IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

4129

On Efficient Shortest Path Computation on Terrain
Surface: A Direction-Oriented Approach

Victor Junqiu Wei
David M. Mount

Abstract—With the advance of the geo-positioning technology,
the terrain surface data has become increasingly popular and has
drawn much research attention from both academia and industry.
Answering a shortest-path query for a given source and a given
destination on a terrain surface is a fundamental problem and
has many applications including Geographical Information System
and 3D virtual games. We observe that all existing exact algorithms
are only aware of the position of the source point and is unaware of
the information of the destination point. Motivated by this, in this
paper, we propose an efficient algorithm, namely direction-oriented
algorithm (DIO Algorithm), for answering shortest-path queries on
a terrain surface. The algorithm properly guides the search along
a direction towards the destination instead of blindly searching all
possible directions from the source point. To this end, we convert the
geodesic shortest path problem to a shortest obstacle-free euclidean
path problem in the 2D planar unfolding of the terrain surface.
Based on this conversion, we derive for each part of the terrain
surface a lower bound on the length of the shortest path from the
source to the destination passing through the part with a novel
method. The lower bounds provide useful information that can
be used to decide the visiting order of the parts on the terrain
surface and guides the search of finding the destination quickly.
Our experiments verified that our algorithm runs faster than the
state-of-the-art by more than one order of magnitude.

Index Terms—Shortest path queries, location-based services,
spatial database, terrain surfaces.

1. INTRODUCTION

UE to the advance of the geo-positioning and computer
D technologies, terrain surfaces have emerged as an impor-
tant data object and has attracted much attention from both
academia and industry [1], [2], [3], [4], [5], [6], [7], [8]. It has
been used in many applications such as Microsoft’s Bing Maps
and Google Earth in industry. Terrain surface data is usually
represented by a set of faces, each of which corresponds to a
triangle. Each face (or triangle) has three line segments called

Manuscript received 16 May 2023; revised 4 January 2024; accepted 23
January 2024. Date of publication 22 February 2024; date of current version
12 July 2024. The work of Hanan Samet was supported in part by the NSF
under Grant IIS-18-16889, Grant 11S-20-41415, and Grant 1IS-21-14451. The
work of Victor Jungiu WEI was supported in part by the HKUST-WeBank Joint
Laboratory Project under Grant WEB24EGO01-A. Recommended for acceptance
by K. Zheng. (Corresponding author: Victor Junqiu Wei.)

Victor Junqiu Wei and Raymond Chi-Wing Wong are with The Hong Kong
University of Science and Technology, Hong Kong (e-mail: victorwei @ust.hk;
raywong @cse.ust.hk).

Cheng Long is with Nanyang Technological University, Singapore 639798
(e-mail: c.long@ntu.edu.sg).

David M. Mount and Hanan Samet are with the University of Maryland,
College Park, MD 20742 USA (e-mail: mount@umd.edu; hjs@umd.edu).

Digital Object Identifier 10.1109/TKDE.2024.3363147

, Raymond Chi-Wing Wong
, and Hanan Samet

, Cheng Long ", Senior Member, IEEE,
, Fellow, IEEE

Fig. 1.

Example of terrain surface.

edges, which are connected with each other at three vertices. An
example of a piece of terrain surface data is shown in Fig. 1,
where we have 22 faces, 35 edges and 14 vertices.

The geodesic distance between two given locations (or points)
on the surface of the terrain is the length of the shortest path/route
from one point to the other traveling along the surface. For
example, in Fig. 1, s and ¢ are two points on the terrain surface
and the shortest path from point s to point ¢ is shown as a
sequence of dashed line segments and denoted by GP. In Fig. 1,
the euclidean distance between point s and point ¢, denoted by
E'P, is the length of the straight line segment between these two
points. Note that the geodesic distance is usually quite different
from the euclidean distance. According to [1], the ratio of the
geodesic shortest distance and the euclidean distance is up to
300% on the real terrain datasets in their study. Clearly, GP is
much larger than /P in Fig. 1.

Answering shortest-path queries on the terrain surface is a
common building block in many algorithms and has a wide range
of applications. Here, we list a few of them. (1) In Geographic
Information System (GIS), hikers would like to find the shortest
path on the terrain surface to design a proper hiking trail [9].
In addition, many vehicles (e.g., Google Map camera cars and
military vehicles) have their route planning based on the shortest
path query on the terrain surface [10], [11]. (2) In some online 3D
virtual games such as INGRESS and PokemonGo, the shortest
path on the terrain surface provides a proper route for the players
to travel from one place to another in mountainous areas. (3)
In military tactical analysis, computing the shortest path on the
terrain surface is very important for guiding the movement of the
troops and equipment [12]. (4) With the rise of the Metaverse,
3D modeling of buildings and infrastructures in urban areas and

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4130

mountains, hills and valleys in the rural areas become more
and more popular [13], [14]. The shortest path on the terrain
surface [13], [14] provides a route/path for people to travel from
one place to another in their own virtual world.

While there are a large number of research studies for the
shortest path query on terrain surfaces [5], [7], [8], [15], [16],
[17],[18], [19], [20], [21], [22], the methods proposed so far are
still not efficient enough, which we elaborate on below. There are
two branches of existing studies. The first branch targets exact
algorithms. There are totally four exact algorithms [15], [16],
[17], [22]. All of these algorithms operate on-the-fly without
pre-computing an index structure. Let N denote the total number
of vertices defining the terrain surface. The time complexities of
these four algorithms are O(N?log N), O(N?), O(N?log N)
and O(N?1log N), which are prohibitively expensive when N
is large. For example, according to [8], the algorithm proposed
in [16], which has the lowest time complexity among these four
algorithms, took more than 300 seconds on a terrain with 200 K
vertices only.

The second branch targets approximation algorithms. Two
representative on-the-fly approximation algorithms are [7], [8].
[7] computes the shortest network path on the terrain surface
where the path returned passes through the edges of the terrain
only. Therefore, the length of the path returned could be much
larger than that of the shortest geodesic path. [8] finds a path
on the terrain surface with an approximate ratio at most (1 + €).
The algorithm takes O((N + N') log(N + N')) time, where N’
is the number of additional auxiliary points introduced to the
terrain surface. But they are still not efficient enough to satisfy
the real-time requirements of many applications. According to
the experimental results in [8], the algorithm ran for more than
100 seconds on a terrain with 200 K vertices even for a setting
with a very loose error parameter € = 0.25. There are also three
existing index-based approximation algorithms [20], [21], [23],
which build a pre-computed indexing structure to accelerate the
query processing. However, these two algorithms only provide
approximate shortest paths and have huge time overheads and
bulky space cost (of the indexing structures). Thus, they are
infeasible to be applied to the cases where (1) the exact answer
is required, or (2) the memory budget cannot afford to hold the
bulky index. This motivates us to design an index-free exact
shortest path algorithm in this paper.

We observe that all existing on-the-fly algorithms are only
aware of the position of the source point and is unaware of the
information of the destination point. As such, they explore all
directions blindly which incurs alarge execution time. Motivated
by this, in this paper, we propose a destination-aware algo-
rithm, namely direction-oriented algorithm (DIO Algorithm),
for computing the exact shortest geodesic path online. It does not
incur additional space consumption with an indexing structure
or any preprocessing overhead. Our algorithm first considers
the terrain surface in the planar unfolding [24] by which we
mean that the terrain surface is unfolded into a 2D plane. As
such, this allows us to reformulate the shortest path problem
as a obstacle-free shortest euclidean path problem. We propose
a new data structure, called visibility tree, which allows us to
answer these queries. This is a rooted tree, whose root node
corresponds to the start point s. Each non-root node in the tree

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

corresponds to a vertex or an edge segment on the terrain surface.
Our algorithm visits the nodes in a tree in a best-first fashion until
the node o ‘containing’ ¢ is visited. The geodesic path could be
traced back by using the path from the root to o in the tree. A
key component of our algorithm is to decide the priority of each
node to be visited. In our algorithm, the priority is given to the
edge segment or vertex o with a smaller estimated lower bound
of the length of the shortest s-¢ path passing through o. The
lower bound is derived based on the visibility information and
the 2D geometry. As such, our algorithm is destination-oriented
and the search is guided along a direction towards the position
of ¢ instead of searching all directions around s blindly. Our
experiments verified that our method of estimating the lower
bound is effective and our algorithm for the shortest path query
outperforms the state-of-the-art by a notable margin.

Our contributions are threefold. First of all, we propose using
a data structure called visibility tree and each node in the tree
corresponds to a vertex or an edge segment on the terrain surface.
We also develop a lower bound estimation method to calculate
the lower bound of the length of the shortest s-¢ path passing
through a given edge segment or a vertex. The lower bound
serves as the priority of visiting each node in the visibility
tree (i.e., correspondingly each edge segment or each vertex
on the terrain surface). Our lower bound estimation method is
lightweight and we theoretically prove the correctness of our
lower bound estimation method. Second, based on this lower
bound estimation method, we develop a novel exact shortest path
computation algorithm, in which the lower bound estimation
algorithm guides the search towards the destination quickly.
Third, we conducted a thorough empirical study whose results
demonstrate that our algorithm significantly outperforms all ex-
isting exact shortest path computation algorithms on the terrain
surface by more than an order of magnitude.

The remainder of the paper is organized as follows. Section II
reviews the related studies of our work. Section III formally
presents our problem and introduces many notations to be
used later. Section IV presents our shortest path computation
algorithm. Section V presents our empirical study. Finally, Sec-
tion VI concludes this paper. Besides, it is worth mentioning
that in this study, we also discuss the extension of our algorithm
to a variant of the terrain surface studied in this paper, namely
weighted terrain surfaces and also conducted a case study of the
geodesic path computation. For the sake of limited space, we
refer the readers to our technical report [25] for the extension
and case study.

II. RELATED WORK
A. Exact Algorithms for Geodesic Shortest Path Queries

To the best of our knowledge, all existing exact geodesic
shortest path algorithms are on-the-fly algorithms [15], [16],
[17], [22] where no pre-computed data structures are required.

