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Abstract

In the new “gig” economy, a user plays the role of a consumer as well as a service provider.

As a service provider, drivers travelling from a source to a destination may opportunistically

pickup and drop-off packages along the way if that does not add significantly to their trip

distance or time. This gives rise to a new business offering called Package Delivery as

a Service (PDaaS) that brokers package pickups and deliveries at one end and connects

them to drivers on the other end, thus creating an ecosystem of supply and demand. The

dramatic cost savings of such a service model come from the fact that the driver is already

en-route to their destination and the package delivery adds a small overhead to an already pre-

planned trip. From a technical perspective, this problem introduces new technical challenges

that are uncommon in the literature. The driver may want to optimise for distance or time.

Furthermore, new packages arrive for delivery all the time and are assigned to various drivers

continuously. This means that the algorithm has to work in an environment that is dynamic,

thereby precluding most standard road network precomputation efforts. Furthermore, the

number of packages that are available for delivery could be in the hundreds of thousands,

which has to be quickly pruned down for the algorithm to scale. The paper proposes a variation

called dual Dijkstra’s that combines a forward and a backward scan in order to find delivery

options that satisfy the constraints specified by the driver. The new dual heuristic improves

the standard single Dijkstra’s approach by narrowing down the search space, thus resulting

in significant speed-ups over the standard algorithms. Furthermore, a combination of dual

Dijkstra’s with a heuristic landmark approach results in a dramatic speed-up compared to the

baseline algorithms. Experimental results show that the proposed approach can offer drivers

a choice of packages to deliver under specified constraints of time or distance, and providing

sub-second response time despite the complexity of the problem involved. As the number of

packages in the system increases, the matchmaking process becomes easier resulting in faster

response times. The scalability of the PDaaS infrastructure is demonstrated using extensive

experimental results.
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1 Introduction

The proliferation of delivery apps has resulted in a democratisation of package delivery as

a service (PDaaS) resulting in users playing the role of logistics companies in picking and

delivering packages. PDaaS is opportunistic in the sense that drivers may pickup a package

if it is en-route to their predetermined source and destination. The constraint here is the extra

distance or time that is added to their trips due to the package pickup and drop-off since that

denotes the added expenditure, which eats into the drivers’ profits. In this sense, PDaaS is

an opportunistic matchmaking service between packages and drivers while supporting driver

specified constraints, and packages are delivered by drivers on the road who are on unrelated

trips. The setup can be visualised by the two tables shown in Fig. 1 where it is to be noted

that both tables are large. There can be hundreds of millions of drivers that are willing to

deliver packages, and there are potentially hundreds of thousands of packages that need to

be delivered.

The PDaaS provides a separate shipper and a driver user interface where they can indepen-

dently configure the constraints. The goal of the PDaaS is to connect shippers with drivers

in order to ensure that the continuous matchmaking of packages and drivers happens. In

the shipper interface, the user provides the package specifications, including the pickup and

drop-off locations, at which point the platform computes the shortest path and distance, both

in terms of the road network distance as well as elapsed time. Once the shipper confirms the

availability of the package at the pickup location, the platform looks for drivers that could

opportunistically ship the package from the pickup to the drop-off location.

The driver interface requires the drivers to specify their source and destination addresses.

The drivers also specify how much of a detour they could tolerate on their shortest path.

Furthermore, they also specify how many results to display, which are ordered by the detour

distance, and these displayed results are guaranteed to be less than the limit that was specified

earlier.

A driver is presented with no choices if there are no packages satisfying the constraints. In

our use-case with hundreds of millions of drivers and thousands of packages, the matchmaking

Package Delivery as a Service (PDaaS)

Package Pickup Drop-off Distance

p1 … … 10

Driver Source Destination Detour 

d1 … … 2

Fig. 1 PDaaS is a matchmaking service that delivers packages using drivers that can opportunistically pickup

and deliver packages if they are en-route with bounded detour tolerance. The two tables are large in the

sense that there are hundreds of millions of drivers and hundreds of thousands of packages requiring efficient

matchmaking algorithms
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is expected to be low. A driver who is interacting with a routing app may be opportunisti-

cally presented with a choice to deliver a package that has a low detour in relation to their

current trip. However, if the driver is interested, they may explore more package options with

increasing detours. This means the following aspects of the solution are more interesting.

1. The ability to quickly prune away queries that do not result in a match, which indicates

the majority of the cases. Being able to do this quickly means that the platform can be

used in conjunction with popular routing apps, which will generate a heavy workload on

the PDaaS.

2. Complex cases involving multiple deliveries are not interesting in this domain since the

assignment of one package denotes a rare enough outcome.

3. The driver is expected to pickup the package en-route and deliver it before reaching the

destination. One can reason here that this is trivially always true since that denotes the

smallest detour cost on road networks.

Our PDaaS problem happens in a dynamic environment where new packages are added to

the system all the time. Similarly, new drivers are added to the system, and the assignment of

packages to drivers happens continuously. Note that the road network can also be updated to

reflect current road conditions [4] as well, although this seemingly happens less infrequently

compared to the matchmaking between the packages and drivers. When this happens, the

package distance or time estimates are also updated so that they reflect the current state of

the road network. Given this dynamism, we decouple the drivers, the packages, and the road

networks so that they can all be independently updated.

The problem in this paper has similarity to detour finding [33, 48] and ridesharing [8,

18, 31, 56] on road networks yet is different in important ways. Detour finding looks at the

shortest paths that need to pass through a landmark of a certain type. Typically, a detour

query would try to route through, say, a flower shop, with the least increase in the shortest

path. In our case, packages have a pickup and drop-off location which make it similar to the

detour problem except for that landmarks now have extents. Ridesharing can be viewed as

an optimal route discovery and matching problem between drivers and riders. Given a set of

drivers and riders, the ridesharing problem is both an assignment problem-assigning drivers

to passengers as well as a sequencing problem that decides the order of pickup and drop-off.

The main complexity of the problem comes from the sequencing of the drop-offs, which, if

one is not careful, quickly explodes into a combinatorial problem. In our case, sequencing of

sources and destinations is not necessary since the driver is expected to pickup and drop-off

a single package before reaching the destination. Furthermore, the source of complexity is

different. The complexity of our problem comes from the number of drivers, packages, and

the constant matchmaking needed to keep the PDaaS operational. In other words, PDaaS

has to work in a dynamic environment where there are hundreds of millions of drivers and

hundreds of thousands of packages.

The contribution of the paper is the PDaaS infrastructure for efficient matchmaking

between drivers and packages. The constraints and solutions we develop are intrinsically

aligned with this problem domain. We show how a driver assignment happens in a space

with thousands of packages. Furthermore, the solution we develop extends Dijkstra’s algo-

rithm [10, 14] to use a single priority queue where “forward” and “backward” scans as well

as the packages found during the search are inserted in the same priority queue. In that sense,

we have applied ideas from the incremental nearest neighbour algorithm [24] and applied it

to road networks. We describe the following criteria for our package routing problem, which

make it different from other approaches in the literature, while still being related.
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• [Throughput] Since PDaaS has to support hundreds of millions of drivers, each search

invocation should happen in a fraction of a second to minimise the number of machines

needed to support the drivers.

• [Scalability] The system should scale with the number of packages, which could be hun-

dreds of thousands. A desirable property we show in the experimental section later is that

as the number of packages increases, the system is easily able to make the matchmaking

efficiently, and thus the execution time is reduced.

• [Caching] Despite the dynamic nature of the PDaaS, we show that a sensible caching

strategy can result in tremendous speed-up improvements and demonstrate experimental

results to that effect.

The rest of this paper is organised as follows. Section 2 provides the basic concepts and

problem definitions. Section 3 describes the existing approaches. Section 4 provides the

proposed approach. Section 5 introduces the roundtrip variation of the problem where the

driver starts and ends at the same location. Section 6 then introduces the problem in its entire

generality. Next, experimental results are presented in Section 7, related work is discussed

in Section 8, and finally, concluding remarks are provided in Section 9.

2 Preliminaries

In this section, we first develop the preliminary concepts before describing the problem setup.

Our focus in this paper is on developing a PDaaS which is a spatial infrastructure that can

assign drivers to packages. The required functionality of PDaaS is described in terms of

Application Program Interfaces (APIs) that need to be developed. Next, we provide a high

level description of the algorithms that implement key functionalities of PDaaS. We describe

a few strawman solutions as a way of motivating the complexity of the problem.

2.1 Notations

Road Network: In our formulation, the road network [16, 17, 47] is modelled as a directed,

and weighted graph, G = (V , E, W ), such that V corresponds to nodes which are road

intersections, while E corresponds to edges which are directed road segments connecting

two nodes. W corresponds to edge weights representing either the travel distance or the

travel times between two adjacent road intersections vi and v j that have an edge between

them. Edges are directed in the sense that given that two nodes vi and v j with an edge ei j

between them, w(vi , v j ) denotes the cost of the edge. Furthermore, note that w(vi , v j ) is

strictly greater than zero. In other words, there are no negative or zero edge weights. Since

G is directed, note that e j i may not necessarily exist, and even if it does e j i may not be equal

to ei j . Furthermore, n = |V | and m = |E | denote the number of nodes and edges in the road

network.

Shortest Path: Given source s and destination t nodes, let π(s, t) denote any simple path

between s and t that is not necessarily the shortest. Among all such paths between s and t ,

let πN (s, t) be the shortest path between s and t formed by an ordered sequence of nodes

s, vi , v j , · · · t along the road network. Similarly, d(s, t) denotes the network distance that is

obtained by summing up edges formed by node sequence in π(s, t). The shortest distance

dN (s, t) is obtained by summing up edges in πN (s, t). Since w(.) denotes either distance or

trip time, dN (s, t) denotes the shortest path using an appropriate unit. Note that G is fully
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connected such that given any two nodes u and v, there is a path from u to v and vice-versa,

although they may not have the same distance.

