

Impact of Oxidative Chemicals on Hydrophobic Porous Membranes Used in Membrane Distillation

Submitted to
ACS Applied Engineering Materials

Hannah T. Cairney^{1#}, Elizabeth A. Hjelvik^{2#}, and Anthony P. Straub^{1,2*}

¹Department of Civil, Architectural, and Environmental Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.

²Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.

*Corresponding author:
Email: anthony.straub@colorado.edu

[#] These authors contributed equally to this work

1 **ABSTRACT**

2 Direct treatment of water purification membranes with strong oxidative chemicals, such as ozone
3 and chlorine, is a promising avenue to prevent fouling and improve water treatment performance.
4 In this work, we investigate the oxidation resistance of hydrophobic polymers commonly used in
5 membrane distillation by probing the impact of ozone and chlorine exposure on membrane
6 structure, chemistry, and desalination performance. To probe oxidative behavior,
7 polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and polypropylene (PP)
8 membranes were exposed to sodium hypochlorite (10 000 ppm, pH 4) and ozone (15 ppm, pH 7)
9 solutions for up to 72 hours and 3 hours, respectively. We then characterized the membrane
10 samples using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy
11 (XPS), scanning electron microscopy (SEM), water contact angle measurements, and desalination
12 performance testing. Our results indicate that PTFE membranes show no chemical, structural, or
13 desalination performance changes after exposure to the highest doses of chlorine and ozone, with
14 only minor decreases in water contact angle (less than 15%) after exposure to oxidants. PVDF also
15 showed no observable changes in structure and performance, although XPS analysis indicated
16 possible defluorination of the surface after oxidant exposure. PP membranes showed the most
17 severe degradation, with surface cracking, chemical changes, and complete failure in desalination
18 testing after exposure to 10 000 ppm chlorine for 1 h or 15 ppm ozone for 30 min. Measurements
19 of salt rejection and water flux of the pristine and oxidized membranes showed greater than 99.9%
20 rejection and minimal changes in water flux regardless of oxidant or exposure length, except in
21 the case of PP which showed failure during testing. Our results provide insights on the degradation
22 behavior of hydrophobic polymer membranes and demonstrate the promise of using PTFE and
23 PVDF membranes combined with strong oxidants in water treatment.

24

25 **Keywords:** Membrane distillation, chlorine, ozone, desalination, hydrophobic membrane.

26

27 **Synopsis:** The impact of ozone and chlorine exposure on the chemistry, structure, and
28 performance of hydrophobic porous membranes is examined.

29

30

31 **1. INTRODUCTION**

32 Anthropogenic climate change has contributed to worsening drought conditions and decreased the
33 reliability of water supplies.¹ Water reuse and desalination offer secure and consistent water
34 supplies outside the natural hydrological cycle that can supplement existing water resources.²
35 Membrane-based technologies have been increasingly implemented for advanced water treatment
36 due to their high energy efficiency and ease-of-implementation.^{3,4} However, fouling from
37 contaminants in feedwater is a persistent challenge that limits the performance of membrane-based
38 systems, increasing the cost of water treatment by necessitating intensive pre-treatment processes
39 and reducing membrane lifetime.

40 The use of oxidative disinfectants upstream of a membrane process is an effective technique to
41 reduce fouling and enhance water treatment performance.⁵ Chlorination or ozonation of feedwater
42 inactivates microbes before they reach the membrane surface, preventing biofilm formation and
43 the associated performance decline due to biofouling.⁶ Strong oxidants can also transform organic
44 matter into more hydrophilic materials that have a lower fouling propensity.⁷ Furthermore, strong
45 oxidation combined with membrane processes may enhance removal of contaminants in the feed
46 water.⁸ Therefore, implementing strong oxidation upstream of, or directly in contact with,
47 membranes used in advanced water treatment is highly desirable.

48 Although strong oxidants have the potential to enhance membrane performance, materials
49 commonly used in salt-rejecting membranes, such as polyamide and cellulose acetate, degrade
50 when exposed to strong oxidizing agents such as chlorine and ozone.^{9–12} Disinfection pretreatment
51 strategies upstream of these membranes are therefore limited to the use of chloramines, weaker
52 disinfectants that reduce the effectiveness of downstream ultraviolet treatment processes and are
53 associated with the formation of highly toxic disinfection byproducts, including *N*-
54 nitrosodimethylamine.^{13,14} Alternatively, chlorine is sometimes used upstream of membrane
55 systems, but a costly dechlorination step must be implemented prior to reverse osmosis (RO) to
56 protect the membranes. The development of membrane materials that withstand exposure to strong
57 oxidants is therefore a well-acknowledged need in the field of membrane separations.

58 Hydrophobic porous membranes used in membrane distillation (MD), osmotic distillation, and
59 pressure-driven distillation have material properties that hold potential to be placed in direct
60 contact with strong oxidants.^{15–18} Unlike conventional membranes, distillation membranes require
61 hydrophobic materials that can trap air within sub-micron scale pores. Water vapor can then travel
62 through the membrane driven by a partial vapor pressure gradient resulting from a temperature or
63 concentration difference. A variety of hydrophobic materials have been used in membrane-based
64 distillation systems. Among these, polytetrafluoroethylene (PTFE), polyvinylidene fluoride
65 (PVDF), and polypropylene (PP) have been the most widely studied.¹⁹ All these polymers have
66 chemical structures that are stable and, in theory, have stronger tolerance towards chemical
67 oxidation than hydrophilic polyamide and cellulose acetate polymers used in conventional salt-
68 rejecting membranes.

69 Despite the potential of combining membrane-based distillation systems with strong oxidants,
70 the oxidation resistance and long-term stability of hydrophobic porous membranes has not been
71 well-characterized for ozone and chlorine, the two strong oxidizing agents that are most commonly
72 used in water treatment. The perfluorinated C-F bonds in PTFE are not known to react with even
73 very strong oxidants such as hydroxyl radical since no lone pairs for electron transfer or hydrogens
74 available for abstraction exist in the chemical structure of PTFE.²⁰ Experimentally, PTFE
75 membranes have been used in studies involving ozone without noticeable changes in performance,
76 but the chemical properties of PTFE membranes after exposure were not characterized.^{21,22} PVDF
77 membranes have been suspected to swell when exposed to ozone, though materials
78 characterization has been inconclusive regarding any chemical changes to the polymer.^{23–25} PP and
79 PVDF membranes also have been observed to react with chlorine, but implications for membrane
80 performance are unclear.^{26,27} Prior literature thus indicates that some polymers used in distillation
81 systems have the potential to operate with prolonged exposure to strong oxidants such as chlorine
82 and ozone. However, the impact of such exposure on membrane chemical stability and physical
83 structure has not been well-studied. Studying the chemical resilience of hydrophobic polymer
84 membranes used in distillation systems is particularly relevant because small changes in surface
85 chemistry may result in membrane wetting and compromise membrane performance.

86 In this work, we investigate the effects of oxidant exposure on hydrophobic membranes
87 commonly used in membrane-based distillation processes. We first examine changes in the
88 chemistry and hydrophobicity of PTFE, PVDF, PP membranes after exposure to varying doses of
89 chlorine and ozone, allowing us to gain insights into degradation mechanisms. We then examine
90 changes in membrane polymer structure and characteristics after exposure to oxidants. Finally, we
91 show changes in water flux and salt rejection that occur after membranes have been exposed to
92 varied doses of oxidants. Overall, this work provides important insights on the limits of different
93 MD membrane materials in resisting damage from strong chemical oxidants.

