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Abstract

Modeling Arctic-Boreal vegetation is a challenging but important task, since this highly dynamic
ecosystem is undergoing rapid and substantial environmental change. In this work, we synthesized
information on 18 dynamic vegetation models (DVMs) that can be used to project vegetation
structure, composition, and function in North American Arctic-Boreal ecosystems. We reviewed
the ecosystem properties and scaling assumptions these models make, reviewed their applications
from the scholarly literature, and conducted a survey of expert opinion to determine which
processes are important but lacking in DVMs. We then grouped the models into four categories
(specific intention models, forest species models, cohort models, and carbon tracking models)
using cluster analysis to highlight similarities among the models. Our application review identified
48 papers that addressed vegetation dynamics either directly (22) or indirectly (26). The expert
survey results indicated a large desire for increased representation of active layer depth and
permafrost in future model development. Ultimately, this paper serves as a summary of DVM
development and application in Arctic-Boreal environments and can be used as a guide for
potential model users, thereby prioritizing options for model development.

1. Introduction

The Arctic-Boreal zone (ABZ) constitutes a range of
highly dynamic ecosystems that are rapidly changing
due to anthropogenic climate change (Fyfe et al 2013,
Box et al 2019, Ballinger 2021). Warming is occurring
at an accelerated rate as a consequence of Arctic amp-
lification (Goosse et al 2018, Chylek et al 2022), in
turn causing decreased spring snowpack (Callaghan
et al 2011, Heijmans et al 2022), decreased albedo
(Chapin et al 2005), permafrost thaw (Campbell et al
2021, Miner et al 2022), higher severity and frequency
of fires (Timoney et al 2019, Cahoon et al 2022),
increased available nitrogen (Salmon er al 2016),
and changes to carbon cycling (Schuur et al 2022,
Pedron et al 2023). These effects of warming influ-
ence vegetation dynamics, and in turn are impacted

© 2024 The Author(s). Published by IOP Publishing Ltd

by changing vegetation properties (figure 1). The ABZ
spans boreal and tundra biomes, where these climate
effects are manifesting in diverse vegetation shifts
such as Arctic shrubification (Myers-Smith et al 2015,
Maliniemi et al 2018, Rees et al 2020), altered treeline
extent and density (Rees et al 2020, Dial et al 2024),
decreased lichen abundance (Elmendorf et al 2012),
and shifts in deciduous tree cover (Mack et al 2021,
Massey et al 2023).

Cycles of succession and shifting vegetation are
characteristic of the heterogeneous ABZ landscape,
especially in the fire-adapted boreal forest (Rogers
et al 2015). Connecting environmental processes to
vegetation changes and subsequent interactions in
the ABZ (figure 1) is critical to better predict veget-
ation dynamics in the region. However, because
anthropogenic climate change has been altering
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Figure 1. An illustrated representation of model properties and interactions that drive vegetation dynamics in the Arctic-Boreal
zone (A)—(C). Blue arrows represent water fluxes (transpiration, evaporation, soil moisture, cryoturbation), which are fed by
precipitation in various forms (rain, snow, ice). Red arrows represent carbon and nutrient processes (photosynthesis,
heterotrophic respiration, litter fall, nutrient cycling, and methane emissions). Plant properties (light competition, succession,
seeding, and various vegetation types) as well as external pressures (such as insects and pathogens, CO; fertilization, herbivory,
fire disturbance, albedo, active layer depth, and permafrost) interact with water and nutrient fluxes to shape the Arctic-Boreal
landscape in highly complex and dynamic ways. The ecosystem properties interacting in the Arctic-Boreal zone are complex, and
it is a challenge for models to begin to parse apart what properties are important to include to represent dynamic vegetation.
Panels (A)—(C) have been separated for artistic rendering and do not imply a lack of interaction among these ecosystem

properties.

Earth’s ecosystems for decades and is amplified in the
Arctic (Previdi et al 2021, Rantanen et al 2022), a
static representation of vegetation in the ABZ locks
assumptions into a model simulation that may not
be representative of either a pre-warming Arctic, nor
of an ‘adapted’ Arctic (Loehle 2018). Thus, predic-
tions of the Arctic-Boreal future must include veget-
ation that can respond to changing environmental
properties.

With advances in computing power, ecosystem
simulation models are now able to better repres-
ent their target systems. Dynamic vegetation models
(DVMs) are a class of ecosystem simulation model
making great advances due to increased availability
of input data, as well as heightened model devel-
opment and sophistication in simulating ecosystems
(Fisher et al 2018a, 2018b, Bugmann and Seidl 2022).
For this study, a DVM was defined as having the
capability for terrestrial vegetation (be it plant spe-
cies, functional type, cohort, community, or ecosys-
tem type) to respond (via yearly growth, changing
stem density, vegetation migration, and mortality,
among others) to climate and other environmental
factors. As a result, an area represented by a DVM
must be capable of having its vegetation composition,
its structure, and/or function fluctuate over time in
response to changing conditions. A DVM can pre-
dict how vegetation competition (from intra- and
interspecific to inter-community type) will respond
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to environmental inputs and determine ecosystem-
level changes. This broad suite of models can simulate
arange of possibilities and highlight the largest uncer-
tainties (Fisher et al 2018a, Krause et al 2019, Gideke
et al 2020, Argles et al 2022).

