11(c), v11(a) and v11(b)
(i.e., c(o10) = v11(c), c(o16) = v11(a) and c(o20) = v11(b)), in

which v11(b) has the smallest euclidean distance to s. Thus, we

obtain that the corresponding node of v11 is node o20. Similarly,

the corresponding node of any other vertex is stored in this

table. �

Note that it is possible that an edge e is on the boundary of

two regions. In this case, any point on e is visible to the light

points of both regions and in our algorithm, e can be assigned

to any region of them and correspondingly, the light point of the

node corresponding to e will be that of the region assigned. The

region assigned to e is determined by which region ”reaches” e

first in the tree construction and this is relevant to the geometric

factors of T .

Consider an arbitrary destination point t on the terrain surface

T . There exists three cases of t: (i) t lies on a vertex v of T , (ii)

t lies on an edge of T excluding its two end-points, and (iii) t

lies on the interior of a face of T . We define the corresponding

node of t in the Visibility Tree under the three cases next.
� Case (i). Since t is a vertex on T , the corresponding node

of t is the corresponding node of the vertex t (which is

stored in the vertex table).
� Case (ii). Consider a point t lying on an edge ε of T . There

are two cases of ε in the planar unfolding: (I) there is exactly

one edge in the planar unfolding with the same end-points

as ε; and (II) ε is split into two edges in the unfolding.

Consider two edges v1v2 and v11v13 in Fig. 2(a). v1v2
falls into Case (I) and v11v13 belongs to Case (II). Note

that it is not possible that there are more than two edges in

the planar unfolding with the same end-points as ε since

ε is adjacent to exactly two faces. As such, there are at

most two edge segments containing ε and we consider the

edge segment e (whose corresponding node is o in the tree)

with the minimum distance do + d(so, t). We call the node

which corresponds to e in the tree the corresponding node

of t.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH 4135

TABLE II
VERTEX TABLE

� Case (iii). Given an edge segment e and the node corre-

sponding to e (which is denoted by o), we call the face

having both e and c(ro) on its boundary eigen face of e.

In the example shown in Fig. 2(c), the face v5v6v7 is the

eigen face of ea since it has both ea and its parent eh on its

boundary. Given a point t in the interior of a face of T , we

call that an edge segment e contains t if (1) t is visible to so
and (2) t lies on the eigen face of e. Consider the point t in

Fig. 2(b). t lies on the eigen face of ea and it is also visible

to the light point v2 of c(ea) (i.e., o45). Thus, we obtain

that ea contains t. We call the node which corresponds to

the edge segment containing t the corresponding node of

t. In this example, the corresponding node of t is o45. It is

worth mentioning that there is exactly one node o whose

corresponding edge segment e contains t. The reason is as

follows. Consider the face f containing t and the region R

containing t. The edge segment e containing t is uniquely

defined by the intersection of R and one edge of f . Note

that all regions are disjoint. In Fig. 2(c), t lies on the face

v5v6v7 and also the green region. The edge segment ea
containing t is uniquely defined by the intersection of the

green region and the edge v5v6 (i.e., an edge of the face).

Now, we are ready to present the Back-Tracing algorithm.

Given an arbitrary point t on T , we could first find the cor-

responding node o of t in the Visibility Tree. Then, we find

the path P(=(oa, ob,, ok)) from the root node to ro in

the tree and we denote the sequence of the corresponding

vertices or edge segments of the nodes in P by P (i.e., P =
(c(oa), c(ob),, c(ok))). We extract all vertices in P and

denote them by va, vb,, vk in the order of their depth in

the tree. We obtain that the path P ′ = (s, va, vb,, vk, t)
is the shortest euclidean path from s to t. We proceed to find

the intersection between P ′ and each vertex or edge segment

in P and denote all intersection points as pa, pb,, pk. The

shortest geodesic path from s to t is (s, pa, pb,, pk, t).
Example 3 (Back-Tracing Algorithm): In Fig. 2, consider

the point t and the edge segment ea containing t (i.e., o45 is

the corresponding node of t in the Visibility Tree). The set P

containing the corresponding vertices or edge segments of all

nodes from the root node to o45 in the tree consists of v10v13,

v1, v2, v3v8, v4v8, v4v7 and eh. v1 and v2 are the two only

vertices in P . As could be observed from Fig. 2(b), the shortest

euclidean path from s to t is (s, v1, v2, t) and we indicate the

intersection between the shortest euclidean path and each node

in P by a solid point. The sequence of the solid points forms the

shortest geodesic path from s to t. �

We proceed to demonstrate how we construct the Visibil-

ity Tree. We dynamically maintain a priority queue Q which

contains all created/visited nodes in the Visibility Tree. Q is

initialized to be the root node of the tree which corresponds to

s. Its light point is assigned to be s and its associated distance

Fig. 3. Comparison of search spaces.

is assigned to be 0. Then, we iteratively perform the following

operations. We extract the top element o in Q and if o is the

corresponding node of t, we safely terminate the algorithm

and find the shortest geodesic path from s to t by using the

Back-Tracing algorithm. Otherwise, we propagate all children

of o in the Visibility Tree and insert them into Q. Now, the only

two issues left are (1) how to calculate the priority of each node

in the Visibility Tree, and (2) how to propagate the children of

each node o in the tree. The two issues will be illustrated in the

next two sections, respectively.

In a high level intuition, our priority renders our algorithm

being aware of both the source and the destination but each

existing algorithm is only aware of the source and thus, ours

is supposed to have better performance. Specifically, as shown

in Fig. 3, the final visited region of our algorithm is a narrow

ellipse E with s and t on its two sides but the final visited region

of each existing algorithm is a disk D(s, r) centered at s with

t on its boundary (where r is equal to the geodesic distance

between s and t) and thus, our proposed priority will largely

narrow down the search region visited and thus accelerate the

shortest path algorithm. As could be noticed, A∗ search [47]

in the literature of graph also used the source- and destination-

oriented lower bound but in the context of the terrain surface,

the lower bound estimation is challenging and more technically

involved as shown before since the most fundamental element

of the search on the terrain surface involves the edge segment

instead of vertex on graph.