The first algorithm in this category is the MMP algorithm [15].
The MMP algorithm visits all faces in the descending order
of their distance to the source point and its time complexity
is O(N?log N), where N is the number of vertices on the
terrain surface. Later on, the VS algorithm [22] further improved
the MMP algorithm by introducing some pruning rules to filter

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH

out some irrelevant faces. As such, the query processing could
be accelerated. The third algorithm, namely CH [16], cuts and
unfolds the terrain surface into a 2D plane and the unfolded
surface in the 2D plane is a star-shaped polygon which has
the source point as its center. As such, the geodesic distance
between any point on the terrain surface and the source point is
equal to their euclidean distance on this 2D polygon. Besides,
their shortest path on this 2D polygon could be converted to
their shortest geodesic path on the original terrain surface. The
time complexity of the CH algorithm is O(/N?). However, one
drawback of CH is that it must process the whole terrain, which
is more than necessary when the source and the destination
are close to each other. Motivated by this, ICH [4] further
improved CH algorithm. It incrementally establishes the 2D
polygon in a BES fashion and visits each part of the polygon
in the ascending order of their distance to the source point. The
empirical performance of ICH is highly boosted despite that its
time complexity is O(N?log N).

Our algorithm also interprets the geodesic shortest path al-
gorithm as a shortest euclidean path problem through the 2D
unfolding. But our key innovations consist of (1) a tree structure
for encoding the shortest path information in the 2D unfolding
(each node of which corresponds to a vertex or an edge segment
on the terrain surface) and (2) the destination-aware priority
estimation for each vertex or edge segment in the unfolding
(where the priority is the length of the shortest path from s
to ¢ passing through this vertex or edge segment). It is worth
mentioning that it is non-trivial to estimate this priority for
the geometric objects (i.e., vertices and edge segments) with
favorable theoretical guarantee since the complicated geometric
properties of these objects together with the terrain surface im-
poses many challenges. As such, significant research effort and
more advanced techniques are highly required for such a design
which will be demonstrated in our algorithm and theoretical
analysis.

B. Approximation Algorithms for Geodesic Shortest Path
Queries

All existing on-the-fly approximation algorithms [8], [26],
[27] follow the same framework. Specifically, they all introduce
some auxiliary points, namely Steiner points, on the terrain
surface and also some auxiliary edges, namely Steiner edges,
and obtain a so-called Steiner graph G based on the points and
edges introduced. In the query phase, it creates an edge between
the source point s (resp. the destination point ¢) and each Steiner
point on the face that s (resp. ¢) lies on and inserts it into the
graph G and performs Dijkstra’s algorithm from s to ¢. The
time complexity of each on-the-fly approximation algorithm is
O((N + N')log(N + N')), where N’ is the number of Steiner
points introduced. Their differences lie on the method that they
use for introducing the Steiner points and Steiner edges.

Later on, index-based algorithms [19], [21], [23], [28] for the
geodesic shortest path computation were proposed to further
accelerate the query processing. The first attempt in this cate-
gory is a Single-Source All-Destination algorithm [28], where
the source point must be known apriori and kept fixed in the

4131

query phase. SP-Oracle [19] builds an indexing structure for the
shortest path query processing on the Steiner graph of Unfixed
Scheme. Inspired by [29], [30], [31], SE-Oracle and EAR-
Oracle [21], [23] indexes the geodesic distances and paths by
using the techniques called Well-Separated Pair Decomposition
and Highway Network, respectively. The index-based algorithms
have the overhead of preprocessing time and the additional
storage consumption for the bulky indexing structure. Further-
more, the approximation algorithms could only find approximate
results which prevent their usage in the applications where the
exact distances are highly required. Our notion of distance is
related to the Chessboard distance which is the basis of other
approximations [32], [33] especially for image dilation [34],
[35] but is not discussed further here.

C. Other Related Studies

We review some other related studies [2], [3], [4], [5], [6], [7],
[8], [36], [37], [38], [39], [40], [41], [42] on the terrain surface
in this section. Specifically, [2], [3], [4], [36] study the ANN
queries, reverse kNN queries and dynamic KNN queries, respec-
tively. [5] studies the problem of finding the shortest geodesic
path satisfying a slope constraint. It is worth mentioning that
although the algorithm in [5] could be applied to the geodesic
shortest path finding without this constraint, there is no guarantee
that it can return the exact geodesic shortest path [5], [21], [23],
[40], [41], [42] and its performance is inferior to that proposed
in [4]. Besides, a plethora of research effort [37], [38], [39] has
been put on the problem of energy-efficient path planning for
autonomous unmanned vehicles (AUV). But in their problem
setting, the AUV can only pass through several pre-defined links
connecting two pre-selected nodes on the terrain surface, and
the pre-selected nodes and pre-defined links comprise a terrain
graph. Thus, their techniques do not apply to our problem since
it is very unlikely that the geodesic shortest path only passes the
pre-defined links. Given a polygon on a 2D plane, the euclidean
shortest path problem aims to find the shortest path between
a given source point and a given destination point inside the
polygon where the path is only allowed to pass through the
interior of the 2D polygon. A lot of research effort [43], [44],
[45], [46] has been devoted into this research problem. The
shortest path finding problem on terrain surfaces studied in this
paper is a generic version of the obstacle-free shortest path
finding problem on the 2D euclidean space. In our problem,
besides the shortest path finding in the interior of a 2D polygon,
we also need to find the optimal unfolding of the 3D terrain
surface where the shortest distance from s to ¢ in this unfolding
is equal to their geodesic distance on the original terrain surface.
It is a challenging task to find the optimal unfolding since there
can be quite a number of distinct ways of unfolding of the terrain
surface. To this end, we develop a novel data structure called vis-
ibility tree which encodes both the unfolding information that is
dynamically maintained in the procedure of our direction-aware
search and the shortest path information on the partially unfolded
terrain surface. Note that all algorithms in this section have a
different problem setting from our problem.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4132

TABLE I
NOTATIONS
T,V,E, F Terrain, Vertices, Edges and Faces.
s, t Two arbitrary points on the terrain.
I, (s, t) The geodesic shortest path from s to ¢.
II, (s, tle) The geodesic shortest path from s to ¢ passing
through an edge segment e.
I, (s, t|v) The geodesic shortest path from s to ¢ passing
through a vertex v.
dg(s,t) The geodesic distance from s to t.
P(s,p) The shortest path from s to p on 2D unfolding.
o A node on the Visibility Tree.
To The parent of o on the Visibility Tree.
d(o) The associated distance of o.
c(o0) The corresponding vertex or edge segment of o.
So The light point of o and ¢(0).

III. PROBLEM DEFINITION

Consider a terrain surface 7'. Let V' be the set of all vertices
on 7', and F be the set of all edges on 7. For example, in Fig. 1,
each solid point is a vertex and each solid line segment is an
edge. The size of a terrain surface 7', denoted by [V, is defined
to be the total number of vertices (Thatis N = |V']). Each vertex
v € V has three coordinate values, denoted by z,,, y,, and z,,.

Consider two points s and ¢ on the terrain surface 7. A path,
denoted by my(s,t), from s to ¢ on the terrain surface consists
of a sequence S of line segments. Each line segment [in &
lies on a face of the terrain surface and each pair of adjacent
line segments share one end-point. The length of a given line
segment [is denoted by |!|. The length of the path m,(s,t) is
the sum of the lengths of the line segments in S (i.e., >, 5 |I]).
Based on the concepts above, we have the definition of geodesic
shortest path.

Definition 1 (Geodesic Shortest Path): The geodesic shortest
path between s and ¢, denoted by II,(s,), is defined to be the
path with the shortest length between the two points on 7.

We denote the euclidean distance between s and ¢ by d(s, t).
(e, d(s,t) = /(x5 —)% + (ys — y£)® + (25 — 2)2). Then,
we further have a definition called geodesic distance.

Definition 2 (Geodesic Distance): The geodesic distance be-
tween s and ¢, denoted by d,(s, t), is defined to be the length of
II,(s,t).

Besides, in this paper, by ‘point’, we refer to an arbitrary point
on the terrain surface, which may or may not be a vertex of the
terrain surface. For example, in Fig. 1, s and ¢ are two points on
the terrain surface but neither of them is a vertex of the terrain
surface.

Consider the example in Fig. 1. The geodesic shortest path
between two points s and ¢ is denoted by G P. The geodesic
distance between s and ¢ is equal to the sum of the lengths of all
line segments on G P.

Now, we are ready to formally define the problem.

Problem 1. (Shortest Path on Terrain Surface) Given a terrain
surface 1" and two points s and ¢ on 7', find the shortest path
II4(s,t) from s to ¢ on the terrain surface 7". The notations in
the paper are summarized in Table 1.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

1IV. DIO ALGORITHM

In this section, we present our proposed algorithm, namely
direction-oriented algorithm (DIO Algorithm), for the shortest
geodesic path query. We present that our problem is equivalent to
a visibility problem in a 2D euclidean space in Section IV-A and
then demonstrate the proposed Visibility Tree in Section IV-B.
Next, we present two key components in the Visibility Tree
construction, namely lower bound estimation and children prop-
agation, in Section IV-C and IV-D respectively. Section IV-E
presents the overall pseudocode of our algorithm. Then, Sec-
tion IV-F presents theoretical analysis of the correctness and the
time complexity of our algorithm.

A. Shortest Geodesic Path as a Visibility Problem

We demonstrate in the section that our geodesic shortest path
problem is equivalent to a visibility problem in 2D euclidean
space. Consider the example shown in Fig. 2. Fig. 2(a) shows
a terrain surface, the shortest geodesic path from s to ¢ and the
shortest geodesic path from s to ¢'. Fig. 2(b) shows a planar
unfolding [24] of the terrain surface in which each face is
unfolded into the same plane. Note that in this figure, the original
vertex vp; is split into three vertices in the unfolding and we
denote them by v11(a), v11(b) and v11(c). Thus, as could be
observed from Fig. 2(b), all faces unfolded form a polygon and
the we call this unfolded terrain surface the planar unfolding of
T. If we consider the space outside the polygon as obstacles,
we define the shortest euclidean path from s to any point p,
denoted by P(s, p), as the shortest path from s to p without any
collision with the obstacles. In Fig. 2(b), the shortest euclidean
path P (s, ") from s to ¢’ is the line segment st’ and the shortest
euclidean path P (s, t) from s to ¢ consists of three line segments
(sv71, D102 and vat) marked in a dashed line. Then, we proceed
to show a lemma which connects the shortest geodesic path and
the shortest euclidean path in the unfolding.