DVMs can require substantial parameterization,
as they often have fine vegetation resolution with
regard to plant species/type information. Because
the ABZ has a relatively small number of vascular
plant species, DVMs with coarse vegetation resolu-
tion can often be applied across large extents due to
the similarity of genera within plant functional types
(PFTs) (Sulman et al 2021). However, while vascu-
lar plant species diversity may be low, microsite vari-
ation in soil, hydrological, thermal, and permafrost
conditions in the Arctic can lead to high heterogen-
eity in moss, lichen, and vascular plant communit-
ies (Le Roux et al 2013, Mallen-Cooper et al 2021,
Jorgenson et al 2022), adding challenges to paramet-
rization and calibration. Furthermore, accumulating
the data required for ecosystem inputs, and at the
appropriate scale, to run a DVM is alarge undertaking
and makes this class of models less accessible to man-
agers, scientists, and other practitioners, who do not
have modeling experience. Even the most experienced
modeler must contend with balancing the greater
breadth of a global simulation from large-scale mod-
els with the detailed and more spatially variable, and
more highly resolved simulation of fine scale models.
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Among existing DVMs, there is a wide variety
of inputs and ecosystem properties (figure 1) that
are incorporated, and choosing which properties to
represent is critical to model function. The built-in
assumptions of each model inform the scope of its
findings, but the functions and assumptions of each
model are not always apparent from a review of the
literature or codebase, and detailed technical model
descriptions and user guides are not always available
or accessible. The original intention of a model, or
its foundation, frequently carries over as its strongest
asset (e.g. a gap dynamics model is very good at sim-
ulating stand level tree growth and mortality; Shugart
et al 2020). However, many models that share the
same lineage have diverged since initial development
to target specific processes or locations (Shugart and
West 1977, Urban et al 1990, Yan and Shugart 2005,
Shuman et al 2014, Brazhnik and Shugart 2016, Foster
et al 2016). These model descendants often adjust the
inputs and parameterization to their specific needs
and various submodules, such that models that share
origins may have divergent goals (Fisher et al 2018b),
making ensemble model assessments more challen-
ging. However, by bringing various model lineages
to the ABZ, models must be adapted to the new sys-
tem and model convergence intensifies the diversity
of model and submodules being run in the region.

DVMs are powerful tools, yet challenging to
implement. The goal of this paper is to demystify a
collection of 18 commonly used DVMs that have been
implemented across the North American boreal forest
and tundra. Our specific objectives are:

(1) To summarize and clarify ecosystem proper-
ties and processes being simulated in different
DVMs for users to more easily determine which
model(s) would be best suited to answer their
research questions.

(2) To review the literature to determine what types
of questions have been asked using DVMs to
highlight the breadth of application across the
ABZ.

(3) To survey practitioner opinion to inform future
model development and application.

2. Methods

2.1. Model ecosystem properties

Model selection was based on two criteria: (1) that
the model fit our definition of a DVM (i.e. has
the ability for vegetation composition and distribu-
tion to change over the simulated landscape as a
response to environmental forcings), and (2) that
the model be applied within the North American
ABZ to study vegetation dynamics or impacts thereof
published over the past two decades. We found
eighteen models that fit these criteria (figure 2).
Models were found via literature search and review
using Web of Knowledge/Web of Science, Google

3

E Heffernan et al

Scholar, expert knowledge from the NASA Arctic-
Boreal Vulnerability Experiment (ABoVE) Science
Team. Once established that the model fit our
criteria, information was collected through Web
of Knowledge/Web of Science and Google Scholar
(search terms included the model name and/or abbre-
viation with each of the following: Arctic, Boreal,
Alaska, Canada); additionally, model websites, manu-
als, and technical documentation were reviewed when
available. The search was finalized in June 2023.
The literature search prioritized sources with model
descriptions and papers showing the different applic-
ations of DVMs and their input and simulated eco-
system properties. Each DVM was reviewed and cat-
egorized based on a suite of 22 ecosystem proper-
ties (based on their documented importance from
previous observational studies in determining veget-
ation function, composition, structure, and compet-
ition; figure 3), as well as model resolution para-
meters addressing spatial, temporal, and vegetation
resolution. For our purposes, an ecosystem prop-
erty was a state variable or process that could
impact vegetation growth, reproduction, competi-
tion, or spread on the landscape; the properties were
divided into categories as being a characteristic of soil
(soil moisture, nitrogen, active layer depth/perma-
frost, heterotrophic respiration, cryoturbation, phos-
phorus), plant growth (succession, litterfall, light
competition, seed dispersal, photosynthesis), disturb-
ance (fire, browse herbivory, insect damage, patho-
gens), or land-atmosphere interactions (evapotran-
spiration, precipitation form, albedo, methane, CO,
fertilization). The ecosystem properties were marked
as present or absent, along with vegetation, tem-
poral, and spatial resolution (appendix 1). The res-
ulting matrix was analyzed using hierarchical cluster
analysis to identify common traits among models
using the hclust function (default settings, stats pack-
age; Bugmann and Seidl 2022) in R (4.2.1 R Core
Team 2022). Using Euclidean distance, the cluster
analysis measured the dissimilarity among the models
in terms of each ecosystem property they represented;
we used hierarchical clustering so as to not influence
the number of clusters (as would be necessary for k-
means clustering). Using the silhouette method, we
identified 3 clusters among the dataset as maximizing
the similarity of in-group models. Once the clusters
were identified, we qualitatively interpreted the res-
ults to identify common traits among the groups and
further split the cluster into 2 groups to highlight cer-
tain similarities of resolution and application.