Despite that DIO and Polyanya [43] share the high-level idea

ofA∗ search in spirit, DIO involves a lot of non-trivial techniques

specifically designed for the 3D terrain surfaces. We summarize

the differences and the corresponding challenges as follows. (i)

Different from the 2D euclidean shortest path finding where the

problem is considered in the 2D plane and the 2D polygon is

already given, the shortest path finding on terrain surfaces must

involve the unfolding procedure of the terrain surface (i.e., the

processing of unfolding the 3D surface into a 2D polygon) which

is incrementally maintained in our visibility tree. Note that there

can be multiple ways of unfolding a terrain surface and thus, it

is non-trivial for the shortest path finding on terrain surfaces

with the correctness guarantee. In our algorithm, the visibility

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4136 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

tree contains both unfolding information and the shortest path

information and we also develop a non-trivial direction-aware

query processing algorithm which returns the correct shortest

path from s to t (with both the unfolding and the shortest path

issues considered). (ii) Since the shortest path finding involves

both the unfolding and the shortest path finding in the interior

of the unfolded 2D polygon, the theoretical analysis is more

technically involved and more challenging than that of the

euclidean shortest path finding.

C. Priority Estimation: Geometry-Based Lower Bound

Estimation Algorithm

Consider a node o in the Visibility Tree. The priority of o in

Q is equal to our estimated lower bound of the shortest geodesic

path from s to t passing through its corresponding vertex or edge

segment c(o). Consider the case where c(o) is an edge segment e.

Let Πg(s, t|e) denote the s-t shortest path on the terrain surface

passing through the edge segment e (i.e., it is the one with the

minimum length among all paths from s to t passing through

e on the terrain surface). Consider the example in Fig. 2(a). It

shows a terrain surface and there are two points s and t and two

edge segments ea and eb on the surface shown in this example.

The path Πg(s, t|ea) (resp. Πg(s, t|eb)) is the shortest geodesic

path from s to t passing through ea (resp. eb). In this example,

Πg(s, t|ea) is the shortest path Πg(s, t) from s to t on the terrain

surface. Consider the case where c(o) is a vertex v. Similarly,

we denote the s-t shortest path on the terrain surface passing

through a vertex v by Πg(s, t|v).
We first consider the case where c(o) is an edge segment,

denoted by e, and present our estimation method of the lower

bound of Πg(s, t|e) for a given edge segment. Our method is

based on the two observations: (1) for any point p on e, the

geodesic distance dg(s, p) from s to p is equal to do + d(so, p)
(based on the properties of traceable edge segment) and (2) for

any point p on e, the geodesic distance dg(p, t) from p to t is

lower bounded byd(p, t). In a nutshell, we could derive the lower

bound d̃g(s, t|e) by the distances in euclidean space and we

adopt the position information of so, e and t in this lower bound

estimation which is detailed as follows. Given an edge segment e,

our estimation d̃g(s, t|e) is equal tominp∈e{dg(s, p) + d(p, t)}.

We will present that the estimation is a lower bound of the length

of Πg(s, t|e) (i.e., the correctness) later in Lemma 4.

Now, we proceed to present how to estimate

minp∈e{dg(s, p) + d(p, t)}. The estimation consists of two

steps, namely Plane Rotation and Distance Computing.

Step 1: Plane Rotation. Let Ł denote the straight line where

the edge segment e lies on. As shown in Fig. 4, the first step

finds (1) the plane P1 containing so and e and (2) the plane P2

containing t and e and then rotate P2 along Ł to make it coincide

with P1. Let t denote the position of t after the rotation. Note

that if so and t are on Ł, we simply skip this first step (i.e. Plane

Rotation) and go to the second step (i.e., Distance Computing)

directly.

Step 2: Distance Computation. Then, consider the second

step. In this step, we first find the proxy point t
′

of t such that

the length of the shortest euclidean path from so to t is equal to

Fig. 4. Illustration of plane rotation.

Fig. 5. Distance computation (Case 1(a)).

Fig. 6. Distance computation (Case 2(a)).

that of the shortest euclidean path from so to t
′
. We compute t

′

for the ease of the distance computation in some cases shown

below. There are two cases of t
′
.

� Case 1: t
′
locates at the same position of t if (1) so is on Ł

or so and (2) t are on the different sides of Ł.
� Case 2: Otherwise, the position of t

′
is symmetric to that

of t w.r.t. Ł.

Let Ł′ denote the straight line containing so and t
′
. There are

two cases of Ł:
� Case (a): Ł′ intersects with e.
� Case (b): Ł′ does not intersect with e.

Thus, there are totally four disjoint cases, namely, Case 1(a),

Case 2(a), Case 1(b) and Case 2(b). We proceed to present how

to make the estimation in each case as we need which will be

illustrated with some examples later. In Case 1(a) and Case

2(a), minp∈e{dg(s, p) + d(p, t)} = do +minp∈e{d(so, p) +

d(p, t)} = do + d(so, t
′
). In Case 1(b) and Case 2(b),

minp∈e{dg(s, p) + d(p, t)} = do +minp∈e{d(so, p) +
d(p, t)} = do +minp∈{p1,p2}{d(so, p) + d(p, t)}. We will

elaborate this next with examples.

Example 4: (Four Cases in Step 2: Distance Computation)

Figs. 5, 6, 7 and 8 show the examples of the four cases,

respectively. We elaborate the position of t
′

in each case.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH 4137

Fig. 7. Distance computation (Case 1(b)).

Fig. 8. Distance computation (Case 2(b)).

Besides, we also show the correctness of our estimation of

minp∈e{dg(s, p) + d(p, t)} in each example and will formally

prove it later.

Consider the example as shown in Fig. 5 (i.e., Case 1(a)).

Since t and so are on the different sides of Ł, the light point t
′

of t is located on t. Since the line Ł′ intersects with e (note

that Ł′ is defined to be the line passing through so and t
′
),

the shortest distance from so to t
′

is d(so, t
′
). Besides, by

the rotation procedure, we obtain that for any point p on e,

dg(s, p) = do + d(so, p) and d(p, t) = d(p, t
′
). Thus, we obtain

that minp∈e{dg(s, p) + d(p, t)} = do + d(so, t
′
) and our esti-

mation in this case is do + d(so, t
′
).

Consider the example as shown in Fig. 6 (i.e., Case 2(a)).