Detour: Given source s and destination t nodes, let π(s, t) denote a simple path while

πN (s, t) denotes a specific path that is shortest among all paths between s and t . The detour

of an arbitrary path π(s, t) is the additional distance of π(s, t) compared to the shortest path

πN (s, t). Furthermore, it is fairly trivial to see that the detour of any path is greater or equal to

0. Given k such paths, one can obtain an ordering of the shortest path based on the increasing

detour values.

Driver: In our formulation, the driver starts from a source node s and is driving to the

destination node t . The driver may specify two constraints on the problem. The driver may

bound the detour distance as well as specify that they would like to be provided with k

package options along with their detour distances.

Packages: Let P be the set of packages available for delivery such that pi ∈ P is denoted

by a triple (picki , dropi , wi = dN (picki , dropi )) such that picki is the pickup node while

dropi is the drop-off node. wi denotes the shortest distance or time between the pickup

and drop-off nodes. Note that the pickups and drop-offs are quantized to nodes on the road

network.

2.2 API definition

In the following, we describe the queries we need to support on our PDaaS framework. These

would be rolled as APIs that our platform would support. PDaaS is stateful in the sense that

the system operator would add and remove packages from the platform. As drivers come

in, the system would respond to queries based on the currently available packages P . As

packages are assigned, P would be transactionally modified. A package assignment request

would work off the state at the start of the query and show results. This means that a package

that is selected by the user therefore may not be available when it comes to confirmation

time. This is fine since we would show the drivers multiple options, in which case they would

move on to the next choice.

AddPackage(p): In this case, the platform would add p to the set of packages P available for

delivery. Recall that P is represented by the triplet (picki , dropi , wi = dN (picki , dropi ))

as mentioned above. Without loss of generality, the elements of p (i.e., pickp, dropp ) also

lie on the nodes of the road network. There are m packages that are available for delivery

and in our case, m can be a very large number and in the order of thousands. The package

is added to the system in an offline process which affords some opportunity to push some

computations to this offline process. For example, when a package is inserted we can compute

the distance between the pickup and drop-off locations of the packages, thus moving a

potentially expensive operation offline. Furthermore, once a package is inserted it is associated

with the nodes of G such that when at node v, one can pick out all packages that either use

v as either the pickup or drop-off location. Note that moving such operations to an offline

process is perfectly acceptable since there is no expectation that a package that is added to the

system would be immediately scheduled. This means that a few minutes delay between when

the package is received and before the system puts the package up for delivery is perfectly

acceptable.

RemoveAssignPackage(p): This is a transactional layer where p is removed from P if it still

exists. Although, in a busy platform that is assigning packages to drivers, it is possible that

multiple drivers might select the same package at the same time, in which case the assignment

will be made to one of them. One of the API calls will receive an error that p is not part of
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P which denotes that the package has already been assigned to some other driver. It should

be noted that package management is not an important part of the PDaaS platform and the

algorithms will mainly focus on the package assignment API.

FindPackage(s, t, k, ε): This API is invoked by a driver that is driving from s to t on a road

network G, where s and t are aligned with the nodes of the road network. There are a few

additional constraints that one may specify here. k denotes the number of package options

the driver would like to receive. Note that the results are ordered in an increasing detour

distance which means that the first result has the smallest detour distance while the kth has

the maximum. If k is not specified it is assumed to be one and a single result is returned to the

driver. Optionally, one can also provide ε which is the maximum allowed detour distance.

Here, dN (s, t) + ε is the farthest package, where dN (s, t) is not yet known.

The FindPackage() forms the heart of this work and the algorithm that supports this API

is discussed in the rest of the paper.

2.3 Problem Definition

Given a set of packages, source and destination, detour tolerance, and the maximum number

of packages in the results, find the subset of packages, if any, that satisfy these constraints.

This naturally leads to some assumptions and limitations of our PDaaS approach which we

have motivated earlier.

1. PDaaS will be on the critical path of a popular app that may issue requests at a high rate.

Also, while it is expected that the query load may be high, the rate of matchmaking (the

number of drivers agreeing to deliver the package) may be low.

2. The platform is dynamic with hundreds of thousands of packages available at any point.

Many are added constantly and are deleted as they are assigned.

3. The focus here is one driver starting from a source and delivering a single package

before reaching the destination. As noted above, it can be trivially shown that doing so

is the cheapest cost approach when delivering a single package. Note that the delivery of

multiple packages is not considered in this paper.

4. A key attribute that one wants here is the scalability of the approach as the number

of packages increases. For instance, if the response time is largely independent of the

number of packages, or if the algorithm becomes faster with more packages, those are

good traits to look for in a solution.

2.4 Complexity

In this section, we first establish the complexity of the problem by proposing a few strawman

techniques. Our example setup shown in Fig. 2 consists of a source s and destination t with

3 packages p1, p2, and p3 are available for delivery. To keep the complexity of the example

under check, we assume that the packages have a delivery distance of zero, which means

that the pick and drop are the same, thus only requiring that the driver to navigate via that

particular node to make the delivery possible. In this setup, a driver is travelling from source s

and destination t and can opportunistically deliver packages. There are many ways of finding

paths between s and t that pass through a package. We seek algorithms with a few desirable

properties. The algorithm has to work in a setup where there may be hundreds of thousands

of packages available for delivery. Furthermore, the driver is only interested in the nearest

packages (or k-nearest) and there is no need to fetch the distance to all the packages. With
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Fig. 2 The figure shows three variations of finding the nearest package among p1, p2, and p3 for a driver

travelling from s to t . For each of the variations, the shortest paths that are invoked are numbered in the

dark square boxes. The following variations are shown in the figure: (a) Shortest paths between s and t , s to

{p1, p2, p3} and {p1, p2, p3} to t resulting in 7 shortest path computations, (b) Forward scan from s and 3

shortest paths from {p1, p2, p3} to t resulting in 4 shortest path computations, and (c) Forward scan from s

and backward scan from t resulting in two scans

these constraints in mind, we can examine a few strawmen approaches that fall short in one

or more ways.

3 Existing Approaches

No Work Sharing: The simplest approach which is shown in Fig. 2(a) is where we first

compute the shortest path between s and t . This is typically done using a best-first traversal

algorithm which uses a priority queue. Then we compute the distance from s to p1, p2, and

p3 as well as compute the distance from the packages p1, p2, and p3 to t . In other words,

none of these best-first traversals share any work with one another. Once we have all the

elements of the shortest paths, we can choose the package with the minimum detour which

forms the result. The drawback of this approach is it issues 7 shortest path computations but

it is conceivable that one can combine some of these traversals to improve efficiency.

Merging Forward Scans: We can reduce the number of shortest path computations by

nearly half by using a best-first traversal from s which only terminates after it has visited t ,

p1, p2, and p3. Once the algorithm has visited these four nodes, the “forward” distance from

s has been established. Now, we invoke the shortest path algorithm from p1, p2, and p3 to

t as before to finish computing all the component distances needed to compute the nearest

package from s and t . As shown in Fig. 2(b) this can be achieved using 4 shortest paths. Note

that this approach still requires computing all the component shortest distances between s, t

and p1, p2, and p3, which makes this approach not scalable.

Using Three Priority Queues: We can further improve the previous algorithm by using the

bidirectional Dijkstra’s algorithm [3, 38] which uses two separate Dijkstra’s algorithms, one

from s and another from t . As shown in Fig. 2(c), we apply one best-first traversal from s that

uses the outgoing edges incident on s and is called a forward scan. On the other hand, the best-

first algorithm from t traverses using the incoming edges to t and hence is called the backward

scan. When the forward scan and backward scans meet at a node for the first time, the road

network distance between s and t is established. Similarly, when the forward and backward

scans meet at a package node, then the shortest path via the package is also established. The

algorithm has two priority queues, one for the forward scan and another for the backward

scan. These two scans run independently and do not coordinate with each other. When the

forward and backward distances to a package have been established, it is inserted into a third

priority queue containing packages whose distances are known. Note that the algorithm can

only terminate once the distance to all the packages has been established and all the packages
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are in the third priority queue. In other words, there are very few opportunities for pruning

of the packages or the early termination of the algorithm which makes it not suitable for our

use-case.

4 Proposed approach

As discussed above the bidirectional Dijkstra reduces the invocation to two traversals, but

it is still tricky to adapt it for our use-case. Recall that in our use-case we have hundreds

to thousands of packages but the driver is only interested in a few choices (i.e., k). A real

drawback of this approach is that it uses two independent traversals so it becomes very difficult

to effectively prune the search. In the following, we will develop a variant of Dijkstra’s

algorithm called dual Dijkstra that will use a single min-priority queue Q to perform the

traversal. In the rest of the paper, by Q, we denote the min-priority queue.

Q stores the forward and backward traversals as well as packages found during the scan.

The use of a single priority queue means that we can establish an ordering of the packages

by their detour where we can guarantee that all packages not yet retrieved from Q have a

larger detour than the ones that have been already retrieved. This key insight in using a single

priority queue is analogous to the incremental nearest neighbour traversal in [24] where the

authors use a single priority queue to store objects and points which enabled an incremental

traversal of the nearest neighbours. The mechanics of the dual Dijkstra’s are subtle and we

discuss these in detail in the next section.

5 Roundtrip package delivery problem

As a matter of exposition, we start with a simpler case of the problem where the driver starts

and ends at the same location. In this case, since s = t , the driver would deliver the package

from s and return back to s. This variation of the problem is called the “roundtrip” and

is simpler to analyse than the “generalised” variant. This is the reason that we analyse the

roundtrip variation first before considering the problem in its full generality.