94 **2. MATERIALS AND METHODS**

95 **2.1. Membranes and chemicals**

96 Three hydrophobic, porous polymer membranes commonly used in distillation processes, PTFE
97 (Stereitech Corporation, USA), PVDF (Durapore, Millipore, Ireland), and PP (Stereitech
98 Corporation, USA), were tested. All membranes had a nominal pore diameter of 0.2 μm .
99 Characteristics of membranes are summarized in Table S1. Each type arrived as flat sheet
100 membranes in a dry state. Samples were cut from flat sheets prior to oxidation and testing.
101 Deionized (DI) water was obtained using a Millipore Synergy UV Remote Water Purification
102 System. Solutions for chlorine degradation experiments were prepared using a sodium
103 hypochlorite solution (NaOCl 5% w/v, LabChem) and DI water with pH adjusted using
104 hydrochloric acid (HCl 1N, Fisher Chemical). Gaseous ozone was produced by a TG-40 ozone
105 generator (Ozone Solutions, USA) for ozone degradation experiments. Sodium chloride (NaCl,
106 Fisher Chemical) dissolved in DI water was used as the feed solution in desalination testing.

107 **2.2. Oxidation of membrane materials**

108 Oxidant exposure occurred in the form of passive treatment in which the membrane samples were
109 submerged in prepared solutions for a specified amount of time. Aqueous ozone was generated by
110 feeding pure oxygen into an ozone generator which was then diffused as gaseous ozone into a
111 beaker containing DI water. Due to the rapid degradation of ozone, a constant flow of gaseous
112 ozone was supplied during membrane exposure. Ozone concentration within the beaker was
113 monitored using a spectrophotometer (HACH DR6000, Colorado, USA). The ozone solution was
114 maintained at a concentration of 15 ppm and a pH of 7 for oxidation experiments. PVDF and PTFE

115 membranes were exposed to ozone for up to 3 h. PP membranes were exposed to ozone for less
116 time since severe degradation was observed; PP membranes used in desalination performance
117 testing were exposed to ozone for a maximum for 0.5 h, and PP membranes used for material
118 characterization were exposed to the ozone solution for 1 h. A summary of oxidant exposure
119 conditions for each membrane based on characterization method is provided in Table S2.

120 NaOCl solutions were prepared by diluting a 5% w/v NaOCl solution with DI water to a
121 concentration of 10,000 ppm for all experiments. The solution was adjusted to a pH of 4 using
122 hydrochloric acid to promote the dissociation of NaClO into hypochlorous acid, which has been
123 found to have a higher oxidative strength than the species present at a different pH.²⁸ The solution
124 was covered and reprepared every 24 hours to maintain a constant concentration and pH. PVDF
125 and PTFE membranes were exposed to the chlorine solution for up to 72 h. PP membranes were
126 exposed for up to 60 min in desalination performance testing. Additional PP membranes were
127 exposed for up to 24 h for material characterization. Following oxidant exposure, membrane
128 samples were thoroughly rinsed with DI water and left in DI water for 24 h. Membranes were
129 rinsed with methanol to remove any surface contamination, dried, and stored in a desiccator prior
130 to surface characterization.

131 **2.3. Membrane characterization**

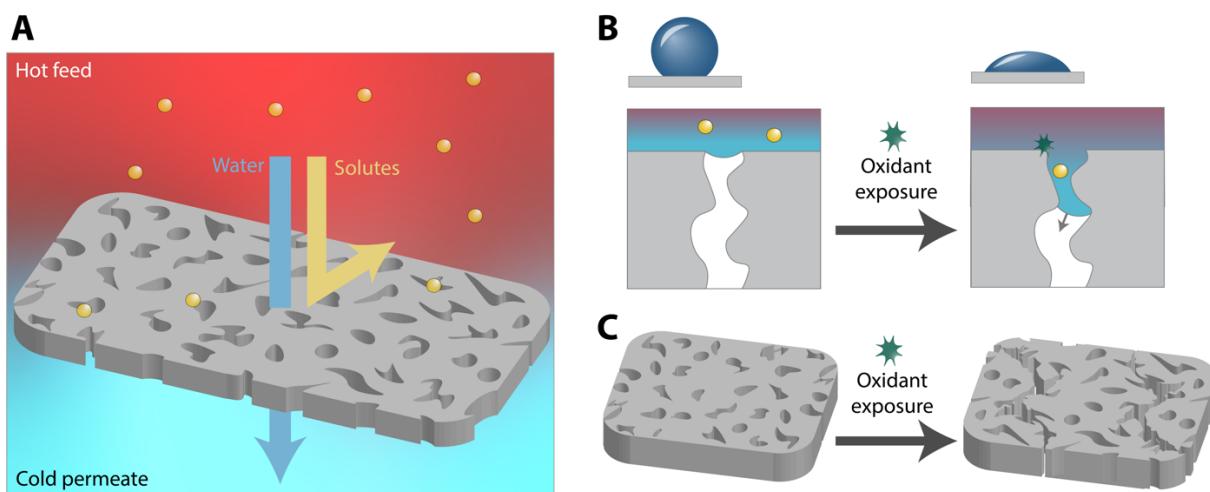
132 Contact angle was measured with a Biolin Scientific tensiometer using the sessile drop technique.
133 For all measurements, a droplet of DI water (less than 10 uL) was deposited onto the active side
134 of the membrane surface using a pipette. Contact angle was measured on different areas of each
135 sample and reported values represent an average of at least three measurements.

136 Membrane morphology and surface topography was viewed with scanning electron microscopy
137 (SEM) on a Hitachi SU8010 microscope. Prior to SEM imaging, platinum was sputtered onto the
138 PTFE, PVDF, and PP surfaces until a thickness of 3 nm was achieved on the surface. SEM images
139 were taken of pristine PTFE, PVDF, and PP and the membranes exposed to the highest doses of
140 chlorine and ozone.

141 Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were acquired from
142 400–4000 cm⁻¹ using a ThermoScientific Nicolet iS50 FTIR with a Smart iTX attachment with
143 ATR capacities and an ATR diamond crystal. Measurements were taken of PTFE, PVDF, and PP
144 prior to submersion into the oxidant solution and after subsequent exposures.

145 X-ray photoelectron survey spectra were acquired from 0–1200 eV using a Kratos Supra X-ray
146 photoelectron spectrometer. Polymer samples were isolated on the sample plate to ensure
147 consistent charging through the samples. The Al K alpha X-ray source was operated at 1486.7 kV
148 and 15 mA current emission. Charge neutralization parameters were determined through use of
149 continuous scans of the carbon 1s peak. Survey spectra were used to calculate the atomic percent
150 of elements on the surface while the high-resolution C 1s spectra were peak fitted to determine the
151 changes in the carbon binding after exposure. High resolution scans of O 1s, F 1s, and C 1s were
152 taken to obtain the chemical state of the polymers after oxidant exposure. A Shirley background
153 was used and a Gaussian-Lorentzian sum function with an added asymmetric parameter were used
154 to fit component peaks for the polymers. All spectra were calibrated using a C-C/C-H peak
155 position of 284.8 eV.