2.2. Model application review

A literature review was conducted to assess how
DVMs were being applied in the ABZ. For this lit-
erature review, our criteria required that the papers:
(1) be published from 2017 to 2022; (2) address the
North American ABZ (e.g. could be a local analysis in
the North American ABZ, or could be a global study
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Figure 2. Cluster analysis dendrogram of ecosystem process presence, temporal, vegetation, and spatial resolution.
Hierarchical-means clustering identified four groups: cohort models (red), forest species model (orange), specific intention
models (green), and carbon tracking models (blue). Ecosys is surprisingly grouped with the earth system models, likely because it
has more specialized soil-climate feedbacks (phosphorus, methane, heterotrophic respiration, cryoturbation) that some of the

other models do not address.

that highlighted a finding from the North American
ABZ); (3) apply at least one of the models identi-
fied by the model properties literature review. Studies
were accessed through Web of Knowledge/Web of
Science and Google Scholar and were surveyed from
January 2023 to April 2023 using the same search
parameters as the ecosystem properties search (model
name + Arctic, Boreal, Alaska, Canda). We limited
our search to the six-year period to focus on the
most recent modeling developments; the focus on
the North American ABZ allowed us to align our lit-
erature review with the scope of our expertise sur-
veyed in the next section. Studies were separated into
two categories based on whether the research ques-
tion explicitly addressed vegetation dynamics (e.g.
shifts in evergreen vs deciduous cover), or they indir-
ectly included vegetation dynamics (e.g. permafrost
dynamics under climate change scenarios, as medi-
ated by vegetation; Melton et al 2019).

2.3. Model process survey

Importance of each of the ecosystem properties was
assessed through an online Qualtrics survey. The
anonymous survey was approved by the UVA IRB-
SBS (Protocol #5607); and was sent to the NASA
ABOVE listserv (sent to anyone associated with

4

ABOVE in March 2023) to solicit practitioner opin-
ion. The survey asked respondents to rank their most
important seven properties out of the 22 ecosystem
properties outlined in the Model Ecosystem Properties
section. Air temperature was not one of the properties
that could be chosen, as it was found in every model.
Participants were also asked about their experience
with models (e.g. collects data, creates models, reads
papers, etc) and their experience level. Survey ques-
tions are available in appendix 2.

Survey results were then compared with the Model
Ecosystem Properties review to find gaps between the
processes that were deemed important by practition-
ers, and the processes that were being represented in
the models. The survey responses were ranked and
compared against the corresponding ranked order
frequency of the property in the Model Ecosystem
Properties review; when properties were tied in fre-
quency, their rank values were averaged.

3. Results and discussion

3.1. Model ecosystem properties

The Arctic-Boreal ecosystems simulated by mod-
els are extremely complex (figure 1), and there will
always be a balance between simple and complex
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representations of the target ecosystem(s). Knowing
which aspects of an ecosystem are included across
the 18 surveyed DVMs is important to understand-
ing the scope, challenges, and opportunities of each
model.

Each model that was reviewed had a unique suite
of ecosystem properties (represented in figure 1).
Some models used external temperature forcing with
either hourly (e.g. Chang et al 2020), daily (e.g.
Murphy 2014) or monthly (e.g. Foster et al 2019)
timesteps, while others used less mechanistic repres-
entations or proxies (e.g. Rupp et al 2000 or Epstein
et al 2007). Some properties were more frequently
represented than others in the 18 models: fire dis-
turbance (17 models), succession (17), soil moisture
dynamics (15), litterfall (13), and light competition
(13). Together, these properties represent a coarse

rendering of growth, mortality, and ontogeny. Our
analysis was limited to looking at the presence of eco-
system properties rather than the ways each model
individually represented and ecosystem process; thus,
some processes, like mortality, were assessed through
proxy variables such as how the system recycles nutri-
ents or responds to a disturbance. Phosphorus (1, eco-
sys; e.g. Chang et al 2020), pathogens (2; e.g. Murphy
2014, Boulanger et al 2018), methane (3; e.g. Arora
et al 2018, Chang et al 2020, Arndt and Natali 2022)
and the presence of herbivory (5; e.g. Murphy 2014,
Yu et al 2017, Longo et al 2019, Haynes et al 2020,
Hansen et al 2021) were the least common ecosystem
properties addressed (figure 3).

The models represented in this review aggreg-
ated into four main groups from the cluster ana-
lysis (figure 2): models with a specific intention

5
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(ALFRESCO ([fire], and ArcVEG [nitrogen]); the
forest-species group (SIBBORK-TTE, UVAEFME,
Iland, LANDIS-II, SORTIE-ND); the cohort group
(ED2, CABLE-POP, FATES); and the carbon cycling
group (ecosys, SiB4, DVM-DOS-TEM, LPJ-GUESS,
ORCHIDEE, CTEM-CLASS, JULES, SEIB-DVM).
These models have all been modified from their ori-
ginal version, frequently from different biomes to
the ABZ, to generate predictions of the Arctic-Boreal
ecosystems (see next section). The underlying mech-
anics of the original model family and architecture
were persistent in their grouping, with some outliers
addressed below (Bugmann 2001, Shugart et al 2018).

3.1.1. Specific intention models

The specific intention models group consisted of
ArcVeg, ‘a nutrient based, plant community and eco-
system model’ (Epstein et al 2000) and ALFRESCO,
‘a frame-based, spatially explicit fire model’ (Rupp
et al 2000, Hewitt et al 2016, Melvin et al 2017, www.
frames.gov/catalog/7132). These models were mainly
unified by their parsimony, rather than the overlap-
ping ecosystem properties they represent. ArcVeg was
initially conceived as a way to simulate the impacts of
climate change and herbivory (from caribou) across
the Arctic tundra with vegetation dynamics driven
by the nitrogen cycle (Epstein et al 2000, Yu et al
2017). Daanen et al (2008) added a cryoturbation ele-
ment to address the localized effects of non-sorted
circles (frost boil). ALFRESCO was designed to focus
on the impacts of fire disturbance and seed dis-
persal in Alaska (Rupp et al 2000). ALFRESCO utilizes
an ecosystem-level vegetation resolution, but is able
to cycle through the expected stages of fire-adapted
vegetation succession. ArcVeg and ALFRESCO sim-
ulated the impact of increased temperatures using
growth periods (see Epstein et al 2000) and map
inputs (see Rupp et al 2000), respectively, to stream-
line the manipulation of temperature in their simula-
tions. By employing simple and robust approaches to
shifts in climate, the two models are potentially easier

to apply.

