ENVIRONMENTAL RESEARCHLETTERS

TOPICAL REVIEW • OPEN ACCESS

Comparing assumptions and applications of dynamic vegetation models used in the Arctic-Boreal zone of Alaska and Canada

To cite this article: Elise Heffernan et al 2024 Environ. Res. Lett. 19 093003

View the article online for updates and enhancements.

You may also like

- Missing pieces to modeling the Arctic-Boreal puzzle
 Joshua B Fisher, Daniel J Hayes, Christopher R Schwalm et al.
- A new data-driven map predicts substantial undocumented peatland areas in Amazonia
 Adam Hastie, J Ethan Householder,
- Eurídice N Honorio Coronado et al.

 Evaluating photosynthetic activity across Arctic-Boreal land cover types using solar-

Rui Cheng, Troy S Magney, Erica L Orcutt et al.

ENVIRONMENTAL RESEARCH

LETTERS

OPEN ACCESS

RECEIVED

30 May 2024

REVISED 10 July 2024

ACCEPTED FOR PUBLICATION

22 July 2024

7 August 2024

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

TOPICAL REVIEW

Comparing assumptions and applications of dynamic vegetation models used in the Arctic-Boreal zone of Alaska and Canada

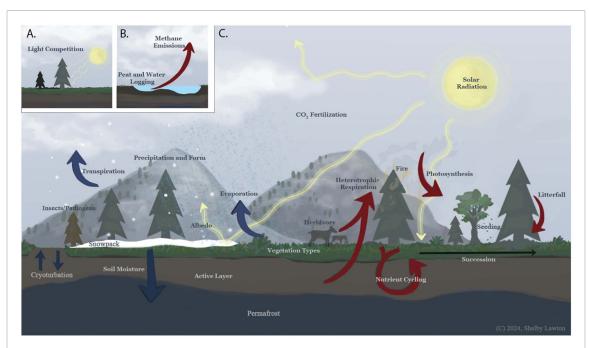
Elise Heffernan^{1,*}, Howard Epstein¹, T Declan McQuinn¹, Brendan M Rogers², Anna-Maria Virkkala², David Lutz^{3,4} and Amanda Armstrong^{1,5,6}

- Environmental Sciences, University of Virginia, Charlottesville, VA, United States of America
- Woodwell Climate Research Center, Falmouth, MA, United States of America
- Dartmouth College, Hanover, NH, United States of America
- Colby-Sawyer College, New London, NH, United States of America
- ⁵ Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD, United States of America
- ⁶ NASA Goddard Space Flight Center, Greenbelt, MD, United States of America
- * Author to whom any correspondence should be addressed.

E-mail: eh9hg@virginia.edu

Keywords: dynamic vegetation model, Arctic-Boreal zone, ecosystem modeling

Abstract


Modeling Arctic-Boreal vegetation is a challenging but important task, since this highly dynamic ecosystem is undergoing rapid and substantial environmental change. In this work, we synthesized information on 18 dynamic vegetation models (DVMs) that can be used to project vegetation structure, composition, and function in North American Arctic-Boreal ecosystems. We reviewed the ecosystem properties and scaling assumptions these models make, reviewed their applications from the scholarly literature, and conducted a survey of expert opinion to determine which processes are important but lacking in DVMs. We then grouped the models into four categories (specific intention models, forest species models, cohort models, and carbon tracking models) using cluster analysis to highlight similarities among the models. Our application review identified 48 papers that addressed vegetation dynamics either directly (22) or indirectly (26). The expert survey results indicated a large desire for increased representation of active layer depth and permafrost in future model development. Ultimately, this paper serves as a summary of DVM development and application in Arctic-Boreal environments and can be used as a guide for potential model users, thereby prioritizing options for model development.

1. Introduction

The Arctic-Boreal zone (ABZ) constitutes a range of highly dynamic ecosystems that are rapidly changing due to anthropogenic climate change (Fyfe et al 2013, Box et al 2019, Ballinger 2021). Warming is occurring at an accelerated rate as a consequence of Arctic amplification (Goosse et al 2018, Chylek et al 2022), in turn causing decreased spring snowpack (Callaghan et al 2011, Heijmans et al 2022), decreased albedo (Chapin et al 2005), permafrost thaw (Campbell et al 2021, Miner et al 2022), higher severity and frequency of fires (Timoney et al 2019, Cahoon et al 2022), increased available nitrogen (Salmon et al 2016), and changes to carbon cycling (Schuur et al 2022, Pedron et al 2023). These effects of warming influence vegetation dynamics, and in turn are impacted

by changing vegetation properties (figure 1). The ABZ spans boreal and tundra biomes, where these climate effects are manifesting in diverse vegetation shifts such as Arctic shrubification (Myers-Smith *et al* 2015, Maliniemi *et al* 2018, Rees *et al* 2020), altered treeline extent and density (Rees *et al* 2020, Dial *et al* 2024), decreased lichen abundance (Elmendorf *et al* 2012), and shifts in deciduous tree cover (Mack *et al* 2021, Massey *et al* 2023).

Cycles of succession and shifting vegetation are characteristic of the heterogeneous ABZ landscape, especially in the fire-adapted boreal forest (Rogers *et al* 2015). Connecting environmental processes to vegetation changes and subsequent interactions in the ABZ (figure 1) is critical to better predict vegetation dynamics in the region. However, because anthropogenic climate change has been altering

Figure 1. An illustrated representation of model properties and interactions that drive vegetation dynamics in the Arctic-Boreal zone (A)–(C). Blue arrows represent water fluxes (transpiration, evaporation, soil moisture, cryoturbation), which are fed by precipitation in various forms (rain, snow, ice). Red arrows represent carbon and nutrient processes (photosynthesis, heterotrophic respiration, litter fall, nutrient cycling, and methane emissions). Plant properties (light competition, succession, seeding, and various vegetation types) as well as external pressures (such as insects and pathogens, CO₂ fertilization, herbivory, fire disturbance, albedo, active layer depth, and permafrost) interact with water and nutrient fluxes to shape the Arctic-Boreal landscape in highly complex and dynamic ways. The ecosystem properties interacting in the Arctic-Boreal zone are complex, and it is a challenge for models to begin to parse apart what properties are important to include to represent dynamic vegetation. Panels (A)–(C) have been separated for artistic rendering and do not imply a lack of interaction among these ecosystem properties.

Earth's ecosystems for decades and is amplified in the Arctic (Previdi *et al* 2021, Rantanen *et al* 2022), a static representation of vegetation in the ABZ locks assumptions into a model simulation that may not be representative of either a pre-warming Arctic, nor of an 'adapted' Arctic (Loehle 2018). Thus, predictions of the Arctic-Boreal future must include vegetation that can respond to changing environmental properties.

With advances in computing power, ecosystem simulation models are now able to better represent their target systems. Dynamic vegetation models (DVMs) are a class of ecosystem simulation model making great advances due to increased availability of input data, as well as heightened model development and sophistication in simulating ecosystems (Fisher et al 2018a, 2018b, Bugmann and Seidl 2022). For this study, a DVM was defined as having the capability for terrestrial vegetation (be it plant species, functional type, cohort, community, or ecosystem type) to respond (via yearly growth, changing stem density, vegetation migration, and mortality, among others) to climate and other environmental factors. As a result, an area represented by a DVM must be capable of having its vegetation composition, its structure, and/or function fluctuate over time in response to changing conditions. A DVM can predict how vegetation competition (from intra- and interspecific to inter-community type) will respond

to environmental inputs and determine ecosystem-level changes. This broad suite of models can simulate a range of possibilities and highlight the largest uncertainties (Fisher *et al* 2018a, Krause *et al* 2019, Gädeke *et al* 2020, Argles *et al* 2022).

DVMs can require substantial parameterization, as they often have fine vegetation resolution with regard to plant species/type information. Because the ABZ has a relatively small number of vascular plant species, DVMs with coarse vegetation resolution can often be applied across large extents due to the similarity of genera within plant functional types (PFTs) (Sulman et al 2021). However, while vascular plant species diversity may be low, microsite variation in soil, hydrological, thermal, and permafrost conditions in the Arctic can lead to high heterogeneity in moss, lichen, and vascular plant communities (Le Roux et al 2013, Mallen-Cooper et al 2021, Jorgenson et al 2022), adding challenges to parametrization and calibration. Furthermore, accumulating the data required for ecosystem inputs, and at the appropriate scale, to run a DVM is a large undertaking and makes this class of models less accessible to managers, scientists, and other practitioners, who do not have modeling experience. Even the most experienced modeler must contend with balancing the greater breadth of a global simulation from large-scale models with the detailed and more spatially variable, and more highly resolved simulation of fine scale models.

Among existing DVMs, there is a wide variety of inputs and ecosystem properties (figure 1) that are incorporated, and choosing which properties to represent is critical to model function. The built-in assumptions of each model inform the scope of its findings, but the functions and assumptions of each model are not always apparent from a review of the literature or codebase, and detailed technical model descriptions and user guides are not always available or accessible. The original intention of a model, or its foundation, frequently carries over as its strongest asset (e.g. a gap dynamics model is very good at simulating stand level tree growth and mortality; Shugart et al 2020). However, many models that share the same lineage have diverged since initial development to target specific processes or locations (Shugart and West 1977, Urban et al 1990, Yan and Shugart 2005, Shuman et al 2014, Brazhnik and Shugart 2016, Foster et al 2016). These model descendants often adjust the inputs and parameterization to their specific needs and various submodules, such that models that share origins may have divergent goals (Fisher et al 2018b), making ensemble model assessments more challenging. However, by bringing various model lineages to the ABZ, models must be adapted to the new system and model convergence intensifies the diversity of model and submodules being run in the region.