In this section, we describe the mechanics of the dual Dijkstra’s method, which forms the

core of the techniques developed in the paper. In order to understand the nature of the problem,

we first study the properties of a simpler variation of the problem where the source and

destination nodes are the same. We represent this node as q . The roundtrip distance of a node

v is the distance along the shortest path from q to v and back to q , which is the shortest among

all the paths in G. In this variant of the problem, the driver is at q and needs to return back to

q after delivering a single package. We are given a set of packages P where each package is

represented by a triple (picki , dropi , disti ) denoting the pickup, drop-off, and distance of

travel between pickup and drop-off node. In this formulation of the problem, we are interested

in the nearest package whose delivery denotes the shortest roundtrip distance from q . Here,

the roundtrip distance of the package i is given by dN (q, picki ) + disti + dN (dropi , q).

Among all packages in P , we want to find the one with the shortest trip distance from q .

While this problem seems simple, there are interesting algorithmic challenges exposed in

this variant. In the following, we develop a few key concepts which form the core of our

approach to solving the package delivery problem.

Definition 1 A forward best-first traversal of a graph from node q is a traversal that at any stage

of the algorithm inserts the outgoing nodes into a priority queue. If a node v is retrieved from
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the front of the priority queue, its outgoing nodes are inserted with weights corresponding

to the distance at which v was found plus the corresponding edge weights of the outgoing

nodes.

Definition 2 A backward best-first traversal is similar to the forward except that in every step

the incoming nodes are inserted into the priority queue.

Lemma 1 Once the forward and backward traversals from q meet at a node t, the shortest

path from q (to q) that passes via t have been established.

Proof We can establish the proof by contradiction. Suppose the meeting of the two traversals

does not produce the shortest path, then either the forward or backward, or both traversals

do not produce the shortest path from q to t , and t to q , respectively. This means that the

best-first traversal from q did not produce the shortest path, which is a contradiction.

Now it is easy to see that the forward and backward traversals can establish the trip distance

from q that delivers a package i . It is given by the following lemma, which follows from the

previous one.

Lemma 2 Once the forward traversal from q reaches picki and the backward traversal from

q reaches dropi , the trip distance of delivering a package is given by the forward distance

from q to picki plus disti plus the backward distance of q to dropi .

Proof The proof of this lemma follows from Lemma 1 It is trivial to see that if picki is the

same as dropi (in other words, disti is 0), in which case this becomes a trivial application of

the above Lemma. For the case where disti is not 0, one can see that once picki is reached

by the forward traversal, the forward distance of dropi becomes the sum of the forward

distance of picki plus disti . This comes from the property that any sub-path of a shortest

path is also a shortest path [10]. At this point, the proof degenerates into a trivial application

of Lemma 1.

Algorithm 1 Setup for finding the roundtrip nearest package from q .

1: q ⇐ query node

2: G(V , E) ⇐ road network with edge weights > 0

3: P is set of packages, each package is a triple (picki , dropi , disti )

4: Object O is a triple {v, dist, label} of node v, road network distance dist and label indicating forward or

backward traversal

5: Q ⇐ min-priority queue of O ordered by dist .

6: Lookup table T (vi , {FORWARD‖BACKWARD}) of either forward or backward distance from q.

7: Visited(vi , {FORWARD‖BACKWARD}) returns either true or false if a node is already visited.

8: Visited(q, FORWARD) = True

9: for each outgoing edges (q, vi ) ∈ E do

10: Q.Insert({vi , w(q, vi ), FORWARD})

11: end for

12: Visited(q, BACKWARD) = True

13: for each incoming edges (vi , q) ∈ E do

14: Q.Insert({vi , w(vi , q), BACKWARD})

15: end for

16: dN ⇐ ∞ � Distance estimate to the roundtrip nearest package.

Armed with the basic properties of forward and backward traversals, we now describe the

working of our dual Dijksta’s approach which uses a single priority queue to find packages
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in a best-first order. Algorithm 1 sets up the dual Dijkstra’s implementation for finding the

roundtrip nearest package from q . The goal is to find the roundtrip distance of a package

with the smallest trip distance from q . The input to the algorithm consists of a road network

G with positive non-zero edge weights and it outputs the smallest roundtrip distance from q .

We are also given a set of packages P that need to be delivered. Each package pi in the set is

denoted by a pickup node picki , a drop-off node dropi and the road network distance disti

between the corresponding pickup and drop-off nodes. In contrast to other approaches, our

technique uses a single priority queue of objects O , which are made up of triples consisting

of the node where the traversal is current is at, the nature of the traversal denoted by label

(i.e., FORWARD or BACKWARD) and the distance from the starting node from which

the traversal is being done (i.e., q in this case). Note that the priority queue also contains

package objects (i.e., label is denoted by PACKAGE). These correspond to packages whose

forward and backward distances are known but need to be inserted in Q before they can

be part of the final result. As one can see that not only Q contain nodes but also candidate

packages that can potentially form the answer. O.v, O.dist , and O.label extract the node,

road network distance, and label of the traversal, respectively. Here O.label can either be

a forward or backward scan, or a package. Note that the algorithmic elegance of the dual

Dijkstra’s approach is that it can put both the forward and backward scans as well as the

packages on the same priority queue and thus can retrieve packages in a best-first manner.

We make use of two data structures for storing the current state of the algorithm. T is a table

that stores the forward and backward distance of a node from q . It is initially empty since

the distance is only populated when the node is retrieved from the front of Q. Furthermore,

we have a data structure Visited that keeps track of which nodes have been visited by the

algorithm, in other words, VISITED(.) data structure is used to avoid having to revisit already

visited nodes. Note that since we have two traversals at the same time, this data structure

needs to keep track of which traversal (i.e., FORWARD and/or BACKWARD) has visited a

node. Finally, dN keeps track of the distance to the roundtrip nearest package thus far and

this estimate keeps decreasing as the algorithm progresses. Q is updated with the forward

and backward traversals from q . In this case, the outgoing and incoming nodes are inserted

into Q with their appropriate labels. Note that q is marked as visited in both the forward and

backward traversals since the driver starts and ends at this node.

The rest of the algorithm is described in Algorithm 2. Line 1 captured the terminating

condition of the main while loop of the algorithm. The algorithm terminates if Q is empty

in which case the whole graph has been explored or if the front of Q is at a distance more

than dN . Since the correctness of the algorithm depends on setting the correct value of dN ,

we will have a lemma later to show that we are correctly updating it. First, we examine the

object O that has been retrieved from the front of Q. In lines 2-4, if a package is found at the

front of Q, the loop terminates and the algorithm returns the identity of the package which

is stored in O.v and the roundtrip distance O.dist . If O is a node then in lines 5-9 we look

in Visited to see if those nodes have been traversed before. If so, we reject it and continue

with the traversal, and else we mark those nodes as visited. Note here that every object has a

label indicating if the traversal is forward or backward so care should be taken to ensure that

the label is correctly reflected in the Visited data structure.

At this point in line 10, we check to see if we need to update T corresponding to the node

O.v and the label O.label. Note that if the distance is already set, it cannot be improved

further. This comes from the best-first nature of the forward and backward scans on G.

When the node found is a forward scan and O.v equals the pickup node of the package

i and the drop-off node dropi is already found, which means that the forward scan has

found a detour path that involves dropping off a package i before returning to q . Similarly,
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Algorithm 2 Fetch the roundtrip nearest package from q .

1: while !Q.empty() && O ⇐ Q. f ront() && O.dist < dN do

2: if O.label == PACKAGE then

3: return package id stored in O.v and roundtrip distance in O.dist

4: end if

5: if Visited(O.v, O.label) == TRUE then � Indicates cycle

6: continue

7: else

8: Visited(O.v, O.label) = TRUE

9: end if

10: if Not Exists T (O.v, O.label) then

11: Update T (O.v, O.label) with O.dist

12: if exist T (picki , FORWARD) and T (dropi , BACKWARD) then

13: p ⇐ T (picki , FORWARD) + disti + T (dropi , BACKWARD)

14: dN ⇐ min(dN , p)

15: Q.Insert(i , p, PACKAGE) � Insert i th package

16: end if

17: end if

18: if O.label == FORWARD then

19: for outgoing nodes vi of O.v s.t. !Visited(vi , O.label) do

20: Q.I nsert(vi , O.dist + w(O.v, vi ), FORWARD)

21: end for

22: else

23: for incoming nodes vi of O.v s.t. !Visited(vi , O.label) do

24: Q.I nsert(vi , O.dist + w(vi , O.v), BACKWARD)

25: end for

26: end if

27: end while

28: return (−1, in f t y) � Package not found

in the backward scan, O.v corresponds to the drop-off location of a package i , and the

pickup location is already found by the forward scan, we have found a roundtrip path to

package i . In this case, we insert an object into Q that stores the identity of the package i , the

distance that equals the distance from q to picki plus disti plus the distance from dropi to

q . The forward traversal captures the distance from q to picki , disti has been cached, while

backward traversal captures the distance from dropi to q . This is captured in lines 12-16.

It is to be noted that packages found in lines 12-16 cannot be directly reported once they

are “fully resolved” since they are fetched out of order. Here fully resolved means that the

forward traversal has reached the pickup node and the backward traversal has reached the

drop-off node. In other words, it is possible that the algorithm may find a package with a

smaller detour later after resolving a package. This is a noteworthy property of this algorithm

and is captured as in Lemma 3 A package can only be safely reported after it has been

retrieved from the front of Q. This is the reason that we reinsert the fully resolved package

into Q. Furthermore, once a package is resolved, we update dN if this package has a smaller

roundtrip distance. Again, it is not guaranteed that every subsequent package improves dN ,

which is also captured by Lemma 4

Finally, depending on the nature of the traversal, in O.label, in the case of forward

traversal, all the outgoing nodes of O.v are inserted into Q. In the case of backward traversal,

all the incoming nodes are inserted into Q. The algorithm loops till either an answer is returned

or Q is empty. If Q is empty, it means that the algorithm did not find any package (line 28)

in which case the algorithm returns an invalid package identifier to the calling function to

indicate an answer was not found. At termination, the algorithm returns the package and the

shortest roundtrip distance from q if one exists.
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5.1 Working example

Figure 3 shows the mechanics of finding the roundtrip nearest neighbour. Given q and pack-

ages P that are available for delivery. q is represented by the red circle while the packages

are marked using black lines. Note that the shortest path and distance between the pickup

and drop-off nodes of each of the packages are cached and available before the start of the

algorithm. Figure 3(b) shows the progression as the algorithm found the first package. In

this case, the blue node colour roughly shows the progression of the forward and backward

traversals. The package is now connected to q via a green path which denotes the shortest

path from the forward traversal and an orange path from the backward traversal.

