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ABSTRACT

Carbon, nutrients, and heat are available in vast quantities in wastewater. However, technologies
that can effectively extract chemicals and energy are needed to realize wastewater as a
sustainable resource. Recent advances in wetting-resistant porous membranes, termed vapor-
gap membranes (VGMs), have demonstrated that they are well-suited to facile, selective, and
cost-effective recovery of volatile resources and energy from wastewater. In this review, we
examine the promise and limitations of VGM-based processes with a particular focus on the two
types of resources from wastewater: dissolved volatile compounds and low-grade heat. We begin
by discussing driving forces and selective mechanisms required for extraction of different
resources through VGMs. Then, the current status and challenges on the recovery of volatile
compounds using VGMs are presented. We also analyze the resource potential of thermal energy
in wastewater and its recovery using VGMs. Based on the membrane capabilities, process
requirements, and resource availability, we assess the feasibility of the wastewater valorization
using VGMs and identify the research needs to achieve high recovery efficiency, long-term

reliability, and scalability.
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Resource recovery; wastewater; vapor-gap membranes; volatile compounds; waste heat;

circular economy.
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1. INTRODUCTION

Wastewater treatment has become an indispensable process for public health and
environmental protection. Treatment of municipal wastewater is, however, an energy-intensive
process. Exerting approximately 25-45% of the operations and maintenance cost in wastewater
treatment facilities,” the energy consumption of wastewater treatment accounts for 3-4% of
national electricity demand in advanced countries and up to 30-40% of local municipalities’ energy
expenditure.?™ The electricity demand for biosolid management in these facilities, which currently
exerts ~20% of the treatment cost, is likely to further increase due to the ever-more stringent

regulations.

The advancement in anaerobic processes has greatly expanded the potential of wastewater
as a fuel and organic chemical source that can largely offset the energy demand and lead to
value-added chemical production.>® As one of the major chemicals, the amount of ammonia
carried in domestic wastewater (primarily ammonium) is equivalent to ~19% of the ammonia
production from the Haber-Bosch process which consumes 1-2% of global primary energy.”® In
addition to chemicals, wastewater can also be viewed as a source of valuable heat energy. The
temperature of wastewater is in general higher than the ambient, presenting a vast thermal energy
capacity. For example, wastewater effluent temperatures in England were on average 2.2 °C
higher than the receiving river temperatures and could meet 3.6% of the UK's annual heat demand
if recovered.'® Other wastewater streams, such as those from power plant discharge, contain vast
amounts of low-grade heat; for example, thermal power plants in the US discharge a total amount
of 19 billion GJ yr" of thermal energy in the form of residual heat."" Overall, the chemical and
thermal energy contained in wastewater is considered to be greater than the energy requirement

for conventional wastewater treatment processes.’

Membrane-based separation is increasingly adopted for resource recovery from wastewater
streams owing to its modularity, compactness, and process controllability.”'? In particular, vapor-
gap membranes (i.e., non-wetting porous membranes, VGMs) have been extensively explored in
recent decades, primarily for desalination™'® and CO. capture."° The remarkable
advancement in surface wettability control enabled the development of highly wetting-resistant
VGMs,?'?® and even membranes of dual functionalities such as simultaneous wetting and fouling
resistances.’>?-3? These advances offer an ample opportunity for recovering dissolved volatile
compounds [e.g., CHs, NH3, and volatile fatty acids (VFAs)] as well as capturing thermal energy

from challenging wastewater by VGMs, beyond desalination and CO: capture.
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VGM-based recovery of volatile compounds is mainly operated in the membrane contactors
(MCs). A VGM placed between a feed (containing target compounds) and a permeate stream
(receiving the compounds) forms an air gap (or pocket) in the membrane pores.*® Volatile target
compounds are then transferred across the membrane driven by a chemical potential difference
of the compounds resulting from a difference in temperature, pressure, concentration and/or
solubility between the two streams. Harnessing thermal waste heat using VGMs uses a similar
configuration, where a temperature difference drives a pressured flow of water through the

membranes which can be converted to mechanical or electrical energy.3*3°

Effective and sustainable recovery of the dissolved compounds and thermal energy by VGMs
is largely dependent on the membrane properties, as well as the chemical properties and
availabilities of the target compounds. By definition, VGMs must offer a reliable wetting resistance
against wastewater feed containing various contaminants (e.g., organic solvents and surfactants)
to maintain the air gap in the membrane pores. Recovery of certain target compounds may require
particularly high wetting resistance when a non-aqueous permeate stream of low surface tension
is implemented or the hydraulic pressure of feed/permeate streams needs to be altered.?23¢3" |n
addition, the long-term exposure of VGMs to wastewater feed requires resistance or reasonable
tolerance to membrane fouling. Meanwhile, the chemical properties of target compounds
including the volatility, solubility, and reactivity sets the type of driving forces to be employed for
their selective recovery. Further, the technical maturity of waste-to-resource conversion
processes (e.g., anaerobic processes), the complexity of post-processing of recovered
compounds for higher purity, as well as the market value and demand of the compounds largely
impact the types and availability of specific compounds in the feed and the efficacy of their
recovery process. This complexity in turn influences the determination of suitable VGMs and

process specifications.

This review aims to examine the suitability, requirement, and limitations of VGM-based
recovery with a particular focus on the two types of resources from wastewater: dissolved volatile
compounds and low-grade thermal energy. Water recovery (i.e., desalination) by a temperature-
driven vapor flow, known as membrane distillation (MD), is excluded from the focus of this review.
Interested readers may be referred to existing excellent reviews.">'*%8:39 |n this paper, first, the
working principles of resource recovery by VGMs are presented. Second, we discuss the
characteristics of representative and volatile compounds recoverable from wastewater, the
current stage of recovery process efficacy, and challenges. Third, we cover the resource potential

of thermal energy in wastewater and discuss the past progress in its recovery using VGMs. The
4
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following section identifies the research needs to overcome the challenges for achieving high
recovery efficiency, long-term reliability, and scalability. The interferences of resource production
pathways, the disparities between the available and recoverable amounts, and the necessity of

decision-making are also discussed.

2. FUNDAMENTALS

2.1 Working mechanisms

MC generally encompasses all membrane processes that bring two different phases into
contact through either selective or non-selective membranes. In this review, however, the term
MC is restricted to the process that transfers volatile or gas species across the air gap created in
VGMs. A volatile target compound is driven down the partial pressure gradient, generated by a
difference in temperature, concentration, pressure and/or solubility between the feed and
permeate streams (Figure 1). With wastewater as the feed (liquid), the permeate can be either
gas (liquid-gas MC, Figure 1c) or liquid (liquid-liquid MC, Figure 1d—f). The partial pressure of the
volatile solute compound at the feed-membrane interface can be estimated by Henry’s law (Figure
1c—e). When the solvent is the target compound, the liquid-vapor equilibrium determines its partial
pressure at the interface (Figure 1f). Likewise, the partial pressure of the compound is set low in
the permeate bulk (for liquid-gas MC) or at the permeate-membrane interface (for liquid-liquid
MC).