DVMs are powerful tools, yet challenging to implement. The goal of this paper is to demystify a collection of 18 commonly used DVMs that have been implemented across the North American boreal forest and tundra. Our specific objectives are:

- (1) To summarize and clarify ecosystem properties and processes being simulated in different DVMs for users to more easily determine which model(s) would be best suited to answer their research questions.
- (2) To review the literature to determine what types of questions have been asked using DVMs to highlight the breadth of application across the ABZ.
- (3) To survey practitioner opinion to inform future model development and application.

2. Methods

2.1. Model ecosystem properties

Model selection was based on two criteria: (1) that the model fit our definition of a DVM (i.e. has the ability for vegetation composition and distribution to change over the simulated landscape as a response to environmental forcings), and (2) that the model be applied within the North American ABZ to study vegetation dynamics or impacts thereof published over the past two decades. We found eighteen models that fit these criteria (figure 2). Models were found via literature search and review using Web of Knowledge/Web of Science, Google

Scholar, expert knowledge from the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) Science Team. Once established that the model fit our criteria, information was collected through Web of Knowledge/Web of Science and Google Scholar (search terms included the model name and/or abbreviation with each of the following: Arctic, Boreal, Alaska, Canada); additionally, model websites, manuals, and technical documentation were reviewed when available. The search was finalized in June 2023. The literature search prioritized sources with model descriptions and papers showing the different applications of DVMs and their input and simulated ecosystem properties. Each DVM was reviewed and categorized based on a suite of 22 ecosystem properties (based on their documented importance from previous observational studies in determining vegetation function, composition, structure, and competition; figure 3), as well as model resolution parameters addressing spatial, temporal, and vegetation resolution. For our purposes, an ecosystem property was a state variable or process that could impact vegetation growth, reproduction, competition, or spread on the landscape; the properties were divided into categories as being a characteristic of soil (soil moisture, nitrogen, active layer depth/permafrost, heterotrophic respiration, cryoturbation, phosphorus), plant growth (succession, litterfall, light competition, seed dispersal, photosynthesis), disturbance (fire, browse herbivory, insect damage, pathogens), or land-atmosphere interactions (evapotranspiration, precipitation form, albedo, methane, CO₂ fertilization). The ecosystem properties were marked as present or absent, along with vegetation, temporal, and spatial resolution (appendix 1). The resulting matrix was analyzed using hierarchical cluster analysis to identify common traits among models using the hclust function (default settings, stats package; Bugmann and Seidl 2022) in R (4.2.1 R Core Team 2022). Using Euclidean distance, the cluster analysis measured the dissimilarity among the models in terms of each ecosystem property they represented; we used hierarchical clustering so as to not influence the number of clusters (as would be necessary for kmeans clustering). Using the silhouette method, we identified 3 clusters among the dataset as maximizing the similarity of in-group models. Once the clusters were identified, we qualitatively interpreted the results to identify common traits among the groups and further split the cluster into 2 groups to highlight certain similarities of resolution and application.

2.2. Model application review

A literature review was conducted to assess how DVMs were being applied in the ABZ. For this literature review, our criteria required that the papers: (1) be published from 2017 to 2022; (2) address the North American ABZ (e.g. could be a local analysis in the North American ABZ, or could be a global study

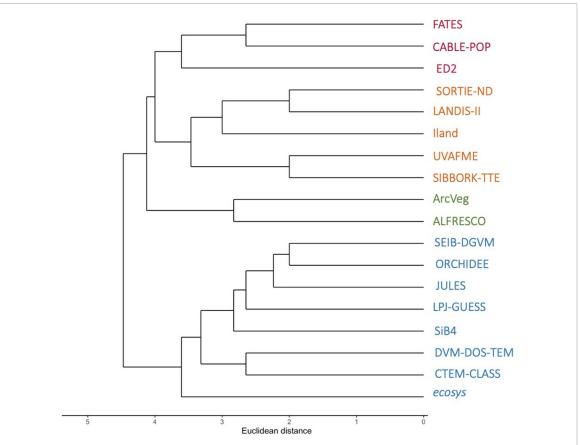
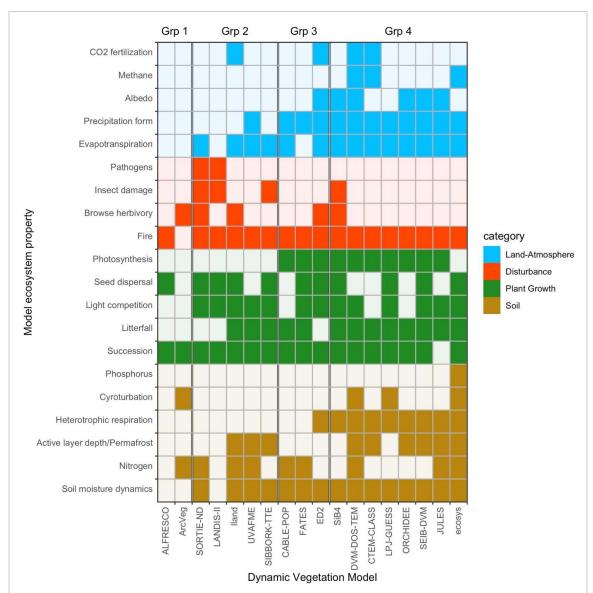


Figure 2. Cluster analysis dendrogram of ecosystem process presence, temporal, vegetation, and spatial resolution. Hierarchical-means clustering identified four groups: cohort models (red), forest species model (orange), specific intention models (green), and carbon tracking models (blue). Ecosys is surprisingly grouped with the earth system models, likely because it has more specialized soil-climate feedbacks (phosphorus, methane, heterotrophic respiration, cryoturbation) that some of the other models do not address.

that highlighted a finding from the North American ABZ); (3) apply at least one of the models identified by the model properties literature review. Studies were accessed through Web of Knowledge/Web of Science and Google Scholar and were surveyed from January 2023 to April 2023 using the same search parameters as the ecosystem properties search (model name + Arctic, Boreal, Alaska, Canda). We limited our search to the six-year period to focus on the most recent modeling developments; the focus on the North American ABZ allowed us to align our literature review with the scope of our expertise surveyed in the next section. Studies were separated into two categories based on whether the research question explicitly addressed vegetation dynamics (e.g. shifts in evergreen vs deciduous cover), or they indirectly included vegetation dynamics (e.g. permafrost dynamics under climate change scenarios, as mediated by vegetation; Melton et al 2019).

2.3. Model process survey

Importance of each of the ecosystem properties was assessed through an online Qualtrics survey. The anonymous survey was approved by the UVA IRB-SBS (Protocol #5607); and was sent to the NASA ABoVE listserv (sent to anyone associated with


ABoVE in March 2023) to solicit practitioner opinion. The survey asked respondents to rank their most important seven properties out of the 22 ecosystem properties outlined in the *Model Ecosystem Properties* section. Air temperature was not one of the properties that could be chosen, as it was found in every model. Participants were also asked about their experience with models (e.g. collects data, creates models, reads papers, etc) and their experience level. Survey questions are available in appendix 2.

Survey results were then compared with the *Model Ecosystem Properties* review to find gaps between the processes that were deemed important by practitioners, and the processes that were being represented in the models. The survey responses were ranked and compared against the corresponding ranked order frequency of the property in the *Model Ecosystem Properties* review; when properties were tied in frequency, their rank values were averaged.

3. Results and discussion

3.1. Model ecosystem properties

The Arctic-Boreal ecosystems simulated by models are extremely complex (figure 1), and there will always be a balance between simple and complex

Figure 3. A matrix graph representing the ecosystem processes that were identified in each model surveyed. Models are ordered according to their cluster group (Grp 1 [Specific Intention models], Grp 2 [Forest species models], Grp 3 [cohort group], Grp 4 [Carbon cycling models]). Ecosystem processes are grouped by whether they are a soil, plant growth, disturbance or climate process or input; the processes are then organized from most frequent (bottom) to least frequent (top) of their respective section. The ecosystem properties represented for each model here, along with the spatial, temporal, and vegetation resolutions displayed in figure A1, provided the basis for the cluster analysis.

representations of the target ecosystem(s). Knowing which aspects of an ecosystem are included across the 18 surveyed DVMs is important to understanding the scope, challenges, and opportunities of each model.