3.1.2. Forest species models

The forest species model group contained SIBBORK-
TTE, ‘an individual-based, spatially explicit, gap
model’ (Brazhnik and Shugart 2016; https://
github.com/SIBBORK/SIBBORK), UVAFME, ‘an
individual-based gap model’ (Foster et al 2019,
2022, https://uvafme.github.io/), iLand, ‘a multiscale
processed-based model’ (Seidl et al 2012, Hansen
et al 2021, 2023, https://iland-model.org/startpage),
LANDIS-II, ‘a landscape change model’ (Scheller and
Domingo 2005, Boulanger et al 2017,2018, Boulanger
et al 2022, www.landis-ii.org/), and SORTIE-ND, ‘an
individual-based forest simulator’ (Murphy 2014,
Maleki et al 2019, 2021, www.sortie-nd.org/). Plant
growth processes are well represented across all mod-
els, but especially within the forest species models.
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This group is uniquely driven by each model having
species-level vegetation resolution for trees; UVAFME
and SIBBORK-TTE both have additional PFT repres-
entations within their models for non-trees (Foster
et al 2022, 2021). The fine vegetation resolution lim-
its the potential geographic extent of these models,
and thus many represent local areas where the spe-
cies distribution is generally known. Both UVAFME
and SIBBORK can be run at larger scales directly or
gridded mapping approaches and/or high comput-
ing power. The forest—species group also prioritized
a light competition growth model over a biochem-
ical photosynthesis (carbon accounting) process. The
models bypassed the photosynthesis mechanism and
calculated growth potential directly from the light
input (Scheller and Domingo 2005, Seidl et al 2012,
Murphy 2014, Brazhnik and Shugart 2015, Foster
et al 2019). Additionally, these models are resolved
at monthly (for climate inputs), or annual time-steps
(for biomass outputs; Seidl et al 2012, Brazhnik and
Shugart 2016, Boulanger et al 2017, Foster ef al 2019);
whereas SORTIE-ND was resolved at only the annual
timestep (Maleki et al 2019, 2021).

The forest species models have the greatest
diversity and inclusion of ecosystem disturbances
(figure 3). Within the disturbance processes category,
each forest model had a fire module, but LANDIS-
II (Boulanger et al 2018) and SORTIE-ND (Murphy
2014) were the only two models to address forest
pathogens. LANDIS-II, SORTIE-ND, and UVAFME
are able to run simulations on insect pests, such as
the spruce budworm (Maleki et al 2019) and spruce
beetle (Steenberg et al 2013, Foster et al 2019). Browse
herbivory was addressed by just two of the forest spe-
cies models (Murphy 2014, Hansen et al 2021). The
high representation of disturbance by this group was
likely tied to their higher spatial and vegetation res-
olution, and the importance of disturbances in the
boreal forests in general. A fire can be assumed to
affect all the vegetation within a model pixel; how-
ever, a finer scale disturbance, such as the spruce bud-
worm, requires differentiation in tree species and size
(Werner et al 2006) to mimic pest preferences, but
also a higher spatial resolution (hectares) to accur-
ately represent the extent of damage. The forest spe-
cies models, with their finer spatial and vegetation
resolution, are thus better suited to simulating fine
scale disturbances such as forest insect outbreaks and
pathogens.

The models represented in the forest species
group specialize in forest growth, with some adding
other PFTs to better account for community compos-
ition and understory vegetation in the model adapt-
ation to the ABZ (Foster et al 2019, 2021). They are
well suited to the ABZ because of the focused spa-
tial resolution, especially across the Arctic-Boreal eco-
tone, where there is high landscape heterogeneity and
rapid shifts in vegetation cover (Holtmeier and Broll
2019). Increasing the understory representation in
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the forest species models, particularly with shrub and
moss PFTs, will increase their predictive power. With
such improvements, these models could be utilized to
predict Arctic shrubification, a well-documented res-
ult of climate warming (McManus et al 2012, Myers-
Smith et al 2015, 2020, Ackerman et al 2018, Reid
etal 2022). Additionally, representing a moss PFT that
can influence soil insulation will increase reliability of
belowground simulations (Chen et al 2019).

Within the forest species group, there was some
geographic separation in where the models were
being applied. LANDIS-II and SORTIE-ND have
been primarily applied in the boreal forest of eastern
Canada (Bose et al 2015, Boulanger et al 2018, 2017,
Maleki et al 2019, 2021, Boulanger and Puigdevall
2021, Molina et al 2022), while UVAFME and
SIBBORK-TTE have been primarily being applied in
northwestern Canada and Alaska (Foster et al 2019,
2022). This pattern is likely an artifact of specific pro-
ject focus rather than model capability.

3.1.3. Cohort models

The cohort group models were ED-2 ‘the Ecosystem
Demography model’ (Longo et al 2019, https://
github.com/EDmodel/ED2), FATES, ‘a cohort model
of vegetation physiology, growth, and dynamics’
and companion model to CLM5.0 (Lambert et al
2022,  https://fates-users-guide.readthedocs.io/en/
latest/index.html), and CABLE-POP, a ‘tree demo-
graphy and landscape structure model’ (Haverd et al
2014). The cohort group was largely unified by the
utilization of PFTs further classified by growth stages
(cohorts). These models have elements of both the
forest species models, such as defined disturbance
regimes, while also having more detailed represent-
ation of land-atmosphere interactions (figure 3). All
three of the cohort models can address precipitation
form (Haverd et al 2014, Fisher et al 2015, Longo et al
2019, Kim et al 2021), which is a critical and changing
climate property. The interaction of snow with veget-
ation on the landscape and shift from snow to rain,
especially in the shoulder seasons have large impacts
on vegetation during the growing season (Barrere
et al 2018, Addis and Bret-Harte 2019).