Liquid-gas membrane contactors. Sweep-gas MC (SGMC) and vacuum MC (VMC) are the two
main types of liquid-gas MC for volatile compound recovery (Figure 1c). In SGMC, a sweep-gas
flow (e.g., air) is introduced as a permeate stream, while vacuum is applied in VMC. The sweep-
gas pressure in SGMC is much lower than that in conventional degassing units (e.g., bubble
column, tray aerator), thus its energy consumption is relatively low. However, the resulting gas
mixture is highly diluted by the sweep gas, requiring downstream processes to concentrate the
target compound.*® Additionally, SGMC exhibits a trade-off between the recovery value (i.e.,
fraction of the recovered mass of the compound to its total mass in the feed) and the target

compound fraction in the resulting gas mixture.*'*3

Although VMC does not incur the dilution issue, the applied vacuum in the permeate induces
a considerable transmembrane flow of water vapor.*4~® This water flow has rarely been discussed

in the literature, but a recent study employed VMC for CO, removal from anaerobically treated
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139  wastewater and reported >95 v/v% of water vapor in the desorbed gas mixture.*” Owing to the
140  water vapor or other gas impurities, VMC also exhibits a similar trade-off relation to SGMC.*®
a Recovery of b Recovery of waste heat
volatile compounds
Vacuum or Energy
Collected Sweep-gas or . extraction Cold
Solvents stream
solutes
Membrane module Membrane module
Wastewater Cleaned Hot Cooled
feed wastewater  wastewater wastewater
Liquid-gas MC Liquid-liquid MC
N O Target solute =y Target solute flow !
d (® Protonated solute =3  Solvent flow
c f
Wastewater Swéep-gas or WasteWater Freshwater
(Feed) (P\g(;j:::e) Wasteﬁ!/vater O}ganic (Hot) (Cold)
| solvent ||
Solute transfer Solvent transfer
141
142 Figure 1. (a) Schematic of membrane contactor module used for recovery of target compounds. (b) Heat
143  recovery using a membrane contactor module. (c-f) Mechanisms of target molecule transfer through vapor-
144  gap membranes in membrane contactor (MC). (c) Liquid-gas MC in which sweep-gas or vacuum serves as
145 the permeate stream having the target species of a low partial pressure (or low concentration). Liquid-liquid
146  MC in which the partial pressure (or concentration) gradient in the pores is developed by (d) chemical
147  reaction (e.g., acid-base reactions) in the permeate, (e) solubility difference, or (f) temperature difference,
148  termed thermo-osmotic energy conversion (TOEC). In TOEC, the vapor pressure of the solvent is elevated
149 by the hot feed temperature and reduced by the permeate pressure. The temperature difference must be
150  sufficiently large to ensure the feed-to-permeate solvent vapor flow. The solid lines indicate the
151 concentration profiles of the target solute species (c—-e) and the temperature profile (f). The vertical dotted
152 lines indicate concentration boundary layer (c—€) or temperature boundary layer (f).
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Liquid-liquid membrane contactors. In liquid-liquid MC, a low partial pressure of the target
compound at the permeate-membrane interface is maintained by the compound’s chemical
reaction with the permeate, its high solubility, or simply its low concentration in the permeate. An
acid-base reaction is commonly employed for this purpose (Figure 1d).***° A solvent that has a
high solubility toward the target compound has also been used for the dissolved methane

%253 (Figure 1e). As

recovery from anaerobic effluent®®°! and butanol from a fermentation mixture
a kind of liquid-liquid MC, the thermo-osmotic energy conversion (TOEC) process utilizes a vapor
pressure difference of water, induced by high-temperature feed and low-temperature permeate

streams (Figure 1f).3*%

Transfer resistances and governing parameters. A volatile solute compound transfers from
the feed to the permeate by overcoming a series of mass transfer resistances. In liquid-liquid MC,
the mass flux of the compound (J in kg m? s™') may be expressed®!>+-%¢:

Pf_Pp (1)

J =M
R + Ry, + Ry,

Here, M is the molar mass of the compound (in kg mol™); Pr = C;/H; and P, = C,/H,, are
equivalent to the partial pressures (in Pa) of the compound at its equilibrium with feed and the
permeate bulk solutions, respectively; Cr and C, are the concentrations (in mol m?) in the feed
and the permeate bulk, respectively; H: and H, are Henry’s constants (in mol m= Pa™) with respect
to the feed and the permeate solutions, respectively; R*» represents the mass transfer resistance
of the compound across the membrane (in kg mol”™ m s™), determined by membrane structural
properties; R* and R*, are hydrodynamic resistances (in kg mol”' m s™) corrected by the Henry’s
constant, associated with the compound’s diffusion across its concentration boundary layers in
the feed and permeate streams, respectively. For the simplest, flat sheet configurations, R;, =
RyT [k where Ry and T are the universal gas constant (= 8.31 J mol™ K™") and temperature (in
K), respectively. The mass transfer coefficient of the membrane may be modelled as km = &Des /
d, with the diffusion coefficient of the target compound in the air gap (Def), the porosity (&), the
tortuosity (7), and the thickness (/) of the VGM. Also, R orp) = 1/ ki (or p) Hs (or p), Where various
models are available to express the mass transfer coefficient ki or p). For other membrane
configurations (e.g., tubular module, hollow fiber module), geometrical factors of the modules

must be incorporated.®’:%
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The relative magnitude of transfer resistances is influenced by the solubility of the compound,
represented by the Henry’s constant. In the case of lowly soluble gas (e.g., CH4), the membrane
resistance (R*») is relatively small, and the diffusion resistances in the boundary layers of liquid
streams (R* or R*) become more dominant. For liquid-gas MC, P, is substituted by partial

pressure of the target compound in the permeate bulk.

When the solvent (in the form of water vapor) transfers in TOEC process, there is no

resistance in the feed or permeate, and the mass flux may be expressed as:

vaap(Tf,m'Ph,f) - P;ap(Tp,m'Ph.p) (2)
Rm

J=M

The equilibrium vapor pressure at the feed (or permeate)-membrane interface, P"#: (or P*%p),
is determined by the temperature at the interface, Trm (0or Tpm), and the hydraulic pressure of the
feed, Phns (or permeate, Pnp). Different from the solute transfer, the hydrodynamic influence is
manifested in the temperature polarization, resulting in the decrease (or increase) of Tim (or Tpm)
from the bulk stream temperatures. The vapor pressure elevation by the hydraulic pressure
increase is minor compared to the temperature increase. Accordingly, the TOEC process allows
for the large pressure development in the permeate without substantial impacts on the mass flux

and utilizes the permeate pressure for downstream energy generation.

2.2 Wetting resistance

Pore wetting of VGMSs results in an unwanted loss of selectivity and productivity, eventually
leading to failure of the process. VGMs must therefore be designed to avoid pore wetting. Below,
we review pore wetting phenomena related to membrane design, operating conditions, and feed

solution characteristics.

Liquid entry pressure related to membrane properties and pressure. To maintain the air gap
and prevent pore wetting, the applied external pressure should be lower than the liquid entry
pressure (LEP). Assuming a smooth and straight pore, the Young-Laplace equation

describes®%°:

_ZﬁyLVCOSHeq (3)
a

LEP =

Where fis a correction factor for pore entrance shape (=1 for cylindrical pore), iv is the surface

tension of the liquid and vapor interface, 6.4 is the intrinsic contact angle at equilibrium, and a is

8
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membrane pore radius. While most resource recovery applications do not have extremely high
pressures in feed or permeate streams, a hydraulic pressure can inevitably form to maintain a
crossflow. Furthermore, in TOEC, high pressures are required for system operation. To prevent
wetting, membranes should be designed with pores that are sufficiently small and hydrophobic to
enable a high LEP.

Pore wetting due to low surface tensions liquids, surfactants, and fouling. In addition to
hydraulic pressure, pore wetting can be caused by low surface tension liquids, surfactants, and
foulants. This type of fouling is especially common in wastewater resource recovery applications
since feed streams often contain industrial organic solvents, wastes from oil processing, food
concentrates, and biological organic matter. With high surface tension liquids (e.g., water), the
unwetted state is thermodynamically favorable as long as a membrane material is hydrophobic
(low surface energy) and the criteria in Equation 3 is met. However, the unwetted state with the
hydrophobic material is no longer stable when the surface tension of a liquid is low. With low
surface tension feed solutions, forming the solid-liquid interface becomes more energetically
favorable than the solid-air interface, and thus, the hydrophobic pores will be fully wet with low

surface tension liquids.?*®’

Introducing re-entrant structures can enable to maintain meta-stable states before reaching
the fully wetted global equilibrium state, allowing unwetted pores to be sustained even with low
surface tension liquids and surfactants (Figure 2). Re-entrant structures introduce an energetic
penalty for expanding the liquid-vapor interface. This energetically unfavorable phenomenon can
outperform the favorable wetting progress (growth of solid-liquid interface), and thus, an energy
barrier occurs for the transition from the unwetted state to the wetted state. Consequently,
membranes that have re-entrant structure, when coupled with a low surface energy, can enable
robust omniphobicity that resists wetting by water, low surface tension liquids, and
surfactants.®23 Fibrous mat or microporous substrates feature typical re-entrant structures in
VGMs.
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Figure 2. Schematic diagram of the effect of hydrophobic membrane structure on wetting. Hydrophobic
membranes with cylindrical pores and hydrophobic nanofiber membranes with re-entrant structures are

shown. Blue represents a high surface tension liquid, and green represents a low surface tension liquid.