156 **2.4. Desalination performance testing**

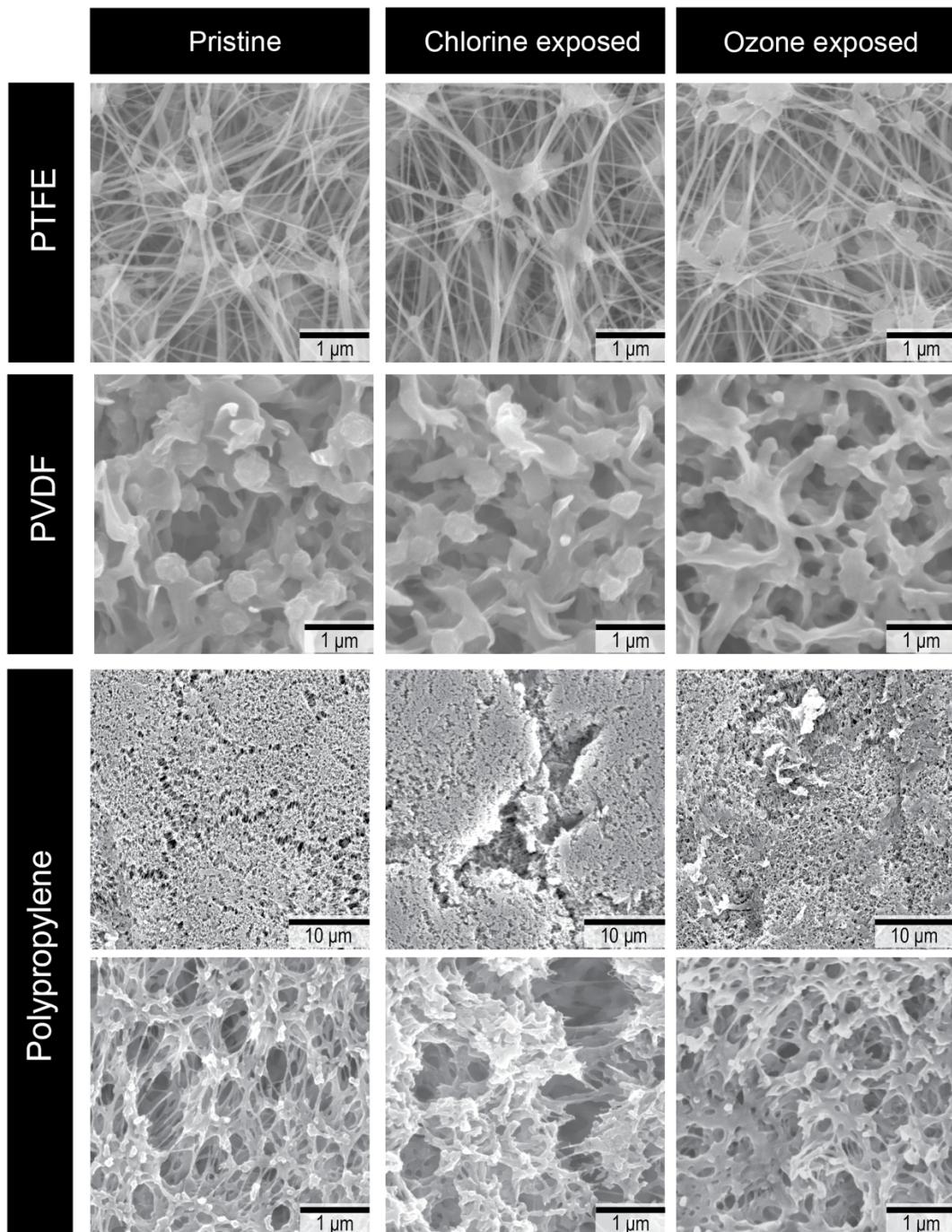

157 A bench-scale crossflow direct contact MD system was used for performance testing on pristine
158 and oxidized membrane samples. Membranes were placed within a flat sheet membrane module
159 with an active surface area of 20.02 cm². PP membranes required the use of mesh spacers on either
160 side of the membrane for support. A 0.05 M NaCl feed solution was circulated at 60 °C in contact
161 with the active side of the membrane. DI water was simultaneously circulated on the permeate side
162 at 20 °C. Feed and permeate temperatures were continuously monitored prior to entering and upon
163 exiting the membrane module and regulated using a heater and chiller, respectively. Flow rate was
164 measured upon exiting the membrane module and regulated using pumps. Water velocity through
165 the channels was maintained at 0.14 m s⁻¹ across the membrane surface. Water flux across the
166 membrane during operation was determined by measuring the mass change of the permeate
167 reservoir using an analytical balance. Salt rejection across the membrane was measured using a
168 conductivity probe in the permeate reservoir. Measurements were collected in one-minute intervals
169 after the system reached steady state conditions. Steady state was determined to be the point at
170 which a constant water flux was maintained (less than 2 L m⁻²h⁻¹ deviation over 30 min) after the
171 desired operating temperatures and crossflow velocities were achieved. Water flux and salt
172 rejection across the membrane, presented as the average value over a 2-hour test period, were then
173 evaluated as a function of oxidant exposure.

174
175 **3. RESULTS AND DISCUSSION**

176 **3.1. Oxidation impacts on membrane structure and hydrophobicity**

177 To examine the impact of oxidation on hydrophobic porous membranes, 0.2 μm nominal pore size
178 hydrophobic membranes made from PTFE, PVDF, and PP were acquired and exposed to chlorine
179 at pH 4 and ozone at pH 7. Membranes were then thoroughly characterized for chemical, structural,
180 and performance changes in direct contact MD (Figure 1A). Exposure to chemical oxidants may
181 lead to loss of surface hydrophobicity and pore wetting (Figure 1B) or damage to the bulk polymer
182 membrane structure (Figure 1C) In this Section, we will discuss changes in membrane structure
183 and hydrophobicity that were observed after oxidant exposure. Subsequent sections will further
184 analyze chemical changes and MD performance of the oxidant-exposed membranes.

185

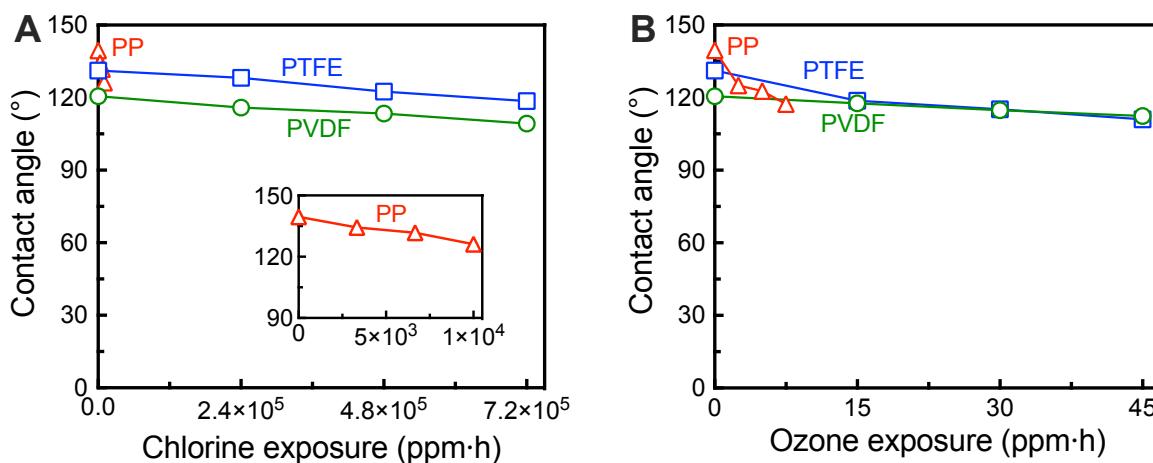


186

187 **Figure 1.** (A) Schematic diagram of membrane distillation. (B) Loss of membrane hydrophobicity
188 as a result of oxidant exposure may lead to pore wetting. (C) Damage to the membrane
189 morphology may also result from exposure to oxidants.