Lemma 1: The shortest geodesic path II, (s, p) from s to any
point p on the terrain surface 7' coincides with the shortest
euclidean path P(s, p) in the unfolding of 7'.

Proof: For the sake of limited space, we refer the readers to
our technical report for the proof [25]. (]

By this observation, the shortest geodesic path finding prob-
lem could be converted to the shortest euclidean path finding
problem in the planar unfolding. Given a point p in a planar
unfolding of a terrain surface, we call another point p’ in the
planar unfolding visible to p if the line segment pp’ is within
the planar unfolding. In our algorithm, the planar unfolding is
decomposed into several disjoint regions and each region R has
an associated point p which is either the point s or a vertex of
the unfolded terrain. Given a region]2 whose associated point
is p, we call R is a traceable region if (1) any point p’ in the
region is visible to p, and (2) the shortest euclidean path from
s to any point p’ in the region passes through the point p. For
the ease of the presentation, we call this associated point p the
light point of the region R since for each traceable region (which
our algorithm considers only), each point inside is visible to p.
Similarly, each vertex v is also associated with a light point p.
We call v is a traceable vertex if (1) it is visible to the light point

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH

Visible to s

Visible to V, but not visible to s
Visible to V, but not visible to v,
Visible to v, but not visible to v,
Visible to v, but not visible to V,

v,,(b)

b Vg

O
]
........ 5]
L |
k a
v, (c) v @0
Vio @O0

()

Fig. 2. Illustration of DIO algorithm.

p, and (2) the shortest euclidean path from s to v passes through
the light point p.

Example 1 (Traceable Regions, Light Points and Traceable
Vertices): In Fig. 2(c), there are five disjoint regions. The first
one is the white region and s is the light point of the region.
Any point p,, in the white region is visible to s and as such,
the shortest euclidean path from s to p,, is the line segment
5pw- The second one is the red region. v; is the only vertex on
the boundary of the white region which is adjacent to the red
region and it is the light point of this region. Any point p,. in the
red region is visible to v; but not visible to s and the shortest
euclidean path from s to p, is (s, v1,p,). The third region is
the green region. vy is the only vertex on the boundary of the
red region which is adjacent to the green region and it is the
light point of the green region. Any point p, in the green region
is visible to v but not visible to vy and the shortest euclidean
path from s to p, is (s, v1,ve, py). The last two regions are the
yellow and blue regions. vy (resp. v7) is the light point of the
yellow (resp. blue) region and any point p, (resp., py) in the
yellow (resp., blue) region is visible to vy (resp., vy) but not
visible to va. As such, the shortest euclidean path from s to p,
(resp., pp) is (s,v1,v2,v4,py) (resp., (s, v, v2,v7, pp)). Thus,
we obtain that each of the five regions is a traceable region
and v; and vy are both traceable vertices. Besides, v; and wvo
are also the light points of the red region and the green region,
respectively. (]

V(e

- [9s] v (o), Vll(c)vl(Jvl 0,]vivis[0r] Vl vvn(@) |24 o @ v, (a)

VoV

4133

di=[sv+lvs| V51

dJ(s, H)=d.;+d(s, t)

Vi) €~

(b)
ViV [0)] V10 ViV 04 Vlz V13 ViaVis

Vll(a)vll!
VZ

€ m v'v“(b) m Vn(b)V13 Vll(b @ €4

e, |04 Vg e,
€ S

ViVs

Vs

Vs

V,Vy

eg

light point is s
light point is v,

@ light point is v,

O light point is v,

@ light point is v,
Ol O edge segment
@eo0 vertex

€y v, V,

A

V7Vs

V4

Vs

Consider an arbitrary destination point ¢ in a traceable region.
The idea of our algorithm is to find the shortest euclidean path
from s to t in the unfolding of 7'. To this end, we find the
light point p of the region R that ¢ lies on and then, we could
repeatedly find the light point p’ of p and so on so forth until we
find s. Finally, the sequence of the light points found together
with ¢ forms the shortest euclidean path. Consider the point ¢ in
Fig. 2(b). It lies on the green region whose light point is v5. The
light point of v, is v; and the light point of v; is s. Finally, we
obtain that the shortest euclidean path from s to t is (s, vy, va, t).

It is worth mentioning that our algorithm does not explicitly
create the unfolding, light points and regions and the information
is established and maintained through a tree-like structure called
Visibility Tree to be shown in the next section.

B. Visibility Tree & Back-Tracing Algorithm

This section presents a tree-like structure, namely Visibility
Tree, which encodes the visibility information in the planar
unfolding. We also present a Back-Tracing Algorithm which
utilizes the visibility tree to find the shortest euclidean path in
the unfolding and also the geodesic shortest path on the original
terrain surface.

We first introduce a key concept called edge segment as fol-
lows. We call an edge a heterogeneous edge if the edge has over-
lap with more than one region and we call it homogeneous edge

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4134

otherwise. As could be observed from Fig. 2(c), the edges 2771,
Va9 and Vgvg are all heterogeneous edges and the edges v120713,
Vgou10 and vgv7 are all homogeneous edges. Each homogeneous
edge is naturally considered as an edge segment in our algorithm.
Each heterogeneous edge e is decomposed into several disjoint
edge segments, each of which is the overlap between e and one
region in our algorithm. Consider the heterogeneous edge vgvg.
It is decomposed into three disjoint edge segments e;, ey and
errr, where ey is the overlap between Ugvg and the white region,
ey is the overlap between Ugvg and the red region and ej;y is
the overlap between gty and the green region. In this figure,
we use the hollow point to indicate each endpoint of each edge
segment.

Next, we are ready to present the Visibility Tree which indexes
all vertices and edge segments. The visibility information and
the shortest euclidean path information is naturally encoded in
this tree structure. In this tree structure, the root corresponds to
the source point s and any other node corresponds to either a
vertex or an edge segment in the planar unfolding. Consider a
node o in the Visibility Tree, we denote the corresponding vertex
or edge segment of o in the unfolding by ¢(0). We highlight three
components of a node o in the tree as follows. (1) a light point
5, of o, which is the light point of ¢(0) if ¢(0) is a vertex and
is the light point of the region containing ¢(0) otherwise, (2) an
associated distance d,, (which is equal to the length of the shortest
euclidean path from s to 5,), and (3) its parent node, denoted
by r,, of 0. Let A(0) denote the set containing all ancestors of
o in the tree. Each node o in the Visibility Tree satisfies three
properties: (1) visible property: Any point p on ¢(0) is visible to
S, (2) traceable property: each vertex or edge segment which
has intersection with the path from s to any point on ¢(0) (no
matter ¢(0) is a vertex or an edge segment) must belong to the
set {c(0)|0 € A(o)}, and (3) co-located property: if o is not the
root node, there must be a face containing both ¢(0) and ¢(o,),
where o), is the parent of o.

Consider a node o which corresponds to a vertex in the un-
folding, we denote the corresponding vertex of o on the original
terrain by v(0). In addition to the tree structure, we store a hash
table called the vertex table. The table stores a unique node called
corresponding node for each vertex on the original terrain. We
call a node o the corresponding node of a vertex v if v(0) is v
and the value of D(0) = d,, + d(3,, ¢(0)) is the smallest among
all nodes whose corresponding vertex on the original terrain is
v (i.e., argminp(y{0'|v(0') = v}).

Example 2 (Visibility Tree): Consider the tree shown in
Fig. 2(d) which is the tree structure of the vertices and edge
segments in Fig. 2(c). In this figure, we use a square to denote
that the node corresponds to an edge segment and use a circle
to denote that the node corresponds to a vertex. There are
totally 45 nodes in the tree, namely o1, 09,......, and o045. We
put the corresponding vertex or edge segment of each node in
the unfolding next to the node. In Fig. 2(d), the light point of
each white node is s. Similarly, the light points of nodes in other
colors are shown in the figure.

Consider the node 045 (Whose corresponding edge segment
is eq). Its light point is ve and its associated distance d,,,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

is equal to [SUr|+ |70z, Its parent 7o, is 041. Let p de-
note a point on e,. We proceed to show that o045 satisfies the
three properties mentioned above. Since p is visible to vy in
Fig. 2(c), o satisfies the visible property. A(o45) consists of
01,04, 013,022,028, 034, 036, 041 and their COI‘I‘eSpOIldiIlg ver-
tices or edge segments are s, V10013, V1, V2, U3Us, U408, U407,
e, respectively. It could be verified through Fig. 2(b) that the
shortest euclidean path from s to p intersects with each of
them. Thus, o45 satisfies the traceable property. 041 (Whose
corresponding edge segment is ej,) is the parent of 045 in the
tree, ey, lies on the same face as e, and also intersects with the
path P(s, p). As such, we obtain that 045 satisfies the co-located
property.

Table II shows the vertex table which contains the corre-
sponding node of each vertex. Consider the vertex v11. There
are three nodes in the tree whose corresponding vertex is v11 on
the original terrain and they are node 019, node 014 and node
090 (i-e., v(019) = v(016) = v(020) = v11). Note that the light
point of all three points is s and the associated distance of the
three nodes is 0. The corresponding vertices of 019, node 014
and node o9 in the unfolding are v11(c), v11(a) and v (b)
(i.e., C(Olo) = 1}11(0), C(Olﬁ) = 1}11(0,) and C(Ozo) = Ull(b)), in
which v11(b) has the smallest euclidean distance to s. Thus, we
obtain that the corresponding node of v1; is node 0. Similarly,
the corresponding node of any other vertex is stored in this
table. O

Note that it is possible that an edge e is on the boundary of
two regions. In this case, any point on e is visible to the light
points of both regions and in our algorithm, e can be assigned
to any region of them and correspondingly, the light point of the
node corresponding to e will be that of the region assigned. The
region assigned to e is determined by which region “reaches” e
first in the tree construction and this is relevant to the geometric
factors of 7.

Consider an arbitrary destination point ¢ on the terrain surface
T'. There exists three cases of ¢: (i) ¢ lies on a vertex v of T, (ii)
t lies on an edge of 7" excluding its two end-points, and (iii) ¢
lies on the interior of a face of 7. We define the corresponding
node of t in the Visibility Tree under the three cases next.