Employing a cohort tracking system to their PFTs
allows vegetation ontogeny to factor into the simu-
lations (Haverd et al 2014, Longo et al 2019, Li et al
2022). CABLE-POP was frequently used in model
comparison studies, which made it unique in many
ensemble studies as the only cohort model. By allow-
ing PFTs to have higher resolution by attending to life-
stage, models can better predict carbon storage, seed
production, and growth accumulation, with tailored
allometries for each life stage.

Within the cohort group, the ED-2 model has
the finest spatial resolution; the model focuses on
micro-environment and specifically tries to resolve
the problem of high heterogeneity (Longo et al 2019).
FATES and CABLE-POP have been implemented at
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much larger spatial scales and resolutions, typic-
ally applied in global studies (table 2). The cohort
group models did not have any applications for the
direct assessment of vegetation dynamics (see next
section), suggesting they are well suited to studying
ecosystem properties tangential to vegetation dynam-
ics, and that there is an opportunity to ask vegeta-
tion dynamics questions of these models. The cohort
group would be well suited to answer questions per-
taining to the interactions between climate and dis-
turbance, and how the vegetation life stage interacts
with climate, especially within the tundra-taiga eco-
tone where adult recruitment is critical to future pre-
dictions (Harsch et al 2009, Stevens-Rumann et al
2022).

3.1.4. Carbon tracking models

The carbon tracking group has the most diverse of
model origins, including SEIB-DVM, ‘an individual-
based Dynamic Global Vegetation Model’ (Sato et al
2007, http://seib-dgvm.com/), and SiB4, also ‘a mech-
anistic, prognostic land surface model’ (Haynes et al
2019, 2020), LPJ-GUESS, ‘a process-based global
dynamic vegetation model’ (Smith et al 2014,
https://web.nateko.lu.se/lpj-guess/faq.html), DVM-
DOS-TEM, ‘a process based bio-geo-chemical eco-
system model’ (Euskirchen et al 2022, https://
github.com/uaf-arctic-eco-modeling/dvm-dos-tem),
CLASS-CTEM, ‘an earth system model with a
terrestrial ecosystem model’ (Melton and Arora
2016, https://cccma.gitlab.io/classic_pages/info/
ctem/), ORCHIDEE, ‘a land surface model’ (Druel
et al 2017, Bowring et al 2019, https://orchidee.ipsl.
fr/), JULES, ‘a community land surface model’ (Best
et al 2009, 2011, Clark et al 2011, https://jules.jchmr.
org/), and ecosys, ‘a terrestrial ecosystem biochemistry
model’ (Chang et al 2020, https://ecosys.ualberta.
ca/). Among the carbon tracking models, SiB4 was
unique in representing browse herbivory and insect
damage but does so at a coarse resolution; the rest
of the group simulated fire but not browse herbivory
or insects (figure 3). However, the carbon tracking
models all represented photosynthesis, heterotrophic
respiration, and evapotranspiration.

The carbon tracking models also each included
different precipitation forms, and frequently included
snowpack dynamics (Burke et al 2017, Krause et al
2019, Gideke et al 2020, Chadburn et al 2022, Shirley
et al 2022a). The ability to track liquid vs. solid pre-
cipitation is critical for modeling in the ABZ, as the
recent shift in precipitation from snow to rain has cas-
cading effects on vegetation response (Callaghan et al
2011, Addis and Bret-Harte 2019, Rees et al 2020).

The majority of the carbon tracking models
included in this study have fine temporal resolutions,
either daily (or finer) or monthly; however, there is a
tradeoff for many in spatial scale. These models, with
the exception of ecosys and SEIB-DVM, have largely
been applied at 0.25° x 0.25° or coarser resolution
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(Slevin et al 2017, Gddeke et al 2020, Zhang et al 2014,
Euskirchen et al 2022, Shirley et al 2022a, Yu et al
2022); DVM-DOS-TEM represents a middle spatial
resolution, typically running at 1-4 km? (Euskirchen
et al 2016). This tradeoff is typical of many land-
atmosphere submodules, and enables a larger extent
of application; however, it may be at the expense of
spatial resolution. A coarse spatial resolution risks
homogenizing the highly heterogeneous landscape
of the ABZ and ecotone especially (Holtmeier and
Broll 2019). All of these models maintained PFT-level
vegetation resolution, but the number of PFTs defined
by each model included in this study varies from 5 to
15 (Clark et al 2011, Haynes et al 2020).

Ecosys and SEIB-DVM were surprising inclusions
in the carbon tracking group, which mostly highlights
land-atmosphere interactions (figure 3). Potential,
their inclusion of heterotrophic respiration aligned
these two models with the carbon tracking models
(Shirley et al 2022b, Yu et al 2022); both models
simulate active layer depth (Mekonnen et al 2018a,
Sato et al 2020), and ecosys can also track methane
fluxes, along with CLASS-CTEM and DVM-DOS-
TEM (Grant et al 2017, Arora et al 2018, Briones
et al 2022). These properties, along with snowpack,
are critical to simulating carbon emissions and resolv-
ing the status of below-ground hydrology, temperat-
ure, nutrient cycling and subsequent vegetation type
and success. The belowground processes that the car-
bon tracking models simulate are critical to accurately
predicting how the ABZ will respond aboveground.

3.1.5. Evaluation of model properties

The 18 models surveyed were grouped largely by their
vegetation resolution (forest species vs cohort groups
vs general PFTs in the carbon tracking groups). This
breakdown among the forest species, cohort, and car-
bon tracking groups highlights the importance of
vegetation representation in the models.