Each model that was reviewed had a unique suite of ecosystem properties (represented in figure 1). Some models used external temperature forcing with either hourly (e.g. Chang et al 2020), daily (e.g. Murphy 2014) or monthly (e.g. Foster et al 2019) timesteps, while others used less mechanistic representations or proxies (e.g. Rupp et al 2000 or Epstein et al 2007). Some properties were more frequently represented than others in the 18 models: fire disturbance (17 models), succession (17), soil moisture dynamics (15), litterfall (13), and light competition (13). Together, these properties represent a coarse

rendering of growth, mortality, and ontogeny. Our analysis was limited to looking at the presence of ecosystem properties rather than the ways each model individually represented and ecosystem process; thus, some processes, like mortality, were assessed through proxy variables such as how the system recycles nutrients or responds to a disturbance. Phosphorus (1, *ecosys*; e.g. Chang *et al* 2020), pathogens (2; e.g. Murphy 2014, Boulanger *et al* 2018), methane (3; e.g. Arora *et al* 2018, Chang *et al* 2020, Arndt and Natali 2022) and the presence of herbivory (5; e.g. Murphy 2014, Yu *et al* 2017, Longo *et al* 2019, Haynes *et al* 2020, Hansen *et al* 2021) were the least common ecosystem properties addressed (figure 3).

The models represented in this review aggregated into four main groups from the cluster analysis (figure 2): models with a specific intention

(ALFRESCO [fire], and ArcVEG [nitrogen]); the forest-species group (SIBBORK-TTE, UVAFME, Iland, LANDIS-II, SORTIE-ND); the cohort group (ED2, CABLE-POP, FATES); and the carbon cycling group (ecosys, SiB4, DVM-DOS-TEM, LPJ-GUESS, ORCHIDEE, CTEM-CLASS, JULES, SEIB-DVM). These models have all been modified from their original version, frequently from different biomes to the ABZ, to generate predictions of the Arctic-Boreal ecosystems (see next section). The underlying mechanics of the original model family and architecture were persistent in their grouping, with some outliers addressed below (Bugmann 2001, Shugart et al 2018).

3.1.1. Specific intention models

The specific intention models group consisted of ArcVeg, 'a nutrient based, plant community and ecosystem model' (Epstein et al 2000) and ALFRESCO, 'a frame-based, spatially explicit fire model' (Rupp et al 2000, Hewitt et al 2016, Melvin et al 2017, www. frames.gov/catalog/7132). These models were mainly unified by their parsimony, rather than the overlapping ecosystem properties they represent. ArcVeg was initially conceived as a way to simulate the impacts of climate change and herbivory (from caribou) across the Arctic tundra with vegetation dynamics driven by the nitrogen cycle (Epstein et al 2000, Yu et al 2017). Daanen et al (2008) added a cryoturbation element to address the localized effects of non-sorted circles (frost boil). ALFRESCO was designed to focus on the impacts of fire disturbance and seed dispersal in Alaska (Rupp et al 2000). ALFRESCO utilizes an ecosystem-level vegetation resolution, but is able to cycle through the expected stages of fire-adapted vegetation succession. ArcVeg and ALFRESCO simulated the impact of increased temperatures using growth periods (see Epstein et al 2000) and map inputs (see Rupp et al 2000), respectively, to streamline the manipulation of temperature in their simulations. By employing simple and robust approaches to shifts in climate, the two models are potentially easier to apply.

3.1.2. Forest species models

The forest species model group contained SIBBORK-TTE, 'an individual-based, spatially explicit, gap model' (Brazhnik and Shugart 2016; https://github.com/SIBBORK/SIBBORK), UVAFME, 'an individual-based gap model' (Foster *et al* 2019, 2022, https://uvafme.github.io/), iLand, 'a multiscale processed-based model' (Seidl *et al* 2012, Hansen *et al* 2021, 2023, https://iland-model.org/startpage), LANDIS-II, 'a landscape change model' (Scheller and Domingo 2005, Boulanger *et al* 2017, 2018, Boulanger *et al* 2022, www.landis-ii.org/), and SORTIE-ND, 'an individual-based forest simulator' (Murphy 2014, Maleki *et al* 2019, 2021, www.sortie-nd.org/). Plant growth processes are well represented across all models, but especially within the forest species models.

This group is uniquely driven by each model having species-level vegetation resolution for trees; UVAFME and SIBBORK-TTE both have additional PFT representations within their models for non-trees (Foster et al 2022, 2021). The fine vegetation resolution limits the potential geographic extent of these models, and thus many represent local areas where the species distribution is generally known. Both UVAFME and SIBBORK can be run at larger scales directly or gridded mapping approaches and/or high computing power. The forest-species group also prioritized a light competition growth model over a biochemical photosynthesis (carbon accounting) process. The models bypassed the photosynthesis mechanism and calculated growth potential directly from the light input (Scheller and Domingo 2005, Seidl et al 2012, Murphy 2014, Brazhnik and Shugart 2015, Foster et al 2019). Additionally, these models are resolved at monthly (for climate inputs), or annual time-steps (for biomass outputs; Seidl et al 2012, Brazhnik and Shugart 2016, Boulanger et al 2017, Foster et al 2019); whereas SORTIE-ND was resolved at only the annual timestep (Maleki et al 2019, 2021).

The forest species models have the greatest diversity and inclusion of ecosystem disturbances (figure 3). Within the disturbance processes category, each forest model had a fire module, but LANDIS-II (Boulanger et al 2018) and SORTIE-ND (Murphy 2014) were the only two models to address forest pathogens. LANDIS-II, SORTIE-ND, and UVAFME are able to run simulations on insect pests, such as the spruce budworm (Maleki et al 2019) and spruce beetle (Steenberg et al 2013, Foster et al 2019). Browse herbivory was addressed by just two of the forest species models (Murphy 2014, Hansen et al 2021). The high representation of disturbance by this group was likely tied to their higher spatial and vegetation resolution, and the importance of disturbances in the boreal forests in general. A fire can be assumed to affect all the vegetation within a model pixel; however, a finer scale disturbance, such as the spruce budworm, requires differentiation in tree species and size (Werner et al 2006) to mimic pest preferences, but also a higher spatial resolution (hectares) to accurately represent the extent of damage. The forest species models, with their finer spatial and vegetation resolution, are thus better suited to simulating fine scale disturbances such as forest insect outbreaks and pathogens.

The models represented in the forest species group specialize in forest growth, with some adding other PFTs to better account for community composition and understory vegetation in the model adaptation to the ABZ (Foster *et al* 2019, 2021). They are well suited to the ABZ because of the focused spatial resolution, especially across the Arctic-Boreal ecotone, where there is high landscape heterogeneity and rapid shifts in vegetation cover (Holtmeier and Broll 2019). Increasing the understory representation in

the forest species models, particularly with shrub and moss PFTs, will increase their predictive power. With such improvements, these models could be utilized to predict Arctic shrubification, a well-documented result of climate warming (McManus *et al* 2012, Myers-Smith *et al* 2015, 2020, Ackerman *et al* 2018, Reid *et al* 2022). Additionally, representing a moss PFT that can influence soil insulation will increase reliability of belowground simulations (Chen *et al* 2019).

Within the forest species group, there was some geographic separation in where the models were being applied. LANDIS-II and SORTIE-ND have been primarily applied in the boreal forest of eastern Canada (Bose *et al* 2015, Boulanger *et al* 2018, 2017, Maleki *et al* 2019, 2021, Boulanger and Puigdevall 2021, Molina *et al* 2022), while UVAFME and SIBBORK-TTE have been primarily being applied in northwestern Canada and Alaska (Foster *et al* 2019, 2022). This pattern is likely an artifact of specific project focus rather than model capability.

3.1.3. Cohort models

The cohort group models were ED-2 'the Ecosystem Demography model' (Longo et al 2019, https:// github.com/EDmodel/ED2), FATES, 'a cohort model of vegetation physiology, growth, and dynamics' and companion model to CLM5.0 (Lambert et al https://fates-users-guide.readthedocs.io/en/ latest/index.html), and CABLE-POP, a 'tree demography and landscape structure model' (Haverd et al 2014). The cohort group was largely unified by the utilization of PFTs further classified by growth stages (cohorts). These models have elements of both the forest species models, such as defined disturbance regimes, while also having more detailed representation of land-atmosphere interactions (figure 3). All three of the cohort models can address precipitation form (Haverd et al 2014, Fisher et al 2015, Longo et al 2019, Kim et al 2021), which is a critical and changing climate property. The interaction of snow with vegetation on the landscape and shift from snow to rain, especially in the shoulder seasons have large impacts on vegetation during the growing season (Barrere et al 2018, Addis and Bret-Harte 2019).

Employing a cohort tracking system to their PFTs allows vegetation ontogeny to factor into the simulations (Haverd *et al* 2014, Longo *et al* 2019, Li *et al* 2022). CABLE-POP was frequently used in model comparison studies, which made it unique in many ensemble studies as the only cohort model. By allowing PFTs to have higher resolution by attending to lifestage, models can better predict carbon storage, seed production, and growth accumulation, with tailored allometries for each life stage.

Within the cohort group, the ED-2 model has the finest spatial resolution; the model focuses on micro-environment and specifically tries to resolve the problem of high heterogeneity (Longo *et al* 2019). FATES and CABLE-POP have been implemented at

much larger spatial scales and resolutions, typically applied in global studies (table 2). The cohort group models did not have any applications for the direct assessment of vegetation dynamics (see next section), suggesting they are well suited to studying ecosystem properties tangential to vegetation dynamics, and that there is an opportunity to ask vegetation dynamics questions of these models. The cohort group would be well suited to answer questions pertaining to the interactions between climate and disturbance, and how the vegetation life stage interacts with climate, especially within the tundra-taiga ecotone where adult recruitment is critical to future predictions (Harsch *et al* 2009, Stevens-Rumann *et al* 2022).