Since so is not on Ł and so and t are on the same side of Ł, the

light point t
′
of t is the reflection of t w.r.t. Ł. The estimation of

minp∈e{dg(s, p) + d(p, t)} and its correctness of the estimation

are the same as those of Case 1(a). Note that in this case, although

t
′

is not located on t, it still holds that for any point p on e,

d(p, t) = d(p, t
′
) since t

′
and t are symmetrical w.r.t. Ł and Ł

contains e and the rotation takes Ł as the axis, where Ł contains

e.

Consider the example as shown in Fig. 7 (i.e., Case

1(b)). Since t and so are on the different side of Ł,

the light point t
′

of t is located on t. In this case,

the estimation is minp∈{p1,p2}{do + d(so, p1) + d(p1, t
′
), do +

d(so, p2) + d(p2, t
′
)}. In other words, argminp∈e{dg(s, p) +

d(p, t)} is one end-point of the edge segment e.

Consider the example as shown in Fig. 8 (i.e., Case 2(b)).

Since so is not on Ł and so and t are on the same side of Ł, the

light point t
′
of t is the reflection of t w.r.t. Ł. The estimation in

this case is the same as that of Case 1(b). �

Consider the case where c(o) is a vertex v. Our estimation

method of the lower bound of Πg(s, t|v) is simply equal to do +
d(v, t). We will present that the estimation is a lower bound of

the length of Πg(s, t|v) (i.e., the correctness) later in Lemma 3.

D. Children Propagation Method for a Node in Visibility Tree

Given a node o (o may correspond to a vertex or an edge

segment) in the Visibility Tree, in this section, we present

how to find all children of o in the tree (which corresponds

to several newly propagated vertices and edge segments). Due

to the limited space, the readers are referred to our technical

report [25] for the detailed description and in this paper, we

only present the major idea. In a nutshell, the newly propagated

edge segments and vertices are the visible ones that the light

point of the current node o could see through its corresponding

vertex or edge segment c(o) in the planar unfolding of the terrain

T . If one newly propagated edge segment e has overlap with one

existing edge segment e′, we divide the overlap part from each of

these two edges segments into two disjoint edge segment parts.

Consider a newly created node o′. In the end of the propagation,

our algorithm makes sure that for any point p contained by c(o′),
o′ is the one in all existing nodes with the minimum value of

do′ + d(so′ , p).

E. Putting Things All Together

Our algorithm expands the terrain surface by visiting all

nodes in the Visibility Tree starting from the root node until the

corresponding node of t is visited. We maintain a priority queue

(i.e., a min-heap) to store the visited nodes (which is similar to

the Dijkstra’s algorithm in graphs). The priority of each node o

is equal to our estimated lower bound, denoted by d̃g(s, t|c(o)),
of the length of Πg(s, t|c(o)) instead of the distance from s to

c(o). Our algorithm visits the nodes in their estimated lower

bound as illustrated in Section IV-C. Algorithm 1 shows our

proposed shortest geodesic path finding algorithm. Lines 1-5

present the initialization of our algorithm. Initially, we create a

priority queue (i.e., a min-heap) Q and assign it to be ∅ (Line

1). Line 2-5 create the first node and insert it into Q. In Line

2, we create the root node of the Visibility Tree which is a

copy of s. In Line 3, we assign its associated light point to

be s and assign its associated distance to be 0. In Line 4, we

assign its priority to be 0. After that, we push the node into

Q (Line 7). Line 6-18 contain the steps of the path finding. In

each iteration of the while loop, we pop the top element in the

queue (Line 7). If it is the corresponding node of t, we simply

utilize the Back-Tracing method to find the shortest path from s

to t and return it (Lines 9-10). If not, we propagate more nodes

and compute their associated distances and images by using

the children propagation method. Line 12 propagates several

children from x. Lines 14-16 estimate the priority of each node

propagated and put it into Q.

F. Theoretical Analysis

In this section, we formally prove the correctness and time

complexity of our algorithm. Given a node o in the Visibility

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4138 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

Algorithm 1: DIO Algorithm.

Tree, we call that o is a traceable node if o satisfies the three

properties: for any point p on c(o), (1) dg(s, p) = do + d(so, p),
where do is the associated distance of o, (2) the light point of

o lies on one vertex of the corresponding path of Πg(s, p) in

the unfolding space, and (3) c(ro) in the Visibility Tree has

intersection with Πg(s, p|c(o)), where ro is the parent of o in

the Visibility Tree.

Lemma 2: Each node created by our algorithm is a traceable

node and satisfies the visible property, the traceable property and

the co-located property.

Proof: For the sake of limited space, we refer the readers to

our technical report [25] for the proof. In a nutshell, the lemma

is a natural result of our children propagation algorithm. �

Lemma 3: Given a vertex v considered in our algorithm

whose corresponding node is o, do + d(v, t) is at most the length

of Πg(s, t|v).
Proof: The pathΠg(s, t|v) consists of two parts. The first one

is the shortest geodesic path Πg(s, v) from s to v and the second

one is the shortest geodesic path Πg(v, t) from v to t. By our

algorithm do is equal to the length of Πg(s, v) and since d(v, t)
is equal to the euclidean distance between v and t, we obtain

that d(v, t) is at most the length of Πg(v, t). Thus, we finally

obtain that do + d(v, t) is at most the length of Πg(s, t|v). �

Lemma 4: Consider a given edge segment e considered in our

algorithm. minp∈e{dg(s, p) + d(p, t)} is at most the length of

Πg(s, t|e).
Proof: Let p∗ denote any point on Πg(s, t|e) ∩ e (note that

the intersection of Πg(s, t|e) and e may not be a point and an

extreme case is that Πg(s, t|e) contains e and here, p∗ is any

point on Πg(s, t|e) ∩ e.). Thus, the length of Πg(s, t|e) is equal

to dg(s, p
∗) + dg(p

∗, t).

Let p′ denote argminp∈e{dg(s, p) + d(p, t)} (and thus,

dg(s, p
′) + dg(p

′, t) = minp∈e{dg(s, p) + d(p, t)}). By the

definition of p′, dg(s, p
′) + d(p′, t) ≤ dg(s, p

∗) + d(p∗, t).
Since dg(p

∗, t) ≥ d(p∗, t), we obtain that dg(s, p
′) + d(p′, t) ≤

dg(s, p
∗) + dg(p

∗, t) which is the desired result. �

Theorem 1: Our estimation of minp∈e{dg(s, p) + d(p, t)} is

correct, where e is an edge segment considered in our shortest

path algorithm.