3. RECOVERY OF VOLATILE COMPOUNDS

Anaerobic processes are widely applied to treat various wastewaters due to the significantly
lower energy requirement than aerobic processes, the low amount of produced sludge, as well
as generation of byproducts as potential resources. While biogas (or biomethane) is the most
common byproduct of the biological breakdown of carbonaceous compounds, nitrogenous
compounds end up producing ammonia during anaerobic treatment. Several other valuable
compounds such as volatile fatty acids, nitrous oxide, and biohydrogen are also produced during
the complex microbial anaerobic processes. All of these byproducts represent potential resources
that can be harvested using VGMs.

3.1 Methane

In the US, approximately 1 billion kWh of electricity was produced by biogas from waste
treatment facilities in 2021.%* In Canada, injecting biomethane into the natural gas grid is
increasingly practiced, and the Canadian Gas Association aims to replace 10% of natural gas
supply with biomethane by 2030.%° Likewise, China targets the annual biogas production
exceeding 30 x 10%” m® by 2030, which can reduce ~50 million tons of annual coal consumption.®®
The recent demonstrations of upflow anaerobic sludge blanket (UASB) reactors and anaerobic
membrane bioreactors (AnMBRs) at ambient or even lower temperatures have shown great

promise in converting the large fraction of dissolved organics into methane®”®® However, the
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higher gas solubility at lower temperature and supersaturation renders significant fractions of
produced methane to exist as dissolved gas (up to 88% at 25 °C) in the anaerobic effluent,

resulting in its loss to the environment upon the effluent discharge.>®°

Dissolved methane recovery by VGMs has been explored mainly via Liquid-gas MCs. Both
SGMC and VMC have shown high recovery values of methane (>79%-98.9%) from synthetic
wastewater and real anaerobic effluents over a wide temperature range (12.7-31.5 °C) (Figure 3).
Nevertheless, the reported methane fluxes and recovery values vary significantly; in particular,
the initial methane flux differs in orders of magnitude, revealing the combined impact on methane
flux or recovery by a number of variables such as feed flow velocity, gas flow velocity (or vacuum
pressure), and membrane wetting resistance. Still, the overall trend shows a higher methane flux
in VMC than in SGMC, suggested by the lower hydraulic retention time to achieve >80% methane
recovery. An operation mode also impacts the methane recovery value in hollow fiber modules.
The feed flowing through the lumen channel leads to a higher mass transfer coefficient but can
cause a clogging of the lumen channel when treating an effluent containing suspended solids of
high concentrations (e.g., UASB effluent). Conversely, a flow through the shell side of the module

can prevent fiber clogging but lead to a slower methane transfer.
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Figure 3. Experimental data of methane recovery, methane flux, and hydraulic retention time for VGM-
employed MCs in three configurations (SGMC, VMC, and a hybrid of SGMC and VMC).*>*37%-"5 Suymmary
is provided in Table S1, supplementary material. Box chart is constructed using data from all three MC

configurations.

Liquid-liquid MCs (Figure 1e) have been investigated only recently to extract dissolved
methane by solubility difference in disparate solvents.**® In these studies, a highly methane
soluble, non-volatile, non-polar organic solvent was used as the permeate stream and an
omniphobic VGM that is wetting-resistant to the permeate was employed. Methane recovery
values of 290% were obtained over a psychrophilic to mesophilic temperature range (15 — 35 °C).
Importantly, a transmembrane water vapor flow was effectively blocked, potentially lowering the
energy requirement compared to VMC (liquid-gas MC) by obviating a dehydration process. It also

minimizes a convective flow of foulants toward the membrane surface and alleviates fouling.

A highly diluted biogas (<1 v/v% methane) generated in SGMC is hardly usable and its
methane content needs to be increased, as a combined heat and power (CHP) system requires
at least 30 v/v% methane.”® The inevitable trade-off between methane recovery value and
methane mass fraction in biogas is a challenging constraint. In the literature, biogas consisting of
>30 v/v% methane was acquired only when a methane recovery value was less than 80%.** The
dilution of biogas can be avoided in VMC. However, the water vapor flux across the membrane
becomes significant (resembling a vacuum membrane distillation** or isothermal membrane
evaporator’’), and dehydration of the biogas will compromise the energy balance of the entire
recovery process. Liquid-liquid MC using a non-polar solvent as a permeate solution minimizes
the water content in the acquired biogas. However, the re-dissolved methane in the permeate
must be released to obtain methane as a gas product and regenerate the permeate. The technical
feasibility of the downstream degassing has yet to be validated. Other volatile species (e.g., CO-,
H>S, NH3 and siloxane) also transfer across the VGM. In particular, the concentration of dissolved
CO. in anaerobic effluent at pH 6.5-7.0 is generally much higher than that of dissolved methane.?
Therefore, anaerobic effluent of pH >8 is desired to lower the CO; fraction in recovered biogas.®®
H>S content in the anaerobic effluent is generally low. However, its high solubility in water will
likely make the H>S concentration nearly equivalent to the dissolved methane. When used for

combustion, biogas containing H>S can cause corrosion of combustion engine components.
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3.2 Ammonia

Ammonia is widely used for fertilizer, ammunition, and chemical production, and is considered
as a promising hydrogen carrier for fuel cell vehicles.”®’® Conventional wastewater treatment
facilities are directed to the conversion and removal of ammonia compounds (NHs/NH4") as
dinitrogen (N2) commonly via the nitrification-denitrification or the more recently proposed
Annamox process.®8!' For ammonia compound recovery, struvite precipitation to produce the
slow-release fertilizer has been pursued with some commercial success. For instance, Ostara
Pearl™>s struvite reactors are operated in over 18 wastewater treatment plants across North
America and Europe.®?% However, the NH," capturing capacity is limited by stoichiometry, as the

phosphorus concentration in wastewater is typically much lower than NH,*.8*

86 Adsorption of
NH." ions by ion-exchange resins®-% has shown significant NH4* recovery, but suffers from the
slow diffusion of NH4* ions and the need for regenerant chemicals in large quantities.®® Microbial
fuel cells®*? have also been explored for simultaneous ammonia and energy recovery, albeit with
low NHs" recovery.®®* Ammonia acquired by air-stripping generally exists in unusably low

concentration.*%

Employing VGMs, both liquid-gas MCs and liquid-liquid MCs rely on the pH-dependent
ammonia species conversion.®” At a sufficiently high pH, with pKa of 9.3, ammonia primarily exists
as a dissolved gas species, and can be extracted across the VGM. Liquid fraction of both manure
and anaerobically digested waste/sludge are suitable sources, as they not only have high
concentration of NHa/NH4" but also of relatively high pH (7.0-8.5).99%° To further increase the

pH, alkali chemicals such as caustic soda are commonly added to the feed.