5.2 Properties of Algorithm

In the following, we showcase the property of the dual Dijkstra’s algorithm using it to show

interesting aspects of the package delivery algorithm. The dual Dijkstra uses a forward and a

backward scan to speed-up the search process. When these scans meet at a node, the shortest

roundtrip path is established. There is a subtlety that one needs to be careful of here since

that affects the correctness of the algorithm. Note that while we can guarantee the shortest

distance to a node, we cannot guarantee that the next node we visit will have a larger roundtrip

distance. In other words, to provide the best-first property on the roundtrip distance we have to

insert the node (or equivalently the package) into Q. Only fully resolved nodes (or packages)

obtained from the front of Q are retrieved in a best-first manner by their roundtrip from q .

The following lemmas are critical to the correctness of the package algorithm.

Lemma 3 When a package is retrieved from the front of Q, it is the nearest package of q. In

other words, the algorithm is a best-first retrieval of packages of q.

Fig. 3 The figure shows the working of the roundtrip package delivery algorithm. Figure (a) shows the driver

location q and the packages P available for delivery, while (b) show the roundtrip path that delivers a single

package returning back to q
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Proof Without loss of generality and for the sake of simplicity, let us assume that the package

needs to be picked up and dropped off at the same place. In other words, for any package

i , disti is 0. The package distance is the sum of two best-first traversals, FORWARD and

BACKWARD. This means that two components making up the roundtrips will, individually,

will be non-decreasing as the algorithm proceeds. In other words, the traversal after finding

this POI p will not find another one, say p′ with a smaller FORWARD or BACKWARD.

However, it is possible that Q contains a POI p′′ node with a small FORWARD. When p′′

is finally found, it would have a larger BACKWARD distance yet the roundtrip distance p′′

of q can be smaller than p. This is the reason we cannot report packages once FORWARD

and BACKWARD distances are established but rather have to reinsert them back into Q.

Once, a package p is retrieved from the front of Q, we know that the other POIs in Q have a

roundtrip of the same distance or greater due to the ordering property of the priority queue.

In other words, the algorithm produces a best-first traversal of the nearest packages since it

finds packages in non-decreasing order.

Lemma 4 When a POI is found at the front of Q, the other POIs in Q are either at the same

roundtrip distance from q or greater.

Proof Follows from the best-first nature of package retrieval in Lemma 3. �	

Once we have studied the nature of retrieval, we can now establish the stopping condition

of the algorithm in the following lemma.

Lemma 5 The algorithm can only stop for the object at the front of Q is at a distance that is

greater than or equal to dN . At that point, the algorithm returns the exact roundtrip nearest

package to q.

Proof From Lemma 3 we already established that the roundtrip distances are fetched in a

best-first manner. Once dN is established, it is conceivable that the algorithm will improve

dN in the subsequent iterations. When the front of Q is at a distance of dN , it means that all

subsequent roundtrip distances of the nodes in Q would be greater than or equal to dN for

directed graphs with non-negative edges. Hence, the lemma follows. �	

6 Generalized package delivery problem

In the previous section, we discussed a delivery problem where the sources and the destina-

tions were the same. In a generalised version, the source and destination are not the same

which means that the driver is already travelling from the source to the destination and the

package delivery is opportunistic in nature in that the driver delivers the package along the

way.

Algorithm 3 captures the main changes needed to support the generalized package delivery

problem. In this case, the driver is travelling from source s to destination t . So, we initialise

the forward scans from s and the backward scans from t . Recall that in the roundtrip package

delivery problem initialised the forward and backward scans from q , which have now been

broken into s and t . Note that the following change is sufficient and produces packages that

are best-first in the detour distance from s to t .
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Algorithm 3 Setup for generalised package delivery from s to t .

1: s, t ⇐ source and destination

2: ε is the allowed detour beyond the shortest distance between s and t

3: Visited(s, FORWARD) = True

4: for each outgoing edges (s, vi ) ∈ E do

5: Q.Insert({vi , w(s, vi ), FORWARD})

6: end for

7: Visited(t, BACKWARD) = True

8: for each incoming edges (vi , t) ∈ E do

9: Q.Insert({vi , w(vi , t), BACKWARD})

10: end for

Lemma 6 Algorithm 3 can trivially support the case of general package delivery where the

driver is already travelling from s to t by changing the initialization of forward scan to start

from s and backward scan to start from t. No other changes are needed.

Proof The correctness of the lemma can be trivially seen in that q is not even part of Algo-

rithm 3. When the forward and backward scans meet at the pickup and drop-off locations,

respectively, the package is inserted into Q. It does not matter where these scans started and

the algorithm is agnostic to it. Hence, the proof.

In the generalised delivery problem, we extend the algorithm to allow drivers specify two

restrictions on the kinds of packages that are shown to them. First, it would provide the driver

with a fixed number of options. Here k denotes the number of options that are shown to the

driver. The intuition behind showing k options is the driver may choose to deliver a package

that does not necessarily have the smallest detour. For instance, the package delivery may be

in the part of the town where the driver is familiar or the package pays more so the driver

may choose the package in lieu of packages that are mostly along the way. Next, the driver

may specify a constraint on the detour which restricts the choices shown. For instance, the

driver may specify that they are only interested in packages involving less than say 5 km (or

equivalently a restriction on the trip time). Note that the best-first nature of the algorithm

is a desirable property since that allows the algorithm to terminate early without having to

retrieve the detour involved in all the packages. In the following section, we will see that the

prior algorithm developed for roundtrip deliveries can be trivially extended to this generalised

problem with fairly minor changes.

Limiting the detour requires finding only those packages that are no more than dN (s, t)+ε

where ε is the user specified detour tolerance. In this case, note that dN (s, t) can only be

established after the shortest distance between the s and t is first found. To do this seamlessly,

it is necessary that the shortest path be established before the packages are found to avoid

pruning once the packages are retrieved from the top of Q. Algorithm 4 retains most of the

prior Algorithm 2 and the common lines between both these versions are not shown here. The

main change comes when inserting incoming or outgoing nodes of the node O.v which was

retrieved out of Q. In this case, we additionally check that if the traversal is forward and if the

outgoing node vi already has a backward distance that is established, then dN can be updated

if it is greater than the just established forward distance of vi (i.e., O.dist +w(O.v, vi )) plus

the already established backward distance from vi (i.e., T (vi , BACKWARD) plus ε. This is

shown in lines 7-9. Similarly, we can do the same for the backward traversal which is shown

in 14-16.
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Algorithm 4 Fetch the nearest package from s to t along with the detour limit.

1: while !Q.empty() && O ⇐ Q. f ront() && O.dist < dN do

2: · · ·

3: · · · 16 common lines

4: · · ·

5: if O.label == FORWARD then

6: for outgoing nodes vi of O.v s.t. !Visited(vi , O.label) do

7: if Visited(vi , BACKWARD) == True then

8: dN = min(dN , O.dist + w(O.v, vi ) + T (vi , BACKWARD) + ε)

9: end if

10: Q.I nsert(vi , O.dist + w(O.v, vi ), FORWARD)

11: end for

12: else

13: for incoming nodes vi of O.v s.t. !Visited(vi , O.label) do

14: if Visited(vi , FORWARD)) == True then

15: dN = min(dN , O.dist + w(vi , O.v) + T (vi , FORWARD) + ε)

16: end if

17: Q.I nsert(vi , O.dist + w(vi , O.v), BACKWARD)

18: end for

19: end if

20: end while

21: return (−1, in f t y) � Package not found

6.1 Limiting detours

The correctness of this algorithm relies on the fact that the shortest path is guaranteed to be

found before the packages are found. This is captured by the following lemma.

Lemma 7 Detour is established before any package is retrieved from Q in Algorithm 4, which

means that any package that is reported by the algorithm is within the detour tolerance limit.

Proof The pathological case to discuss here is that of a package p whose pickup location is

s and the drop-off location is t , with the driver specified detour tolerance ε set at 0. In other

words, the driver does not want to deviate from the shortest path and the package exactly

aligns with the source and destination. To prove the lemma, it would be sufficient to show

that dN is established before p is obtained from the front of Q. Now, p is inserted at the

start of the algorithm at a distance equal to dN (s, t), and not retrieved from the front of Q

right away. The key thing to show here is that dN is set to dN (s, t) before p is fetched from

the front of the q . This can be seen by observing that the dN is established just before the

forward and backward scans coincide. Recall that dN is set when a node has already been

visited by a forward node and its forward edge has already been visited by a backward edge.

In other words, when dN is set to the dN (s, t), the front of Q is strictly less than dN (s, t) if

edge weights are greater than 0. This means that p is still in Q and the algorithm terminates

after p is reported as the package that satisfies the driver’s constraints.

6.2 k-nearest neighbours

As mentioned before the driver may be interested in obtaining k package delivery choices

ordered by the detour distance. Typically k is small, although that is not a requirement. In the

following, we discuss further changes needed to the algorithm to support this top k feature.

Lemma 8 Algorithm 4 can be trivially made to return k packages by just keeping track of the

number of packages retrieved from the front of Q.
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Proof Follows from Lemma 3. The best-first nature of the algorithm means that the algorithm

can incrementally retrieve k neighbours or terminate when Q is empty.