As the Arctic is a dynamic system in the pro-
cess of adapting to a new climate, complex models
are needed to evaluate and accurately project change.
With each model representing a unique suite of eco-
system properties, the importance of each property
in their respective models weighs differently on the
model processes and outputs. For example, while the
models (almost) all include temperature or fire, these
properties are weighted differently in each model
depending on internal structure. Thus, it is import-
ant for future studies to test an ensemble of models to
understand the breadth of possibilities for the future
ABZ.

In the Arctic, vegetation growth is especially lim-
ited by hydrological processes that are highly variable,
difficult to model, and even more difficult to ground
truth or remotely sense (Campbell et al 2021, Miner
et al 2022). Permafrost and active layer depth (Miner
etal 2022), snow depth (Barrere et al 2018), and water
logging (Simard et al 2007) govern plant distribution
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and growth rates, but are not universally represen-
ted in models. When these properties are included,
they are usually resolved at spatial scales too coarse
to adequately capture realistic heterogeneity (figure 3;
Siewart et al 2021). Thus, a model that does not
factor in the shifts in dynamic belowground hydro-
logy might have a skewed representation of vegeta-
tion growth as compared to one that does. Presently,
models that addressed belowground processes in the
Arctic can simulate permafrost dynamics (Clark et al
2011, Druel et al 2017, Arora et al 2018, Foster et al
2019, Sato et al 2020, Euskirchen et al 2022, Hansen
et al 2023, 2021); however, some of the models with
permafrost submodules operate at scales too great
for permafrost variability (Krogh and Pomeroy 2021,
Siewart et al 2021).

One limitation of many models is that the eco-
system processes they attempt to simulate occur at
finer spatial scales than the inputs that are available
(e.g. running a model on a m? resolution, but the
input is 250 m?; (Fritsch et al 2020)). This pseudo-
high resolution may be appropriate for some ecosys-
tem processes, if the appropriate stochasticity is sim-
ulated. For example, SoilGrids data are resolved at
250 m? (Poggio et al 2021), but the soil carbon vari-
ation across that area would be misrepresented by a
single value. While all the model scales could bene-
fit from increasing resolution, the nuances of noise
would be more pressing for the high spatial resolution
models in the forest species group. Sub-meter below-
ground properties, such as active layer depth, could be
highly variable within a site and would dictate which
species could exist in different areas (Duchesne et al
2018, Heijmans et al 2022, Foster et al 2022, Shirley
etal 2022b).

3.2. Model application review

Our literature review yielded 48 studies that applied
DVMs within the North American ABZ since 2017.
Twenty-two studies focused on shifts in vegetation
(table 1); they range in location, scale, and model
manipulation (e.g. climate change, harvesting), as
well as single model vs. ensemble model approaches.
Only two studies addressed direct management ques-
tions about harvesting (Maleki et al 2021) and spruce
budworm outbreak (Maleki et al 2019). Many of
the studies were focused on the future species com-
position. Studies that investigated climate change
scenarios found that evergreen trees/PFTs are likely
to do poorly in warming climates, and broadleaf
trees/PFTs are likely to do well (Boulanger et al
2017, 2018, Chaste et al 2019, Foster et al 2019,
Mekonnen et al 2019, Cadieux et al 2020, Boulanger
and Puigdevall 2021, Foster et al 2022). Twenty-six
studies addressed other research questions, leveraging
the abilities of models that simulate dynamic vegeta-
tion to parse interactions among ecosystem processes
that are indirectly related to vegetation growth (e.g.
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methane sinks, influence of microtopography, phen-
ology of carbon source/sink, peatland source/sink,
carbonyl sulfide, snow phenology, etc; table 2). With
increasing model capabilities, the studies that impli-
citly assessed vegetation dynamics (table 2) demon-
strate the versatility of a DVM to increase our under-
standing of different responses and interactions of
ecosystem properties with changing vegetation.

While difficult to simulate at larger scales, the
models were frequently used to study belowground
properties, such as permafrost (Burke et al 2017,
Melton et al 2019, Shirley et al 2022a), and soil car-
bon (Larson et al 2022), methane cycling (Grant
et al 2017), and peat accumulation (Chaudhary
et al 2017, 2020, Chadburn et al 2022, Chaudhary
et al 2022, Mekonnen et al 2022, Shirley et al
2022a). Model comparisons (both model sensitiv-
ity and ensemble model comparisons) were a fre-
quent research goal, but were limited to large-scale
models, almost all of which were in the carbon
tracking group (CABLE-POP, CLASS-CTEM, ED2,
JULES, LPJ-GUESS, ORCHIDEE etc; Burke et al
2017, Krause et al 2019, Rogers et al 2019, Giddeke
et al 2020, Yang et al 2020). The ecosys model stood
out particularly as a model that was able to address
many different types of questions about Arctic-Boreal
ecosystems, such as how climate change and fire will
influence vegetation (Mekonnen et al 2019), how CO,
and CHy are affected by tundra polygons (Grant et al
2017), and the effects of microtopography and soil
heterogeneity on vegetation (Mekonnen et al 2018b,
2021, Shirley et al 2022b). The suite of ecosys papers
demonstrates how creative questions can be asked of
models to focus on different ecosystem properties and
the subsequent effects on vegetation, highlighting the
dynamism of Arctic vegetation in a changing climate.
It is important for models to predict what the ABZ
future vegetation will look like, but knowing how eco-
system property interactions are likely to shift under
stress is equally important.