VMC has shown >70 % NHzs recoveries at pH of >7 and a wide range of temperatures (40-75
°C) for various initial ammonia concentrations in feed wastewater (100-1500 mg NHz-N L).100-104
The low selective nature of the VMC process is somewhat advantageous to NHs recovery in the
presence of dissolved CO; in the feed.'® The removal of CO, from the feed elevates pH, resulting
in an increased NH; flux. SGMC tends to be less prone to membrane wetting than VMC.'® The
overall reported NHs recovery using SGMC varies from 15 % at feed pH of ~8-9 and temperature
of 35°C'% to >97% at pH 11.5 and temperature of 75 °C."* Importantly, ammonia in the product
gas from both VMC and SGMC is heavily diluted by a carrier gas (in SGMC) or water vapor/other

extracted gases (in VMC), impractical for direct use.>*

Most liquid-liquid MCs for NH3 recovery employ an acidic solvent (e.g., sulfuric, nitric, and

acetic acids) as the permeate. The reaction of the transferred NHs with the acid at the membrane-
13
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permeate interface converts the gaseous NH3; to NH4*, which subsequently diminishes the partial
pressure of ammonia in the VGM pore at the interface (Figure 1d) and drives the ammonia transfer
across the pore. The ammonium salts in the permeate can be used as fertilizers.'”” A high NH;

recovery (up to 99%) has been achieved from various types of wastewater as the feed, including

108-110 98,99,112

municipal wastewater, radioactive wastewater,'"" leachate,'® swine manure, and

human urine'3-"15,

Figure 4 presents the initial ammonia concentrations and temperatures tested in the literature
employing liquid-liquid MC and VMC, and the estimated mass transfer coefficient. Over the wide
range of initial feed ammonia concentrations (50-25,000 mg NHz-N L"), the mass transfer
coefficient (and therefore ammonia flux) hardly shows any correlations with the initial
concentration. Conversely, a higher feed temperature generally results in a higher mass transfer
coefficient. For example, with the permeate at ambient temperature, the average mass transfer
coefficient (5.35 x 10° m s™) with the feed at 50 °C (study f, in Figure 4) was nearly four times
larger than that (1.4 x 10°m s™) at 32 °C (study e, in Figure 4). The increased diffusivity of the
gas as well as the reduced gas solubility at higher temperature facilitates the extraction of
ammonia.'® However, elevating the feed temperature not only requires thermal energy, but also

generates a feed-to-permeate water vapor flow. This flow dilutes the permeate'®

and requires
post-treatment of the solution to obtain a concentrated product. These limitations can be
circumvented by operating liquid-liquid MCs at isothermal conditions. However, even at the same
bulk temperature of feed and permeate solutions, a reverse water flow from the permeate to the
feed may occur, owing to the exothermic ammonia-acid reaction at the membrane-permeate
interface and the consequent temperature increase at the interface.""” This reverse water flow
can be advantageous to produce a more concentrated permeate solution, at the cost of a reduced

ammonia flux due to the dilution of the feed by water.
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Figure 4. Effect of feed conditions on ammonia recovery performance using VGMs (summarized in Table
S2). All shown data are from liquid-liquid MC, employing an acid as permeate.5+97.103,104111,118-120 Thg |gft
column indicates Total ammonia nitrogen (TAN) concentrations of the feed, representing TAN in various
wastewaters (50-25,000 mg L™"). The center column indicates tested feed temperatures. The right column
indicates estimated mass transfer coefficients of NHs. Error bars represent the maximum deviation from the
average of each parameter (feed concentration, temperature, and mass transfer coefficient) reported in

each study.

Several issues exist before achieving an economically feasible recovery.'® Ammonia-rich
wastewater streams are essential and a high pH of the feed needs to be maintained.
Electrochemical techniques can potentially replace the chemical addition to maintain a high feed
pH, thereby reducing the chemical cost, but fouling control remains a challenge.'®' In addition,
the use of excess acid in the permeate solution yields a highly acidic (pH<4) ammonium salt
solution, unusable for direct land application as fertilizer.'? Downstream processes such as

precipitation or electrochemical separation will then be required.'?®'24

3.3 Volatile fatty acids (VFASs)

VFAs are carboxylic acids containing six or fewer carbon atoms and are primary intermediate

125-127 Conventional

products of anaerobic digestion or fermentation of organic-rich wastes.
anaerobic digestion mostly recovers energy compounds in the form of methane. However, the
recent interest in organic acid recovery promotes increased VFA production by eliminating the
methane-forming phase in the anaerobic digestion or fermentation process.'? VFAs are excellent

feedstock in the biorefinery industry for producing value-added chemicals such as alcohols,
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esters, aldehydes, ketones, and olefins, as well as for biofuels and bioplastics.'?"'?® VFAs

can also be used as a carbon source for biological nitrogen/phosphorus removal processes

treating wastewater, and as a raw material for biological hydrogen production.'?7:128.130

Among VFAs, acetic acid’s global demand was 12.1 Mt in 2014, and its market revenue is
forecasted to reach $11.4 billion by 2024."' Butyric acid’s market size is estimated to be USD
405 million in 202732 for its demand in the cosmetic, food, and pharmaceutical industries.®313*
At a growth rate of 7.8%—-9.6%,'® propionic acid market is projected to reach USD 2.9 billion by
2026." In the Netherlands, the market supply potential of VFAs by their recovery from
wastewater was estimated to be 1% for acetate, 17% for propionate, and 6% for butyrate of the

national demand.”

Available technologies for VFA recovery include gas stripping with absorption,’" %

139,140 134,141

adsorption, electrodialysis, solvent extraction.'?'** Adsorption and electrodialysis
generally incur high cost and energy demand, while solvent extraction requires further process
for extractant regeneration. The volatile nature of VFAs renders VGMs well-suited for VFA
recovery from wastewater,'** in particular via liquid-liquid MC with a high pH permeate. Analogous
to ammonia recovery, the deprotonation of VFAs upon their transfer to the permeate side
generates a low partial pressure of VFAs in the membrane pore, driving the feed-to-permeate
VFA transfer. Recovery of several VFAs from synthetic solutions and a fermented organic solid
waste leachate has been demonstrated, where valeric acid showed the highest selectivity.'?® It
was also demonstrated that the recovery efficiencies of VFAs from their mixtures were
approximately the same for acetic, propionic, butyric, valeric, and caproic acids.'?” A liquid-liquid
MC incorporating temperature difference as the driving force (analogous to membrane distillation
for desalination) was also shown to recover acetic acid from the fermentation broth,'** although

the water vapor transfer caused the dilution of the permeate.

Similar to ammonia recovery, VFA recovery using VGMs requires a pH adjustment of the feed
below ~4 to ensure VFAs in the volatile (protonated) form.'?"'28 Such acidification of feed
wastewater along with the base addition (e.g., NaOH) in the permeate stream adds chemical cost.
To minimize the chemical cost, an electrically conductive VGM has recently been attempted. The
conductive layer of the membrane serves as an anode, producing protons in the vicinity of the
VGM. The locally increased pH protonated VFAs and allowed their transfer across the VGM.' A
challenge outside the separation process stems from the biological production of VFAs, as the

mixed culture fermentation results in a wide spectrum of end products. In particular, carbohydrate
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fermentation leads to various products including VFAs and larger fatty acids, alcohols, carbon
dioxide, and hydrogen.”'® Attaining optimal operating conditions for the targeted microbial
community must be first achieved to ensure increased VFA production, prior to a VFA recovery
using VGMs.