6.3 Using landmarks

An interesting variation of the algorithm is that one can effectively incorporate caching

techniques into the solution resulting in desirable performance characteristics. Recall that

the packages are inserted into the system but there is no requirement that they are instantly

made available to the drivers for matchmaking. One can leverage this property in order to

ensure that the shortest distances to and from the package pickup and drop-off nodes are

cached. In other words, for each package that is inserted into PDaaS, we cache the backward

distance from the pick and the forward distance from drop. There are two considerations

that one needs to be mindful of. First, the cost and the latency of computing the shortest

distances are not trivial but they are now part of an offline process. Second, the size of the

cache is O(n) for each package. Note that even large cities and suburbs in the US have less

than 500k nodes which means that such a cache can fit within 1 MB. Furthermore, one can

either apply statistical compression or logical compression (e.g., SILC [42]) in order to make

the representation smaller. These are all good strategies to implement but are not the main

focus of this work.

We distinguish between the precomputation approaches such as [44] and our caching

approach used in this paper. In a precomputation approach, a data structure is constructed

using an offline process. The efficient working of the algorithm is reliant on the right data

structure being chosen; otherwise, the algorithm will not run efficiently. For instance, in [44]

if the path oracle is not precomputed efficiently or not available, path queries cannot be

answered quickly. On the other hand, in this paper, we simply cache and preserve the forward

and backward distances from each package pickup and drop-off location. This is the byproduct

of computing the network distance between the pickup and delivery, which is needed to set up

our problem. Note that if this information is missing, the algorithm still produces the correct

answer albeit the run times will be slower. The opportunistic speed-up that caching of forward

and backward distances distinguishes the caching approach here from other precomputation

techniques.

The caching strategy proposed here is akin to landmarks [20, 21, 30, 37, 39, 40, 49] on

the road network that is used to quickly prune the search space of shortest paths. Here, we

cache the distance from the pickup and drop-off location such that during answering an actual

query if the forward scan reaches the pickup node, we can compute the roundtrip distance to

the destination by using the forward distance from pickup to the destination. Similarly, if the

backward scan reaches the drop-off node, we can compute the distance from the pickup node.

The advantage of the landmark method is that if either the forward or backward scan finds

the pickup or drop-off of a package respectively, the package is fully resolved and can be

inserted into Q. We provide some properties of the landmark algorithm using the following

lemmas.

Lemma 9 If the forward scan reaches the pickup location of a package or backward reaches

drop-off, the package is fully resolved and can be inserted into Q.

Proof When the forward scan reaches the pickup location, we know the forward distance to

the pickup, the distance between pickup and drop-off (i.e., dist), and the forward distance

from drop-off to the destination using the landmarks.
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Fig. 4 Figures show the progression of dual Dijkstra’s algorithm. Notice that the in-path neighbours are

retrieved out of order, which is one reason they would have to be reinserted into Q to retrieve them in order

of their shortest path distance
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Lemma 10 In the dual Dijkstra’s algorithm with landmarks, efficiency improves with the

number of packages.

Proof In the following, the assumption is that the pickups and drop-offs are uniformly dis-

tributed across the road network. As the number of packages increases, it is likely that the

forward and backward scans would more frequently encounter packages. Since we have the

cached landmark distances, these would fully resolve the packages which are then inserted

into Q. Note that if we did not have the landmarks, a package can only be inserted once the

forward and backward scan reached the pickup and drop-off locations, respectively. Once a

package is found by either of the scans, dN can be updated since we now have the distance

between s and t . As experimental results would show later, if k and detour limits are specified,

the algorithm with cached landmark performance starts improving till it becomes as efficient

as the shortest path finding between s and t . This is a desirable property for PDaaS which

has to support hundreds to thousands of packages at any moment.

6.4 Working of the dual Dijkstra’s algorithm

Figure 4 shows dual Dijkstra’s algorithm execution progress. In the following, we describe

the algorithm progression that is captured by the sequence of figures.

1. In Fig. 4(a) we can see the source and destination are shown by red dots while the

packages are shown by dark black lines.

2. In Fig. 4(b) we can see the progression of the algorithm. The forward scan is shown by

the blue dots and the backward shown by yellow dots. This figure captures the moment

that these two traversals meet and the shortest path is established.

3. In Fig. 4(c) the first package is found when the forward scan visited the pickup and

the backward visited the drop-off. Note that in this case, the pickup was visited earlier

and when the backward traversals visited the drop-off the package’s detour distance is

established. Further note that the shortest distance that passes through the pickup and

drop-off locations of this package for a path that is disjoint from the shortest path between

s and t .

4. In Fig. 4(d–f) more packages are found in increasing detour distances. The algorithm ter-

minates when the sufficient number of packages are found or the detour limit is exceeded.

7 Experimental results

The experiments were conducted on a GPU consisting of an AMD Ryzen Threadripper 3960

CPU, which has multi-processing power. It has 48 threads and 24 cores, having 2.2 GHz

clock speed, 128GB RAM, 4TB HDD, and 512 KB cache memory. The implementation of

proposed algorithms is done using Python programming language, version 3.10, running in

64-bit Ubuntu Linux operating system, version 20.04.3, Kernel version 5.4.0-125.

The road networks used in the evaluation were drawn from the 9th DIMACS Implementa-

tion Challenge [11]. In particular, we used three datasets of varying sizes to demonstrate the

performance of our algorithms at varying scales. The sizes of these datasets are provided in

Table 1. We use the following scheme to distinguish between the three datasets. The square

symbol in the graphs refers to San Francisco SF, the circle symbol to US-NW and the diamond

symbol refers to the CA-NV dataset. The weight of each edge in the datasets corresponds to

the road network travel distances between two nodes on a directed edge.
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Table 1 Dataset used in

experimental evaluation
Dataset Nodes Edges

San Francisco Bay Area (SF) 3,21,270 8,00,172

Northwest USA (US-NW) 15, 24,453 38, 97,636

California and Nevada (CA-NV) 18,90,815 46, 57,742

We also consider two distribution models for packages on the road network. We first

evaluate the case where the packages are evenly distributed over the road networks, and

a number of parameters that affect the running time of the algorithms are examined and

studied. We also consider the case where the pickup and drop-offs are clustered, creating a

more challenging scenario for the algorithms under study.

Table 2 lists the parameters we vary to study the performance of the algorithms under

various settings. To observe the effect of a parameter on the performance of the proposed

algorithms, we vary the value of one parameter while fixing the others. For each experiment,

we choose the source and destination at random and we take the average across 100 runs.

For each experiment, we collect the following three metrics since they inform important

properties of the algorithms: (1) Elapsed time of getting the program output (in seconds), (2)

Maximum size of Q used during query execution, and (3) The number of packages inserted

into Q. Elapsed time helps us to understand the performance of the algorithms and their

suitability in supporting a real-time workload from the drivers. The size of Q informs the

memory footprint required in supporting a single request to the PDaaS framework. This is

needed to “size” the platform in support of the input workload. For instance, if the input

request rate is known, we can now determine how many machines and their CPU-memory

shapes are needed to support such a workload. Finally, the number of packages in Q informs

the pruning power of the algorithms. In particular, a better algorithm is able to prune away a

majority of the available packages focusing the search only on packages that can potentially

be part of the answers.

The main variants we compare in this paper are single and dual Dijkstra’s algorithms and

their landmark variants. The existing algorithms [1, 5, 6, 25, 29, 31, 50] either precompute

on the road network or assume a non-dynamic environment; both of these assumptions are

not true for our problem setup. While the landmark variant discussed in the paper merely

caches a byproduct of computing the distance between the pickup and drop-off locations. This

cache aids in the best-first search for packages on the road network. Note that the algorithm

works even if this cache is missing for a particular package, and hence is not germane to

its correctness. In contrast, the above methods use the precomputation representation as the

primary access structure or the main vehicle to apply the optimization. The correctness or

proper functioning of the algorithm is contingent on the precomputed representation being

available and current with respect to the present state of the system.

Table 2 Parameter setting used in experimental evaluation

Parameters Values

Datasets SF, US-NW, CA-NV

Desired k-nearest packages 1, 10, 50, 100, 500

Detour tolerance (in distance units) 10, 100, 1000, 10000, 100000

Number of packages 10, 100, 200, 500, 1k, 5k, 10k, 20k, 50k, 100k

Source-destination distance buckets >10k, >50k, >100k
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In the following, we use the single Dijkstra’s as the baseline and show the improvements of

the dual and landmark based approaches. In particular, we consider the following algorithm

in our experimental study.

• SD: Single Dijkstra’s algorithm that uses a single priority queue. In this case, when the

forward traversal from the source reaches a package, the shortest path is involved from

the drop-off location to the destination node.

• DD: Dual Dijkstra’s algorithm where we apply a forward traversal from the source and

a backward traversal from the destination. When the forward traversal visits a pickup

location and the backward traversal arrives at the drop-off location of the same package,

the roundtrip distance is established and the package is inserted into the priority queue.

• SD+L: This is the landmark variant of the SD algorithm where each package has cached

the forward distance from the drop-off location to all the nodes in the road network.

Note that when a package is first inserted into the system one can cache the distances

to all the destination nodes in the road network. This becomes quite useful during query

answering. When the forward traversal visits the pickup location of a package, we can

immediately compute the round-trip distances to the actual destination, which makes

such algorithms quite efficient.

• DD+L: This is the landmark variant of the DD algorithm. In this variant, we compute the

backward distance from the pickup location and the forward distance from the drop-off

location. If either the forward or the backward traversal visits the pickup or drop-off

locations, then the shortest path involving the package delivery is established.