® Case (i). Since t is a vertex on 7', the corresponding node

of ¢ is the corresponding node of the vertex ¢ (which is
stored in the vertex table).

® (ase (ii). Consider a point ¢ lying on an edge € of T'. There

are two cases of € in the planar unfolding: (I) there is exactly
one edge in the planar unfolding with the same end-points
as ¢; and (II) € is split into two edges in the unfolding.
Consider two edges v1v2 and v17013 in Fig. 2(a). v105
falls into Case (I) and 77013 belongs to Case (II). Note
that it is not possible that there are more than two edges in
the planar unfolding with the same end-points as € since
¢ is adjacent to exactly two faces. As such, there are at
most two edge segments containing £ and we consider the
edge segment e (whose corresponding node is o in the tree)
with the minimum distance d,, + d(3,, t). We call the node
which corresponds to e in the tree the corresponding node
of ¢.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH

4135

TABLE IT
VERTEX TABLE

Vertex U1 V2 V3 V4

s U7 Ug Vg V10 | V11 V13

013 | 022 035

Corresponding Node 027

039

043 | 038 | 029 | O25 03 020 05 06

® Case (iii). Given an edge segment e and the node corre-
sponding to e (which is denoted by o), we call the face
having both e and ¢(r,) on its boundary eigen face of e.

In the example shown in Fig. 2(c), the face vsvgvy is the
eigen face of e, since it has both e, and its parent ej, on its
boundary. Given a point ¢ in the interior of a face of T', we

call that an edge segment e contains t if (1) ¢ is visible to s,,

and (2) t lies on the eigen face of e. Consider the point ¢ in

Fig. 2(b). t lies on the eigen face of e, and it is also visible

to the light point v of ¢(e,) (i.e., 045). Thus, we obtain

that e, contains t. We call the node which corresponds to

the edge segment containing ¢ the corresponding node of

t. In this example, the corresponding node of ¢ is 045. It is
worth mentioning that there is exactly one node o whose
corresponding edge segment e contains ¢. The reason is as
follows. Consider the face f containing ¢ and the region R
containing t. The edge segment e containing ¢ is uniquely
defined by the intersection of R and one edge of f. Note

that all regions are disjoint. In Fig. 2(c), ¢ lies on the face
vsvevr and also the green region. The edge segment e,
containing ¢ is uniquely defined by the intersection of the
green region and the edge v5vg (i.e., an edge of the face).
Now, we are ready to present the Back-Tracing algorithm.
Given an arbitrary point ¢ on 7', we could first find the cor-
responding node o of t in the Visibility Tree. Then, we find
the path P(=(0q4,0p, .- ... ,0r)) from the root node to r, in
the tree and we denote the sequence of the corresponding
vertices or edge segments of the nodes in P by P (ie., P =
(c(0a),c(0p)y ... ,c(ok))). We extract all vertices in P and

is the shortest euclidean path from s to ¢. We proceed to find
the intersection between P’ and each vertex or edge segment
in P and denote all intersection points as py, pp, - - - - - , k. The
shortest geodesic path from s to ¢ is (s, pa, Pp, - - -- - - y Dk, b)-
Example 3 (Back-Tracing Algorithm): In Fig. 2, consider
the point ¢ and the edge segment e, containing ¢ (i.e., 045 i
the corresponding node of ¢ in the Visibility Tree). The set P
containing the corresponding vertices or edge segments of all
nodes from the root node to 045 in the tree consists of 19013,
V1, V2, U3Vg, U4Us, U407 and ep. v1 and vy are the two only
vertices in P. As could be observed from Fig. 2(b), the shortest
euclidean path from s to ¢ is (s, vy, vs,t) and we indicate the
intersection between the shortest euclidean path and each node
in P by a solid point. The sequence of the solid points forms the
shortest geodesic path from s to ¢.]
We proceed to demonstrate how we construct the Visibil-
ity Tree. We dynamically maintain a priority queue Q which
contains all created/visited nodes in the Visibility Tree. Q is
initialized to be the root node of the tree which corresponds to
s. Its light point is assigned to be s and its associated distance

o Sk

| NG

Fig. 3. Comparison of search spaces.

is assigned to be 0. Then, we iteratively perform the following
operations. We extract the top element o in Q and if o is the
corresponding node of ¢, we safely terminate the algorithm
and find the shortest geodesic path from s to ¢ by using the
Back-Tracing algorithm. Otherwise, we propagate all children
of o in the Visibility Tree and insert them into Q. Now, the only
two issues left are (1) how to calculate the priority of each node
in the Visibility Tree, and (2) how to propagate the children of
each node o in the tree. The two issues will be illustrated in the
next two sections, respectively.

In a high level intuition, our priority renders our algorithm
being aware of both the source and the destination but each
existing algorithm is only aware of the source and thus, ours
is supposed to have better performance. Specifically, as shown
in Fig. 3, the final visited region of our algorithm is a narrow
ellipse X with s and ¢ on its two sides but the final visited region
of each existing algorithm is a disk D(s,r) centered at s with
t on its boundary (where r is equal to the geodesic distance
between s and t) and thus, our proposed priority will largely
narrow down the search region visited and thus accelerate the
shortest path algorithm. As could be noticed, A* search [47]
in the literature of graph also used the source- and destination-
oriented lower bound but in the context of the terrain surface,
the lower bound estimation is challenging and more technically
involved as shown before since the most fundamental element
of the search on the terrain surface involves the edge segment
instead of vertex on graph.

Despite that DIO and Polyanya [43] share the high-level idea
of A* search in spirit, DIO involves a lot of non-trivial techniques
specifically designed for the 3D terrain surfaces. We summarize
the differences and the corresponding challenges as follows. (i)
Different from the 2D euclidean shortest path finding where the
problem is considered in the 2D plane and the 2D polygon is
already given, the shortest path finding on terrain surfaces must
involve the unfolding procedure of the terrain surface (i.e., the
processing of unfolding the 3D surface into a 2D polygon) which
is incrementally maintained in our visibility tree. Note that there
can be multiple ways of unfolding a terrain surface and thus, it
is non-trivial for the shortest path finding on terrain surfaces
with the correctness guarantee. In our algorithm, the visibility

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4136

tree contains both unfolding information and the shortest path
information and we also develop a non-trivial direction-aware
query processing algorithm which returns the correct shortest
path from s to ¢ (with both the unfolding and the shortest path
issues considered). (ii) Since the shortest path finding involves
both the unfolding and the shortest path finding in the interior
of the unfolded 2D polygon, the theoretical analysis is more
technically involved and more challenging than that of the
euclidean shortest path finding.

C. Priority Estimation: Geometry-Based Lower Bound
Estimation Algorithm

Consider a node o in the Visibility Tree. The priority of o in
Q is equal to our estimated lower bound of the shortest geodesic
path from s to ¢ passing through its corresponding vertex or edge
segment ¢(0). Consider the case where ¢(0) is an edge segment e.
Let IT, (s, t|e) denote the s-t shortest path on the terrain surface
passing through the edge segment e (i.e., it is the one with the
minimum length among all paths from s to ¢ passing through
e on the terrain surface). Consider the example in Fig. 2(a). It
shows a terrain surface and there are two points s and ¢ and two
edge segments e, and e, on the surface shown in this example.
The path I, (s, t|e,) (resp. II (s, t|ep)) is the shortest geodesic
path from s to ¢ passing through e, (resp. e;). In this example,
I1, (s, t|e,) is the shortest path IT, (s, t) from s to ¢ on the terrain
surface. Consider the case where ¢(0) is a vertex v. Similarly,
we denote the s-t shortest path on the terrain surface passing
through a vertex v by I, (s, t|v).

We first consider the case where ¢(0) is an edge segment,
denoted by e, and present our estimation method of the lower
bound of II, (s, t|e) for a given edge segment. Our method is
based on the two observations: (1) for any point p on e, the
geodesic distance d, (s, p) from s to p is equal to d, + d(3,, p)
(based on the properties of traceable edge segment) and (2) for
any point p on e, the geodesic distance dy(p,t) from p to ¢ is
lower bounded by d(p, t). In anutshell, we could derive the lower
bound d(s,t|e) by the distances in euclidean space and we
adopt the position information of 5, e and ¢ in this lower bound
estimation which is detailed as follows. Given an edge segment e,
our estimation d,, (s, t|e) is equal to min,e.{d, (s, p) + d(p, t)}.
We will present that the estimation is a lower bound of the length
of II, (s, t|e) (i.e., the correctness) later in Lemma 4.

Now, we proceed to present how to estimate
minpec{dy(s,p) + d(p,t)}. The estimation consists of two
steps, namely Plane Rotation and Distance Computing.

Step 1: Plane Rotation. Let L. denote the straight line where
the edge segment e lies on. As shown in Fig. 4, the first step
finds (1) the plane P; containing 5, and e and (2) the plane P»
containing ¢ and e and then rotate P along t. to make it coincide
with Py. Let ¢ denote the position of ¢ after the rotation. Note
that if s, and ¢ are on L, we simply skip this first step (i.e. Plane
Rotation) and go to the second step (i.e., Distance Computing)
directly.

Step 2: Distance Computation. Then, consider the second
step. In this step, we first find the proxy point 7' of T such that
the length of the shortest euclidean path from 3, to ¢ is equal to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

Fig. 4. Illustration of plane rotation.

Fig. 5. Distance computation (Case 1(a)).

Fig. 6. Distance computation (Case 2(a)).

that of the shortest euclidean path from 5, to 7. We compute 7
for the ease of the distance computation in some cases shown
below. There are two cases of £ .

e Case 1: locates at the same position of 7 if (1) 5, is on £

or 5, and (2) are on the different sides of L.
e Case 2: Otherwise, the position of T is symmetric to that
of t w.rt. L.

Let £/ denote the straight line containing 5, and 7. There are
two cases of L.

e (Case (a): L/ intersects with e.

e Case (b): L' does not intersect with e.

Thus, there are totally four disjoint cases, namely, Case 1(a),
Case 2(a), Case 1(b) and Case 2(b). We proceed to present how
to make the estimation in each case as we need which will be
illustrated with some examples later. In Case 1(a) and Case
2(a), minpec{dy(s,p) +d(p,t)} = do + min,ec.{d(3,,p) +
d(p,1)} = d, + d(5,,F). In Case 1(b) and Case 2(b),
minyee{dy(s,p) + d(p, 1)} = do + minpe{d(5,,p) +
d(p,t)} = do + minyeqp, » 1 {d(3o,p) +d(p,t)}. We
elaborate this next with examples.