190

191 Following oxidant exposure, physical inspection and SEM imaging were used to examine
192 possible structural degradation in the membranes. After the highest exposures for chlorine (72 h
193 at 10000 ppm) and ozone (3 h at 15 ppm), both PTFE and PVDF showed no changes in their
194 overall morphology in SEM images (Figure 2) and upon physical inspection. Polypropylene, on
195 the other hand, showed significant changes in its macroscale morphology after exposure to lower
196 doses of chlorine (10000 ppm for 24 h), with cracking and tearing occurring on the membrane
197 surface (Figure S1). SEM imaging further revealed that larger than 10 μm cracks were present on

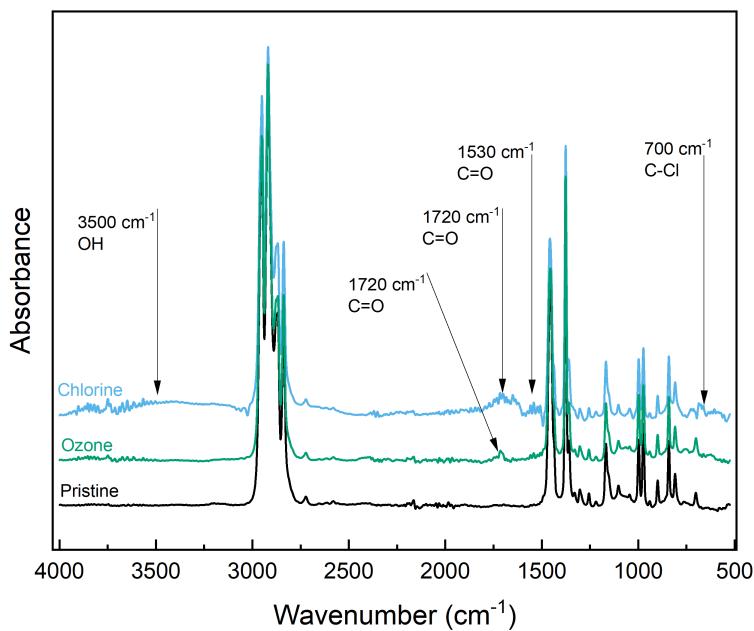

198

199 **Figure 2.** Scanning electron micrographs of polytetrafluoroethylene (PTFE), (b) polyvinylidene
200 fluoride (PVDF), and polypropylene membranes before and after exposure to chlorine and ozone
201 oxidants. Polytetrafluoroethylene and polyvinylidene fluoride membranes were exposed to 10000
202 ppm chlorine for 72 h or 15 ppm ozone for 3 h. Polypropylene membranes were exposed to 10000
203 ppm chlorine for 24 h or 15 ppm ozone for 1 h.

204

205 the membrane surface and apparent pore sizes at the membrane surface increased from
206 approximately 0.2 μm to 2 μm . For ozone (1 h at 15 ppm), we observed macroscale cracking and
207 debris on the surface of the membrane. Overall, inspection of the membrane samples indicated
208 significant damage to the PP membrane structure after ozone and chlorine exposures.

209 Measurements of the water contact angles after oxidant exposure showed small changes in the
210 overall hydrophobicity in all cases (Figure 3). After the maximum exposure to chlorine (720000
211 ppm \cdot h), the contact angle of water on PTFE and PVDF changed from 132° to 117° and 120° to
212 108°, respectively. After the maximum exposure to ozone (45 ppm \cdot h), the contact angle on PTFE
213 and PVDF decreased from 132° to 111° and 120° to 112°, respectively. PP membranes were
214 exposed to lower doses of chlorine (up to 10000 ppm \cdot h) and ozone (up to 7.5 ppm \cdot h) since they
215 suffered from severe cracking. PP membranes showed more rapid changes in water contact angle
216 during oxidant exposure, experiencing a decrease in contact angle of 140° to 120° and 140° to
217 117° for chlorine and ozone, respectively. Generally, contact angle measurements showed modest
218 changes in the surface properties across all membranes, with a less than 15% change in contact
219 angle in all cases. Even the PP membranes that showed macroscale membrane cracking showed
220 relatively small changes in contact angle prior to failure.



221
222 **Figure 3.** Static water contact angle of polytetrafluoroethylene (PTFE), polyvinylidene
223 fluoride (PVDF), and polypropylene (PP) membranes following exposure to (A) 10000
224 ppm chlorine solution and (B) 15 ppm ozone solution.

225 **3.2. Understanding chemical changes in polymers after exposures**

226 The changes in structure and hydrophobicity of membranes after exposure to chlorine and ozone
227 motivated further investigations into membrane surface chemistry. Attenuated total reflectance

Fourier transform infrared spectroscopy (ATR-FTIR) was used to gain information on changes in the overall bond structure of membranes before and after oxidation. The PTFE and PVDF membrane showed no changes in ATR-FTIR spectra after exposure to chlorine and ozone (Figure S2). In contrast, PP membranes, which showed significant structural changes after exposure to both chlorine and ozone, also had observable changes in their ATR-FTIR spectra (Figure 4). Following ozonation, we noted the development of a small peak at 1700 cm^{-1} which corresponds to the presence of a carbonyl group. We saw more significant changes in the chlorinated PP in the region between 4000 cm^{-1} and 3000 cm^{-1} where there is a broad peak characteristic of an alcohol group. We also observed the evolution of a broad carbonyl peak between 1800 cm^{-1} and 1500 cm^{-1} . The formation of similar peaks characteristic of alcohol and carbonyl functional groups is typical in oxidized polypropylene.²⁹ Additionally, we see the formation of an alkyl halide group in the chlorinated PP at $800\text{--}600\text{ cm}^{-1}$.³⁰ The chemical changes in PP are consistent with our understanding that the tertiary carbon makes it susceptible to oxidation.³¹ The attached hydrogen is more likely to be abstracted and an alkoxy radical is formed which stabilizes itself through a rearrangement into an alkyl radical and forms a ketone.^{32,33}