Note that SD+L is strictly a latency improvement. It does not significantly change the

pruning power of the algorithm other than the latency, so all the other metrics are unaf-

fected by the landmarks. This is the reason that for all the metrics graphs other than

latency we have merged the lines for SD and SD+L in the graphs in this section since

they have otherwise identical performance.

At the high level, there are two interesting scenarios of this algorithm that are commonplace

in our daily lives. The driver is at a source location, pickup and drops the package before

returning back to the source location. This is referred to as the roundtrip query. We present

experimental results for this scenario in Section 7.1. The more general version of the algorithm

is where a driver is already travelling from a source to the destination location. We present

experimental results in Section 7.2.

For each scenario, we examine the results of varying the number of nearest packages

(i.e., k). If our application had a user interface, k would denote the number of choices we

would present to the user. We examine the effect of using a detour limit tolerance. In this

case, we would prune away any package delivery that would result in a detour more than

what is provided by the user. Next, we look at the effect of varying the distance between the

source and destination, the number of packages, their distribution across the road network

and the distances between the pickup and drop-off locations. As one can see, we present a

comprehensive algorithm and try to tease out the strengths and weaknesses of the various

approaches.

7.1 Roundtrip package delivery queries

Varying Number of Neighbours This use-case corresponds to the scenario where the driver

is at a source location and would return to the same location after delivering the package.

We first vary the number of k-nearest packages to be fetched from 1 to 500 while the detour

limit was kept fixed at 1M. The number of packages available for delivery is fixed at 1000.
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Fig. 5 The figure shows the effect of varying k on (a) elapsed time, (b) the maximum size of the priority

queue, and (c) the number of packages inserted into the priority queue before the algorithm terminated. Note

that square, circle, and diamond symbols refer to the SF, US-NW, and CA-NV datasets, respectively

Each experiment was run 100 times and we averaged over those runs. We measure the

latency, maximum size of Q, and the number of packages that are found during the search

process which are in turn inserted into Q.

The plot shown in Fig. 5(a) demonstrates that the running time increases with k. It can

be seen from the graphs that DD is much better than SD, while SD+L and DD are similar

in their performance. From k = 100 onwards, the elapsed time of DD, DD+L, and SD+L

converge, indicating that these approaches start converging in terms of efficiency. Similarly,

the queue size increases when the number of nearest packages increases shown in Fig. 5(b).

Figure 5(c) shows that SD and SD+L have lesser pruning power compared to DD and DD+L

which are able to prune away most of the packages explaining their superior run times.

Finally, note that our largest dataset, CA-NV is about 4X the size of the smallest one (i.e.,

SF). Yet DD and DD+L have fairly low latency, even for the larger road networks. For small

values of k, the DD and DD+L methods are quickly able to give answers that are orders of

magnitude faster than the strawman approaches. This means that in our use-case, where there

is a low match between the drivers and packages, one can provide answers in near real-time

and efficiently.

Varying Detour Tolerance For the same source and destination chosen at random, we vary

the detour tolerance limit from 10 to 100M. Note that the units here are the same as the graph

weights. For each of these runs, we set k to 1000 and the number of packages was fixed as

1000. Each experiment was run about 100 times and the average of elapsed time, maximum

Q size, and the number of packages inserted into Q are recorded. The plot shown in Fig. 6(a)

shows that the running time slightly increases when the detour tolerance limit increases. The

Fig. 6 The figure shows the effect of varying detour tolerance. The figure shows (a) elapsed time, (b) the

maximum size of the priority queue, (c) the number of packages inserted into the priority queue, as the detour

limit is increased from 10 to 108 for fixed values of k = 1000 and the number of packages fixed at 1000. Note

that square, circle, and diamond symbols refer to the SF, US-NW, and CA-NV datasets, respectively. Also,

note that DD+L and DD are overlapping with each other and have similar run-times
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figures show that DD and DD+L are much more adept at pruning the search space compared

to SD. The reason is that DD quickly establishes the shortest path much faster than SD and

so is able to terminate the search once the shortest path is established. At very large detour

values, DD and DD+L become slightly worse than SD+L since the detour has become large

enough that it has become a scan of most of the road network. Even then, the execution times

are fairly small, so the difference does not matter much. Note that the lack of pruning for SD

and SD+L means that the performance is stable yet consistently worse than the competing

variants.

Q size increases when the detour tolerance limit gets very large as we can see from Fig. 6(b)

since that negates the pruning effect of DD and DD+L. Finally, from Fig. 6(c) we can see

that the speed-up of DD also comes from the observation that fewer packages are inserted

into Q. This shows that the search space of the DD and DD+L is much smaller compared

to SD and SD+L. We did not see a significant difference in behaviour when comparing the

SF, US-NW, and CA-NV datasets, indicating robustness across datasets of various sizes. For

small detour tolerances, DD and its variants are good at quickly arriving at the answer. This

is critical for our use-case, where there is a low match between the drivers and packages. In

this domain, it is as important to provide negative answers (i.e., of no match) as quickly as a

positive match.

Varying Number of Packages For the same source and destination chosen at random, we

now vary the number of packages varying from 10 to 100,000, while not specifying a detour

tolerance limit and keeping k at 10. Each experiment was run about 100 times and we obtained

the three metrics of interest as in the previous experiments.

The plot shown in Fig. 7(a) shows that as the number of packages increases it becomes

easier to find the 10 nearest neighbours without having to traverse too much of the road

network. In some sense, the DD+L works much more efficiently as the packages increase

since matching between drivers and packages becomes easier, while SD+L and DD have

similar performance. The landmark variant improves the pruning power of the algorithms;

hence, SD+L’s performance becomes quite similar to that of DD. To explain the difference

between DD and DD+L, there are two competing forces at play here.

1. The more the number of packages, the quicker the DD algorithm can find a fully resolved

package, and hence the upper bound of the search is established. This is due to forward

and backward scans steadily advancing in each iteration.

2. The more the number of packages there will be, the more packages would be found in the

process of searching and needs to be tracked in the priority queue. Note that the package

cannot be removed from the priority queue until it is fully resolved, reinserted, and then

obtained from the front of the priority queue.

Fig. 7 The figure shows the effect of varying the number of packages. The figure shows (a) elapsed time, (b)

the maximum size of the priority queue, (c) the number of packages inserted into the priority queue, as the

number of packages increased from 10 to 100,000 for k = 10 with no detour distance limit. Note that square,

circle, and diamond symbols refer to the SF, US-NW, and CA-NV datasets, respectively
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DD gains from the first one but suffers from the second, resulting in a net increase as

the number of delivery packages increases. On the other hand, DD+L is not affected by the

second aspect since one can immediately resolve the package fully if the forward scan reaches

either the pickup location or the backward scan reaches the drop location. Hence, there has

been a clear improvement with an increase in the number of packages, as can be seen from

Fig. 7.

As in the previous experiments, in Fig. 7(b, c) we can see that DD is much more efficient

than SD and its variants in terms of visiting fewer nodes and inserting fewer packages in Q.

Note that the improved performance of DD+L as the number of packages increases is an

important aspect of the algorithm from a platform scalability perspective. We did not see a

significant difference in behaviour when comparing the SF, US-NW, and CA-NV datasets,

indicating robustness across datasets of various sizes.

7.2 General package delivery queries

In this section, we examine the performance of the more general package delivery vari-

ant where the driver is travelling between a source and a destination and opportunistically

delivering packages. To better understand the performance of the algorithms we break the

algorithm into four cases depending on the distances between the pickup and drop-off loca-

tion of the packages. In particular, we consider packages with drop-offs greater than 10k,

Fig. 8 The figure shows the effect of varying k-nearest packages where the sources and destinations are

separated by greater than 10k, 50k, and 100k. Figure (a–c) shows the effect on elapsed time, (d–f) the maximum

size of the priority queue, and (g–i) the number of packages inserted into the priority queue. Here we do not

set a detour tolerance and the number of packages is kept at 100. Note that square, circle and diamond symbols

refer to the SF, US-NW, and CA-NV datasets, respectively
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50k and 100k distance units. These denote the relative hardness of matchmaking between the

driver’s shortest path and the package delivery requirements. Note that the distance between

the pickup and drop-off locations also denotes an expansion of the search space resulting in

larger run times.

Varying Number of Neighbours For different sources and destinations chosen at random,

three different experiments were conducted for the varying distance between two packages

> 10k, > 50k, and > 100k. The number of k-nearest packages is varied from 1 to 10, to

50, and to 100 while the detour limit was kept fixed at 1M and the number of packages

fixed at 100, run each experiment 100 times and get the average elapsed time, the maximum

size of Q, and the number of packages inserted into Q. The plot shown in Fig. 8(a–c)

illustrates that the running time increases when the number of nearest packages increases.

As the distance between pickup and drop-off increases, DD+L, SD+L, and DD start having

similar performance since the pruning power of the algorithm reduces significantly, yet DD+L

produces consistently better performance. Similarly, Q size increases when the number of

nearest packages increases shown in Fig. 8(d–f) but in this case single Dijkstra performs

better than DD. The number of packages inserted into Q increases when the number of

nearest packages increases shown in Fig. 8(g–i). In this case, the performance of both SD

and DD are almost equal.

Varying Detour Tolerance For different sources and destinations chosen at random, three

different experiments were conducted for the varying distance between two packages > 10k,

Fig. 9 The figure shows the effect of varying the detour limit where the pickup and drop-off locations are

separated by greater than 10k, 50k, and 100k distance units. Figure (a–c) shows the effect on elapsed time,

(d–f) the maximum size of the priority queue, and (g–i) the number of packages inserted into the priority

queue. Here k is fixed at 10 and the number of packages is kept at 100. Note that square, circle, and diamond

symbols refer to the SF, US-NW, and CA-NV datasets, respectively
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> 50k, and > 100k. The detour tolerance limit is varied from 10 to 100k while keeping

k = 10 and the number of packages fixed as 100, run each experiment 100 times, and get the

average elapsed time, the maximum size of Q, and, the number of packages inserted into Q.