Example 4: (Four Cases in Step 2: Distance Computation)
Figs. 5, 6, 7 and 8 show the examples of the four cases,
respectively. We elaborate the position of 7' in each case.

will

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH

Fig. 7. Distance computation (Case 1(b)).

Fig. 8. Distance computation (Case 2(b)).

Besides, we also show the correctness of our estimation of
minye.{dy(s,p) + d(p,t)} in each example and will formally
prove it later.

Consider the example as shown in Fig. 5 (i.e., Case 1(a)).
Since 7 and 3, are on the different sides of £, the light point £’
of ¢ is located on ¢. Since the line L intersects with e (note
that £’ is defined to be the line passing through 5, and),
the shortest distance from 5, to { is d(S,,%). Besides, by
the rotation procedure, we obtain that for any point p on e,
dy(s,p) = do + d(3,,p) and d(p, t) = d(p,). Thus, we obtain
that min,e.{d,(s,p) + d(p,t)} = d, + d(3,,7) and our esti-
mation in this case is d, 4 d(S,,7).

Consider the example as shown in Fig. 6 (i.e., Case 2(a)).
Since 3, is not on £ and 5, and ¢ are on the same side of L., the
light point Z of £ is the reflection of 7 w.r.t. £.. The estimation of
minge.{dy(s,p) + d(p, t)} and its correctness of the estimation
are the same as those of Case 1(a). Note that in this case, although
7' is not located on , it still holds that for any point p on e,
d(p,t) = d(p,T) since ¥ and 7 are symmetrical w.r.t. £ and £
contains e and the rotation takes £ as the axis, where £ contains
e.

Consider the example as shown in Fig. 7 (i.e., Case
1(b)). Since ¢t and 5, are on the different side of L,
the light point 7 of 7 is located on 7. In this case,
the estimation is minye(p, p,31do + d(30,p1) + d(p1,),do +
d(3o,p2) + d(p2,T)}. In other words, arg min,e.{d,(s,p) +
d(p,t)} is one end-point of the edge segment e.

Consider the example as shown in Fig. 8 (i.e., Case 2(b)).
Since 3, is not on £ and 5, and ¢ are on the same side of L., the
light point ¢ of Z is the reflection of 7 w.r.t. . The estimation in
this case is the same as that of Case 1(b). O

4137

Consider the case where ¢(0) is a vertex v. Our estimation
method of the lower bound of II, (s, t|v) is simply equal to d, +
d(v,t). We will present that the estimation is a lower bound of
the length of II, (s, t|v) (i.e., the correctness) later in Lemma 3.

D. Children Propagation Method for a Node in Visibility Tree

Given a node o (o0 may correspond to a vertex or an edge
segment) in the Visibility Tree, in this section, we present
how to find all children of o in the tree (which corresponds
to several newly propagated vertices and edge segments). Due
to the limited space, the readers are referred to our technical
report [25] for the detailed description and in this paper, we
only present the major idea. In a nutshell, the newly propagated
edge segments and vertices are the visible ones that the light
point of the current node o could see through its corresponding
vertex or edge segment ¢(0) in the planar unfolding of the terrain
T'. If one newly propagated edge segment e has overlap with one
existing edge segment ¢’, we divide the overlap part from each of
these two edges segments into two disjoint edge segment parts.
Consider a newly created node ¢'. In the end of the propagation,
our algorithm makes sure that for any point p contained by ¢(0'),
o' is the one in all existing nodes with the minimum value of
doy + d(5y,).

E. Putting Things All Together

Our algorithm expands the terrain surface by visiting all
nodes in the Visibility Tree starting from the root node until the
corresponding node of ¢ is visited. We maintain a priority queue
(i.e., a min-heap) to store the visited nodes (which is similar to
the Dijkstra’s algorithm in graphs). The priority of each node o
is equal to our estimated lower bound, denoted by d (s, t|c(0)),
of the length of II, (s, t|c(0)) instead of the distance from s to
¢(0). Our algorithm visits the nodes in their estimated lower
bound as illustrated in Section IV-C. Algorithm 1 shows our
proposed shortest geodesic path finding algorithm. Lines 1-5
present the initialization of our algorithm. Initially, we create a
priority queue (i.e., a min-heap) Q and assign it to be () (Line
1). Line 2-5 create the first node and insert it into Q. In Line
2, we create the root node of the Visibility Tree which is a
copy of s. In Line 3, we assign its associated light point to
be s and assign its associated distance to be 0. In Line 4, we
assign its priority to be 0. After that, we push the node into
Q (Line 7). Line 6-18 contain the steps of the path finding. In
each iteration of the while loop, we pop the top element in the
queue (Line 7). If it is the corresponding node of ¢, we simply
utilize the Back-Tracing method to find the shortest path from s
to ¢ and return it (Lines 9-10). If not, we propagate more nodes
and compute their associated distances and images by using
the children propagation method. Line 12 propagates several
children from . Lines 14-16 estimate the priority of each node
propagated and put it into Q.

F. Theoretical Analysis

In this section, we formally prove the correctness and time
complexity of our algorithm. Given a node o in the Visibility

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4138

Algorithm 1: DIO Algorithm.

Data: A Terrain Surface T'(V, E, F') and a source point s and a
destination point ¢ on T’
Result: The geodesic shortest path from s to t on T
Initialize an empty priority queue Q = (;
Create the root node of the Visibility Tree which corresponds
tos;
3 Assign its associated image to be s and assign its associated
distance to be 0;

N

4 Assign its priority to be 0;
5 Push the node into Q;
6 while True do
7 Pop the top element z from Q;
8 if x is the corresponding node of t then
9 Find the shortest geodesic path I1, (s, t) by using the
Back-Tracing algorithm;
10 return I1, (s, t)
1 end
12 Propagate a set S of new nodes from z and compute their
associated distances and images by using the children
propagation method;
13 for each element o in S do
14 Assign x to be the parent of o;
15 Estimate dg (s, t|c(o)) by using the method present in
Section IV.3 and assign them to be the priorities of o;
16 Push o into Q;
17 end
18_end

Tree, we call that o is a fraceable node if o satisfies the three
properties: for any point p on ¢(0), (1) dy(s,p) = do + d(5,, p),
where d,, is the associated distance of o, (2) the light point of
o lies on one vertex of the corresponding path of II,(s, p) in
the unfolding space, and (3) ¢(r,) in the Visibility Tree has
intersection with II,(s, p|c(o)), where 7, is the parent of o in
the Visibility Tree.

Lemma 2: Each node created by our algorithm is a traceable
node and satisfies the visible property, the traceable property and
the co-located property.

Proof: For the sake of limited space, we refer the readers to
our technical report [25] for the proof. In a nutshell, the lemma
is a natural result of our children propagation algorithm. g

Lemma 3: Given a vertex v considered in our algorithm
whose corresponding node is o, d, + d(v, t) is at most the length
of I, (s, t|v).

Proof: The path I, (s, t|v) consists of two parts. The first one
is the shortest geodesic path IT, (s, v) from s to v and the second
one is the shortest geodesic path II, (v, t) from v to t. By our
algorithm d, is equal to the length of IT, (s, v) and since d(v,)
is equal to the euclidean distance between v and ¢, we obtain
that d(v, t) is at most the length of I (v,t). Thus, we finally
obtain that d, + d(v, t) is at most the length of IT, (s, tjv). O

Lemma 4: Consider a given edge segment e considered in our
algorithm. minpe.{dy(s,p) + d(p,t)} is at most the length of
II, (s, tle).

Proof: Let p* denote any point on II,(s,t|e) N e (note that
the intersection of II,(s,t|e) and e may not be a point and an
extreme case is that II,(s,t|e) contains e and here, p* is any
point on I (s, tle) N e.). Thus, the length of II, (s, t|e) is equal
to dg(s,p*) + dgy(p*, t).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

Let p’ denote argmin,c.{d,(s,p) +d(p,t)} (and thus,
dg(s,p') +dg(p',t) = minye{dy(s,p) +d(p,t)}). By the
definition of p/, dy(s,p') +d(p,t) <dg4(s,p*) +d(p*,1).
Since dg (p*,t) > d(p*,t), we obtain that dy (s, p') + d(p',t) <
dy(s,p*) + dg(p*,t) which is the desired result. O

Theorem 1: Our estimation of minye.{dy(s,p) + d(p,t)} is
correct, where e is an edge segment considered in our shortest
path algorithm.

Proof: By Lemma 2, for any point p on e, dy(s,p) = d, +
d(3,,p), where o is the corresponding node of e. Thus, we ob-
tain that ming,e.(dy(s,p) + d(p,t) = de + minye.(d(5,,p) +
d(p,t). Since the Plane Rotation step rotate P, on £ which
contains e, we obtain that for any point p on e, d(p,t) = d(p, t).
With the two equations above, we obtain that min,c. (dg (s, p) +
d(p,t) = do + minye.(d(3,,p) + d(p, t). Then, it suffices to
prove that min,c.(d(3,, p) + d(p, 1) is equal to d(3,,7) (resp.
MiNye (o, 0,1 (d(50,p) + d(p,t)) in Case I(a) and Case 2(a)
(resp. Case 1(b) and Case 2(b)).

Consider Case 1(a) and Case 2(a): By Triangle inequal-
ity, we obtain that for any point p, d(3,,p)+d(p,T)>
d(§o,f/). By the definition of 7 (i.e., 7 locates at ei-
ther that of ¢ or the position symmetric to that of %
w.r.t. 1), we obtain that for any point p on k., d(p,t) =
d(p, 7). Thus, it must be true that min,, g (d(s, p) +d(p,t) =
min,, .y (d(s, p) + d(p,t'). Since z is on the edge segment st
and on the line £, we obtain that d(3,,z) 4+ d(z,T) = d(S5,,1)
and d(S,,) + d(z,1) = d(3,,2) + d(x,T). Thus, we ob-
tain that min y (d(3,,p) + d(p, 7)) = d(5e,2) + d(z,T) =
d(5,,7) = min ¢ (d(30, p) + d(p,). Together with the fact
that x is on the edge segment e, we obtain that min e (d(3,, p) +
d(p,f) =d(3,,) + d(:ﬂ,fl) = d(goa?)'