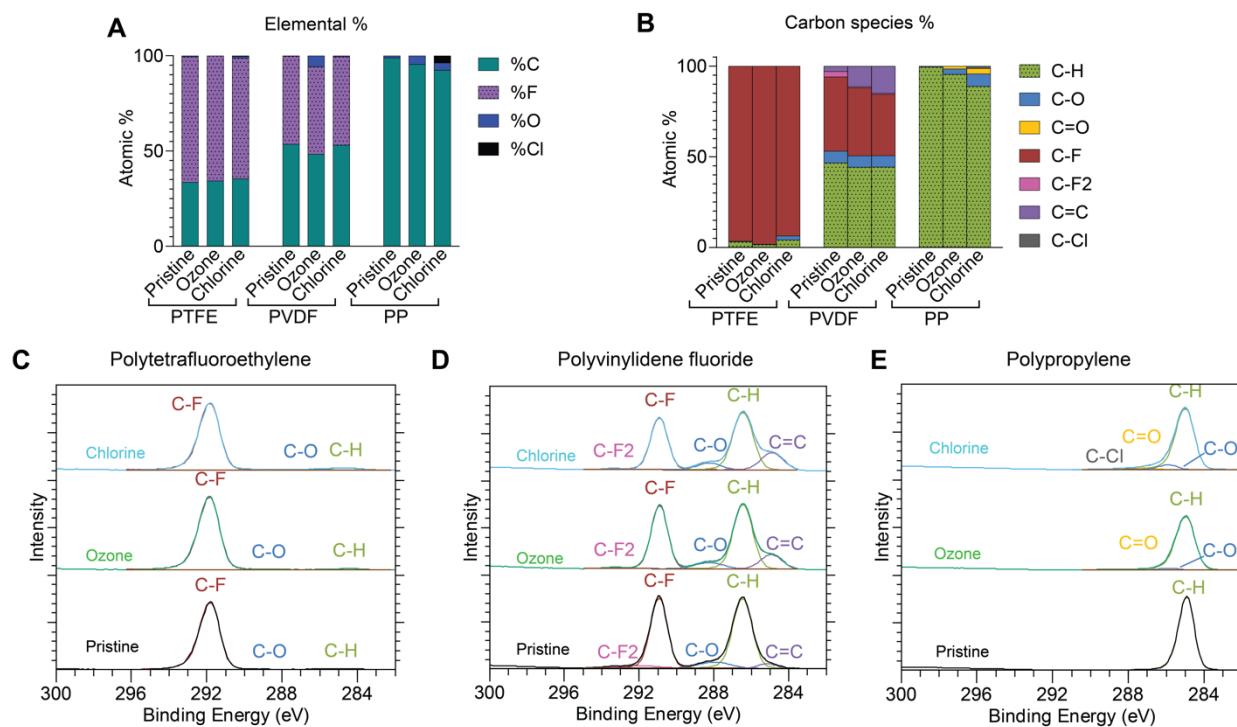


Figure 4. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy scans of polypropylene membranes after before and after exposure to ozone and chlorine. Polypropylene membranes were exposed to 10000 ppm chlorine for 24 h or 15 ppm ozone for 1 h.

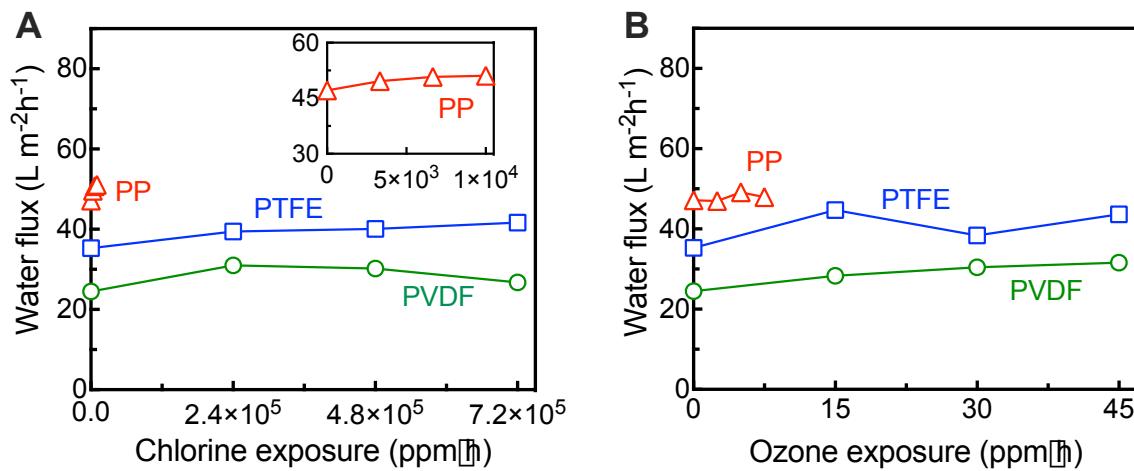
248

249 XPS was used to gain more information on the atomic compositions of the top surface
 250 (approximately 10 nm) of the membrane polymer, where we expected to observe the most
 251 chemical changes due to oxidation (Figure 5). For PTFE samples, XPS analysis indicated minor
 252 changes in surface chemistry between samples that were likely due to carbon contamination.
 253 Pristine PTFE shows the characteristic C-F peak at 291.8 eV, and following exposures to chlorine
 254 and ozone, there are no changes to this peak (Figure 5C). There is an additional weak peak at 284.8
 255 eV which corresponds to C-H bonds; this peak is commonly attributed to carbon contamination.³⁴
 256 Overall, PTFE membranes showed XPS peaks characteristic of its highly fluorinated carbon chain
 257 that were not affected by chlorine or ozone exposure.

258

259
 260 **Figure 5.** (A) Atomic percent of different elements observed in the XPS survey spectra for PTFE,
 261 PVDF, and PP membranes exposed to chlorine and ozone. (B) Summary of results from carbon
 262 core scans indicating the binding environment of the carbon atoms on the surface of membrane.
 263 (C,D,E) Spectra from carbon core scans of PTFE, PVDF, and PP membranes. PTFE and PVDF
 264 membranes were exposed to 10,000 ppm chlorine for 72 h or 15 ppm ozone for 3 h. PP
 265 membranes were exposed to 10,000 ppm chlorine for 24 h or 15 ppm ozone for 1 h.
 266

267 XPS analysis of the PVDF and PP membranes observed more obvious changes to the membrane
268 surface chemistry following oxidation than those seen with PTFE. In pristine PVDF, there are two
269 characteristic peaks: the C-F peak at 291.0 eV and the C-H peak at 286.4 eV (Figure 5D).
270 Following oxidation with ozone and chlorine we see decreases of 8.1% and 17.3%, respectively,
271 in the C-F peak which indicates possible surface defluorination. Additionally, we see an evolution
272 of a peak at 284.8 eV. Since there is indication of defluorination on the PVDF, we believe that the
273 peak at 284.8 eV corresponds to the formation of C=C on the surface which has been suggested to
274 form following defluorination in PVDF.^{35,36}


275 For PP membranes, there is only a peak for C-H at 284.8 eV in the pristine membrane (Figure
276 5E). This structure corresponds to the repeating units of carbon and hydrogen atoms, where the
277 carbon atoms are connected by single bonds. This differs from the C-H peak observed in the PVDF
278 spectra since the electronegative nature of the C-F bond in PVDF will shift the C-H peak to a
279 slightly higher binding energy.^{37,38} Following oxidation, we observe widening of the carbon peak
280 due to an evolution of carbon oxygen groups on the PP surface. Chlorination of the polypropylene
281 led to a 5.3% and 3.0% increase of C-O and C=O respectively, while ozone led to a 2.5% and 1.5%
282 increase of C-O and C=O respectively on the surface. An important difference between the
283 chlorinated and ozonated polypropylene is the incorporation of Cl into the polypropylene.
284 Following chlorine treatment, we see a 3.7% increase of Cl on the surface as observed in the XPS
285 survey scans (Figure 5A). Further examination of the core scans of the PP (Figure 5B and 5E)
286 shows that there is a small peak evolving at around 288.3 eV which is indicative of a C-Cl
287 bond.^{37,38} Thus, oxidation of the PP membranes led to changes in the membranes overall surface
288 chemistry as evidenced by the presence of C-O, C=O, and C-Cl following oxidation.