The plot shown in Fig. 9(a–c) illustrates that the running time increases when the number of

nearest packages increases. Similarly, Q size increases when the number of nearest packages

increases shown in Fig. 9(d–f) but in this case, SD performs better than DD. The number of

packages inserted into Q increases when the number of nearest packages increases shown

in Fig. 9(g-i). In this case, the performance of both SD+L, DD, and DD+L are similar but

DD+L is superior overall.

Note that this set of experiments captures the negative use-case where, for small detour

tolerances, there may be no packages that match the specifications. In our problem setup, this

is a common case since the matchmaking rates are expected to be low. In these situations, the

landmark variants and DD are quite efficient. This is an important result that suggests that

our algorithm can be used when a driver is actively using a navigation app for the shortest

route and our algorithm may be able to show in-route packages with a low detour tolerance

in real-time.

Varying Number of Packages For different sources and destinations chosen at random,

three different experiments were conducted for the varying distance between two packages

< 10k, < 50k, and < 100k. The number of packages varying from 10 to 100k while keeping

no detour tolerance limit and fixing k = 10, and run each experiment 100 times and get

Fig. 10 The figure shows the effect of varying the number of packages where the pickup and drop-off locations

are separated by greater than 10k, 50k, and 100k. Figure (a–c) shows the effect on elapsed time, (d–f) the

maximum size of the priority queue, and (g–i) the number of packages inserted into the priority queue. Here

k is fixed at 10 but no detour limit is specified. Note that square, circle, and diamond symbols refer to the SF,

US-NW, and CA-NV datasets, respectively
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the average elapsed time, the maximum size of Q, and the number of packages inserted

into Q. The plot is shown in Fig. 10(a–c) illustrates that the running time increases when

the number of nearest packages increases. Similarly, Q size increases when the number of

nearest packages increases shown in Fig. 10(d–f). The number of packages inserted into Q

increases when the number of nearest packages increases shown in Fig. 10(g–i).

A few things are worth mentioning here. The performance of the algorithms is fairly

robust across the three datasets, SF, US-NW, and CA-NV. Furthermore, DD+L performance

improves as the number of packages increases, which shows its pruning power. SD and

SD+L seem not to be sensitive to the number of packages since their pruning power is

limited compared to the DD variants. Note that DD and DD+L can establish the shortest path

between the source and destination faster compared to the SD variants. Finally, queue sizes

increase with the number of packages, as expected. However, DD+L manages to still buck

that trend since it can terminate quickly.

7.3 Varying source-destination distance

In the final set of experiments, we vary the distance between the sources and destinations

for the driver while keeping k = 10 and the number of packages fixed at 100. Note that at

the onset, we kept the packages fairly sparse to illustrate a certain aspect of the algorithm.

From the results, one can see in Fig. 11a that the runtime is weakly dependent on the distance

between the source and the destination. The reason for it is that the algorithm consists of two

searches - one to establish the shortest path between the source and destination, and another

to find k packages. The former search becomes larger as the distance between the source

and the destination increases. However, in our setup, the latter dominates the former since

the number of packages in Q and the maximum queue sizes are fairly constant, as one can

see in Fig. 11(b–c). It means that the effort of finding the k packages dominates the runtime

here, thus weakening the effort of finding the distance between the source and destination.

Hence, one can see that the runtimes are mostly the same, though DD+L still performs the

best.

Fig. 11 The figure shows the effect of the varying source to destination distance from 1k to 100k. In particular,

(a) elapsed time, (b) the maximum size of the priority queue, (c) the number of packages inserted into the

priority queue are shown for fixed values of k = 10, and unlimited detour tolerance. The number of packages

was 100. Note that square, circle, and diamond symbols refer to the SF, US-NW, and CA-NV datasets,

respectively
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7.4 Clustered packages

When it comes to delivering packages, the “clustering” of packages is a natural occurrence in

this problem domain and manifests itself due to a few reasons. Packages may be collected in

processing centres, from which they are dispatched to various destinations. In this case, the

driver would have many packages to choose from if the search ever visited such a processing

center. Similarly, clustering is also possible on the drop-off side of things. A prolific business

may get packages from many locations so clustering in the drop-offs are also commonplace.

To understand the effect of clustering on the problem, we define the clustering ratio as

the ratio of the number of packages available to be shipped (or received) at a location to

the total number of packages. For instance, if there are 500 packages to deliver, a clustering

ratio of 0.1 means that there are 50 packages per location and in 10 unique locations on the

road network. Similarly, a clustering ratio of 0.02 means all the package pickup (or drop-off)

locations are unique. Then, as discussed earlier, there is pickup or drop-off clustering, or

possibly both, since any realistic scenario consists of a mixture of both processing centers

and prolific businesses. Our experiment considers this mixed case, where the pickup and

drop-off clustering are both equally likely.

Finally, one can study these effects as a function of the distance between the sources and

destinations of the drivers. The problem becomes challenging if the sources and destinations

are sufficiently far away, in which case they may end up visiting many such clusters during the

search. So, we limit the experiments where the sources and destinations are greater than 100k

units which denote far enough sources and destinations on the road network. Furthermore,

the packages themselves have pickup and drop-off locations > 10k distance units.

Figure 12(a–c) shows the result of the clustering experiments. The setup is as follows.

For each of the datasets used in the evaluation, we fix the number of packages at 500, and

the neighbours to find fixed at 100. We do not specify a detour limit for this experiment. We

perform three sets of experiments denoting pickup, drop-off, and mixed clustering. In each

case, the clustering ratio is varied between 0.002 and 0.8 indicating a spectrum of cases from

no clustering to the case where half the pickup and drop-off locations are clustered.

There are two opposing forces to note in this experiment. When there are large clusters,

then the packages are all found in one place. The complexity then shifts to ordering the

Fig. 12 The figure shows the effect of varying cluster sizes. The figure shows (a) elapsed time, (b) the maximum

size of the priority queue, (c) the number of packages inserted into the priority queue, as the cluster size is

increased from 0.002 to 0.8 for fixed values of k = 100 and the number of packages fixed at 500. Note that

square, circle, and diamond symbols refer to the SF, US-NW, and CA-NV datasets, respectively
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packages by their detour distances. When packages are not clustered, the complexity is in

finding enough packages to satisfy k. Here, the initial search is more time consuming than

ordering them. These two opposing forces cancel each other out, and the latencies are fairly

unremarkable for most of the algorithms. If the algorithm during the search reaches one

of the large clusters, while the landmark approaches can partially prune some of them, the

other approaches add most of them to Q. This can be seen in Fig. 12c which has a u-shaped

curve reflecting the above observation. In a real-world situation, where there may be a mix

of clusters and sparse packages, the presence of clusters does not hurt the performance of the

algorithms, which is a useful result to note.

7.5 Comparison with ridesharing approach

Figure 13 shows a comparison between our PDaaS algorithm and a modified version of a

ridesharing algorithm. The ridesharing algorithm we chose is the algorithm by Geisberger

et al. [18]. A reduction of this approach to the PDaaS problem is as follows. First, we compute

the forward and backward distances of the packages and store them as we do in the DD+L

algorithm. When the driver arrives at the system, we compute the shortest path between

the source and the destination. Once the shortest path is known, we use the backward and

forward distances of the source and destination from each of the packages to compute their

induced detour. We insert those satisfying the constraints into a priority queue and choosing

the k packages with the lowest detour distances. In this formulation, we gave the ridesharing

algorithm the same benefits as we gave DD+L in the sense that the forward and backward

Fig. 13 The figure shows the effect of varying the number of packages where the pickup and drop-off locations

are separated by greater than 100k. The figure shows the effect on elapsed time as the number of packages

available for delivery increases. RS here refers to a ridesharing implementation that has been adapted for the

PDaaS use-case. Here k is fixed at 10, but no detour limit is specified. Note that square, circle, and diamond

symbols refer to the SF, US-NW, and CA-NV datasets, respectively

123



GeoInformatica (2024) 28:53–88 81

distances from each of the packages are computed in an offline process and available by the

time the source and the destination of the driver are known.

We recreated the experiment in Fig. 10c, where the number of packages varied from 10

to 100k. Here, k is kept at 10 and a detour is not specified which means that k packages with

the lowest detour are accepted. Furthermore, sources and destinations are kept > 100k units

apart indicating the case that they are quite far away from each other. The figure shows a

comparison of dual Dijkstra’s algorithm with landmarks (DD+L) with the ridesharing (RS)

reduction. One can immediately see that the RS is much higher than DD+L and furthermore,

does not decrease with an increasing number of packages.

The reason for the performance of RS being worse than DD+L is that in the case of RS the

packages are only processed after the shortest path and distances between the sources and

destinations are known. However, in the case of DD+L, the shortest path uses the packages as

landmarks to prune away the shortest path resulting in a very unique and desirable property

that the more packages we add to PDaaS the faster the answers can be retrieved. This is

unique to our solution and as one can see is also very effective.

Having shown that our approach can hold its own against a ridesharing strawman, it is

important to remember that the source of the complexity of the ridesharing is in choosing

the subset of riders and in sequencing the pickups and drop-offs. PDaaS deals with a simpler

problem of quickly pruning and ordering packages as drivers interact with a navigation app.

These are different problems with widely different sources of complexity.

8 Related work

In this paper, we propose a PDaaS platform for delivering thousands of packages on the road

network. The focus of our approach is to develop algorithms where matchmaking becomes

more efficient as the number of packages in the system increases. Our work bears similarities

to many prior works and we discuss them below.