3.4 Other potential resources

Nitrous oxide. Nitrous oxide (N2O) is produced as a byproduct of the denitrification process
during wastewater treatment.''*® As a potent greenhouse gas, N2O emissions can contribute
up to 78% of the carbon footprint of wastewater treatment facilities.*'*® However, N,O is a highly
energetic oxidant, which boosts combustion reactions and is therefore used to supercharge the
engines of high-performance vehicles and in hybrid rockets.'' Recovering N2O has emerged as
a promising pathway for simultaneously removing nutrients and producing a renewable energy
source from wastewater, particularly by the coupled aerobic-anoxic nitrous decomposition
operation (CANDO)."2 This process entails (i) partial nitrification of ammonium to nitrites, and (ii)
partial anoxic denitrification of nitrites to N.O. Thermal energy can be produced by its conversion
to nitrogen via catalytic decomposition of N2O to N2 and O.. Also, the N2O can be used to oxidize
biogas (CHa), producing more heat than biogas oxidation with oxygen.'®*'>* Compared to the
conventional biological nitrogen removal process, CANDO requires less organic addition for
nitrogen removal, demands less oxygen for aeration, produces less biomass, and allows for
increased energy production through N2O recovery.'?'** However, N,O is highly soluble (~17x
than CH,), making the extraction of N2O from the mixed liquor slow. Although gas stripping is
commonly practiced for NoO recovery or removal, the heavily diluted N2O is not adequate for

combustion.’®®

VGMs are suitable to recover N,O gas produced from the CANDO process.'*® WeilRbach et
al. demonstrated 77% recovery efficiency of NoO harvesting from aqueous N2O solution using an
SGMC process, along with potential recovery efficiency of up to 90%."*® VGMs in a hollow fiber

module were also recently applied to separate N2O from its mixture with air.’

While the high solubility of N2O in water slows down the recovery process, large membrane
areas available in hollow fiber module can readily compensate the recovery rate. However, as the
energy potential is relatively low, high-strength wastewater would be required as a proper source
of N2O. Besides, the complex operation and the instability of N.O production through the CANDO

process hinder large scale implementation.' A stable coupling of nitrous denitritation and
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nitritation must be realized. Also, as the recovery of NoO competes with ammonia recovery, the

economic feasibility of harvesting either chemical needs to be assessed.

Biohydrogen (BioHz). Hydrogen can be biologically produced from wastewater via a two-step
anaerobic process: hydrolysis and acidogenic fermentation.” BioH. production can be increased

8

by inhibiting methanogenesis,'® or incorporating in-situ gas extraction using AnMBR."® In

addition to powering fuel cells,'® BioH. can be used on-site as an electron donor for reducing

nitrate, perchlorate, and selenate, and for detoxifying a wide range of water pollutants.'®’

VMC was recently investigated for BioH, recovery in a microbial electrolysis cell.’®® H,
produced at the cathode was extracted across a PTFE-made VGM, which deterred
methanogenesis and consequently allowed for H: yield 3-4 times higher than otherwise. In
another study, a composite VGM with encapsulated acetogenic bacteria was fabricated to
simultaneously generate and capture BioH. during the treatment process of a high strength
wastewater. This VGM exhibited nearly complete H: capture efficiency (up to 99%) from the
wastewater. The Ha yield (up to 48.43 + 9.41 mL H, g™" hexose) was comparable to the estimated

values from anaerobic digestion sludge as seed cultures (45-92 mL Hz g”' hexose at 22 °C)."®

The major challenge of BioH. process is the low yield,” as only ~15% of the energy available
from the organic source can be recovered as hydrogen from biomass.'®® In addition, producing
BioH- requires suppression of methanogens, inhibiting methane production. As biogas harvesting
from anaerobic digesters is a mature process, it is unlikely that BioH. production will replace the
methane recovery process. As an alternative approach, co-production of hydrogen and methane
via two-stage anaerobic digestion has been investigated.'® BioH, was first produced in a dark
fermenter. Subsequently, the liquid effluent consisting of mainly VFAs and alcohols was
introduced into a methanogenic biofilm reactor as a preferred substrate. The total estimated
energy recovery in the form of hydrogen was 28% of the initial COD, while the remainder was in

the form of methane.

4. RECOVERY OF WASTE HEAT

4.1 Heat energy recovery using vapor-gap membranes

Low-grade heat at temperatures below 100 °C is often found in exhaust gases, waste liquid

streams, and cooling water but is difficult to use in practice.'®®'% Power plants in the US discharge
18
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a total amount of 18 billion GJ yr'. Geothermal wells and solar collectors also have the potential
to deliver huge quantities of heat. State-of-the-art technologies for converting heat to electricity
are limited in their ability to efficiently use low-grade heat sources since the small temperature
difference does not provide a sufficient driving force for efficient power generation.'®®-'®® Common
heat engines rely on the steam Rankine cycle which conventionally requires temperatures above
550 °C, and variations of the Rankine cycle that use organic working fluids typically run at
temperatures of >100 °C."%*'? Thermo-electric generators have been developed over a decade
to directly convert waste heat to electrical power, yet low efficiencies and high cost of the current
materials have restricted their implementation for large-scale power generation.'®”'"" Metal
complexation reactions and electrochemical redox potentials created more opportunities for low-
grade heat recovery, yet the efficiencies of these devices have been lower than 2% of the Carnot

efficiency.’”?

VGMs were recently used to recover energy from low-grade heat.®* Power generation is
accomplished by using a temperature difference across a VGM to produce a partial vapor
pressure difference that drives the working fluid across the membrane from a feed reservoir at
ambient pressure to a pressurized permeate reservoir (Figure 1f). This flow increases liquid
volume in a pressurized tank, and this pressurized liquid flow can be converted to electricity by
depressurizing the flow in a hydro-turbine. Since the process relies on a vapor pressure
difference, low temperature differences can be utilized so long as they generate sufficient driving
force for water permeation. The process of converting low-grade heat to electricity has been called
both thermo-osmotic energy conversion (TOEC) or pressure-retarded membrane distillation

(PRMD) in the literature."” Throughout this review, we use the TOEC terminology.

Waste heat recovery systems using VGMs can be operated in both closed- and open-loop
systems, both of which have potential advantages over conventional technologies.**'"* While any
working fluid can be used in principle, most research has focused on utilizing water as a working
fluid for the process. The relatively high surface tension of water (72 mN m™ at 25 °C) and the
large availability of water sources make it well-suited for TOEC. Closed-loop processes circulate
a working fluid within a system to generate power from an available temperature difference
(Figure 5a). Closed-loop systems can potentially outcompete other systems for low-grade heat
power generation since they can operate with low temperature heat sources (less than 100 °C),
tolerate fluctuations in the heat source temperature, and because no toxic chemicals or materials

are required for operation.'® Furthermore, TOEC systems can utilize existing engineered
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components including pressure-tolerant membrane modules, pressure exchangers, and heat
exchangers. Open-loop systems share many of the advantages of closed-processes but can
operate such that both energy and water are recovered from the feed stream (Figure 5b). The
open-loop system enables wastewater to be used as the feed stream. Non-volatile contaminants
are rejected from the feed as the water passes through the membrane, producing purified

permeate water.

Feed

]
Heat
source
-

iA
¥

Figure 5. Thermo-osmotic energy conversion using (a) closed-loop and (b) open-loop configurations.

Darker red and blue indicates hotter and colder working fluids, respectively.

4.2 Achievable power output and energy conversion efficiency

The competitiveness of VGM processes with existing power generation systems will ultimately
be determined by their ability to extract energy more effectively than established alternatives.
Studies have predominantly focused on two metrics to describe the performance of membrane-
based power generation systems: power density and energy efficiency.'”® Power density is
defined as the amount of power that can be extracted per area of the membrane. High power
densities decrease the cost in the system by enabling higher power production with a smaller
membrane area. The other key metric in power generation is the heat-to-electricity energy
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conversion efficiency, which can simply be defined by the work output of the process divided by
the thermal energy input. The efficiency represents how effectively the available heat is converted

to useful work. The upper limit of efficiency is defined by the Carnot efficiency.

Research efforts in low-grade heat power generation have largely focused on improving the
power density achievable in small-scale membrane testing (Figure 6a).">"""17® |n |aboratory
settings, the power density achievable is typically calculated as the product of the water flux and
the pressure generated across the membrane. Therefore, membranes that can achieve high
water fluxes and high operating pressures are considered desirable. Equation 3 shows that
obtaining a high LEP requires (1) decreasing the pore size of the membrane and (2) increasing
the hydrophobicity. Figure 6 summarizes the power densities and LEPs reached in the literature

thus far. These data show that increasing the operating pressure generally leads to higher power

densities.
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Figure 6. (a) Measured experimental power density of TOEC in the literature shown as a function of the
operating pressure.3*173.184.185174.177-183 (1) Estimated heat-to-electricity energy conversion efficiency of
thermo-osmotic energy conversion (TOEC), thermoelectrics (TE), and the organic Rankine cycle as a
function of the temperature difference with a heat sink at 20 °C.167.170.194-198,186-193 The Carnot efficiency,

which represents the theoretical upper bound, is also shown.