289 290 **3.3. Desalination performance testing**

291 Direct contact membrane distillation (MD) testing was used to investigate the impact of chlorine
292 and ozone exposure on the desalination performance of membranes (Figure 6). With a hot
293 temperature of 60 °C and a cold temperature of 20 °C, the pristine PTFE, PVDF, and PP membranes
294 showed water fluxes of 35.3 L m⁻²h⁻¹, 24.5 L m⁻²h⁻¹, and 47.1 L m⁻²h⁻¹, respectively. All pristine
295 membranes had salt rejections higher than 99.9%.

296 After exposure to chlorine and ozone, PTFE and PVDF membranes showed minor changes in
297 water flux and maintained greater than 99.9% salt rejection. The measured water fluxes for PTFE

298 membranes exposed to chlorine or ozone varied from $38.4 \text{ L m}^{-2}\text{h}^{-1}$ to $44.7 \text{ L m}^{-2}\text{h}^{-1}$. For PVDF
 299 membranes, the measured water fluxes of oxidant exposed membranes varied from $26.8 \text{ L m}^{-2}\text{h}^{-1}$
 300 to $31.6 \text{ L m}^{-2}\text{h}^{-1}$. Although the water fluxes of membranes after oxidant exposure were generally
 301 higher than those of the pristine membranes, no clear dependence of water flux on oxidant
 302 exposure was observed. These results are consistent with previous data that indicate minor changes
 303 in membrane structure and minor differences in hydrophobicity following oxidant exposure.

304
 305 **Figure 6.** Water flux as a function of oxidant exposure for polytetrafluoroethylene (PTFE),
 306 polyvinylidene fluoride (PVDF), and polypropylene (PP) membranes after exposure to a 10000
 307 ppm chlorine solution (A) and a 15 ppm ozone solution (B) through a direct contact membrane
 308 distillation cell. Temperatures were 60°C and 20°C through the feed and permeate channels,
 309 respectively.

310
 311 Unlike PTFE and PVDF, PP membranes demonstrated observable cracking which prevented
 312 them from being tested in desalination systems at doses higher than 240000 ppm·h chlorine or 15
 313 ppm·h ozone. Within the allowable exposure for PP membranes without reaching catastrophic
 314 failure, changes in water flux and salt rejection were minor. The water flux of the pristine PP
 315 membrane was measured to be $47.1 \text{ L m}^{-2}\text{h}^{-1}$. Following exposure to chlorine, an 8.3% increase in
 316 water flux was observed. Ozone exposure resulted in a 1.7% increase in water flux. Similar to the
 317 PVDF and PTFE membranes, changes in salt rejection between pristine membranes and oxidized
 318 membranes were minor during the observed exposures (Figure S3). It should be emphasized that
 319 following the exposures used for PP membranes in desalination performance testing, damage to
 320 the membrane caused by oxidation resulted in complete failure within the system. This included

321 visible breakage to the membrane with near-zero salt rejection and significantly increased water
322 flux through the cell channels.

323

324 **4. CONCLUSIONS**

325 The impact of exposure to chlorine and ozone oxidants on three commercial hydrophobic
326 membranes (PTFE, PVDF, and PP) was evaluated by examining changes to structure, surface
327 chemistry, and desalination performance. PTFE and PVDF membranes appeared to be minimally
328 impacted by strong oxidants at exposures up to the limit of this study: 720000 ppm·h chlorine and
329 45 ppm·h ozone. After oxidant exposure, both membranes experienced minor changes in water
330 flux in direct contact MD without compromising selectivity and saw a less than 10% decrease in
331 contact angle. Further characterization revealed no noticeable changes in the structure and
332 chemistry of PTFE membranes, though changes in the chemistry of the PVDF membranes were
333 observed through XPS. PP experienced severe degradation following maximum oxidant exposure
334 of 240000 ppm·h chlorine or 15 ppm·h ozone which was confirmed through surface and structural
335 characterization methods.

336 Given their high observed oxidation resistance, PTFE and PVDF may be promising options for
337 water treatment applications that involve contact with oxidants or for applications that might
338 benefit from pretreatment using ozone and chlorine. Based on the observed oxidation resistance,
339 pretreatment of water using a typical dose of 4 ppm chlorine would be possible for at least 20
340 years. With an average continuous ozone dose of 0.1 ppm, both PVDF and PTFE could resist
341 oxidation damage for at least 18 days under these experimental conditions. Past this point, the
342 surface characterization results imply that PVDF could be at risk of failure earlier than the PTFE
343 membranes when in direct contact with ozone.

344 Polypropylene demonstrates limited oxidation resistance for both chlorine and ozone compared
345 to PTFE and PVDF. Our work indicates that with a typical chlorine dose of 4 ppm, failure of PP
346 membranes may occur within 100 days. Similarly, the use of PP in direct contact with 0.1 ppm
347 ozone would be limited to 9 days. Prior to membrane failure, no noticeable changes in
348 permeability, selectivity, or hydrophobicity were observed. The rapid and unexpected failure of

349 the PP membrane indicate that failure of the membrane may occur without warning in a water
350 treatment system.

351 Further work is needed investigate the effects of direct oxidation with additional parameters not
352 considered in this study. For example, future testing should explore the impact of additional
353 organics, salts, and other contaminants that could contribute to membrane fouling or alter
354 membrane surface properties. This work found that membranes made from fluorinated polymers
355 (PTFE and PVDF) showed higher oxidation resistance than non-fluorinated membranes (PP). An
356 additional emerging concern in the practical application of fluorinated membranes is the release
357 of per- and polyfluoroalkyl substances (PFAS). Additional analyses are necessary to compare the
358 advantages of membrane oxidation resistance with their potential for PFAS release.

359

360 **ASSOCIATED CONTENT**

361 **Supporting Information**

362 The Supporting Information is available free of charge online.

363

364 Digital photographs of PP membranes before and after oxidant exposure (Figure S1), ATR-FTIR
365 spectra of PTFE and PVDF membrane before and after oxidant exposure (Figure S2), salt rejection
366 data for membrane distillation performance testing (Figure S3), and summary of membrane
367 properties (Table S1).

368

369 **AUTHOR INFORMATION**

370 **Notes**

371 The authors declare no competing financial interest.

372

373 **ACKNOWLEDGEMENTS**

374 We acknowledge financial support from the Bureau of Reclamation, Department of Interior, via
375 DWPR agreement R22AC00425 and the National Science Foundation (NSF) under award number
376 CBET 2227273. We also acknowledge support from the NSF Industry/University Cooperative
377 Research Center for Membrane Science, Engineering and Technology (MAST) at the University

378 of Colorado Boulder (UCB, award number, IIP 1624602). E.A.H. acknowledges support from the
379 NSF Graduate Research Fellowship Program under grant number DGE 204043.