3.1.4. Carbon tracking models

The carbon tracking group has the most diverse of model origins, including SEIB-DVM, 'an individualbased Dynamic Global Vegetation Model' (Sato et al 2007, http://seib-dgvm.com/), and SiB4, also 'a mechanistic, prognostic land surface model' (Haynes et al 2019, 2020), LPJ-GUESS, 'a process-based global dynamic vegetation model' (Smith et al 2014, https://web.nateko.lu.se/lpj-guess/faq.html), DVM-DOS-TEM, 'a process based bio-geo-chemical ecosystem model' (Euskirchen et al 2022, https:// github.com/uaf-arctic-eco-modeling/dvm-dos-tem), CLASS-CTEM, 'an earth system model with a terrestrial ecosystem model' (Melton and Arora https://cccma.gitlab.io/classic_pages/info/ ctem/), ORCHIDEE, 'a land surface model' (Druel et al 2017, Bowring et al 2019, https://orchidee.ipsl. fr/), JULES, 'a community land surface model' (Best et al 2009, 2011, Clark et al 2011, https://jules.jchmr. org/), and ecosys, 'a terrestrial ecosystem biochemistry model' (Chang et al 2020, https://ecosys.ualberta. ca/). Among the carbon tracking models, SiB4 was unique in representing browse herbivory and insect damage but does so at a coarse resolution; the rest of the group simulated fire but not browse herbivory or insects (figure 3). However, the carbon tracking models all represented photosynthesis, heterotrophic respiration, and evapotranspiration.

The carbon tracking models also each included different precipitation forms, and frequently included snowpack dynamics (Burke *et al* 2017, Krause *et al* 2019, Gädeke *et al* 2020, Chadburn *et al* 2022, Shirley *et al* 2022a). The ability to track liquid vs. solid precipitation is critical for modeling in the ABZ, as the recent shift in precipitation from snow to rain has cascading effects on vegetation response (Callaghan *et al* 2011, Addis and Bret-Harte 2019, Rees *et al* 2020).

The majority of the carbon tracking models included in this study have fine temporal resolutions, either daily (or finer) or monthly; however, there is a tradeoff for many in spatial scale. These models, with the exception of *ecosys* and SEIB-DVM, have largely been applied at $0.25^{\circ} \times 0.25^{\circ}$ or coarser resolution

(Slevin et al 2017, Gädeke et al 2020, Zhang et al 2014, Euskirchen et al 2022, Shirley et al 2022a, Yu et al 2022); DVM-DOS-TEM represents a middle spatial resolution, typically running at 1–4 km² (Euskirchen et al 2016). This tradeoff is typical of many land-atmosphere submodules, and enables a larger extent of application; however, it may be at the expense of spatial resolution. A coarse spatial resolution risks homogenizing the highly heterogeneous landscape of the ABZ and ecotone especially (Holtmeier and Broll 2019). All of these models maintained PFT-level vegetation resolution, but the number of PFTs defined by each model included in this study varies from 5 to 15 (Clark et al 2011, Haynes et al 2020).

Ecosys and SEIB-DVM were surprising inclusions in the carbon tracking group, which mostly highlights land-atmosphere interactions (figure 3). Potential, their inclusion of heterotrophic respiration aligned these two models with the carbon tracking models (Shirley et al 2022b, Yu et al 2022); both models simulate active layer depth (Mekonnen et al 2018a, Sato et al 2020), and ecosys can also track methane fluxes, along with CLASS-CTEM and DVM-DOS-TEM (Grant et al 2017, Arora et al 2018, Briones et al 2022). These properties, along with snowpack, are critical to simulating carbon emissions and resolving the status of below-ground hydrology, temperature, nutrient cycling and subsequent vegetation type and success. The belowground processes that the carbon tracking models simulate are critical to accurately predicting how the ABZ will respond aboveground.

3.1.5. Evaluation of model properties

The 18 models surveyed were grouped largely by their vegetation resolution (forest species vs cohort groups vs general PFTs in the carbon tracking groups). This breakdown among the forest species, cohort, and carbon tracking groups highlights the importance of vegetation representation in the models.

As the Arctic is a dynamic system in the process of adapting to a new climate, complex models are needed to evaluate and accurately project change. With each model representing a unique suite of ecosystem properties, the importance of each property in their respective models weighs differently on the model processes and outputs. For example, while the models (almost) all include temperature or fire, these properties are weighted differently in each model depending on internal structure. Thus, it is important for future studies to test an ensemble of models to understand the breadth of possibilities for the future ABZ.

In the Arctic, vegetation growth is especially limited by hydrological processes that are highly variable, difficult to model, and even more difficult to ground truth or remotely sense (Campbell *et al* 2021, Miner *et al* 2022). Permafrost and active layer depth (Miner *et al* 2022), snow depth (Barrere *et al* 2018), and water logging (Simard *et al* 2007) govern plant distribution

and growth rates, but are not universally represented in models. When these properties are included, they are usually resolved at spatial scales too coarse to adequately capture realistic heterogeneity (figure 3; Siewart et al 2021). Thus, a model that does not factor in the shifts in dynamic belowground hydrology might have a skewed representation of vegetation growth as compared to one that does. Presently, models that addressed belowground processes in the Arctic can simulate permafrost dynamics (Clark et al 2011, Druel et al 2017, Arora et al 2018, Foster et al 2019, Sato et al 2020, Euskirchen et al 2022, Hansen et al 2023, 2021); however, some of the models with permafrost submodules operate at scales too great for permafrost variability (Krogh and Pomeroy 2021, Siewart et al 2021).

One limitation of many models is that the ecosystem processes they attempt to simulate occur at finer spatial scales than the inputs that are available (e.g. running a model on a m² resolution, but the input is 250 m²; (Fritsch et al 2020)). This pseudohigh resolution may be appropriate for some ecosystem processes, if the appropriate stochasticity is simulated. For example, SoilGrids data are resolved at 250 m² (Poggio et al 2021), but the soil carbon variation across that area would be misrepresented by a single value. While all the model scales could benefit from increasing resolution, the nuances of noise would be more pressing for the high spatial resolution models in the forest species group. Sub-meter belowground properties, such as active layer depth, could be highly variable within a site and would dictate which species could exist in different areas (Duchesne et al 2018, Heijmans et al 2022, Foster et al 2022, Shirley et al 2022b).

3.2. Model application review

Our literature review yielded 48 studies that applied DVMs within the North American ABZ since 2017. Twenty-two studies focused on shifts in vegetation (table 1); they range in location, scale, and model manipulation (e.g. climate change, harvesting), as well as single model vs. ensemble model approaches. Only two studies addressed direct management questions about harvesting (Maleki et al 2021) and spruce budworm outbreak (Maleki et al 2019). Many of the studies were focused on the future species composition. Studies that investigated climate change scenarios found that evergreen trees/PFTs are likely to do poorly in warming climates, and broadleaf trees/PFTs are likely to do well (Boulanger et al 2017, 2018, Chaste et al 2019, Foster et al 2019, Mekonnen et al 2019, Cadieux et al 2020, Boulanger and Puigdevall 2021, Foster et al 2022). Twenty-six studies addressed other research questions, leveraging the abilities of models that simulate dynamic vegetation to parse interactions among ecosystem processes that are indirectly related to vegetation growth (e.g.