Proof: By Lemma 2, for any point p on e, dg(s, p) = do +
d(so, p), where o is the corresponding node of e. Thus, we ob-

tain that minp∈e(dg(s, p) + d(p, t) = de +minp∈e(d(so, p) +
d(p, t). Since the Plane Rotation step rotate P2 on Ł which

contains e, we obtain that for any point p on e, d(p, t) = d(p, t).
With the two equations above, we obtain thatminp∈e(dg(s, p) +
d(p, t) = do +minp∈e(d(so, p) + d(p, t). Then, it suffices to

prove that minp∈e(d(so, p) + d(p, t) is equal to d(so, t
′
) (resp.

minp∈{o1,o2}(d(so, p) + d(p, t)) in Case 1(a) and Case 2(a)

(resp. Case 1(b) and Case 2(b)).

Consider Case 1(a) and Case 2(a): By Triangle inequal-

ity, we obtain that for any point p, d(so, p) + d(p, t
′
) ≥

d(so, t
′
). By the definition of t

′
(i.e., t

′
locates at ei-

ther that of t or the position symmetric to that of t

w.r.t. Ł), we obtain that for any point p on Ł, d(p, t) =
d(p, t

′
). Thus, it must be true that min

p∈Ł(d(s, p) + d(p, t) =

min
p∈Ł(d(s, p) + d(p, t′). Since x is on the edge segment st

′

and on the line Ł, we obtain that d(so, x) + d(x, t
′
) = d(so, t

′
)

and d(so, x) + d(x, t) = d(so, x) + d(x, t
′
). Thus, we ob-

tain that min
p∈Ł(d(so, p) + d(p, t

′
)) = d(so, x) + d(x, t

′
) =

d(so, t
′
) = min

p∈Ł(d(so, p) + d(p, t)). Together with the fact

thatx is on the edge segment e, we obtain thatminp∈e(d(so, p) +

d(p, t) = d(so, x) + d(x, t
′
) = d(so, t

′
).

Consider Case 1(b) and Case 2(b): Let E denote the ellipse

whose focuses are so and t such that the length of its major

axis is minp∈e{d(so, p) + d(p, t)}. We first present three useful

lemmas to show some intermediate results as follows. Note that

E ∩ e and argminp∈e{d(so, p) + d(p, t)} are two sets contain-

ing some points.

Lemma 5: The ellipse E intersects with e (i.e., E ∩ e 	= ∅) and

their intersection is argminp∈e{d(so, p) + d(p, t)}.

Proof: We first prove that any point p′ in

argminp∈e{d(so, p) + d(p, t)} must be in E ∩ e. Since the

focuses of E are so and t and the length of its major axis is

minp∈e{d(so, p) + d(p, t)}, p′ must be on E and p′ must be in

e by the definition of argminp∈e{d(so, p) + d(p, t)}. Thus, p′

is in E ∩ e.

Then, we prove that any point p′′ in E ∩ e must be

in argminp∈e{d(so, p) + d(p, t)}. Since p′′ is in E , we

obtain that d(so, p
′′) + d(p′′, t) = minp∈e{d(so, p) + d(p, t)}.

Besides, since p′′ is in e, we obtain that p′′ is in

argminp∈e{d(so, p) + d(p, t)}. �

Lemma 6: E ∩ e (i.e., argminp∈e{d(so, p) + d(p, t)}) con-

tains exactly one point.

Proof: By Lemma 5, we obtain that E ∩ e contains at least

one point. Then, it suffices to prove that E ∩ e contains at most

one point.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH 4139

We then prove this (i.e., E ∩ e contains at most one point) by

contradiction. Suppose that E ∩ e (i.e., argminp∈e{d(so, p) +
d(p, t)}) contains at least two points. Let p1 and p2 denote

two points in E ∩ e. Since p1, p2 ∈ E , the edge segment p1, p2
excluding p1 and p2 is in the interior of E . From the prop-

erty of an ellipse, d(so, p
′) + d(p′, t) is less than the length

of its major axis (i.e., minp∈e{d(so, p) + d(p, t)}), where p′

is a point in p1, p2 excluding p1 and p2. Besides, since

p1, p2 ∈ e, e contains the edge segment p1, p2. This meas that

p′ ∈ e and d(so, p
′) + d(p′, t) < minp∈e{d(so, p) + d(p, t)}.

Contradiction. �

Lemma 7: In Case (b), Ł is not a tangent line of E .

Proof: We first prove this by contradiction. Suppose Ł is a

tangent line of E . Consider the three lines so, o, o, t
′

and o, t.

Since Ł is a tangent line of E where the intersection is o, by [48]

(see the Section ‘The Normal bisects the angle between the lines

to the foci’), we obtain that Ł bisects the angle the lines so, o

and o, t. Since t
′
is a reflection point of t w.r.t. Ł, we obtain that

Ł bisects the angle ∠tot
′
. Thus, we obtain that Ł coincides with

the line so, o (i.e., o is on the line Ł). Then, Ł′ must intersect

with e. Contradiction. �

By Lemma 5 and Lemma 6, we obtain that E ∩ e =
argminp∈e{d(so, p) + d(p, t)} and |E ∩ e| = 1. We prove the

correctness of our estimation in Case 1(b) and Case 2(b) by con-

tradiction. Suppose that (i.e., argminp∈e{d(so, p) + d(p, t)}) is

neither {o1} nor {o2}. Let x denote the point contained in E ∩ e.

By Lemma 7, we obtain that Ł is not a tangent line of E . Then,

there must be a point x′ on e such that x′ is in the interior of E (as

shown in Figs. 7 and 8). By the definition of ellipse, we obtain

thatd(so, x
′) + d(x′, t) ≤ d(so, x) + d(x′, t) since the length of

the major axis ofE is d(so, x) + d(o, t). But this contradicts with

the assumption that argminp∈e{d(so, p) + d(p, t)} = {x}. �

Theorem 2: Our algorithm returns the shortest geodesic path

from s to t correctly.