380

381 **REFERENCES**

382 (1) Williams, A. P.; Cook, E. R.; Smerdon, J. E.; Cook, B. I.; Abatzoglou, J. T.; Bolles, K.; Baek, S. H.;
383 Badger, A. M.; Livneh, B. Large Contribution from Anthropogenic Warming to an Emerging North
384 American Megadrought. *Science* **2020**, *368* (6488), 314–318.
385 <https://doi.org/10.1126/science.aaz9600>.

386 (2) *Water Reuse: Potential for Expanding the Nation's Water Supply Through Reuse of Municipal
387 Wastewater*; National Academies Press: Washington, D.C., 2012. <https://doi.org/10.17226/13303>.

388 (3) Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for Next-Generation Desalination and Water
389 Purification Membranes. *Nature Reviews Materials* **2016**, *1* (5), 16018.
390 <https://doi.org/10.1038/natrevmats.2016.18>.

391 (4) Lopez, K. P.; Wang, R.; Hjelvik, E. A.; Lin, S.; Straub, A. P. Toward a Universal Framework for
392 Evaluating Transport Resistances and Driving Forces in Membrane-Based Desalination Processes.
393 *Sci. Adv.* **2023**, *9* (1), eade0413. <https://doi.org/10.1126/sciadv.ade0413>.

394 (5) Liu, B.; Pimentel, A. L.; Watts, M. J.; Murphy, J. R.; Linden, K. G. Ozonation Greatly Improves
395 Ceramic Membrane Microfiltration Efficiency during Wastewater Reuse: Mechanisms and
396 Performance. *Environ. Sci.: Water Res. Technol.* **2022**, *8* (7), 1535–1546.
397 <https://doi.org/10.1039/D2EW00105E>.

398 (6) Nguyen, D. T.; Lopez, K. P.; Lee, S.; Lee, J.; Hernandez, M. T.; Straub, A. P. Water Desalination via
399 Pressure-Driven Distillation with Chlorine-Resistant and Large-Area Polymeric Membranes.
400 *Environ. Sci. Technol. Lett.* **2023**, *10* (8), 711–717. <https://doi.org/10.1021/acs.estlett.3c00391>.

401 (7) Szczuka, A.; Berglund-Brown, J. P.; Chen, H. K.; Quay, A. N.; Mitch, W. A. Evaluation of a Pilot
402 Anaerobic Secondary Effluent for Potable Reuse: Impact of Different Disinfection Schemes on
403 Organic Fouling of RO Membranes and DBP Formation. *Environ. Sci. Technol.* **2019**, *53* (6), 3166–
404 3176. <https://doi.org/10.1021/acs.est.8b05473>.

405 (8) Chuang, Y.-H.; Szczuka, A.; Shabani, F.; Munoz, J.; Aflaki, R.; Hammond, S. D.; Mitch, W. A.
406 Pilot-Scale Comparison of Microfiltration/Reverse Osmosis and Ozone/Biological Activated Carbon
407 with UV/Hydrogen Peroxide or UV/Free Chlorine AOP Treatment for Controlling Disinfection
408 Byproducts during Wastewater Reuse. *Water Research* **2019**, *152*, 215–225.
409 <https://doi.org/10.1016/j.watres.2018.12.062>.

410 (9) Do, V. T.; Tang, C. Y.; Reinhard, M.; Leckie, J. O. Effects of Chlorine Exposure Conditions on
411 Physiochemical Properties and Performance of a Polyamide Membrane—Mechanisms and
412 Implications. *Environ. Sci. Technol.* **2012**, *46* (24), 13184–13192. <https://doi.org/10.1021/es302867f>.

413 (10) Do, V. T.; Tang, C. Y.; Reinhard, M.; Leckie, J. O. Degradation of Polyamide Nanofiltration and
414 Reverse Osmosis Membranes by Hypochlorite. *Environ. Sci. Technol.* **2012**, *46* (2), 852–859.
415 <https://doi.org/10.1021/es203090y>.

416 (11) Powell, J.; Luh, J.; Coronell, O. Amide Link Scission in the Polyamide Active Layers of Thin-Film
417 Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms. *Environmental
418 Science & Technology* **2015**, *49* (20), 12136–12144. <https://doi.org/10.1021/acs.est.5b02110>.

419 (12) Nickerson, T. R.; Antonio, E. N.; McNally, D. P.; Toney, M. F.; Ban, C.; Straub, A. P. Unlocking the
420 Potential of Polymeric Desalination Membranes by Understanding Molecular-Level Interactions and
421 Transport Mechanisms. *Chem. Sci.* **2023**, *14* (4), 751–770. <https://doi.org/10.1039/D2SC04920A>.

422 (13) McCurry, D. L.; Ishida, K. P.; Oelker, G. L.; Mitch, W. A. Reverse Osmosis Shifts Chloramine
423 Speciation Causing Re-Formation of NDMA during Potable Reuse of Wastewater. *Environ. Sci.
424 Technol.* **2017**, *51* (15), 8589–8596. <https://doi.org/10.1021/acs.est.7b01641>.

425 (14) Schreiber, I. M.; Mitch, W. A. Nitrosamine Formation Pathway Revisited: The Importance of
426 Chloramine Speciation and Dissolved Oxygen. *Environ. Sci. Technol.* **2006**, *40* (19), 6007–6014.
427 <https://doi.org/10.1021/es060978h>.

428 (15) Nguyen, D. T.; Lee, S.; Lopez, K. P.; Lee, J.; Straub, A. P. Pressure-Driven Distillation Using Air-
429 Trapping Membranes for Fast and Selective Water Purification. *Sci. Adv.* **2023**, *9* (28), eadg6638.
430 <https://doi.org/10.1126/sciadv.adg6638>.

431 (16) Lee, S.; Straub, A. P. Opportunities for High Productivity and Selectivity Desalination via Osmotic
432 Distillation with Improved Membrane Design. *Journal of Membrane Science* **2020**, *611*, 118309.
433 <https://doi.org/10.1016/j.memsci.2020.118309>.

434 (17) Liu, W.; Wang, R.; Straub, A. P.; Lin, S. Membrane Design Criteria and Practical Viability of
435 Pressure-Driven Distillation. *Environ. Sci. Technol.* **2023**, *57* (5), 2129–2137.
436 <https://doi.org/10.1021/acs.est.2c07765>.

437 (18) Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A. P.; Tong, T.; Warsinger, D. M.;
438 Elimelech, M. Membrane Distillation at the Water-Energy Nexus: Limits, Opportunities, and
439 Challenges. *Energy & Environmental Science* **2018**. <https://doi.org/10.1039/C8EE00291F>.

440 (19) Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane Distillation: A Comprehensive Review.
441 *Desalination* **2012**, *287*, 2–18. <https://doi.org/10.1016/j.desal.2011.08.027>.

442 (20) McKeen, L. W. Fluoropolymers. In *Film Properties of Plastics and Elastomers*; Elsevier, 2012; pp
443 255–313. <https://doi.org/10.1016/B978-1-4557-2551-9.00011-6>.