Consider Case 1(b) and Case 2(b): Let £ denote the ellipse
whose focuses are 5, and ¢ such that the length of its major
axis is ming,e.{d(3,, p) + d(p,t)}. We first present three useful
lemmas to show some intermediate results as follows. Note that
& Neand argminy,e.{d(3,,p) + d(p, t)} are two sets contain-
ing some points.

Lemma 5: Theellipse € intersects with e (i.e., £ N e # ()) and
their intersection is arg min,e.{d(3,,p) + d(p,)}.

Proof: We first prove that any point p' in
arg min,e.{d(3,,p) + d(p,t)} must be in € Ne. Since the
focuses of £ are 5, and ¢ and the length of its major axis is
minye.{d(3,,p) + d(p,t)}, p’ must be on £ and p’ must be in
e by the definition of arg min,e.{d(S,,p) + d(p,t)}. Thus, p’
isin&Ne.

Then, we prove that any point p” in £MNe must be
in argminpe.{d(S,,p) +d(p,t)}. Since p” is in &, we
obtain that d(5,,p") + d(p”,t) = minye{d(3,,p) + d(p,t)}.
Besides, since p” is in e, we obtain that p” is in
arg min,e.{d(3,,p) + d(p,t)}. O

Lemma 6: € Ne (ie., argminge.{d(5,,p) + d(p,t)}) con-
tains exactly one point.

Proof: By Lemma 5, we obtain that £ N e contains at least
one point. Then, it suffices to prove that £ N e contains at most
one point.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH

We then prove this (i.e., £ N e contains at most one point) by
contradiction. Suppose that £ N e (i.e., argmin,e.{d(5,,p) +
d(p,t)}) contains at least two points. Let p; and ps denote
two points in £ N e. Since p1, p2 € &, the edge segment D1, pa
excluding p; and py is in the interior of £. From the prop-
erty of an ellipse, d(3,,p’) + d(p/,t) is less than the length
of its major axis (i.e., minye{d(5,,p) + d(p,t)}), where p’
is a point in Py, pz excluding p; and py. Besides, since
p1, P2 € e, e contains the edge segment Py, ps. This meas that
p'€e and d(5,,p') +d(p,t) < minpe.{d(S,,p) +d(p,t)}.
Contradiction.]

Lemma 7: In Case (b), L is not a tangent line of £.

Proof: 'We first prove this by contradiction. Suppose L is a

tangent line of £. Consider the three lines 5,, 0, 0,7 and o, t.
Since L is a tangent line of £ where the intersection is o, by [48]
(see the Section ‘The Normal bisects the angle between the lines
to the foci’), we obtain that k. bisects the angle the lines 5,, 0
and o, 7. Since 7 is a reflection point of ¢ w.r.t. £, we obtain that
L bisects the angle /tof . Thus, we obtain that E. coincides with
the line 5,, 0 (i.e., o is on the line L). Then, £’ must intersect
with e. Contradiction.]

By Lemma 5 and Lemma 6, we obtain that £Ne=
arg min,e.{d(3,,p) + d(p,t)} and |E Ne| = 1. We prove the
correctness of our estimation in Case 1(b) and Case 2(b) by con-
tradiction. Suppose that (i.e., arg min,e.{d(3,, p) + d(p,t)})is
neither {01 } nor {02 }. Let 2 denote the point contained in £ N e.

By Lemma 7, we obtain that £. is not a tangent line of £. Then,
there must be a point 2’ on e such that 2 is in the interior of £ (as
shown in Figs. 7 and 8). By the definition of ellipse, we obtain
that d(3,, 2') + d(2',t) < d(S,, x) + d(2',) since the length of
the major axis of € is d(,, z) + d(o, t). But this contradicts with
the assumption that arg min,c.{d(3,,p) + d(p,t)} = {z}. O

Theorem 2: Our algorithm returns the shortest geodesic path
from s to ¢ correctly.

Proof: Let o denote the corresponding node of ¢ and by the
termination condition of our algorithm, in the last iteration, we
find the corresponding node o of ¢. By Lemma 3, Lemma 4 and
Theorem 1, the priority of o in Q is an lower bound of the length
of the path IT, (s, t|c(0)).

If ¢ lies on a vertex or an edge segment (i.e., Case (i) and
Case (ii) of t), then our Back-Tracing algorithm must find the
shortest geodesic path from s to ¢ by Lemma 2. Then, consider
the last possible case (i.e., Case (iii)) of ¢, where ¢ lies on the
interior of a face. In this case, ¢(0) is an edge segment and ¢(0)
contains ¢ (i.e., ¢ is visible to s(,)). Consider the point p on
c(o) such that 5;;)p passes through ¢. Thus, we obtain that the
geodesic shortest path II, (s, p) from s to p passes through ¢. By
Lemma 2, our Back-Tracing algorithm finds the intersections
between each vertex or edge segment and the path II, (s, p)
which consists of s, p1,pa,...... , Pk, p- Together with the face
that IT, (s, p) passes through ¢ and p and ¢ are located on the
same face, we obtain that the path (i.e., (s, p1,p2, - - .. Pks 1))
that our algorithm returns is the shortest geodesic path from s
to t. (]

Let &+ denote the ellipse on the z-y plane whose focuses
are s and ¢ such that the length of its major axis is d(s,t).

4139

Let N, =#{p € V| the projection of p on z-y plane is inside
Eot }-

Theorem 3: The running time and space consumption of DIO
algorithm are O(NZ, log Ny) and O(NZ,), respectively.

Proof: We first show the number of visited vertices on the
terrain surface by our algorithm in the following lemma.

Lemma 8: The number of vertices visited by our algorithm is
N s,te

Proof: We first prove that the projection of each vertex vis-
ited by our algorithm on the x-y plane are inside the ellipse
Es+. Consider any vertex v that is visited by our shortest path
algorithm. Since the key of the root of the priority queue Q
maintained in our algorithm is at most d,(s, t), it must be true
that dgy(s,v) + d(v,t) < dg4(s,t). Since for any two arbitrary
points 01 and oy on the terrain surface, it must be true that
dgy(01,02) > d(01,02) > dyy(01,02), we obtain that for any
visited vertex v, dgy (s, v) + dgy(v,t) < dg(s,t), where dyy(+)
denote the distance between the projections of two points on the
x-y plane. Thus, we obtain that the projection of each vertex
visited by our algorithm on the -y plane lies in the ellipse & +
by the definition of the ellipse &; ;.

Reversely, we proceed to prove that each vertex, denoted by
v, whose projection on the z-y plane is outside the ellipse & ¢
is not visited by our algorithm. According to the definition of
the ellipse &, ¢, we obtain that dg, (s, v) + dsy (v, 1) > dy(s,t).
Note that the length of the major axis of & ; is d,, (s, t). Since for
any two arbitrary points o; and oz on the terrain surface, it must
betruethatdy(o1,02) > d(01,02) > dgy (01, 02), we obtain that
for any visited vertex v, dg(s,v) + dg(v,t) > dy(s,t). By our
algorithm, the key of each element considered in our priority
queue Q is smaller than or equal to dg4(s,t). Thus, we obtain
that v is not visited by our algorithm. (|

By [4], for a terrain surface with N vertices, each heteroge-
neous edge can only have at most [V edges segments. Besides,
each homogeneous edge has exactly one edge segment. Since
the vertices and the edges of a terrain surface form a planar
graph, we obtain that the number of edges on the terrain surface
is O(INV) by [49]. Thus, the total number of nodes in the Visibility
Tree is O(N?).

By Lemma 8, the number of vertices visited by our algorithm
is NV, which is equivalent to the fact that our algorithm only
visited a terrain with Ns,t vertices. We obtain that the number
of edge segments (i.e., the elements considered in our priority
queue Q) is O(N; ft) Since each push or pop operation takes
O(log N (s, t)) time for a priority queue with at most O(NZ,)
elements, we obtain that the running time of our algorithm is
O(NZ,log Ny). 0

V. EMPIRICAL STUDIES
A. Experimental Setup

We conducted our experiments on a Linux machine with
2.67 GHz CPU and 48 GB memory. All algorithms were im-
plemented in C++.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4140

TABLE III
DATASET STATISTICS

Dataset | No. of Vertices | Resolution | Region Covered
BH (L) 146,547 30 meters 14km x 10km

EP (L) 164,238 30 meters | 10.7km x 14km
SF (L) 172,186 30 meters | 14km x 11.1km
BH (H) 1,318,844 10 meters 14km x 10km

EP (H) 1,392,236 10 meters | 10.7km x 14km
SF (H) 1,539,082 10 meters | 14km x 11.1km

Datasets: Following some existing studies on terrain data [3],
[51, [21], [36], we used three real terrain surfaces, namely Bear-
head (in short, BH), Eaglepeak (in short, EP) and San Francisco
South (in short, SF) and these datasets can be downloaded from
this link [50]. Table IIT shows the dataset statistics. Each of the
three terrain surfaces has two different versions with different
resolution and sizes. Thus, there are totally six different datasets
considered, namely BH (L), EP (L), SF (L), BH (H), EP (H) and
SF (H).

Algorithms: We tested our DIO algorithm and four existing
exact shortest path algorithms on the terrain surface, namely
MMP [15], VS [22], CH [16] and ICH [17]. Note that other
existing algorithms can only find approximate geodesic shortest
paths and thus, we do not test them in the experiment since
they have different problem settings from ours. We obtained
the source code of MMP from [51] and also the source code
of CH and ICH from the webpage of the author of [17]. We
implemented the VS algorithm [22] by ourselves. The four
baseline algorithms considered in the experiment were written
in C++. Since the CH algorithm [16] is proved to be inferior to
ICH and CH has a significantly larger running time than MMP
and ICH according to the result of [4], we safely exclude CH for
the better clarity.

Query Generation. Each shortest path query contains two
query points, one as the source and the other as the desti-
nation. To study the effect of the distance between the two
query points (i.e., the source and the destination), we generate
10 different groups of queries, namely 1, @2, , Q10, for
each dataset as follows. We first obtain the maximum (resp.
minimum) pairwise geodesic distance between all vertices and
we denote the distance as dyy,q. (resp. dpmin). Then, Vi € [1,10],
we insert 100 pairs of vertices (s,t) into @; and we make
sure that the geodesic distance d,(s,t) between s and ¢t is in
the range [dynin + 7(dmazzgmi")*i,dmin + —(dm“fd;”(;")*(iﬂ)].
As such, the geodesic distance between each pair in (); is larger
than Q;_1, where ¢ € [2,10].