Proof: Let o denote the corresponding node of t and by the

termination condition of our algorithm, in the last iteration, we

find the corresponding node o of t. By Lemma 3, Lemma 4 and

Theorem 1, the priority of o in Q is an lower bound of the length

of the path Πg(s, t|c(o)).
If t lies on a vertex or an edge segment (i.e., Case (i) and

Case (ii) of t), then our Back-Tracing algorithm must find the

shortest geodesic path from s to t by Lemma 2. Then, consider

the last possible case (i.e., Case (iii)) of t, where t lies on the

interior of a face. In this case, c(o) is an edge segment and c(o)
contains t (i.e., t is visible to sc(o)). Consider the point p on

c(o) such that sc(o)p passes through t. Thus, we obtain that the

geodesic shortest path Πg(s, p) from s to p passes through t. By

Lemma 2, our Back-Tracing algorithm finds the intersections

between each vertex or edge segment and the path Πg(s, p)
which consists of s, p1, p2,, pk, p. Together with the face

that Πg(s, p) passes through t and p and t are located on the

same face, we obtain that the path (i.e., (s, p1, p2,, pk, t))
that our algorithm returns is the shortest geodesic path from s

to t. �

Let Es,t denote the ellipse on the x-y plane whose focuses

are s and t such that the length of its major axis is dg(s, t).

Let Ns,t =#{p ∈ V | the projection of p on x-y plane is inside

Es,t }.

Theorem 3: The running time and space consumption of DIO

algorithm are O(N 2
s,t logNs,t) and O(N 2

s,t), respectively.

Proof: We first show the number of visited vertices on the

terrain surface by our algorithm in the following lemma.

Lemma 8: The number of vertices visited by our algorithm is

Ns,t.

Proof: We first prove that the projection of each vertex vis-

ited by our algorithm on the x-y plane are inside the ellipse

Es,t. Consider any vertex v that is visited by our shortest path

algorithm. Since the key of the root of the priority queue Q
maintained in our algorithm is at most dg(s, t), it must be true

that dg(s, v) + d(v, t) ≤ dg(s, t). Since for any two arbitrary

points o1 and o2 on the terrain surface, it must be true that

dg(o1, o2) ≥ d(o1, o2) ≥ dxy(o1, o2), we obtain that for any

visited vertex v, dxy(s, v) + dxy(v, t) ≤ dg(s, t), where dxy(·)
denote the distance between the projections of two points on the

x-y plane. Thus, we obtain that the projection of each vertex

visited by our algorithm on the x-y plane lies in the ellipse Es,t
by the definition of the ellipse Es,t.

Reversely, we proceed to prove that each vertex, denoted by

v, whose projection on the x-y plane is outside the ellipse Es,t
is not visited by our algorithm. According to the definition of

the ellipse Es,t, we obtain that dxy(s, v) + dsy(v, t) > dg(s, t).
Note that the length of the major axis of Es,t is dg(s, t). Since for

any two arbitrary points o1 and o2 on the terrain surface, it must

be true thatdg(o1, o2) ≥ d(o1, o2) ≥ dxy(o1, o2), we obtain that

for any visited vertex v, dg(s, v) + dg(v, t) > dg(s, t). By our

algorithm, the key of each element considered in our priority

queue Q is smaller than or equal to dg(s, t). Thus, we obtain

that v is not visited by our algorithm. �

By [4], for a terrain surface with N vertices, each heteroge-

neous edge can only have at most N edges segments. Besides,

each homogeneous edge has exactly one edge segment. Since

the vertices and the edges of a terrain surface form a planar

graph, we obtain that the number of edges on the terrain surface

isO(N) by [49]. Thus, the total number of nodes in the Visibility

Tree is O(N2).
By Lemma 8, the number of vertices visited by our algorithm

is Ns,t which is equivalent to the fact that our algorithm only

visited a terrain with Ns,t vertices. We obtain that the number

of edge segments (i.e., the elements considered in our priority

queue Q) is O(N 2
s,t). Since each push or pop operation takes

O(logN (s, t)) time for a priority queue with at most O(N 2
s,t)

elements, we obtain that the running time of our algorithm is

O(N 2
s,t logNs,t). �

V. EMPIRICAL STUDIES

A. Experimental Setup

We conducted our experiments on a Linux machine with

2.67 GHz CPU and 48 GB memory. All algorithms were im-

plemented in C++.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4140 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

TABLE III
DATASET STATISTICS

Datasets: Following some existing studies on terrain data [3],

[5], [21], [36], we used three real terrain surfaces, namely Bear-

head (in short, BH), Eaglepeak (in short, EP) and San Francisco

South (in short, SF) and these datasets can be downloaded from

this link [50]. Table III shows the dataset statistics. Each of the

three terrain surfaces has two different versions with different

resolution and sizes. Thus, there are totally six different datasets

considered, namely BH (L), EP (L), SF (L), BH (H), EP (H) and

SF (H).

Algorithms: We tested our DIO algorithm and four existing

exact shortest path algorithms on the terrain surface, namely

MMP [15], VS [22], CH [16] and ICH [17]. Note that other

existing algorithms can only find approximate geodesic shortest

paths and thus, we do not test them in the experiment since

they have different problem settings from ours. We obtained

the source code of MMP from [51] and also the source code

of CH and ICH from the webpage of the author of [17]. We

implemented the VS algorithm [22] by ourselves. The four

baseline algorithms considered in the experiment were written

in C++. Since the CH algorithm [16] is proved to be inferior to

ICH and CH has a significantly larger running time than MMP

and ICH according to the result of [4], we safely exclude CH for

the better clarity.

Query Generation. Each shortest path query contains two

query points, one as the source and the other as the desti-

nation. To study the effect of the distance between the two

query points (i.e., the source and the destination), we generate

10 different groups of queries, namely Q1, Q2,, Q10, for

each dataset as follows. We first obtain the maximum (resp.

minimum) pairwise geodesic distance between all vertices and

we denote the distance as dmax (resp. dmin). Then, ∀i ∈ [1, 10],
we insert 100 pairs of vertices (s, t) into Qi and we make

sure that the geodesic distance dg(s, t) between s and t is in

the range [dmin + (dmax−dmin)∗i
10 , dmin + (dmax−dmin)∗(i+1)

10].
As such, the geodesic distance between each pair in Qi is larger

than Qi−1, where i ∈ [2, 10].
Factors & Measurements: Two factors, namely the query

distance (the geodesic distance between the source and the

destination) and N (the number of vertices on a terrain surface),

were studied. Three measurements, namely (1) running time

(which is the time for answering a shortest path query), (2)

space consumption (which is the memory cost for running the

algorithm) and (3) No. of visited vertices (which is the number

of vertices visited by the algorithm and measures the size of

the regions that each algorithm explores on the terrain surface)

were used for evaluating the algorithms. For the query time,

100 queries were answered and the average running time was

returned.