444 (21) Merle, T.; Pronk, W.; von Gunten, U. MEMBRO₃X, a Novel Combination of a Membrane
445 Contactor with Advanced Oxidation (O₃/H₂O₂) for Simultaneous Micropollutant Abatement and
446 Bromate Minimization. *Environmental Science & Technology Letters* **2017**, *4* (5), 180–185.
447 <https://doi.org/10.1021/acs.estlett.7b00061>.

448 (22) Bamperng, S.; Suwannachart, T.; Atchariyawut, S.; Jiraratananon, R. Ozonation of Dye Wastewater
449 by Membrane Contactor Using PVDF and PTFE Membranes. *Separation and Purification
450 Technology* **2010**, *72* (2), 186–193. <https://doi.org/10.1016/j.seppur.2010.02.006>.

451 (23) Rabuni, M. F.; Nik Sulaiman, N. M.; Aroua, M. K.; Hashim, N. A. Effects of Alkaline Environments
452 at Mild Conditions on the Stability of PVDF Membrane: An Experimental Study. *Ind. Eng. Chem.
453 Res.* **2013**, *52* (45), 15874–15882. <https://doi.org/10.1021/ie402684b>.

454 (24) Zhang, Y.; Zhao, P.; Li, J.; Hou, D.; Wang, J.; Liu, H. A Hybrid Process Combining Homogeneous
455 Catalytic Ozonation and Membrane Distillation for Wastewater Treatment. *Chemosphere* **2016**, *160*,
456 134–140. <https://doi.org/10.1016/j.chemosphere.2016.06.070>.

457 (25) Li, K.; Xu, W.; Wen, G.; Zhou, Z.; Han, M.; Zhang, S.; Huang, T. Aging of Polyvinylidene Fluoride
458 (PVDF) Ultrafiltration Membrane Due to Ozone Exposure in Water Treatment: Evolution of
459 Membrane Properties and Performance. *Chemosphere* **2022**, *308*, 136520.
460 <https://doi.org/10.1016/j.chemosphere.2022.136520>.

461 (26) Puspitasari, V.; Granville, A.; Le-Clech, P.; Chen, V. Cleaning and Ageing Effect of Sodium
462 Hypochlorite on Polyvinylidene Fluoride (PVDF) Membrane. *Separation and Purification
463 Technology* **2010**, *72* (3), 301–308. <https://doi.org/10.1016/j.seppur.2010.03.001>.

464 (27) Awanis Hashim, N.; Liu, Y.; Li, K. Stability of PVDF Hollow Fibre Membranes in Sodium
465 Hydroxide Aqueous Solution. *Chemical Engineering Science* **2011**, *66* (8), 1565–1575.
466 <https://doi.org/10.1016/j.ces.2010.12.019>.

467 (28) Deborde, M.; Von Gunten, U. Reactions of Chlorine with Inorganic and Organic Compounds during
468 Water Treatment—Kinetics and Mechanisms: A Critical Review. *Water Research* **2008**, *42* (1–2),
469 13–51. <https://doi.org/10.1016/j.watres.2007.07.025>.

470 (29) Morent, R.; De Geyter, N.; Leys, C.; Gengembre, L.; Payen, E. Comparison between XPS- and
471 FTIR-analysis of Plasma-treated Polypropylene Film Surfaces. *Surface & Interface Analysis* **2008**, *40*
472 (3–4), 597–600. <https://doi.org/10.1002/sia.2619>.

473 (30) Yadav, K.; Morison, K.; Staiger, M. P. Effects of Hypochlorite Treatment on the Surface
474 Morphology and Mechanical Properties of Polyethersulfone Ultrafiltration Membranes. *Polymer*

475 *Degradation and Stability* **2009**, *94* (11), 1955–1961.
476 <https://doi.org/10.1016/j.polymdegradstab.2009.07.027>.

477 (31) Hayashi, J.; Nakahara, T.; Kusakabe, K.; Morooka, S. Pyrolysis of Polypropylene in the Presence of
478 Oxygen. *Fuel Processing Technology* **1998**, *55* (3), 265–275. [https://doi.org/10.1016/S0378-3820\(98\)00047-2](https://doi.org/10.1016/S0378-3820(98)00047-2).

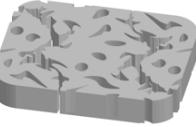
480 (32) Howard, J. A.; Ingold, K. U. Absolute Rate Constants for Hydrocarbon Autoxidation. VI. Alkyl
481 Aromatic and Olefinic Hydrocarbons. *Can. J. Chem.* **1967**, *45* (8), 793–802.
482 <https://doi.org/10.1139/v67-132>.

483 (33) Gijsman, P.; Fiorio, R. Long Term Thermo-Oxidative Degradation and Stabilization of
484 Polypropylene (PP) and the Implications for Its Recyclability. *Polymer Degradation and Stability*
485 **2023**, *208*, 110260. <https://doi.org/10.1016/j.polymdegradstab.2023.110260>.

486 (34) Girardeaux, C.; Pireaux, J.-J. Analysis of Poly(Tetrafluoroethylene) (PTFE) by XPS. *Surface Science
487 Spectra* **1996**, *4* (2), 138–141. <https://doi.org/10.1116/1.1247814>.

488 (35) Brewis, D. M.; Mathieson, I.; Sutherland, I.; Cayless, R. A.; Dahm, R. H. Pretreatment of Poly(Vinyl
489 Fluoride) and Poly(Vinylidene Fluoride) with Potassium Hydroxide. *International Journal of
490 Adhesion and Adhesives* **1996**, *16* (2), 87–95. [https://doi.org/10.1016/0143-7496\(95\)00053-4](https://doi.org/10.1016/0143-7496(95)00053-4).

491 (36) Ross, G. J.; Watts, J. F.; Hill, M. P.; Morrissey, P. Surface Modification of Poly(Vinylidene Fluoride)
492 by Alkaline Treatment1. The Degradation Mechanism. *Polymer* **2000**, *41* (5), 1685–1696.
493 [https://doi.org/10.1016/S0032-3861\(99\)00343-2](https://doi.org/10.1016/S0032-3861(99)00343-2).


494 (37) Gelius, U.; Hedén, P. F.; Hedman, J.; Lindberg, B. J.; Manne, R.; Nordberg, R.; Nordling, C.;
495 Siegbahn, K. Molecular Spectroscopy by Means of ESCA III. *Carbon Compounds. Phys. Scr.* **1970**,
496 *2* (1–2), 70–80. <https://doi.org/10.1088/0031-8949/2/1-2/014>.

497 (38) Gengenbach, T. R.; Major, G. H.; Linford, M. R.; Easton, C. D. Practical Guides for X-Ray
498 Photoelectron Spectroscopy (XPS): Interpreting the Carbon 1s Spectrum. *Journal of Vacuum Science
499 & Technology A: Vacuum, Surfaces, and Films* **2021**, *39* (1), 013204.
500 <https://doi.org/10.1116/6.0000682>.

501

502

TOC Art

<u>Membrane material</u>	<u>Chlorine or ozone exposure</u>	<u>Effect of oxidation</u>
Polytetrafluoroethylene		 No chemical, structural, or performance changes
Polyvinylidene fluoride		 No structural or performance changes Minor chemical changes
Polypropylene		 Severe cracking Chemical changes