Model Location(s) Vegetation resolution Model manipulation Vegetation resolution Model manipulation Vegetation resolution Model manipulation Vegetation resolut ALPRESCO Alaska and NW Ecosystem Climate change: RPB 8.5 Climate change: RPB 8.5 Counterns subrones increased in locans in certain constitution to the stream of climate change: RPB 8.5 Southern subrones increased in locans in certain biomass combined are climate change: RPB 8.5 Anothern subrones increased in locans in certain biomass combined are climate change: RPB 8.5 CLASS-CTEM Model comparison Anothern subrones increased in locans combined are climate change: RPB 8.5 CLASS-CTEM Model comparison CTEM-CASS owerestimated vegetation. After 1560s, CO.) CTIMA-CASS owerestimated vegeta		Table 1. Studies th	nat used models to investigat	te shifts in vegetation. Studies are	Table 1. Studies that used models to investigate shifts in vegetation. Studies are briefly summarized by their manipulation and location and overall result.	
ESCO Alaska and NW Canada: Western Alaska and NW Canada: Western Alaska Canada: Western Alaska Circumpolar tundra PFT Cirmate change: RCP 8.5 CIEM North America PFT Model comparison Alaska boreal forest PFT Cimate change: RCP 8.5 Fire module Cimate Change: RCP 8.5 Fire RCP 8.5	Model	Location(s)	Vegetation resolution		Vegetation result	Citation
Circumpolar tundra PFT Climate change: RCP 8.5 S-CTEM Circumpolar tundra PFT Model comparison Alaska boreal forest PFT Climate change: RCP 8.5 Fire module Fire module Circumpolar PFT Climate change: RCP 8.5 Fire module Climate change: RCP 8.5 Fire module Fire regimes, browse PFT Climate change: RCP 8.5 Alaska Alaska Alaska Alaska Alaska Alaska Alaska Alaska Climate change: RCP 8.5 Also tested seed dispersal, fire regimes, browse Climate change: RCP 8.5 Alboreal plains of NE Boreal plains of NE Boreal plains of NE Boreal transition zone BIS-II Southern Canada Boreal transition zone Boreal transition zone Boreal transition zone Boreal transition zone A-5 & 8.5 CAN Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Alberta Canada Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Alberta Canada Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Alberta Canada Boreal fransition zone Climate change; RCP 2.6, Alberta Canada Boreal fransition zone Climate change; RCP 2.6, Alberta Canada Boreal fransition zone Climate change; RCP 2.6, Alberta Canada Boreal fransition zone Climate change; RCP 2.6, Alberta Canada Boreal fransition zone Climate change; RCP 2.6, Alberta Canada Boreal fransition zone Climate change; RCP 2.6, Alberta Canada Boreal fransition zone A-5 & 8.5 CAN A-7 & 8.5	ALFRESCO	Alaska and NW Canada: Western Alaska	Ecosystem	Climate change: A1B	Decrease in late successional forest types and increase in early	Euskirchen et al (2016)
S-CTEM Circumpolar PFT Model comparison Alaska boreal forest PFT Climate change: RCP 8.5 Alaska boreal forest Species Climate change: RCP 8.5 Alaska boreal forest Species Climate change: RCP 8.5 Also tested seed dispersal, fire regimes, browse pressure A, A, Boreal plains of NE Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Boreal transition zone Southern Canada Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Boreal transition zone Climate change; RCP 2.6, 4.5 & 8.5 Boreal transition zone Climate change; RCP 2.6, 4.5 & 8.5 Boreal transition zone Climate change; RCP 2.6, 4.5 & 8.5 Boreal transition zone Climate change; RCP 2.6, 4.5 & 8.5 Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem CLIMA Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type CAN Ecosystem CLIMA Ecosystem	ArcVeg	Circumpolar tundra	PFT	Climate change: RCP 8.5	Southern subzones increased in biomass; combined net effect of herbitory and climate change is etill not increase in biomass	Yu et al (2017)
S-CTEM North America PFT Model comparison Alaska boreal forest PFT Climate change: RCP 8.5 Alaska boreal forest Species Climate change: RCP 8.5 Alaska Also tested dispersal, fire regimes, browse pressure PFT Model comparison A. Climate Change: RCP 8.5 A. Also tested dispersal, fire regimes, browse pressure PFT Model comparison Climate Change: RCP 8.5 A. Boreal plains of NE Ecosystem IS-II Southern Canada Ecosystem Als-II Southern Canada Ecosystem Dispersable change: RCP 2.6, boreal transition zone Als 8.8 IS-II Boreal forest in Quebec, Species Climate change: RCP 2.6, Disturbance type AlS-II Quebec, CAN Ecosystem Climate change: RCP 2.6, Disturbance type AlS-II Quebec, CAN Ecosystem Climate change: RCP 2.6, Disturbance type	CLASS-CTEM	Circumpolar	PFT	Model comparison	Increase in plant area index across most of Arctic. Larger increase when using CTFM	Teufel et al (2019)
Alaska boreal forest PFT Climate change: RCP 8.5 Fire module Alaska Species Climate change; RCP 8.5; Also tested seed dispersal, fire regimes, browse pressure A, E-POP Boreal plains of NE Ecosystem Climate change; RCP 2.6, Alberta Canada Ecosystem Climate change; RCP 2.6, boreal transition zone boreal transition zone JIS-II Southern Canada Ecosystem Climate change; RCP 2.6, boreal transition zone Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Disturbance type Climate change; RCP 8.5 Climate change; RCP 2.6, 4.5 & 8.5 Climate change; RCP 2.6, boreal transition zone Climate change; RCP 8.5 CAN CAN Coulter Coulter Change Climate change; RCP 8.5 Climate	CLASS-CTEM	North America	PFT	Model comparison	CTEM-ClASS overestimated vegetation; After 1960s, CO_2 fertilization and climate warming increased fraction of tree PFTs	Shrestha et al (2017)
Alaska Species Climate change; RCP 8.5; Also tested seed dispersal, fire regimes, browse pressure Also Boreal plains of NE Ecosystem Climate change; RCP 8.5 and Alberta Canada Ecosystem Climate change; RCP 2.6, Also boreal transition zone Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 8.5 boreal forest in Quebec, CAN Ecosystem Climate change; RCP 8.5 bisturbance type Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Ecosystem Ecosystem Climate change; RCP 2.6, Also Boreal forest in Quebec, CAN Ecosystem Ec	ecosys	Alaska boreal forest	PFT	Climate change: RCP 8.5 Fire module	Evergreen PFTs decreased in climate change + fire scenario; Evergreen PFT and deciduous able to keep pace in fire no climate	Mekonnen et al 2019
PFT Model comparison Model comparison Climate Change: RCP 8.5 Boreal plains of NE Ecosystem Alberta Canada Southern Canada Boreal transition zone Southern Canada Ecosystem Climate change; RCP 2.6, 4.5 & 8.5 Harvesting pressure Climate change; RCP 2.6, 4.5 & 8.5 Boreal transition zone Boreal transition zone Boreal transition zone Boreal transition zone Climate change; RCP 2.6, 4.5 & 8.5 Climate change; RCP 2.6, Climate change; RCP 8.5 CAN Quebec, CAN Ecosystem Climate change; RCP 8.5 Climate change; RCP 2.6, 4.5 & 8.5	iLand	Alaska	Species	Climate change; RCP 8.5; Also tested seed dispersal, fire regimes, browse	change scenario Mixed forest and black spruce forests were maintained when fire return intervals were long, deciduous browse pressure was high and seed source was distant	Hansen et al 2021
Boreal plains of NE Alberta Canada Alberta Canada Southern Canada Boreal transition zone Boreal transition zone Boreal transition zone Boreal forest in Quebec, CAN Cauber Canada Boreal forest in Quebec, CAN Cauber Canage; RCP 2.6, 4.5 & 8.5 Climate change; RCP 2.6, 4.5 & 8.5 Climate change; RCP 8.5 Climate change; RCP 8.5 Disturbance type Climate change; RCP 2.6, 4.5 & 8.5	JULES, LPJ-LM, LPJGuess, SEIB DGVM, CABLE-POP	Global	PFT	Pressure Model comparison Climate Change: RCP 8.5	Tree mortality should decrease in boreal, but models had the least agreement in boreal forest	Yu <i>et al</i> 2022
Southern Canada Ecosystem Climate change; RCP 2.6, boreal transition zone Southern Canada Ecosystem Climate change; RCP 2.6, boreal transition zone Boreal forest in Quebec, Species Climate change; RCP 8.5 CAN Ecosystem Ecosystem Climate change; RCP 8.5 CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5	LANDIS-II	Boreal plains of NE Alberta Canada	Ecosystem	Climate change; RCP 2.6, 4.5 & 8.5 Harvesting pressure	Under RCP 4.5 & 8.5: Increase in treeless area, decrease in conifer forest. Slight increase in deciduous forest; climate change had greater effect than harvesting	Cadieux <i>et al</i> 2020
Southern Canada Ecosystem Climate change; RCP 2.6, boreal transition zone Boreal forest in Quebec, Species Climate change; RCP 8.5 CAN Ecosystem Ecosystem Climate change; RCP 8.5 A.5 & 8.5	LANDIS-II	Southern Canada boreal transition zone	Ecosystem	Climate change; RCP 2.6, 4.5 & 8.5	Shift towards younger forests dominated by a few species, especially early to mid successional species: decrease in coniferous species.	Boulanger et al (2018)
Boreal forest in Quebec, Species Climate change; RCP 8.5 CAN Disturbance type Quebec, CAN Ecosystem Climate change; RCP 2.6,	LANDIS-II	Southern Canada boreal transition zone	Ecosystem	Climate change; RCP 2.6, 4.5 & 8.5	Decrease in boreal species, increase in temperate species, especially under RCP 8.5	Boulanger et al (2017)
Quebec, CAN Ecosystem Climate change; RCP 2.6, 4.5 & 8.5	LANDIS-II	Boreal forest in Quebec, CAN	Species	Climate change; RCP 8.5 Disturbance type	Increase in non-fire adapted species in RCP8.5 scenarioHardwoods and mixed forests were favored after forest management disturbance while confers were favored after fire disturbance	Molina <i>et al</i> (2022)
disappear in west boreal by 2150 under RC	LANDIS-II	Quebec, CAN	Ecosystem	Climate change; RCP 2.6, 4.5 & 8.5	Decrease in boreal conifers. Hardwoods would increase but not enough to completely offset the loss of biomass. Black spruce would disappear in west boreal by 2150 under RCP 8.5	Boulanger and Puigdevall (2021)