B. Experimental Results

Fig. 9 shows the running time, space consumption and no. of

visited vertices of each algorithm on all the six datasets. We used

all queries contained in Q1, Q2,..., Q10 and reported the average

running time of the 1000 queries contained in all ten groups

for each algorithm. In Fig. 9(a), we could observe that (1) our

algorithm has the smallest running time which is smaller than the

best existing algorithm (i.e., VS) around 1 order of magnitude;

(2) MMP and ICH are the slowest two algorithms and they have

very similar performance and this result is consistent with that

of [4]; (3) The running time of VS is 3-5 times smaller than that

of MMP which is consistent with the result of [22]. In Fig. 9(b),

we find that (1) our algorithm is the most space-efficient and its

space consumption is several times smaller than that of the best

existing algorithm (i.e., VS); (2) MMP and ICH have the largest

space consumption and this result is consistent with that of [22];

In Fig. 9(c), we observe that (1) our algorithm has the smallest

no. of visited vertices which is several times smaller than the

best existing algorithm (i.e., VS). This result verifies that our

destination-aware algorithm is very effective and only visited

a small region of the terrain surface compared with existing

algorithms; (2) The no. of visited vertices of VS is smaller than

that of MMP and ICH in most cases which is consistent with the

result of [22].

Effect of Query Distance: We studied the effect of query

distance by testing the 10 groups of the queries on each high-

resolution dataset. Note that the query distance is monotonically

increasing from Q1 to Q10. The results on the BH (high res-

olution) datasets is shown in Fig. 10. Fig. 10(a) presents the

running time of each algorithm in the 10 query groups. As could

be observed from the figure, the running time of each algorithm

grows up with the increase of the query distance. The running

time of our algorithm is 1-3 orders smaller than the 3 baselines.

Fig. 10(b) presents the space consumption of each algorithm.

Our algorithm significantly outperforms all the 3 baselines by

a notable margin and is the most space-efficient one. Fig. 10(c)

demonstrates the number of vertices visited by each algorithm

on the terrain surface. Our algorithm visited several times fewer

vertices than the best existing algorithm. The result confirms that

the destination-awareness of our algorithm is effective and the

lower bound estimation in our algorithm provides a tight lower

bound. As such, our algorithm only visited a much smaller region

on the terrain surface than all existing algorithms and the query

processing is highly boosted. The results on EP (H) and SF (H)

can be found in our technical report [25] due to limited space.

Their results are similar to those of BH (H).

Scalability Test: We tested the scalability of each algo-

rithm considered on five synthetic datasets with sizes from

{0.5 M, 1 M, 1.5 M, 2 M, 2.5M}. Each synthetic dataset with

N vertices is a simplified terrain surface from an enlarged BH

(H) dataset (4.2 M vertices). Note that each simplified terrain

surface covers the same region as the original BH dataset with

a different simplification ratio. The enlarged BH dataset was

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH 4141

Fig. 9. Running time, space consumption and no. of visited vertices of each algorithm on all datasets.

Fig. 10. Effect of query distance on BH (high resolution) dataset.

Fig. 11. Scalability Test.

generated from the BH (H) dataset as follows. On each face of

BH (H), we added a new vertex on its geometric center and add a

new edge between the new vertex and each of the three vertices

on the face. Then, we adopted a terrain toolkit [5] to simplify the

enlarged dataset. Fig. 11 shows the results of the scalability test.

As the figure shows, the running time, space consumption and

no. of visited vertices of each algorithm are all monotonically

increasing with the increase of the data size. Our method has a

running time smaller than that of all existing algorithms by more

than one order of magnitude.

C. Experimental Result Summary

Our geodesic shortest path processing algorithm significantly

outperforms the state-of-the-art algorithms, i.e., MMP, ICH and

VS, in terms of all measurements (i.e., running time, space

consumption, and the number of visited vertices) and enjoys

excellent scalability. The speed-up of our algorithms compared

with the existing algorithms is more than an order of magnitude.

The space consumption and the no. of visited vertices of our al-

gorithm are several times smaller than that of the state-of-the-art

algorithm.

VI. CONCLUSION

In this paper, we propose an efficient on-the-fly algorithm for

shortest geodesic path computation in which a core component is

the lower bound estimation of the length of the shortest geodesic

path passing through each part of the terrain. The lower bound

provides a priority of each part and guides the search towards the

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4142 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

destination. We theoretically prove that our algorithm is correct

and our empirical study confirms that our algorithm significantly

outperforms the state-of-the-art in terms of the running time

and the number of vertices visited. Future work includes a

comparison of the spatial indexing methods used here with more

traditional data structures (e.g., [52], [53]).

ACKNOWLEDGEMENT

The authors are grateful to the anonymous reviewers for their

constructive comments on this paper.

REFERENCES

[1] K. Deng, H. T. Shen, K. Xu, and X. Lin, “Surface k-NN query processing,”
in Proc. Int. Conf. Data Eng., 2006, pp. 78–78.

[2] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin, “A multi-
resolution surface distance model for k-nn query processing,” VLDB J.,
vol. 17, pp. 1101–1119, 2008.

[3] C. Shahabi, L.-A. Tang, and S. Xing, “Indexing land surface for efficient
KNN query,” Proc. VLDB Endowment, vol. 1, pp. 1020–1031, 2008.

[4] S. Xing, C. Shahabi, and B. Pan, “Continuous monitoring of nearest neigh-
bors on land surface,” Proc. VLDB Endowment, vol. 2, pp. 1114–1125,
2009.

[5] L. Liu and R. C.-W. Wong, “Finding shortest path on land surface,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 433–444.

[6] D. Yan, Z. Zhao, and W. Ng, “Monochromatic and bichromatic reverse
nearest neighbor queries on land surfaces,” in Proc. Conf. Inf. Knowl.