One limitation that the model application review
highlighted is how individual models tend to be
primarily used by single research groups. A research
group can produce many studies using one model,
but the models might not be readily transferred,
or even transferable, making versatility a challenge.
Model transference can be limited by code availab-
ility, code complexity and language (i.e. how steep
is the learning curve), and input data requirements.
The ensemble model comparison approach would
increase reproducibility and connection among
research teams; however, it can be limited by the
internal structure of each model and whether the
required inputs are available, especially for the
individual-based gap model structures. An ensemble
of models can yield many different outcomes and
enable a more reliable, averaged outcome with uncer-
tainties. However, while both managers and modelers
would benefit from a suite of models to predict future
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scenarios, parameterizing models is both time and
computationally intensive.

3.3. Model process survey

The survey asked respondents to select their top seven
out of 22 ecosystem properties (same properties listed
in figure 3; questions in appendix 2). One hundred
fifty-five respondents from the NASA ABoVE listserv
completed the survey over a two-week period (13-27
March 2023). The respondent demographic included
a mix of advanced (20%, 31 respondents), inter-
mediate (41%, 65 respondents), and novice (34%,
54 respondents) practitioners. Of the respondents,
51% (79 respondents) collected data that could be
used in models, 24% (37 respondents) worked to
develop models, 31% (48 respondents) ran models,
and 63% (98 respondents) read papers about models
(multiple responses were accepted for this question).
We found no trends between respondent experience
and/or application and the ecosystem properties they
selected.

The top three ecosystem processes selected as
important to DVMs were soil moisture dynamics,
fire, and active layer depth/permafrost (table 3). Soil
moisture properties, and active layer depth, create
a highly heterogeneous belowground matrix which
influences vegetative community and individual suc-
cess (Limpens et al 2021, Kemppinen et al 2021,
Heijmans et al 2022); however, soil moisture is
already well represented, simulated in 15 of the mod-
els. These factors (i.e. soil moisture and active layer
depth), while important for larger-scale models, are
critical for the finer-scale, local models. Fire, nearly
universally represented in the models (17), repres-
ents a much larger scale disturbance that influences
landscape structural heterogeneity, especially in the
boreal forest (Mack et al 2011, 2021, Reid et al
2022). Of these three most ‘in demand’ modeled eco-
system properties as ranked by respondents, active
layer depth/permafrost had the largest discrepancy
between its practitioner demand and the number of
models in which it was incorporated (table 3). This
demand suggests that there is an important modeling
gap to be filled, which should increase the confidence
of model predictions. Including active layer depth and
permafrost in more models would be a positive step
to more accurately capture ABZ vegetation dynamics;
however, these data are spatially and temporally lim-
ited and challenging to accurately model.

The survey identified five ecosystem processes
that were in high practitioner demand relative to the
number of models that had the process incorporated
(i.e. supply). Active layer depth/permafrost and ther-
mokarst had the highest difference between practi-
tioner demand and model supply (3 vs. 12 rank, and
13 vs. 22, table 3). The other processes that are in prac-
titioner demand (insect outbreaks, nitrogen cycling,
and herbivory) had lower disparities between demand
and supply (differences in rank of 6.5-3.5). Many of
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Table 2. Model studies that focused on other topics in the North-American ABZ but utilized the dynamic vegetation capabilities of each

model.
Vegetation
Model Location Resolution  Paper focus Citation
ALFRESCO Alaska boreal forest Ecosystem  Wildfire Melvin et al (2017)
CABLE-POP, Global PFT Model comparison Yang et al (2020)
CLASS-CTEM, JULES,
LPJ-GUESS,
ORCHIDEE,
ORCHIDEE-MICT, etc.
CABLE-POP, Global PFT Model comparison; carbon  Krause et al (2019)
LPJ-GUESS, LP] flux
CLASS-CTEM Circumpolar PFT Permafrost Melton et al (2019)
€cosys Alaska PFT Soil organic carbon and Mekonnen et al
wildfire (2022)
€cosys Barrow Experimental Tundra CO; and CH4 Grant et al (2017)
Observatory, AK, USA  polygon
type
ecosys North American Arctic ~ PFT Microtopography Mekonnen et al
(2018a)
ecosys Kougarok Hillslope, AK  PFT Microtopography Mekonnen et al
(2021)
ecosys Alaska PFT Phenological source/sink Shirley et al (2022a)
ecosys Seward Peninsula, AK PFT Soil and permafrost Shirley et al (2022a)
heterogeneity
ecosys Alaska PFT Machine learning Shirley et al (2023)
comparison
ED2 Imnavait Creek PFT Soil carbon Larson et al (2022)
watershed, Alaska
ED2 Alaska PFT Snow phenology Kim et al (2021)
ED2, JULES, ensemble Barrow Environmental PFT Photosynthesis Rogers et al (2019)
Observatory (BEO), AK
JULES Global PFT GPP comparison Slevin et al (2017)
JULES Circumpolar PFT Peatlands Chadburn et al (2022)
JULES, ORCHIDEE, LP] 6 largest Arctic PFT Hydrology—river Gideke et al (2020)
watersheds discharge
LPJ-GUESS Circumpolar PFT Peatlands Chaudhary et al
(2020)
LPJ-GUESS Circumpolar PFT Peatlands Chaudhary et al
(2022)
LPJ-GUESS Mer Bleue, Ottawa, CAN PFT Peatlands Chaudhary et al
(2017)
LPJ-GUESS Circumpolar PFT Sea ice ~ vegetation Zhang et al (2014)
feedback
ORCHIDEE and JULES  Circumpolar PFT Climate permafrost Burke et al (2017)
feedback
SEIB DGVM Canada, Austria, PFT Nonstructural carbon Ninomiya et al (2023)
Switzerland, Panama
SiB4 Circumpolar PFT Carbonyl sulfide Vesala et al (2022)
SiB4 Global PFT Carbonyl sulfide Kooijmans et al
(2021)
TEM Alaska PFT Model sensitivity Euskirchen et al

(2022)

the ecosystem processes were in lower demand than
model supply, suggesting that the models are mostly
satisfying practitioner use and application for these
properties.