	201121	OHITING.
Ċ	7	٠.
•	_	-
	`	2
_	Ć	Š
E	•	4

			Table 1: (Commune)		
Model	Location(s)	Vegetation resolution	Model manipulation	Vegetation result	Citation
LPJ-LMFire (LPJ-	Eastern Canadian	PFT	Climate Change: RCP 4.5	Increase in Populus in southern ecozones and co-dominance with	Chaste <i>et al</i> (2019)
GUESS + SPITFIRE	Boreal Forest		and 8.5	Picea in northern	
LPJ-LMFire (LPJ- GUESS + SPITFIRE)	Eastern Canadian Boreal Forest	PFT	Calibrating model	Overestimated Picea and Populus biomass across region; underestimated Pinus and Abies in the north but underestimated in the south	Chaste et al (2018)
ORCHIDEE	Circumpolar (CAVM)	PFT	Climate Change: RCP 4.5 and 8.5	Boreal band, trees coverage increases (42% and 68%) at the expense of shrub cover; in Arctic band; trees increase 120% and 250% in the two scenarios; at the expense of shrubs and grasses.	Druel et al (2019)
SEIB DGVM	Global	PFT	Light vs Water gathering biomass	Total vegetation increased 119 Pg (1901–2015), 97% due to light gathering biomass; water gathering biomass increases most in boreal zones	Tong <i>et al</i> (2022)
SEIB DGVM	Circumpolar	FPT	Model Comparison Climate Change: RCP 8.5	Model predicted increase in growth while RWI based model predicted spatial variability in tree growth trends	Tei et al (2017)
SEIB DGVM + ensemble	North America	PFT	Model Comparison Climate Change: RCP 8.5 vs Last Glacial Maximum and modern historic	Încrease in C4 species but models disagree where	Still et al (2019)
SORTIE-ND	Lake Duparquet Research and Teaching Forest, Quebec, CA.	Species	Spruce budworm outbreak	Cedar infills into old stands; spruce budworm significantly affected balsam fir	Maleki <i>et al</i> (2019)
SORTIE-ND	Lake Duparquet Research and Teaching Forest, Quebec, CA.	Species	Clear cutting	Clear cut: reset of succession and aspen dominance—Partial harvest: maintain general composition of original stands	Maleki <i>et al</i> (2021)
TEM	Boreal Alaska and Canada	PFT	Historical carbon balance	After 25 years following fires, difference in vegetation carbon decreased to 773.0–1242.2 g C m $^{-2}$ from the initially removed carbon 1512 g C m $^{-2}$	Zhao <i>et al</i> (2021)
UVAFME	Tanana River Basin, AK, USA	Species	Climate change; RCP 4.5 & 8.5	Overall decrease in spruce forest and increase in deciduous forest. Greater increase in biomass under RCP 4.5 than under RPC 8.5	Foster <i>et al</i> (2019)
UVAFME	AK and Western Canada	Species	Climate change; RCP 4.5 & 8.5	RCP 4.5 Total biomass will slightly increase and the fraction of deciduous areas will slightly increase. RCP 8.5: total biomass will decrease and fraction of deciduous areas will increase greatly	Foster <i>et al</i> (2022)

methane sinks, influence of microtopography, phenology of carbon source/sink, peatland source/sink, carbonyl sulfide, snow phenology, etc; table 2). With increasing model capabilities, the studies that implicitly assessed vegetation dynamics (table 2) demonstrate the versatility of a DVM to increase our understanding of different responses and interactions of ecosystem properties with changing vegetation.

While difficult to simulate at larger scales, the models were frequently used to study belowground properties, such as permafrost (Burke et al 2017, Melton et al 2019, Shirley et al 2022a), and soil carbon (Larson et al 2022), methane cycling (Grant et al 2017), and peat accumulation (Chaudhary et al 2017, 2020, Chadburn et al 2022, Chaudhary et al 2022, Mekonnen et al 2022, Shirley et al 2022a). Model comparisons (both model sensitivity and ensemble model comparisons) were a frequent research goal, but were limited to large-scale models, almost all of which were in the carbon tracking group (CABLE-POP, CLASS-CTEM, ED2, JULES, LPJ-GUESS, ORCHIDEE etc; Burke et al 2017, Krause et al 2019, Rogers et al 2019, Gädeke et al 2020, Yang et al 2020). The ecosys model stood out particularly as a model that was able to address many different types of questions about Arctic-Boreal ecosystems, such as how climate change and fire will influence vegetation (Mekonnen et al 2019), how CO₂ and CH₄ are affected by tundra polygons (Grant et al 2017), and the effects of microtopography and soil heterogeneity on vegetation (Mekonnen et al 2018b, 2021, Shirley et al 2022b). The suite of ecosys papers demonstrates how creative questions can be asked of models to focus on different ecosystem properties and the subsequent effects on vegetation, highlighting the dynamism of Arctic vegetation in a changing climate. It is important for models to predict what the ABZ future vegetation will look like, but knowing how ecosystem property interactions are likely to shift under stress is equally important.

One limitation that the model application review highlighted is how individual models tend to be primarily used by single research groups. A research group can produce many studies using one model, but the models might not be readily transferred, or even transferable, making versatility a challenge. Model transference can be limited by code availability, code complexity and language (i.e. how steep is the learning curve), and input data requirements. The ensemble model comparison approach would increase reproducibility and connection among research teams; however, it can be limited by the internal structure of each model and whether the required inputs are available, especially for the individual-based gap model structures. An ensemble of models can yield many different outcomes and enable a more reliable, averaged outcome with uncertainties. However, while both managers and modelers would benefit from a suite of models to predict future

scenarios, parameterizing models is both time and computationally intensive.

3.3. Model process survey

The survey asked respondents to select their top seven out of 22 ecosystem properties (same properties listed in figure 3; questions in appendix 2). One hundred fifty-five respondents from the NASA ABoVE listserv completed the survey over a two-week period (13–27 March 2023). The respondent demographic included a mix of advanced (20%, 31 respondents), intermediate (41%, 65 respondents), and novice (34%, 54 respondents) practitioners. Of the respondents, 51% (79 respondents) collected data that could be used in models, 24% (37 respondents) worked to develop models, 31% (48 respondents) ran models, and 63% (98 respondents) read papers about models (multiple responses were accepted for this question). We found no trends between respondent experience and/or application and the ecosystem properties they selected.

The top three ecosystem processes selected as important to DVMs were soil moisture dynamics, fire, and active layer depth/permafrost (table 3). Soil moisture properties, and active layer depth, create a highly heterogeneous belowground matrix which influences vegetative community and individual success (Limpens et al 2021, Kemppinen et al 2021, Heijmans et al 2022); however, soil moisture is already well represented, simulated in 15 of the models. These factors (i.e. soil moisture and active layer depth), while important for larger-scale models, are critical for the finer-scale, local models. Fire, nearly universally represented in the models (17), represents a much larger scale disturbance that influences landscape structural heterogeneity, especially in the boreal forest (Mack et al 2011, 2021, Reid et al 2022). Of these three most 'in demand' modeled ecosystem properties as ranked by respondents, active layer depth/permafrost had the largest discrepancy between its practitioner demand and the number of models in which it was incorporated (table 3). This demand suggests that there is an important modeling gap to be filled, which should increase the confidence of model predictions. Including active layer depth and permafrost in more models would be a positive step to more accurately capture ABZ vegetation dynamics; however, these data are spatially and temporally limited and challenging to accurately model.

The survey identified five ecosystem processes that were in high practitioner demand relative to the number of models that had the process incorporated (i.e. supply). Active layer depth/permafrost and thermokarst had the highest difference between practitioner demand and model supply (3 vs. 12 rank, and 13 vs. 22, table 3). The other processes that are in practitioner demand (insect outbreaks, nitrogen cycling, and herbivory) had lower disparities between demand and supply (differences in rank of 6.5–3.5). Many of

Table 2. Model studies that focused on other topics in the North-American ABZ but utilized the dynamic vegetation capabilities of each model.

Model	Location	Vegetation Resolution	Paper focus	Citation
ALFRESCO CABLE-POP, CLASS-CTEM, JULES, LPJ-GUESS, ORCHIDEE,	Alaska boreal forest Global	Ecosystem PFT	Wildfire Model comparison	Melvin et al (2017) Yang et al (2020)
ORCHIDEE-MICT, etc. CABLE-POP, LPJ-GUESS, LPJ	Global	PFT	Model comparison; carbon flux	Krause et al (2019)
CLASS-CTEM ecosys	Circumpolar Alaska	PFT PFT	Permafrost Soil organic carbon and wildfire	Melton <i>et al</i> (2019) Mekonnen <i>et al</i> (2022)
ecosys	Barrow Experimental Observatory, AK, USA	Tundra polygon type	CO ₂ and CH ₄	Grant et al (2017)
ecosys	North American Arctic	PFT	Microtopography	Mekonnen <i>et al</i> (2018a)
ecosys	Kougarok Hillslope, AK	PFT	Microtopography	Mekonnen <i>et al</i> (2021)
ecosys	Alaska	PFT	Phenological source/sink	Shirley et al (2022a)
ecosys	Seward Peninsula, AK	PFT	Soil and permafrost heterogeneity	Shirley et al (2022a)
ecosys	Alaska	PFT	Machine learning comparison	Shirley et al (2023)
ED2	Imnavait Creek watershed, Alaska	PFT	Soil carbon	Larson et al (2022)
ED2	Alaska	PFT	Snow phenology	Kim et al (2021)
ED2, JULES, ensemble	Barrow Environmental Observatory (BEO), AK	PFT	Photosynthesis	Rogers et al (2019)
JULES	Global	PFT	GPP comparison	Slevin et al (2017)
JULES	Circumpolar	PFT	Peatlands	Chadburn et al (2022)
JULES, ORCHIDEE, LPJ	6 largest Arctic watersheds	PFT	Hydrology—river discharge	Gädeke et al (2020)
LPJ-GUESS	Circumpolar	PFT	Peatlands	Chaudhary et al (2020)
LPJ-GUESS	Circumpolar	PFT	Peatlands	Chaudhary et al (2022)
LPJ-GUESS	Mer Bleue, Ottawa, CAN	PFT	Peatlands	Chaudhary et al (2017)
LPJ-GUESS	Circumpolar	PFT	Sea ice \sim vegetation feedback	Zhang et al (2014)
ORCHIDEE and JULES	Circumpolar	PFT	Climate permafrost feedback	Burke et al (2017)
SEIB DGVM	Canada, Austria, Switzerland, Panama	PFT	Nonstructural carbon	Ninomiya et al (2023)
SiB4	Circumpolar	PFT	Carbonyl sulfide	Vesala et al (2022)
SiB4	Global	PFT	Carbonyl sulfide	Kooijmans <i>et al</i> (2021)
TEM	Alaska	PFT	Model sensitivity	Euskirchen <i>et al</i> (2022)