On-the-fly Nearest Neighbour computations: One of the first studies on nearest neighbour

query on road network distance was by Papadias et al. [34] which proposed a spatial network

database (SNDB) architecture to process spatial queries on the directed road network. They

proposed two pruning techniques, namely, INE and IER for computing the nearest neighbour

in SNDB. To speed-up query processing they applied traditional R-tree based spatial access

methods. IER is based on the fact that the lower-bound of road network distance between two

locations can be established via the Euclidean or “crow-flying distance”. INE traverses the

road network to adjacent nodes similar to Dijkstra’s algorithm and retrieves the nearest POI

from the query point by looking up the spatial index for POIs that are associated with the node

or edge. Many subsequent works [26, 27] have expanded on the IER and INE approaches. Hu

et al. [25] proposed a distance signature based efficient precomputation method by indexing

road network distances for POIs. Distance signature is an efficient alternative, a precomputa-

tion, and an index-based query processing scheme for distance computation. Abeywickrama

et al. [1] optimised and open-sourced many nearest neighbour implementations and showed

that when it comes to performance the quality of the implementation mattered. Compared

to these approaches our technique is similar to INE except that we resort to forward and

backward scans. The use of a priority queue to store the forward and backward nodes, as well

as the packages makes our approach similar to the seminal incremental nearest neighbour

finding [24] by Hjaltason and Samet.
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Precomputation Techniques: Network Voronoi diagram based method [28] and regular 2D

grid-based method [57] are few techniques in preprocessing based partitioning into regions

of interest where a particular property holds (e.g., the region has the same neighbour in the

case of Voronoi diagrams). Dickerson et al. [13] extended the concept of network Voronoi

diagrams to roundtrips on undirected graphs using triangular inequality to prune the search

space. SILC [42, 45] and distance oracles [43, 44, 46] precompute shortest paths in a road

network to speed-up computations. They introduced the concepts of distance and path oracles

in order to perform a variety of operations on road networks. Ghosh and Gupta [19] proposed

roundtrip distance in a road network with respect to the nearest neighbour query and proposed

a preprocessing based algorithm. Our work is different from these approaches in that our

caching strategy is not a general purpose in the sense of aiding any arbitrary computations on

the road network. In our case, the cache is tailored to deliver a package and discarded once

the package is delivered.

Spatial Indexing Techniques: There is a rich body of work on range search queries and their

variations in the areas of computational geometry [2, 32], spatial databases [34, 51], and spa-

tial road networks [5, 6, 22, 25, 29, 50, 52]. In this context, Lee et al. [29] propose an efficient

and flexible system framework named ROAD, after two index structures, namely, Route Over-

lay (RO) and Association Directory (AD). They further describe network expansion-based

search algorithms that efficiently prune the search space for processing location-based spatial

range queries on the ROAD framework. Sun et al. [50] propose a preprocessing based (grid)

partition algorithm that is based on a spatial index called Network Partition Index (NPI) to

process spatial range queries efficiently on undirected road networks. Xuan et al. [52] develop

a variant that can only answer restricted range search queries based on the properties of net-

work Voronoi diagrams on road networks. Bae et al. [6] examine algorithms for evaluating

rectangular spatial range queries on the web data by using only k-Nearest Neighbour (k-NN)

queries. An et al. [5] present a novel set of analysis techniques to estimate range query per-

formance on spatial databases. They analyse point data sets and rectangular data sets. Bao et

al. [7] propose an efficient algorithm for processing a k-range nearest neighbour query in road

networks. The concept of the k-nearest neighbour query has been further extended to find the

k-range nearest neighbour, which finds the k-nearest objects of interest to every road segment

forming the shortest path. In contrast to these approaches, our technique is distinguished in a

few ways. First, the object of interest has pickup and drop-off locations and due to the nature

of the problem, we require the driver to drop-off the package before reaching the destination.

Second, we do not index the road network but rather index the packages which make sense

for our use-case.

In-route and Detour Queries: Yoo and Shekhar [53] propose the problem In-route Nearest

Neighbour (IRNN) query. In their formulation, they gave a route with a current location and

a destination. Their approach called IRNN finds a POI via which the detour from the query

route on the way to the destination is the smallest. Saha et al. [41] propose obstructed detour

queries and developed an efficient solution for processing such queries. Obstructed detour

queries return the nearest POI with respect to the current location and the fixed destination in

presence of obstacles like private property or a fence. The distance to a POI is measured as the

summation of the obstructed distance from the traveller’s current location to the POI and the

obstructed distance from the POI to the destination. Shang et al. [48] devised optimization

techniques for efficient processing of best point detour query in road networks. Given a

preferred path P from a source location to a destination location, to be travelling on the
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road network, the best point detour query aims to efficiently identify the best detour POI,

i.e., detour with the minimum detour cost on the path to be travelling on along P . Nutanong

et al. [33] study the problem of finding the shortest route between two locations that include a

stopover (stopover should not introduce significant costs to the trip) of a given type, i.e., they

are interested in minimising the total trip distance between two locations while covering a

given type of stopover. While our algorithm is related to these papers, one key distinguishing

aspect of our system is that drivers come with their own preferences, so indexing the road

network does not work very well, so instead, we focus on indexing the package.

Ridesharing: Yuen et al. [56] investigate the shortest path for ridesharing queries, and pro-

pose an optimal route recommendation algorithm based on dynamic programming, which

also reduces failure rates to find ridesharing partners. In the ridesharing environment, a per-

missible detour threshold is imposed by the car driver for multiple compatible ride-orders

to the travellers who wish to ride in the same car. Mahin and Hashem [31] introduced

and formulate a new type of ridesharing query in road networks that considers passengers’

flexibility in selecting passengers, and ensures a complete ridesharing group trip of passen-

gers. They call their problem activity-aware ridesharing which is different from a single

driver trip. Geisberger et al. [18] develop a novel pruning strategy, based on distance table

precomputation to efficiently compute detours and find a reasonable match for spontaneous

ridesharing requests of prospective passengers and offers by drivers available on short calls in

a dynamic environment for the large road network and for a large number of passengers each

day. Furthermore, Chen et al. [9] investigate the problem of path nearest neighbour (PNN)

query in road networks, where the inputs are the current location and the destination. Each

path nearest neighbour query constructs a shortest path connecting the user’s current location

and the destination and then searches for the closest POI (with the minimum detour distance)

with respect to the whole query path. Note that while ridesharing focuses on the order of

picking up and dropping-off passengers, we are concerned with single package pickup and

drop-off which makes our approach different. For instance, we are concerned with delivering

thousands of packages which is typically not the problem space for ridesharing queries.

Spatial Computing Platforms: The current trend in spatial data literature is data platforms

that are specialised for spatial operations. Yuan et al. [55] propose a two-stage routing algo-

rithm to compute the fastest route to a destination at a given departure time in terms of taxi

drivers’ intelligence learned from a huge number of real-world historical GPS taxi trajectories.

Eldawy and Mokbel [15] develop SpatialHadoop, which is a full-fledged MapReduce sim-

plified programming framework designed specially to work with large distributed spatial data

efficiently with native support for spatial data available as free open-source. SpatialHadoop

was adopted as a solution for the scalable processing of huge datasets in many applications

(e.g., machine learning, graph processing, etc). SpatialHadoop is a comprehensive extension

to Hadoop that injects spatial data awareness into each of four main Hadoop layers, namely,

the language, storage, MapReduce, and operations layers. The operations layer is equipped

with three basic spatial operations, namely, k-nearest neighbour, range query, and spatial

join. Yu et al. [54] presented a detailed design and development of GEOSPARK (extends

the core engine of Apache Spark and SparkSQL) to support spatial indexes, data types, and

geometric operations.

Peng et al. [36] propose a novel distance oracle on large road networks to address various

spatial analytic queries with high throughput. Demiryurek et al. [12] presented a real-world

data-driven system, named, Transportation Decision-Making (TransDec) that enables interac-

tive and extensive spatiotemporal queries in transportation systems with dynamic, real-time,

and historical datasets (e.g., massive traffic sensor data, trajectory data, transportation net-

work data, and point-of-interest data). TransDec addresses the challenges in monitoring,
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visualisation, querying, and analysis of dynamic and large-scale transportation data. Hen-

dawi et al. [23] propose a spatial index structure, predictive tree (P-tree), for processing

common types of predictive queries (e.g., predictive point, range, k-NN, aggregate queries)

against moving objects on road networks based on the objects’ expected future locations,

with the help of user-defined functions. Peng et al. [35] present a framework called Spark

and Distance Oracles (SPDO), which is an approximate distance oracle that implements an

extremely fast distributed algorithm for computing road network distance queries on Apache

Spark. Our work in this context can be seen as a spatial data platform that can perform match-

making between the drivers and the packages. While many of the approaches above provide

general purpose spatial processing, our focus is only on delivering and assigning packages

to drivers.

9 Conclusion

In this paper, we envisioned a platform for package delivery, called PDaaS, that opportunis-

tically performed the matchmaking between drivers that are already travelling between two

locations. PDaaS matched a driver to a single package while respecting constraints imposed

by detour limits and the number of packages to deliver. Through extensive experimental anal-

ysis, we showed that the algorithm scales to thousands of packages with the algorithm getting

more efficient as the number of packages increases. We also noted that this was desirable

from a platform scalability perspective.

The key contribution in this paper is dual Dijkstra’s method, which uses a single priority

queue for tracking the shortest path between the source and destination, as well as both the

resolved and unresolved packages. By adopting a sensible caching strategy, one can further

speed-up the query. Note that for a large number of packages, small k, and detour tolerance,

the proposed approach becomes more and more efficient since the packages themselves

act as landmarks to guide the search process. This aspect of the algorithm, we think, is a

powerful validation that the proposed approach could be used in the critical path of a driver

navigating with a popular navigation app. There are many possible venues for the extension

here. One interesting problem we note is that some packages are easily matched because of

their proximity to a major thoroughfare, while others are relatively difficult because of the

choice of either the pickup or drop-off. It would be interesting to use this in the pricing model

for packages, which would combine road network information with other package attributes

(such as distance between pickup and drop-off, etc.).
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