Manage., 2012, pp. 942–951.
[7] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen, “Finding shortest paths

on terrains by killing two birds with one stone,” Proc. VLDB Endowment,
vol. 7, pp. 73–84, 2013.

[8] M. Kaul, R. C.-W. Wong, and C. S. Jensen, “New lower and upper bounds
for shortest distance queries on terrains,” Proc. VLDB Endowment, vol. 9,
pp. 168–179, 2015.

[9] L. T. Sarjakoski, P. Kettunen, H.-M. Flink, M. Laakso, M. Rönneberg, and
T. Sarjakoski, “Analysis of verbal route descriptions and landmarks for
hiking,” Pers. Ubiquitous Comput., vol. 16, pp. 1001–1011, 2012.

[10] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain
classification using three-dimensional ladar data for ground robot mobil-
ity,” J. Field Robot., vol. 23, pp. 839–861, 2006.

[11] N. Vandapel, R. R. Donamukkala, and M. Hebert, “Unmanned ground
vehicle navigation using aerial ladar data,” Int. J. Robot. Res., vol. 25,
pp. 31–51, 2006.

[12] B. Koyuncu and E. Bostancı, “3D battlefield modeling and simulation
of war games,” in Proc. 3rd Int. Conf. Commun. Inf. Technol., 2009,
pp. 64–68.

[13] L.-H. Lee et al., “All one needs to know about metaverse: A complete sur-
vey on technological singularity, virtual ecosystem, and research agenda,”
2021, arXiv:2110.05352.

[14] L. Lee et al., “When creators meet the metaverse: A survey on computa-
tional arts,” 2021. [Online]. Available: https://arxiv.org/abs/2111.13486

[15] J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou, “The discrete
geodesic problem,” SIAM J. Comput., vol. 16, pp. 647–668, 1987.

[16] J. Chen and Y. Han, “Shortest paths on a polyhedron,” in Proc. Annu.

Symp. Comput. Geometry, 1990, pp. 360–369.
[17] S.-Q. Xin and G.-J. Wang, “Improving Chen and Han’s algorithm on the

discrete geodesic problem,” ACM Trans. Graph., vol. 28, pp. 1–8, 2009.
[18] L. Aleksandrov, H. N. Djidjev, H. Guo, A. Maheshwari, D. Nussbaum, and

J.-R. Sack, “Algorithms for approximate shortest path queries on weighted
polyhedral surfaces,” Discrete Comput. Geometry, vol. 44, pp. 762–801,
2010.

[19] L. Aleksandrov, A. Maheshwari, and J.-R. Sack, “Determining approxi-
mate shortest paths on weighted polyhedral surfaces,” J. ACM, vol. 52,
pp. 25–53, 2005.

[20] H. N. Djidjev and C. Sommer, “Approximate distance queries for weighted
polyhedral surfaces,” in Proc. Eur. Symp. Algorithms, 2011, pp. 579–590.

[21] V. J. Wei, R. C.-W. Wong, C. Long, and D. M. Mount, “Distance oracle on
terrain surface,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2017,
pp. 1211–1226.

[22] V. Verma and J. Snoeyink, “Reducing the memory required to find a
geodesic shortest path on a large mesh,” in Proc. ACM SIGSPATIAL Int.

Conf. Ad. Geographic Inf. Syst., 2009, pp. 227–235.
[23] V. J. Wei, R. C.-W. Wong, C. Long, D. M. Mount, and H. Samet, “Proximity

queries on terrain surface,” ACM Trans. Database Syst., vol. 47, pp. 1–59,
2022.

[24] P. A. Benton, “Unfolding polyhedra,” Ph.D. dissertation, Dept. Comput.
Sci., University of Cambridge, 2008.

[25] V. J. Wei, R. C.-W. Wong, C. Long, D. Mount, and H. Samet, On
efficient shortest path computation on terrain surface: A direction-oriented
approach (technical report). 2023. [Online]. Available: https://github.com/
ItachiUchihaVictor/DIO-Algorithm

[26] M. Lanthier, A. Maheshwari, and J.-R. Sack, “Approximating short-
est paths on weighted polyhedral surfaces,” Algorithmica, vol. 30,
pp. 527–562, 2001.

[27] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack, “An –
approximation algorithm for weighted shortest paths on polyhedral sur-
faces,” in Proc. 6th Scand. Workshop Algorithm Theory Stockholm, 1998,
pp. 11–22.

[28] T. Kanai and H. Suzuki, “Approximate shortest path on a polyhedral
surface based on selective refinement of the discrete graph and its ap-
plications,” in Proc. Geometric Model. Process. Theory Appl., 2000,
pp. 241–250.

[29] P. B. Callahan and S. R. Kosaraju, “A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields,” J. ACM, vol. 42, pp. 67–90, 1995.

[30] J. Sankaranarayanan and H. Samet, “Distance oracles for spatial net-
works,” in Proc. IEEE 25th Int. Conf. Data Eng., 2009, pp. 652–663.

[31] J. Sankaranarayanan and H. Samet, “Query processing using distance
oracles for spatial networks,” IEEE Trans. Knowl. Data Eng., vol. 22,
no. 8, pp. 1158–1175, Aug. 2010.

[32] H. Samet, “A quadtree medial axis transform,” Commun. ACM, vol. 26,
pp. 680–693, 1983.

[33] H. Samet, “Reconstruction of quadtrees from quadtree medial axis trans-
forms,” Comput. Vis., Graph., Image Process., vol. 29, pp. 311–328,
1985.

[34] A. Amir, A. Efrat, P. Indyk, and H. Samet, “Efficient regular data structures
and algorithms for location and proximity problems,” in Proc. 40th Annu.

Symp. Found. Comput. Sci., 1999, pp. 160–170.
[35] C.-H. Ang, H. Samet, and C. A. Shaffer, “A new region expansion

for quadtrees,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7,
pp. 682–686, Jul. 1990.

[36] K. Deng and X. Zhou, “Expansion-based algorithms for finding single pair
shortest path on surface,” in Proc. Int. Conf. Web Wirel. Geographical Inf.