the ecosystem processes were in lower demand than model supply, suggesting that the models are mostly satisfying practitioner use and application for these properties.

Thermokarst is an important element of landscape change and indicates a sudden structural failure of the permafrost due to thaw (Miner *et al* 2022). While the demand for thermokarst in DVMs was not large, the lack of representation in the models of thermokarst presents an opportunity for development. Vegetation can both insulate permafrost (Turetsky et al 2012, Domine et al 2022), and exacerbate loss (Kropp et al 2021), making DVMs a good model type to simulate thermokarst processes. Because large thermokarst events can expose carbon and shift the source/sink status of a site (Pegoraro et al 2021), the inclusion of this landscape change is important to consider. Active layer cryoturbation

Table 3. Survey responses highlighting the ecosystem properties that practitioners think are most important to arctic vegetation dynamics. The difference column is the demand column (survey respondent rank) minus the supply (model rank). The ecosystem properties are ordered by the highest difference to highlight the ecosystem model properties that are most mismatched between demand and supply. Half ranks are the result of tied rank orders being averaged.

Ecosystem model property	Survey rank	Model rank	Difference
Active layer depth	3	12	
Thermokarst	13	22	-9
Insect outbreak	10	16.5	-6.5
Nitrogen cycling	6	10.5	-4.5
Herbivory (browse)	11.5	15	-3.5
Precipitation and form (snow vs rain)	4	7	-3
Soil moisture dynamics	1	3	-2
Photosynthesis	7	9	-2
Phosphorus cycling	19	21	-2
CO ₂ fertilization	15.5	16.5	-1
Methane emissions	18.5	18.5	0
Fire	2	1.5	0.5
Albedo	14	13.5	0.5
Seed dispersal	9	8	1
Pathogens	21.5	20	1.5
Variable growth mechanisms	16.5	13.5	3
Cyroturbation	21.5	18.5	3
Succession	5	1.5	3.5
Evapotranspiration	8	4	4
Light competition	11.5	5.5	6
Heterotrophic respiration	17.5	10.5	7
Litterfall	20	5.5	14.5

was similarly absent from most models; however, the demand was lower, showing a practitioner preference for the larger landscape process than the smaller freeze-thaw soil cycles.

There are some ecosystem properties that are represented to a greater extent than demanded, having a greater than 6 rank order discrepancy (light competition, heterotrophic respiration, and litterfall). Light competition and litterfall are important processes to vegetation growth and thus would be expected to be commonly found in DVMs. However, we expect this result is also from a bias in question design. The IRB-SBS Study Information Sheet stated that 'the purpose of the study is to highlight the gap between what ecosystem processes are being simulated in vegetation models and what processes are considered important to growth but have not been accounted for in vegetation modeling'. This statement could have biased respondents to select ecosystem processes that are less common in models, particularly as we have many respondents with high familiarity with model design and application. Additionally, the question was framed to ask respondents to select ecosystem properties that were important to vegetation dynamics, which may have biased the answer away from carbon tracking answers. Another cause for the over-representation of some of these processes could be an artifact from models that were designed

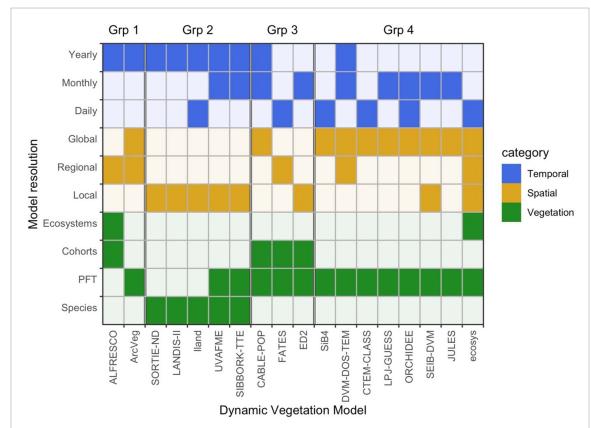
for lower latitudes, or global applications, where certain properties might be more fundamentally important to understanding those ecosystems. However, we do not think that these biases in question design reduce the significance of the above outcomes and what ecosystem properties were desired to improve DVMs in the ABZ.

4. Conclusion

The ABZ is a highly dynamic and heterogeneous region, and DVMs are an important tool for predicting its future. The suite of models outlined in this paper cover a breadth of ecosystem properties and temporal, spatial, and vegetation resolutions depending on the scope of the model. We offer a summary of these models to document the present state and applications of DVMs in the North American ABZ, and to serve as a future reference point in model development. The applications of these models highlight the versatility of the DVMs to simulate and understand ecosystem properties that can be difficult to otherwise approach at large scales. With computing power being alleviated as a primary limitation, DVMs are more limited by the diversity of questions and tests being asked of them and the ecosystem properties they represent. Our survey suggests that modeling permafrost-vegetation dynamics is the

next frontier in advancement and demand; developing this ecosystem property will greatly reduce uncertainties in predictions of ABZ vegetation composition and structure.

Acknowledgments


We would like to thank Shelby Lawton for allowing us to use her artwork (shelbyartworks.com, slawton623@gmail.com). We also thank all our survey participants for sharing their expert opinions. We received funding support from NASA

ABoVE (80NSSC19M0112, 80NSSC22K1247 and 80NSSC19M0111), the Gordon and Betty Moore foundation (Grant Nos. 8414) and the Audacious project (Permafrost Pathways).

Ethical statement

This human study was approved by Institutional Review Board for the Social and Behavioral Sciences (Protocol Number: 5607). All adult participants provided written informed consent to participate in this study.

Appendix 1

Appendix figure 1. A matrix graph representing the different temporal (blue), spatial (gold), and vegetation (green) resolutions that each model uses. Models are ordered according to their cluster group (Grp 1 [Specific Intention models], Grp 2 [Forest species models], Grp 3 [cohort group], Grp 4 [Carbon cycling models]). Models can have multiple scaling resolutions within the same category which could be from having different resolutions for different processes (such as daily temporal resolution for temperature or moisture processes, but a monthly resolution for growth).

Appendix 2

Survey questions

1. Please select the 7 most important processes for models to explicitly represent that drive vegetation dynamics in the ABZ.

Note—temperature was not included because it is represented in all the models surveyed.

Evapotranspiration

CO₂ fertilization

Litterfall

Soil moisture dynamics

Nitrogen cycling

Active layer depth/Permafrost

Pathogens

Insect outbreak

Methane emissions

Seed dispersal

Variable growth mechanisms (e.g. single stem, multi-stem, growth form)

Heterotrophic respiration

Precipitation and form (snow vs rain)

Herbivory (browse)

Photosynthesis

Phosphorus cycling

Cyroturbation Albedo Light competition Thermokarst Fire Succession Other

2. What is your level of engagement/comfort level with models?

Novice Intermediate Advanced

3. How do you primarily interact with DVMs? (Choose all that apply)

Collect data for input
Develop model (i.e. write model code)
Run model and use output
Reads model papers and applies output to other research ideas
Other.