Thermokarst is an important element of land-
scape change and indicates a sudden structural fail-
ure of the permafrost due to thaw (Miner et al
2022). While the demand for thermokarst in DVMs
was not large, the lack of representation in the
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models of thermokarst presents an opportunity for
development. Vegetation can both insulate perma-
frost (Turetsky et al 2012, Domine et al 2022), and
exacerbate loss (Kropp et al 2021), making DVMs a
good model type to simulate thermokarst processes.
Because large thermokarst events can expose carbon
and shift the source/sink status of a site (Pegoraro
et al 2021), the inclusion of this landscape change
is important to consider. Active layer cryoturbation
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Table 3. Survey responses highlighting the ecosystem properties that practitioners think are most important to arctic vegetation
dynamics. The difference column is the demand column (survey respondent rank) minus the supply (model rank). The ecosystem
properties are ordered by the highest difference to highlight the ecosystem model properties that are most mismatched between demand
and supply. Half ranks are the result of tied rank orders being averaged.

Ecosystem model property Survey rank Model rank Difference
Active layer depth 3 12 -9
Thermokarst 13 22 -9
Insect outbreak 10 16.5 —6.5
Nitrogen cycling 10.5 —4.5
Herbivory (browse) 11.5 15 —35
Precipitation and form (snow vs rain) 4 7 -3
Soil moisture dynamics 1 3 -2
Photosynthesis 7 9 -2
Phosphorus cycling 19 21 -2
CO; fertilization 15.5 16.5 -1
Methane emissions 18.5 18.5 0
Fire 2 1.5 0.5
Albedo 14 13.5 0.5
Seed dispersal 9 8 1
Pathogens 21.5 20 1.5
Variable growth mechanisms 16.5 13.5 3
Cyroturbation 215 18.5 3
Succession 5 1.5 3.5
Evapotranspiration 8 4 4
Light competition 11.5 5.5 6
Heterotrophic respiration 17.5 10.5 7
Litterfall 20 5.5 14.5

was similarly absent from most models; however, the
demand was lower, showing a practitioner prefer-
ence for the larger landscape process than the smaller
freeze-thaw soil cycles.

There are some ecosystem properties that are rep-
resented to a greater extent than demanded, having a
greater than 6 rank order discrepancy (light compet-
ition, heterotrophic respiration, and litterfall). Light
competition and litterfall are important processes to
vegetation growth and thus would be expected to
be commonly found in DVMs. However, we expect
this result is also from a bias in question design.
The IRB-SBS Study Information Sheet stated that
‘the purpose of the study is to highlight the gap
between what ecosystem processes are being simu-
lated in vegetation models and what processes are
considered important to growth but have not been
accounted for in vegetation modeling’. This statement
could have biased respondents to select ecosystem
processes that are less common in models, particu-
larly as we have many respondents with high famili-
arity with model design and application. Additionally,
the question was framed to ask respondents to select
ecosystem properties that were important to veget-
ation dynamics, which may have biased the answer
away from carbon tracking answers. Another cause
for the over-representation of some of these processes
could be an artifact from models that were designed
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for lower latitudes, or global applications, where cer-
tain properties might be more fundamentally import-
ant to understanding those ecosystems. However, we
do not think that these biases in question design
reduce the significance of the above outcomes and
what ecosystem properties were desired to improve
DVMs in the ABZ.

4. Conclusion

The ABZ is a highly dynamic and heterogeneous
region, and DVMs are an important tool for predict-
ing its future. The suite of models outlined in this
paper cover a breadth of ecosystem properties and
temporal, spatial, and vegetation resolutions depend-
ing on the scope of the model. We offer a summary
of these models to document the present state and
applications of DVMs in the North American ABZ,
and to serve as a future reference point in model
development. The applications of these models high-
light the versatility of the DVMs to simulate and
understand ecosystem properties that can be difficult
to otherwise approach at large scales. With comput-
ing power being alleviated as a primary limitation,
DVMs are more limited by the diversity of ques-
tions and tests being asked of them and the ecosys-
tem properties they represent. Our survey suggests
that modeling permafrost-vegetation dynamics is the
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next frontier in advancement and demand; develop-
ing this ecosystem property will greatly reduce uncer-
tainties in predictions of ABZ vegetation composition
and structure.
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Appendix figure 1. A matrix graph representing the different temporal (blue), spatial (gold), and vegetation (green) resolutions
that each model uses. Models are ordered according to their cluster group (Grp 1 [Specific Intention models], Grp 2 [Forest
species models], Grp 3 [cohort group], Grp 4 [Carbon cycling models]). Models can have multiple scaling resolutions within the
same category which could be from having different resolutions for different processes (such as daily temporal resolution for
temperature or moisture processes, but a monthly resolution for growth).

Appendix 2

Survey questions

1. Please select the 7 most important processes for models to explicitly represent that drive vegetation dynamics
in the ABZ.
Note—temperature was not included because it is represented in all the models surveyed.

Evapotranspiration

CO, fertilization

Litterfall

Soil moisture dynamics

Nitrogen cycling

Active layer depth/Permafrost
Pathogens

Insect outbreak

Methane emissions

Seed dispersal

Variable growth mechanisms (e.g. single stem, multi-stem, growth form)
Heterotrophic respiration
Precipitation and form (snow vs rain)
Herbivory (browse)

Photosynthesis

Phosphorus cycling

15
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Cyroturbation
Albedo

Light competition
Thermokarst Fire
Succession

Other

E Heffernan et al

2. What is your level of engagement/comfort level with models?

Novice
Intermediate
Advanced

3. How do you primarily interact with DVMs? (Choose all that apply)

Collect data for input
Develop model (i.e. write model code)
Run model and use output

Reads model papers and applies output to other research ideas

Other.
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