In addition to a high operating pressure, high water fluxes are also critical to maximizing the
achievable power density. Membrane properties must be tailored to achieve high water fluxes.'””
Generally, membranes with high porosity and low tortuosity are favorable for increased vapor

permeability. Membranes must also be thermally insulating to prevent detrimental heat transfer
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across the membrane. Heat transfer results in temperature polarization that decreases the
temperature difference across the membrane, ultimately reducing the flux and efficiency. The
membrane thickness must therefore be optimized to be thin enough to maximize the water flux
while also being thick enough to provide thermal insulation; simulation studies have found that an
optimum membrane thickness is around 10-30 pm.*® As the membrane resistance is dominated
by diffusive barriers in TOEC (Equation 2), larger pore sizes (greater than 200 nm) are desired
for high water fluxes. However, the benefit of increasing pore size to increase the vapor
permeability must be balanced against the need for small pore sizes to maximize the LEP of the
membrane (Equation 3). An ideal structure for TOEC is, therefore, an asymmetric membrane with
two layers: a thin skin layer with a small pore size (less than 50 nm) to maximize LEP and a thicker

support layer with a larger pore size to maximize the vapor permeability.®®

Heat-to-electricity energy conversion efficiency largely depends on how heat is managed in
the system.3*'® Employing a heat exchanger is an effective strategy to recover the heat of
vaporization and conductive heat transferred across the membrane. Under a hydraulic pressure
of 50 bar, 60 °C heat source, and 20 °C heat sink, TOEC systems have been simulated to obtain
peak energy conversion efficiency of 3.1% (34% of Carnot limit) with ideal heat recovery by heat
exchanger (Figure 6b).*° At the peak efficiency, the system has a low power density (1 W m?),
thus, some energy efficiency needs to be sacrificed for high power density. Parasitic loads in the
system such as the energy used for pumping also decline net energy output. In addition,
minimizing temperature difference across the module and increasing hydraulic pressure
difference are both necessary to improve the conversion efficiency. TOEC system has a higher
projected energy efficiency than thermoelectric devices operating at low temperatures and can

operate at lower temperatures than the more efficient organic Rankine cycle."”

4.3 Prospects and challenges for efficient power generation

Several challenges in terms of membrane design and heat management must be addressed
for the closed-loop TOEC system to operate effectively. State-of-the-art commercial hydrophobic
VGMs typically wet at applied pressure below 5 bar due to their relatively large pore sizes and
pore size distributions.* Since power density and thermal efficiency both rely on high operating
pressures, the low pressure tolerance limits process performance. Novel membranes with small,
uniform pores and high liquid entry pressures need to be further developed. Low vapor
permeability of the membranes can be enhanced by using an asymmetric design, increasing

porosity, and lowering tortuosity. Recent advances in high flux and pressure tolerant materials for
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membrane distillation indicate promise in this area.?® In addition, novel modification techniques
are desired to lower surface energy, tailor membrane surface with anti-wettability, and improve
its mechanical strength. Innovative heat recovery methods with heat exchangers or stacked

modules are suggested to minimize heat losses and achieve high energy efficiency.'”

Open-loop TOEC systems face similar challenges as closed-loop systems, but the use of
saline water in feed reservoirs poses new challenges related to scaling and fouling.'® Pre-
treatment processes such as coagulation, filtration, and acidification can be integrated with TOEC
system to remove fouling and scaling precursors. Antifouling coatings and specially designed

membrane modules can also play a role in minimizing fouling.

5. RESEARCH NEEDS

5.1 Membrane wetting

Wetting is a universal challenge for processes using VGMs. The air layer created in the VGM
can be compromised by pore wetting, severely reducing the selectivity of the system. VGMs for
chemical and heat recovery experience harsh conditions that increase wetting propensity, such
as exposure to low surface tension liquids (e.g., liquid-liquid MC for CHs recovery) or high
pressure (e.g., heat recovery in TOEC). In comparison, VGMs for desalination through MD treat
aqueous streams at near-ambient pressure. The principles of wetting were explained in Section

2.2. Below, we discuss the key mechanisms of pore wetting and possible mitigation strategies.

Wetting from low surface tension liquids and surfactants is of particular importance in resource
recovery processes. Wastewater from a variety of sources contains low surface tension liquids
and surfactants that are used to disperse oils or as cleaning agents.?®' Low surface tension liquids
are known to cause instantaneous pore wetting.?* Surfactants, on the other hand, have been
shown to induce progressive pore wetting where surfactants decrease the surface tension of the
feed solution and the wetting front advances through the pore.?® In surfactant-induced wetting,
the kinetics of pore wetting are determined by the rate at which surfactants can be transported to

the wetting frontier.

To prevent pore wetting from surfactants and low surface tension liquids, pretreatment can be
used to remove chemicals in the feed solution that cause pore wetting.?>® Pretreatment to remove
surfactants can be carried out using traditional water treatment processes such as

microfiltration/ultrafiltration, coagulation, and sand filtration. Such pretreatment is already
23
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employed in other membrane-based processes (e.g., reverse osmosis) but is considered
undesirable since it adds to the cost and footprint of a resource recovery. However, continued
research is needed to identify the cost-effectiveness of pretreatment for mitigating pore wetting in

specific applications.

VGM modification using omniphobic coatings is also a promising method that has already
shown success in preventing pore wetting for a variety of applications.?**2% As was discussed in
Section 2.2, surface omniphobicity can be attained via combining (1) a low surface energy and
(2) a re-entrant structure.?* Fabricating VGMs with robust omniphobic coatings has been the
subject of active research in the membrane distillation field, and a variety of approaches have
been used including nanoparticle coating and nanotexturing. The use of re-entrant structures can,
in theory, prevent wetting with liquid of surface tensions down to 21 mN m™.2?2 Experiments in the
literature have been able to operate with low surface tension liquids including ethylene glycol,
mineral oil, ethanol, dodecane and surfactants such as sodium dodecy! sulfate without observing

pore wetting.?224210

Long-term loss in wetting resistance of VGMs remains a challenge. Chemical and physical
changes during long-term operation can decrease the hydrophobicity of membranes.?!" Surface
hydrophilization by the addition of polar functional group and morphology changes have been
observed, resulting in decreases in the observed contact angle of water on the membrane
surface.?'?2"® However, long-term loss of wetting resistance has been poorly studied thus far in
the literature, and more work is required to identify material properties that allow for long-term

robustness and maintenance strategies that prevent long-term pore wetting.?'
5.2 Membrane fouling

When exposed to suspended solids and organic compounds, VGMs are inevitably prone to
fouling. The blockage of the membrane surface and pores results in a dramatic reduction of the
flux of the target compound.®” For instance, experiments of dissolved methane recovery from
AnMBR and UASB effluent showed a 60-90% reduction of CH,4 flux within 40h of operation.?'®
Membrane fouling can even induce pore wetting, potentially failing the recovery process.?*216:217
The hydrophobic-hydrophobic attraction between the membrane and the organic compounds

accelerates organic fouling.

Adding a hydrophilic layer onto VGMs (often called Janus membranes) has been investigated
to reduce the foulant-membrane attraction.'®?42721821% janus membrane fabrication can be

achieved via several techniques such as dip-coating, plasma treatment, surface initiated radical-
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polymerization, and initiated chemical vapor deposition'® where a hydrophilic antifouling layer is
grafted onto the wetting-resistant substrates. The tested hydrophilic materials are mainly

25,222

polymeric or nanomaterials, including polyethylene glycol,??*??" hydrogels, polydopamine,??*-

27,227,228 229,230 231-233

226 zwitterionic polymers, graphene oxide, and metal-oxide nanoparticles.