Factors & Measurements: Two factors, namely the query
distance (the geodesic distance between the source and the
destination) and N (the number of vertices on a terrain surface),
were studied. Three measurements, namely (1) running time
(which is the time for answering a shortest path query), (2)
space consumption (which is the memory cost for running the
algorithm) and (3) No. of visited vertices (which is the number
of vertices visited by the algorithm and measures the size of
the regions that each algorithm explores on the terrain surface)
were used for evaluating the algorithms. For the query time,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

100 queries were answered and the average running time was
returned.

B. Experimental Results

Fig. 9 shows the running time, space consumption and no. of
visited vertices of each algorithm on all the six datasets. We used
all queries contained in 1, (J2,..., Q10 and reported the average
running time of the 1000 queries contained in all ten groups
for each algorithm. In Fig. 9(a), we could observe that (1) our
algorithm has the smallest running time which is smaller than the
best existing algorithm (i.e., VS) around 1 order of magnitude;
(2) MMP and ICH are the slowest two algorithms and they have
very similar performance and this result is consistent with that
of [4]; (3) The running time of VS is 3-5 times smaller than that
of MMP which is consistent with the result of [22]. In Fig. 9(b),
we find that (1) our algorithm is the most space-efficient and its
space consumption is several times smaller than that of the best
existing algorithm (i.e., VS); (2) MMP and ICH have the largest
space consumption and this result is consistent with that of [22];
In Fig. 9(c), we observe that (1) our algorithm has the smallest
no. of visited vertices which is several times smaller than the
best existing algorithm (i.e., VS). This result verifies that our
destination-aware algorithm is very effective and only visited
a small region of the terrain surface compared with existing
algorithms; (2) The no. of visited vertices of VS is smaller than
that of MMP and ICH in most cases which is consistent with the
result of [22].

Effect of Query Distance: We studied the effect of query
distance by testing the 10 groups of the queries on each high-
resolution dataset. Note that the query distance is monotonically
increasing from @1 to (Q19. The results on the BH (high res-
olution) datasets is shown in Fig. 10. Fig. 10(a) presents the
running time of each algorithm in the 10 query groups. As could
be observed from the figure, the running time of each algorithm
grows up with the increase of the query distance. The running
time of our algorithm is 1-3 orders smaller than the 3 baselines.
Fig. 10(b) presents the space consumption of each algorithm.
Our algorithm significantly outperforms all the 3 baselines by
a notable margin and is the most space-efficient one. Fig. 10(c)
demonstrates the number of vertices visited by each algorithm
on the terrain surface. Our algorithm visited several times fewer
vertices than the best existing algorithm. The result confirms that
the destination-awareness of our algorithm is effective and the
lower bound estimation in our algorithm provides a tight lower
bound. As such, our algorithm only visited a much smaller region
on the terrain surface than all existing algorithms and the query
processing is highly boosted. The results on EP (H) and SF (H)
can be found in our technical report [25] due to limited space.
Their results are similar to those of BH (H).

Scalability Test: We tested the scalability of each algo-
rithm considered on five synthetic datasets with sizes from
{0.5 M, 1 M,1.5 M,2 M,2.5M}. Each synthetic dataset with
N vertices is a simplified terrain surface from an enlarged BH
(H) dataset (4.2 M vertices). Note that each simplified terrain
surface covers the same region as the original BH dataset with
a different simplification ratio. The enlarged BH dataset was

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH

4141

MMP —+ ICH X VS ++ DIO &
107 10'0 6
= o 10
3 10° = 10° g
£ £ 5
B 5
_aé 10 g 10 _(>3 10
= 10t 8 10 2
2 g ;
S 10 S 10 Z 10t
£ 402 8 5 S
10 a 10 >
o' 10* 10°
BH(L) EP(L) SF(L) BH(H) EP(H) SF(H) BH(L) EP(L) SF(L) BH(H) EP(H) SF(H) BH(L) EP(L) SF(L) BH(H) EP(H) SF(H)
@ (b) (c)
Fig. 9. Running time, space consumption and no. of visited vertices of each algorithm on all datasets.
MMP —+ ICH =<~ VS & DIO ©-
SV N NS o8
»10°] s 10° ¢] g 10°
5 B Q
o 10° | q Q .~ | q >
= E 10 5 10°
=4 17} 2
0;10 c 106 b 4 ‘0
£ 3 S0t |
c .3 o Z 10
ng: 10 § 10% | 3 Z
wottel L el 2wt
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10
(a) (b) (c)
Fig. 10. Effect of query distance on BH (high resolution) dataset.
6 o | | | ‘ 3 | | | | |
0 10 é10 L] % 106 i 1
5 7
g g10%y I si0° |]
a4 = 2
210 210° | 1 2
£ £ STl |
€ 408 c Z 10
5 S510° | ;] ®
o 2 o o 3
10° F C ‘ ‘ ‘ ‘ 10* ‘ ‘ ‘ ‘ ‘ Z10° ; C ‘ ‘ ‘ 1
0.5 1 1.5 2 25 0.5 1 1.5 2 25 0.5 1 1.5 2 25
N (Millions) N (Millions) N (Millions)
(a) (b) (c)
Fig. 11. Scalability Test.

generated from the BH (H) dataset as follows. On each face of
BH (H), we added a new vertex on its geometric center and add a
new edge between the new vertex and each of the three vertices
on the face. Then, we adopted a terrain toolkit [5] to simplify the
enlarged dataset. Fig. 11 shows the results of the scalability test.
As the figure shows, the running time, space consumption and
no. of visited vertices of each algorithm are all monotonically
increasing with the increase of the data size. Our method has a
running time smaller than that of all existing algorithms by more
than one order of magnitude.

C. Experimental Result Summary

Our geodesic shortest path processing algorithm significantly
outperforms the state-of-the-art algorithms, i.e., MMP, ICH and

VS, in terms of all measurements (i.e., running time, space
consumption, and the number of visited vertices) and enjoys
excellent scalability. The speed-up of our algorithms compared
with the existing algorithms is more than an order of magnitude.
The space consumption and the no. of visited vertices of our al-
gorithm are several times smaller than that of the state-of-the-art
algorithm.

VI. CONCLUSION

In this paper, we propose an efficient on-the-fly algorithm for
shortest geodesic path computation in which a core component is
the lower bound estimation of the length of the shortest geodesic
path passing through each part of the terrain. The lower bound
provides a priority of each part and guides the search towards the

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

4142

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

destination. We theoretically prove that our algorithm is correct
and our empirical study confirms that our algorithm significantly
outperforms the state-of-the-art in terms of the running time
and the number of vertices visited. Future work includes a
comparison of the spatial indexing methods used here with more
traditional data structures (e.g., [52], [53]).

ACKNOWLEDGEMENT

The authors are grateful to the anonymous reviewers for their
constructive comments on this paper.

(1]
(2]

[3]
(4]

(3]
(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

REFERENCES

K. Deng, H. T. Shen, K. Xu, and X. Lin, “Surface k-NN query processing,”
in Proc. Int. Conf. Data Eng., 2006, pp. 78-78.

K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin, “A multi-
resolution surface distance model for k-nn query processing,” VLDB J.,
vol. 17, pp. 1101-1119, 2008.

C. Shahabi, L.-A. Tang, and S. Xing, “Indexing land surface for efficient
KNN query,” Proc. VLDB Endowment, vol. 1, pp. 1020-1031, 2008.

S. Xing, C. Shahabi, and B. Pan, “Continuous monitoring of nearest neigh-
bors on land surface,” Proc. VLDB Endowment, vol. 2, pp. 1114-1125,
2009.

L. Liu and R. C.-W. Wong, “Finding shortest path on land surface,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 433-444.

D. Yan, Z. Zhao, and W. Ng, “Monochromatic and bichromatic reverse
nearest neighbor queries on land surfaces,” in Proc. Conf. Inf. Knowl.
Manage., 2012, pp. 942-951.

M. Kaul,R. C.-W. Wong, B. Yang, and C. S. Jensen, “Finding shortest paths
on terrains by killing two birds with one stone,” Proc. VLDB Endowment,
vol. 7, pp. 73-84, 2013.

M. Kaul, R. C.-W. Wong, and C. S. Jensen, “New lower and upper bounds
for shortest distance queries on terrains,” Proc. VLDB Endowment, vol. 9,
pp. 168-179, 2015.

L. T. Sarjakoski, P. Kettunen, H.-M. Flink, M. Laakso, M. Rénneberg, and
T. Sarjakoski, “Analysis of verbal route descriptions and landmarks for
hiking,” Pers. Ubiquitous Comput., vol. 16, pp. 1001-1011, 2012.

J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain
classification using three-dimensional ladar data for ground robot mobil-
ity,” J. Field Robot., vol. 23, pp. 839-861, 2006.

N. Vandapel, R. R. Donamukkala, and M. Hebert, “Unmanned ground
vehicle navigation using aerial ladar data,” Int. J. Robot. Res., vol. 25,
pp. 31-51, 2006.

B. Koyuncu and E. Bostanci, “3D battlefield modeling and simulation
of war games,” in Proc. 3rd Int. Conf. Commun. Inf. Technol., 2009,
pp. 64-68.

L.-H. Lee et al., “All one needs to know about metaverse: A complete sur-
vey on technological singularity, virtual ecosystem, and research agenda,”
2021, arXiv:2110.05352.

L. Lee et al., “When creators meet the metaverse: A survey on computa-
tional arts,” 2021. [Online]. Available: https://arxiv.org/abs/2111.13486
J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou, “The discrete
geodesic problem,” SIAM J. Comput., vol. 16, pp. 647-668, 1987.