Syst., 2004, pp. 151–166.
[37] M. Saad, A. I. Salameh, and S. Abdallah, “Energy-efficient shortest path

planning on uneven terrains: A composite routing metric approach,” in
Proc. IEEE Int. Symp. Signal Process. Inf. Technol., 2019, pp. 1–6.

[38] N. Ganganath, C.-T. Cheng, and K. T. Chi, “Finding energy-efficient paths
on uneven terrains,” in Proc. 10th France-Jpn./8th Europe-Asia Congr.

Mecatronics, 2014, pp. 383–388.
[39] M. Saad, A. I. Salameh, S. Abdallah, A. El-Moursy, and C.-T. Cheng,

“A composite metric routing approach for energy-efficient shortest path
planning on natural terrains,” Appl. Sci., vol. 11, 2021, Art. no. 6939.

[40] J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path oracles for
spatial networks,” Proc. VLDB Endowment, vol. 2, pp. 1210–1221,
2009.

[41] J. Sankaranarayanan and H. Samet, “Roads belong in databases,” IEEE

Data Eng. Bull., vol. 33, no. 2, pp. 4–11, Jun. 2010.
[42] S. Peng, J. Sankaranarayanan, and H. Samet, “SPDO: High-throughput

road distance computations on spark using distance oracles,” in Proc. IEEE

32nd Int. Conf. Data Eng., 2016, pp. 1239–1250.
[43] M. Cui, D. D. Harabor, and A. Grastien, “Compromise-free pathfinding

on a navigation mesh,” in Proc. Int. Joint Conf. Artif. Intell., 2017,
pp. 496–502.

[44] R. Hechenberger, P. J. Stuckey, D. Harabor, P. Le Bodic, and
M. A. Cheema, “Online computation of euclidean shortest paths in two
dimensions,” in Proc. Int. Conf. Automated Plan. Scheduling, 2020,
pp. 134–142.

[45] B. Shen, M. A. Cheema, D. D. Harabor, and P. J. Stuckey, “Euclidean
pathfinding with compressed path databases,” in Proc. Int. Joint Conf.

Artif. Intell., 2021, pp. 4229–4235.
[46] J. Du, B. Shen, and M. A. Cheema, “Ultrafast euclidean shortest path

computation using hub labeling,” in Proc. Int. Joint Conf. Artif. Intell.,
2023, pp. 12417–12426.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH 4143

[47] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, Jul. 1968.

[48] 2016. [Online]. Available: https://en.wikipedia.org/wiki/Ellipse
[49] 2016. [Online]. Available: https://en.wikipedia.org/wiki/Planar_graph
[50] 2017. [Online]. Available: https://www.dropbox.com/s/ofa9ddk138x91w3/

dataset.tar.gz?dl=0
[51] 2024. [Online]. Available: https://code.google.com/archive/p/geodesic/
[52] E. G. Hoel and H. Samet, “Efficient processing of spatial queries in

line segment databases,” in Proc. 2nd Symp. Adv. Spatial Databases, O.
Günther and H.-J. Schek, eds., Springer-Verlag Lecture Notes in Computer
Science, Zurich, Switzerland, 1991, pp. 237–256.

[53] H. Samet, “Hierarchical spatial data structures,” in Proc. 1st Symp. Des.

Implementation Large Spatial Databases, Springer-Verlag Lecture Notes
in Computer Science, Santa Barbara, CA, 1989, pp. 193–212.

Victor Junqiu Wei received the bachelor’s degree
from Nanjing University and the PhD degree from the
Department of Computer Science and Engineering,
the Hong Kong University of Science and Technol-
ogy. He is currently working as a research assistant
professor with the Department of Computer Science
and Engineering (CSE), the Hong Kong University of
Science and Technology (HKUST).

Raymond Chi-Wing Wong received the BSc, MPhil
and PhD degrees in computer science and engineering
from the Chinese University of Hong Kong (CUHK)
in 2002, 2004, and 2008, respectively. He is a pro-
fessor in Computer Science and Engineering (CSE)
of The Hong Kong University of Science and Tech-
nology (HKUST). He is currently the associate head
of Department of Computer Science and Engineering
(CSE). He was the director of the Risk Management
and Business Intelligence (RMBI) program (from
2017 to 2019) and the Computer Engineering (CPEG)

program (from 2014 to 2016).

Cheng Long (Senior Member, IEEE) received the
PhD degree from the Department of Computer Sci-
ence and Engineering, The Hong Kong University of
Science and Technology (HKUST) in 2015. He is cur-
rently an assistant professor with the School of Com-
puter Science and Engineering (SCSE), Nanyang
Technological University (NTU). From 2016 to 2018,
he worked as a lecturer (asst. professor) with Queen’s
University Belfast, U.K. His research interests are
broadly in data management, data mining and Big
Data analytics. He has served as a Program Commit-

tee member/referee for several top data management and data mining confer-
ences/journals (ACM Transactions on Database Systems, VLDB Journal, IEEE

Transactions on Knowledge and Data Engineering, ICDM, CIKM, etc.).

David M. Mount received the BS and PhD degrees
in computer science from Purdue University. He is
a professor with the University of Maryland, Col-
lege Park department of computer science whose
research is in computational geometry. His main area
of research is computational geometry, which is the
branch of algorithms devoted to solving problems of a
geometric nature. In particular, he has worked on the
k-means clustering problem, nearest neighbor search,
and point location. He was named to the 2022 class
of ACM Fellows, “for contributions to algorithms and

data structures for geometric data analysis and retrieval”.

Hanan Samet (Fellow, IEEE) is a distinguished uni-
versity professor of computer science. He is a fellow
of the ACM and the International Association of
Pattern Recognition (IAPR). From 1989 to 1991 he
served as the Capital region representative on the
ACM Council. He is the recipient of the 2009 UCGIS
Research Award and received best paper awards in the
2008 SIGMOD Conference, the 2008 SIGSPATIAL
ACMGIS’08 Conference, and the 2007 Computers &
Graphics Journal. Samet’s paper at the 2009 IEEE In-
ternational Conference on Data Engineering (ICDE)

was selected as one of the best papers for publication in IEEE Transactions on

Knowledge and Data Engineering. In his pioneering research since the 1980s
on quadtrees and other data structures, as well as his well-received books, Samet
has profoundly influenced the theory and application of multidimensional spatial
data structures.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