While effective in slowing down the fouling and fouling-induced wetting, Janus membranes
made of conventional hydrophobic substrate may still be susceptible to pore wetting when
exposed to low surface tension liquids or surfactants. As discussed in Section 5.1, omniphobic
membrane substrates maximize the benefit of the Janus membranes.?'® Nevertheless, the
opposite wettabilities of the antifouling hydrophilic layer and the wetting-resistant substrate bear
a potential risk of delamination in long-term MC operation.?** Additionally, the added transfer
resistance may slow down the recovery rate.?”?'® Future research needs to be directed to
developing a stable Janus membrane without delamination, assessing its fouling resistance in a
long-term operation, and optimizing the fouling-resistant layer thickness without compromising
the flux of target compounds. As most studies on Janus membranes focus on membrane
distillation for desalination, Janus membrane performance for recovering non-solvent resources

also needs to be investigated.

In addition to engineering surface hydrophilicity, fouling mitigation has been attempted
through the control of operating conditions. The impact of transmembrane water vapor flow on
the fouling of vapor-gap membranes is noteworthy. Recent studies on dissolved methane and
ammonia recovery showed that an absence of transmembrane vapor flows leads to remarkably
fouling-free membrane surfaces, as convective flows that carry foulants toward the feed-
membrane interface are obviated (Figure 7).632*° These observations render liquid-liquid MCs in
an isothermal mode quite attractive in fouling control, at the cost of reduced flux compared to the
non-isothermal mode. It should be noted that in the TOEC process transmembrane water vapor
flow is inevitable and desirable, like in the MD desalination process. In that case, pretreatment of
feed solution for foulant removal and surface-engineering to prevent fouling of the VGMs will be

beneficial.
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Figure 7. VGM fouling and mitigation mechanisms (a) Fouling occurring in the presence of organic foulants
in feed water on a hydrophobic/omniphobic membrane surface. Two mechanisms for fouling tolerance of
VGMs in MCs: (b) hydrophilic surface modification or coating on the membrane (Janus membrane) to
impede the attachment of organic foulants, and (c) minimizing transmembrane water vapor flow under

isothermal condition, obviating a convective transfer of organic foulants towards the membrane surface.

5.3. Recoverable resource quantities and qualities

Despite the effective demonstration of VGMs for volatile compound recovery, the biological
production of target compounds in the wastewater interferes with and/or excludes other
compounds in complex biological processes (Figure 8). For instance, anaerobic digestion aimed
at CH4 production from the carbonaceous organic matter also produces NHs from the biological
breakdown of nitrogenous compounds. However, the NH3 concentration needs to be maintained
low due to its inhibitory effect on CH4 production.?® Similarly, CH4 production must be suppressed

for VFA and H production in an anaerobic digester,?®’

as hydrogen-producing microbes or
acidogens need to dominate methanogens. Further, undissociated VFA molecules inhibit Ha
production.?®” Likewise, the production of N2O via the CANDO process excludes NH3 production.
Therefore, the biological pathway taken in wastewater treatment determines the specific end
products, and VGMs in a suitable MC configuration for the target resource will need to be
implemented. On the other hand, thermal energy in wastewater can be extracted via TOEC
independently from the dissolved chemical compounds, but higher temperature effluent is

favorable for energy recovery efficiency.>*
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Figure 9. Reported amounts of resources recovered from a unit volume of wastewater using VGMs and
their average market price per volume (liquid) based on the literature. The error bars in the market price

indicate the lowest and highest values. The full list of references and detailed information on the reported

recovery efficiency and feed wastewater concentration valugs36:42.75.97.103,104,110,111,116,118-

120,43,127,128,215.238,239.51.63.70-74 g10ng with the market price data?4%-2%2 are provided in supplementary

material, Table S4.

The market potential and recoverable amounts are critical factors in determining the target
resources and the recovery processes.?*® Municipal wastewater can potentially supplement up to
14% of the nitrogen fertilizer in Flanders, Belgium, and 1% of the energy market in the Netherlands
by CH. recovery. An estimated total global market demand for acetic, butyric and propionic acids
for the year 2020 was 18.5 Mt."*® VFAs recovered from municipal wastewater can satisfy a market
potential of up to 17% in the Netherlands.” Figure 9 shows recovered amounts of different
dissolved compounds per given volume of wastewater using VGMs in the literature. The
recovered methane is quite low in amount, as the methane solubility in water is low and dissolved
methane accounts for a minor fraction compared to the biogas in the headspace of anaerobic
digestors.?** However, anaerobic treatment of low strength wastewater (e.g., municipal

wastewater) at ambient temperature is an active area of research. Such processes will not only
28
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reduce the energy requirement for heating significantly, but also increase the total amount of
recoverable methane due to its supersaturation and large volume of wastewater.>*¢6924° VFAs
generally have a higher market price than methane, and high yield VFA production requires
suppressed methanogenesis.?*® However, co-production of VFAs and biogas is also possible via
continuous extraction of excess VFAs, while allowing for stable biogas production in anaerobic

digestors.?’

Ammonia in domestic wastewater, expected to increase to >35 Mt in its amount by the year
2050,° can be a supplementary source for ammonia production. However, the technologically
mature Haber-Bosch process already produces ammonia at 0.3-0.5 USD L™, assuming its
transportation as liquid.>?*® Additionally, feed water of high ammonia concentration (>2000-3000
mg NH4*-N L™ is needed for profitable recovery processes.® Nevertheless, domestic wastewater
and industrial wastewater of higher ammonia concentrations can serve as a more stable and
sustainable source in comparison to the Haber-Bosch process, which largely depends on natural
gas extraction and incurs 1-2% of global CO, emissions. The end products using VGMs are
typically ammonium salts. Recovering ammonia as a gas through an additional downstream
process may be more profitable owing to the twice higher market price than ammonium salts
(ammonia price varies from 0.325-0.983 USD L™), and to its potential application as a hydrogen

carrier.%240:249

The total quantity of low-grade heat available motivates further development of VGM-based
energy recovery from heat. Power plants in the US generated waste heat from cooling towers and
flue gases with an estimated amount of 3,100 TWh yr'."" Geothermal energy can be exploited
using temperature gradients varying from different geographical locations and geological
formations. Despite the large reservoir of geothermal energy from Earth’s crust, the amount of
power generation worldwide is limited to only 570-1200 TWh yr*'.2%%2%2 Other sources of low
grade-heat from manufacturing, solar collectors, and other sources have been more difficult to
quantify, but can potentially supply a massive amount of additional energy. It is notable that the
Carnot efficiency decreases with very small temperature differences, and thus lower quality heat

sources will have a less efficient conversion to electricity.>®

High recovery of the dissolved compounds requires large membrane surface/contact areas or
multiple passes. Hollow-fiber membrane (HFM) modules offer a large interfacial area in a given

104,111,116,253

volume, and have been tested for NH3 and CH4 recovery,?** and for acetic acid at much

smaller scales.?® Nevertheless, pilot-scale or larger scale studies are scarce, and have yet to
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demonstrate the resource extraction in profitable amounts from wastewater streams.®> While
highly wetting-resistant membranes are ideal,'*?** hollow-fiber omniphobic VGMs are not
commercially available. A large-scale manufacturing of omniphobic VGMs is necessary to achieve
fast and sustainable resource recovery in compact modules.®® Some recent studies explored
different approaches to fabricate hollow fiber Janus VGMs, using hydrophilic surface coating,?**
co-extrusion method,?® and nonsolvent phase separation technique.?®” However, the fabrication
of such membranes in HFM configuration as well as their performance evaluation for resource

recovery via MC are yet to be investigated.