J. Chen and Y. Han, “Shortest paths on a polyhedron,” in Proc. Annu.
Symp. Comput. Geometry, 1990, pp. 360-369.

S.-Q. Xin and G.-J. Wang, “Improving Chen and Han’s algorithm on the
discrete geodesic problem,” ACM Trans. Graph., vol. 28, pp. 1-8, 2009.
L. Aleksandrov, H. N. Djidjev, H. Guo, A. Maheshwari, D. Nussbaum, and
J.-R. Sack, “Algorithms for approximate shortest path queries on weighted
polyhedral surfaces,” Discrete Comput. Geometry, vol. 44, pp. 762-801,
2010.

L. Aleksandrov, A. Maheshwari, and J.-R. Sack, “Determining approxi-
mate shortest paths on weighted polyhedral surfaces,” J. ACM, vol. 52,
pp. 25-53, 2005.

H. N. Djidjev and C. Sommer, “Approximate distance queries for weighted
polyhedral surfaces,” in Proc. Eur. Symp. Algorithms, 2011, pp. 579-590.
V.J. Wei, R. C.-W. Wong, C. Long, and D. M. Mount, “Distance oracle on
terrain surface,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2017,
pp. 1211-1226.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

V. Verma and J. Snoeyink, “Reducing the memory required to find a
geodesic shortest path on a large mesh,” in Proc. ACM SIGSPATIAL Int.
Conf. Ad. Geographic Inf. Syst., 2009, pp. 227-235.

V.J. Wei,R. C.-W. Wong, C. Long, D. M. Mount, and H. Samet, “Proximity
queries on terrain surface,” ACM Trans. Database Syst., vol. 47, pp. 1-59,
2022.

P. A. Benton, “Unfolding polyhedra,” Ph.D. dissertation, Dept. Comput.
Sci., University of Cambridge, 2008.

V. J. Wei, R. C.-W. Wong, C. Long, D. Mount, and H. Samet, On
efficient shortest path computation on terrain surface: A direction-oriented
approach (technical report). 2023. [Online]. Available: https://github.com/
ItachiUchihaVictor/DIO- Algorithm

M. Lanthier, A. Maheshwari, and J.-R. Sack, “Approximating short-
est paths on weighted polyhedral surfaces,” Algorithmica, vol. 30,
pp. 527-562, 2001.

L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack, “An —
approximation algorithm for weighted shortest paths on polyhedral sur-
faces,” in Proc. 6th Scand. Workshop Algorithm Theory Stockholm, 1998,
pp. 11-22.

T. Kanai and H. Suzuki, “Approximate shortest path on a polyhedral
surface based on selective refinement of the discrete graph and its ap-
plications,” in Proc. Geometric Model. Process. Theory Appl., 2000,
pp. 241-250.

P. B. Callahan and S. R. Kosaraju, “A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields,” J. ACM, vol. 42, pp. 67-90, 1995.

J. Sankaranarayanan and H. Samet, “Distance oracles for spatial net-
works,” in Proc. IEEE 25th Int. Conf. Data Eng., 2009, pp. 652—-663.

J. Sankaranarayanan and H. Samet, “Query processing using distance
oracles for spatial networks,” IEEE Trans. Knowl. Data Eng., vol. 22,
no. 8, pp. 1158-1175, Aug. 2010.

H. Samet, “A quadtree medial axis transform,” Commun. ACM, vol. 26,
pp. 680-693, 1983.

H. Samet, “Reconstruction of quadtrees from quadtree medial axis trans-
forms,” Comput. Vis., Graph., Image Process., vol. 29, pp. 311-328,
1985.

A. Amir, A. Efrat, P. Indyk, and H. Samet, “Efficient regular data structures
and algorithms for location and proximity problems,” in Proc. 40th Annu.
Symp. Found. Comput. Sci., 1999, pp. 160-170.

C.-H. Ang, H. Samet, and C. A. Shaffer, “A new region expansion
for quadtrees,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7,
pp. 682-686, Jul. 1990.

K. Deng and X. Zhou, “Expansion-based algorithms for finding single pair
shortest path on surface,” in Proc. Int. Conf. Web Wirel. Geographical Inf.
Syst., 2004, pp. 151-166.

M. Saad, A. I. Salameh, and S. Abdallah, “Energy-efficient shortest path
planning on uneven terrains: A composite routing metric approach,” in
Proc. IEEE Int. Symp. Signal Process. Inf. Technol., 2019, pp. 1-6.

N. Ganganath, C.-T. Cheng, and K. T. Chi, “Finding energy-efficient paths
on uneven terrains,” in Proc. 10th France-Jpn./S8th Europe-Asia Congr.
Mecatronics, 2014, pp. 383-388.

M. Saad, A. I. Salameh, S. Abdallah, A. El-Moursy, and C.-T. Cheng,
“A composite metric routing approach for energy-efficient shortest path
planning on natural terrains,” Appl. Sci., vol. 11, 2021, Art. no. 6939.

J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path oracles for
spatial networks,” Proc. VLDB Endowment, vol. 2, pp. 1210-1221,
20009.

J. Sankaranarayanan and H. Samet, “Roads belong in databases,” IEEE
Data Eng. Bull., vol. 33, no. 2, pp. 4-11, Jun. 2010.

S. Peng, J. Sankaranarayanan, and H. Samet, “SPDO: High-throughput
road distance computations on spark using distance oracles,” in Proc. IEEE
32nd Int. Conf. Data Eng., 2016, pp. 1239-1250.

M. Cui, D. D. Harabor, and A. Grastien, “Compromise-free pathfinding
on a navigation mesh,” in Proc. Int. Joint Conf. Artif. Intell., 2017,
pp- 496-502.

R. Hechenberger, P. J. Stuckey, D. Harabor, P. Le Bodic, and
M. A. Cheema, “Online computation of euclidean shortest paths in two
dimensions,” in Proc. Int. Conf. Automated Plan. Scheduling, 2020,
pp. 134-142.

B. Shen, M. A. Cheema, D. D. Harabor, and P. J. Stuckey, “Euclidean
pathfinding with compressed path databases,” in Proc. Int. Joint Conf.
Artif. Intell., 2021, pp. 4229-4235.

J. Du, B. Shen, and M. A. Cheema, “Ultrafast euclidean shortest path
computation using hub labeling,” in Proc. Int. Joint Conf. Artif. Intell.,
2023, pp. 12417-12426.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: EFFICIENT SHORTEST PATH COMPUTATION ON TERRAIN SURFACE: A DIRECTION-ORIENTED APPROACH

[47] P.E.Hart, N.J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100107, Jul. 1968.

2016. [Online]. Available: https://en.wikipedia.org/wiki/Ellipse

2016. [Online]. Available: https://en.wikipedia.org/wiki/Planar_graph
2017.[Online]. Available: https://www.dropbox.com/s/ofa9ddk 138x91w3/
dataset.tar.gz?d1=0

2024. [Online]. Available: https://code.google.com/archive/p/geodesic/
E. G. Hoel and H. Samet, “Efficient processing of spatial queries in
line segment databases,” in Proc. 2nd Symp. Adv. Spatial Databases, O.
Giinther and H.-J. Schek, eds., Springer-Verlag Lecture Notes in Computer
Science, Zurich, Switzerland, 1991, pp. 237-256.

H. Samet, “Hierarchical spatial data structures,” in Proc. Ist Symp. Des.
Implementation Large Spatial Databases, Springer-Verlag Lecture Notes
in Computer Science, Santa Barbara, CA, 1989, pp. 193-212.

[48]
[49]
[50]

[51]
[52]

[53]

Victor Junqiu Wei received the bachelor’s degree
from Nanjing University and the PhD degree from the
Department of Computer Science and Engineering,
the Hong Kong University of Science and Technol-
ogy. He is currently working as a research assistant
professor with the Department of Computer Science
and Engineering (CSE), the Hong Kong University of
Science and Technology (HKUST).

Raymond Chi-Wing Wong received the BSc, MPhil
and PhD degrees in computer science and engineering
from the Chinese University of Hong Kong (CUHK)
in 2002, 2004, and 2008, respectively. He is a pro-
fessor in Computer Science and Engineering (CSE)
of The Hong Kong University of Science and Tech-
nology (HKUST). He is currently the associate head
of Department of Computer Science and Engineering
(CSE). He was the director of the Risk Management
and Business Intelligence (RMBI) program (from
2017 t0 2019) and the Computer Engineering (CPEG)
program (from 2014 to 2016).

4143

Cheng Long (Senior Member, IEEE) received the
PhD degree from the Department of Computer Sci-
ence and Engineering, The Hong Kong University of
Science and Technology (HKUST) in 2015. He is cur-
rently an assistant professor with the School of Com-
puter Science and Engineering (SCSE), Nanyang
Technological University (NTU). From 2016 to 2018,
he worked as a lecturer (asst. professor) with Queen’s
University Belfast, U.K. His research interests are
broadly in data management, data mining and Big
Data analytics. He has served as a Program Commit-
tee member/referee for several top data management and data mining confer-
ences/journals (ACM Transactions on Database Systems, VLDB Journal, IEEE
Transactions on Knowledge and Data Engineering, ICDM, CIKM, etc.).

David M. Mount received the BS and PhD degrees
in computer science from Purdue University. He is
a professor with the University of Maryland, Col-
lege Park department of computer science whose
research is in computational geometry. His main area
of research is computational geometry, which is the
branch of algorithms devoted to solving problems of a
geometric nature. In particular, he has worked on the
k-means clustering problem, nearest neighbor search,
and point location. He was named to the 2022 class
of ACM Fellows, “for contributions to algorithms and
data structures for geometric data analysis and retrieval”.

Hanan Samet (Fellow, IEEE) is a distinguished uni-
versity professor of computer science. He is a fellow
of the ACM and the International Association of
Pattern Recognition (IAPR). From 1989 to 1991 he
served as the Capital region representative on the
ACM Council. He is the recipient of the 2009 UCGIS
Research Award and received best paper awards in the
2008 SIGMOD Conference, the 2008 SIGSPATIAL
ACMGIS’08 Conference, and the 2007 Computers &
Graphics Journal. Samet’s paper at the 2009 IEEE In-
ternational Conference on Data Engineering (ICDE)
was selected as one of the best papers for publication in /EEE Transactions on
Knowledge and Data Engineering. In his pioneering research since the 1980s
on quadtrees and other data structures, as well as his well-received books, Samet
has profoundly influenced the theory and application of multidimensional spatial
data structures.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 01,2024 at 19:20:48 UTC from IEEE Xplore. Restrictions apply.