Determining the system configuration is crucial to realize cost-effective recovery. Even when
the permeate is enriched with target compounds, other volatile species are inevitably transferred
across the VGM into the permeate. Therefore, single or multiple post-processing steps may be
required to finally obtain the target compound of high concentration and purity. For instance, CH4
recovery in VMC would require scrubbing and condensation to remove CO, and water vapor,
respectively, from the recovered gas mixture. Recovering CH4 using a nonpolar permeate in the
liquid-liquid MC (Section 3.1 and Figure 1e) would require downstream processing to release the
gas from the permeate by applying a vacuum. While it has been estimated that this combination
of vacuum and the liquid-liquid MC would be net energy positive,* this combined process is yet

to be experimentally demonstrated.

During NH3 recovery by VGMs, the gas solubilizes into the acid solution as a dissolved
ammonium salt and requires downstream processing to concentrate the salt content and/or
remove the excess acid.'®® These necessities are rarely mentioned in the literature but dewatering
and pH readjustment would add significant downstream processing cost. Alternatively, MC in
tandem with a bipolar membrane electrodialysis system can replace the chemical addition with
renewable electricity and produce NH3 gas, which has higher commercial value than ammonium
salts (more than twice)'® and has wider applicability, particularly in the hydrogen fuel cell
industry.” Similarly, VFA recovery through liquid-liquid MC requires a permeate of high pH. After
VFA extraction into the permeate, the VFA further needs to be separated from the permeate, and
this solution needs to be regenerated for reuse. Electrochemical separation techniques for VFA
separation have been applied for other applications such as removal from fermentation broths to
enhance biofuel production.'**2?°® However, the feasibility of combining these systems with MCs

still needs to be investigated. Future techno-economic analyses need to focus on a combined life-
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cycle assessment (LCA) approach to estimate the cost of producing any of the desired resources

from a point source to the finished product.

Existing systems can potentially be optimized to reduce the CAPEX and OPEX. CH4 recovery
using liquid-liquid MC can be optimized by selecting permeate solvents that have a large solubility
contrast between CH4 and other dissolved gases (e.g., CO»). Additionally, as CH4 is a poorly
soluble gas in water, mass transfer resistance across VGMs is much smaller than those across
the feed and permeate. This feature gives additional room for surface modification of VGMs to
increase the CH4 selectivity. It is worth noting that liquid-liquid MC for dissolved CHa4 recovery
makes commercial sense only after low-strength wastewater is anaerobically treated at ambient
or lower temperatures, as CH4 produced from high COD wastewater in anaerobic bioreactors is
mostly recovered from the headspace as biogas. For NH3 recovery, it has been estimated that
almost 60% of the costs in MCs arise from the chemical usage for pH adjustment.?*® These costs
to the OPEX can be reduced by using anaerobically digested wastewater as feed or other high
pH industrial wastewater. The acid strength of the permeate also determines the number of
modules required for efficient NHs recovery and therefore needs to be featured in the CAPEX
estimates.* VFA, Hy, and N2O recovery using MCs are at the nascent stage and therefore further
research needs to seek the understanding of the impact of VGM structures, MC operating
parameters, and feed characteristics on the selectivity targeted resource and post processing

costs.

While cost and quantity considerations are critical in determining the type of resource to
recover and the process configuration, environmental benefits and regulations need to be factored
into decision making. VGM-based recovery processes currently aim to complement sustainable
resource management, rather than compete with existing state-of-the-art technologies. For
example, it is infeasible to replace the Haber-Bosch process for ammonia. However, ammonia
recovery in wastewater treatment plants can lead to both meeting the aquatic life ambient water
quality criteria®®® and discharge regulations®®' while reducing the production demand from the
Haber-Bosch process that heavily relies on fossil fuels’-?%?, Likewise, capturing dissolved CHa will
be complementary to conventional anaerobic digesters, and can significantly reduce the GHG
potential of wastewater treatment processes. Several actions and plans for intensifying resource
recovery are also taking shape. For instance, the European Green Deal launched by the
European Commission in December 2019, and the new Circular Economy Action Plan adopted

in March 2020, emphasized resource recovery and GHG reduction from wastewater as a key

31



819
820
821
822

823

824

825
826
827
828
829
830
831
832
833
834
835
836

837
838
839
840
841
842
843
844

845
846
847
848
849

component of sustainable resource management.?®® Various countries offer incentives (e.g.,
carbon credits) to wastewater treatment plants for emission reduction/methane recovery.?426°
These drivers and incentives, along with the recovery cost, will need to be collectively considered

to determine the priority and feasibility of resource compounds to recover.

6. OUTLOOK

A qualitative comparison among VGM-employed processes for volatile compound and heat
recovery is provided in Table 1 (decision criteria provided in Table S3, supplementary material).
In most cases, >90% recovery of volatile compounds is achievable. However, they all require
downstream processing of varying degrees as the target compound will be captured into a mixture
with other liquids, gases or impurities in the permeate. VGMs can potentially recover energy from
heat at around 34% of the Carnot efficiency. Such recovery efficiencies are higher than competing
low-grade heat technologies but must still be demonstrated experimentally. None of the MCs are
robust to wetting in long-term operations, as commercial VGMs are not perfectly wetting-resistant.
While membrane fouling is a persistent issue, it can be mitigated by imparting fouling-resistant
surface properties onto VGMs or by precluding solvent flows. For scalability, SGMC and VMC
modules are already commercially available, but more recently proposed MC processes for CHa,

VFA, and low-grade heat recovery lack pilot testing or suitable VGMs with large area.

The energy intensity of the various configurations (i.e., liquid-gas MC, liquid-liquid MC) for
volatile resource recovery varies based on the desired product specifications and the feed stream
characteristics. For VGM module operation, SGMC configurations generally exhibit a moderate
to a high energy intensity due to sweep gas compression and circulation. The energy intensities
in operation of VMC and liquid-liquid MC are generally lower, but an increased transmembrane
water vapor transfer, altered form of target compounds in the permeate, or a stronger affinity of
the target compounds to the permeate solvent will further add energy or chemical cost for

purification in the post-processing step.

On one hand, an improved design of VGMs can certainly improve the wetting and fouling
resistance, allowing for long-term process usability. On the other hand, examining the quantity
and the quality of available resources determines the economic feasibility of the process and the
overall system requirement, and provides incentives to develop suitable VGMs. For system level

implementation, the modular nature of VGM-based recovery processes makes them easier to be
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adapted to the existing wastewater treatment facilities. Future wastewater resource recovery
systems may employ multiple VGM modules in series to recover different resource compounds,

and thermal energy may be independently recovered.

As wetting and fouling are persistent problems in all VGM-based processes, cost-effective
production of omniphobic or hydrophobic/hydrophilic composite membranes (Janus membranes)
in commercial scale is required. Also, it should be noted that most of the omniphobic VGMs in the
literature are fabricated using perfluorinated chemicals. The tighter regulation on these chemicals
motivates the development of non-toxic low surface energy materials. The recent efforts
demonstrated a certain level of surface omniphobicity using non-fluorinated chemicals, albeit with
less wetting resilience than long-chain fluorinated organosilanes.?°®-2%® Active research efforts on
membrane distillation for desalination will certainly benefit omniphobic, fluorine-free VGM

development.

The complex pathways of biological production make it necessary to discern the resource
compounds that are profitable and sustainable. The target compounds in turn determine the
required VGM characteristics, process configurations, and operating conditions and costs. In
addition, nearly all mentioned processes require downstream processing, such as pH swing, to
produce the target resource in a usable form. The increasing emphasis on electrified processes
renders electrochemical processes, such as bipolar membrane electrodialysis, potentially to
replace the chemical input with renewable electricity. A systematic investigation of the combined
processes (i.e., MC and downstream process) that connects feed to final products will be
necessary to ensure a continuous and energy-efficient recovery process. At the system level,
rigorous LCA and total cost assessment (TCA) will guide decision-making on target resource

compounds and suitable VGMs-based recovery processes.
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Table 1. A qualitative comparison of vapor gap membrane technologies for the resource recovery. Criteria descriptions
are provided in Table S3, supplementary material.
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