ORCID iDs

Elise Heffernan https://orcid.org/0009-0005-5540-7507

Amanda Armstrong https://orcid.org/0000-0002-9123-8924

References

- Ackerman D E, Griffin D, Hobbie S E, Popham K, Jones E and Finlay J C 2018 Uniform shrub growth response to June temperature across the North Slope of Alaska *Environ. Res. Lett.* **13** 044013
- Addis C E and Bret-Harte M S 2019 The importance of secondary growth to plant responses to snow in the arctic *Funct. Ecol.* 33 1050–66
- Argles A P K, Moore J R and Cox P M 2022 Dynamic global vegetation models: searching for the balance between demographic process representation and computational tractability *PLOS Clim.* 1 e0000068
- Arndt K and Natali S (Permafrost Pathways Flux Steering Committee) 2022 Strategic expansion of the Arctic-Boreal carbon flux network. [Oral presentation] *American Geophysical Union Meeting Fall* (https://doi.org/ 10.5194/egusphere-egu23-10643)
- Arora V K, Melton J R and Plummer D 2018 An assessment of natural methane fluxes simulated by the CLASS-CTEM model *Biogeosciences* 15 4683–709
- Ballinger T J 2021 NOAA arctic report card 2021: surface air temperature United States. National Oceanic and Atmospheric Administration. Office of Oceanic and Atmospheric Research. Global Ocean Monitoring and Observing (GOMO) Program (available at: https://repository.library.noaa.gov/view/noaa/34475)
- Barrere M, Domine F, Belke-Brea M and Sarrazin D 2018 Snowmelt events in autumn can reduce or cancel the soil warming effect of snow–vegetation interactions in the arctic J. Clim. 31 9507–18
- Best M J *et al* 2011 The joint UK land environment simulator (JULES), model description—Part 1: energy and water fluxes *Geosci. Model Dev.* 4 677–99
- Best M, Essery R and Cox P 2009 *Jules Technical Documentation*Met Office, Joint Centre for Hydro-Meteorological Research,
 Maclean Building (Crowmarsh Gifford)
- Bose A K, Harvey B D, Coates K D, Brais S and Bergeron Y 2015 Modelling stand development after partial harvesting in

- boreal mixedwoods of eastern Canada *Ecol. Model.* **300** 123–36
- Boulanger Y, Pascual J, Bouchard M, D'Orangeville L, Périé C and Girardin M P 2022 Multi-model projections of tree species performance in Quebec, Canada under future climate change Glob. Change Biol. 28 1884–902
- Boulanger Y and Pascual Puigdevall J 2021 Boreal forests will be more severely affected by projected anthropogenic climate forcing than mixedwood and northern hardwood forests in eastern Canada *Landscape Ecol.* 36 1725–40
- Boulanger Y, Taylor A R, Price D T, Cyr D, McGarrigle E, Rammer W, Sainte-Marie G, Beaudoin A, Guindon L and Mansuy N 2017 Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone *Landscape Ecol.* 32 1415–31
- Boulanger Y, Taylor A R, Price D T, Cyr D and Sainte-Marie G 2018 Stand-level drivers most important in determining boreal forest response to climate change *J. Ecol.* **106** 977–90
- Bowring S P K, Lauerwald R, Guenet B, Zhu D, Guimberteau M, Tootchi A, Ducharne A and Ciais P 2019 ORCHIDEE MICT-LEAK (r5459), a global model for the production, transport, and transformation of dissolved organic carbon from Arctic permafrost regions—Part 1: rationale, model description, and simulation protocol *Geosci. Model Dev.* 12 3503–21
- Box J E *et al* 2019 Key indicators of Arctic climate change: 1971–2017 *Environ. Res. Lett.* 14 045010
- Brazhnik K and Shugart H H 2015 3D simulation of boreal forests: structure and dynamics in complex terrain and in a changing climate *Environ. Res. Lett.* **10** 105006
- Brazhnik K and Shugart H H 2016 SIBBORK: a new spatially-explicit gap model for boreal forest *Ecol. Modelling* 320 182–96
- Briones V, Jafarov E, Genet H, Rogers B M and Rutter R 2022 A model parameter sensitivity comparison across two alaskan sites in continuous and discontinuous permafrost tundra *AGU Fall Meeting Abstracts 2022* pp B52I–0933
- Bugmann H 2001 A Review of Forest Gap Models *Clim. Change* 51 259–305
- Bugmann H and Seidl R 2022 The evolution, complexity and diversity of models of long-term forest dynamics *J. Ecol.* **110** 2288–307
- Burke E J, Ekici A, Huang Y, Chadburn S E, Huntingford C, Ciais P, Friedlingstein P, Peng S and Krinner G 2017 Quantifying uncertainties of permafrost carbon–climate feedbacks *Biogeosciences* 14 3051–66
- Cadieux P, Boulanger Y, Cyr D, Taylor A R, Price D T, Sólymos P, Stralberg D, Chen H Y H, Brecka A and Tremblay J A 2020 Projected effects of climate change on boreal bird

- community accentuated by anthropogenic disturbances in western boreal forest, Canada *Divers. Distrib.* **26** 668–82
- Cahoon S M P, Sullivan P F and Gray A N 2022 Interactions among wildfire, forest type and landscape position are key determinants of boreal forest carbon stocks *J. Ecol.* 110 2475–92
- Callaghan T V et~al~2011 Multiple effects of changes in arctic snow cover AMBIO 40 32–45
- Campbell T K F, Lantz T C, Fraser R H and Hogan D 2021 High arctic vegetation change mediated by hydrological conditions *Ecosystems* 24 106–21
- Chadburn S E *et al* 2022 A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands *Geosci. Model Dev.* 15 1633–57
- Chang K-Y, Riley W J, Crill P M, Grant R F and Saleska S R 2020 Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity *Biogeosciences* 17 5849–60
- Chapin F S et al 2005 Role of land-surface changes in arctic summer warming Science 310 657–60
- Chaste E, Girardin M P, Kaplan J O, Bergeron Y and Hély C 2019 Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada's managed boreal forest *Landscape Ecol.* 34 403–26
- Chaste E, Girardin M P, Kaplan J O, Portier J, Bergeron Y and Hély C 2018 The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model *Biogeosciences* 15 1273–92
- Chaudhary N, Miller P A and Smith B 2017 Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model *Biogeosciences* 14 2571–96
- Chaudhary N, Westermann S, Lamba S, Shurpali N, Sannel A B K, Schurgers G, Miller P A and Smith B 2020 Modelling past and future peatland carbon dynamics across the pan-Arctic *Glob. Change Biol.* **26** 4119–33
- Chaudhary N, Zhang W, Lamba S and Westermann S 2022 Modeling pan-arctic peatland carbon dynamics under alternative warming scenarios Geophys. Res. Lett. 49 1–9
- Chen W, Zhu D, Ciais P, Huang C, Viovy N and Kageyama M 2019 Response of vegetation cover to CO₂ and climate changes between last glacial maximum and pre-industrial period in a dynamic global vegetation model *Quat. Sci. Rev.* 218 293–305
- Chylek P, Folland C, Klett J D, Wang M, Hengartner N, Lesins G and Dubey M K 2022 Annual mean arctic amplification 1970–2020: observed and simulated by CMIP6 climate models *Geophys. Res. Lett.* **49** e2022GL099371
- Clark D B *et al* 2011 The joint UK land environment simulator (JULES), model description—Part 2: carbon fluxes and vegetation dynamics *Geosci. Model Dev.* 4 701–22
- Daanen R P, Misra D, Epstein H, Walker D and Romanovsky V 2008 Simulating nonsorted circle development in arctic tundra ecosystems J. Geophys. Res.: Biogeosci. 113 2008JG000682
- Dial R J, Maher C T, Hewitt R E, Wockenfuss A M, Wong R E, Crawford D J, Zietlow M G and Sullivan P F 2024 Arctic sea ice retreat fuels boreal forest advance *Science* 383 877–84
- Domine F, Fourteau K, Picard G, Lackner G, Sarrazin D and Poirier M 2022 Permafrost cooled in winter by thermal bridging through snow-covered shrub branches *Nat. Geosci.* 15 554–60
- Druel A, Ciais P, Krinner G and Peylin P 2019 Modeling the vegetation dynamics of northern shrubs and mosses in the ORCHIDEE land surface model *J. Adv. Model. Earth Syst.* 11 2020–35
- Druel A, Peylin P, Krinner G, Ciais P, Viovy N, Peregon A, Bastrikov V, Kosykh N and Mironycheva-Tokareva N 2017 Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0) Geosci. Model Dev. 10 4693–722

- Duchesne R R, Chopping M J, Tape K D, Wang Z and Schaaf C L B 2018 Changes in tall shrub abundance on the North Slope of Alaska, 2000–2010 *Remote Sens. Environ.* **219** 221–32
- Elmendorf S C *et al* 2012 Plot-scale evidence of tundra vegetation change and links to recent summer warming *Nat. Clim. Change* 2 453–7
- Epstein H E, Kaplan J O, Lischke H and Yu Q 2007 Simulating future changes in arctic and subarctic vegetation *Comput. Sci. Eng.* 9 12–23
- Epstein H E, Walker M D, Chapin F S and Starfield A M 2000 A transient, nutrient-based model of arctic plant community response to climatic warming *Ecol. Appl.* 10 824–41
- Euskirchen E S, Bennett A P, Breen A L, Genet H, Lindgren M A, Kurkowski T A, McGuire A D and Rupp T S 2016 Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada Environ. Res. Lett. 11 105003
- Euskirchen E S, Serbin S P, Carman T B, Fraterrigo J M, Genet H, Iversen C M, Salmon V and McGuire A D 2022 Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities *Ecol. Appl.* 32 e2499
- Fisher J B *et al* 2018a Missing pieces to modeling the Arctic-Boreal puzzle *Environ. Res. Lett.* 13 020202
- Fisher R A *et al* 2015 Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED) *Geosci. Model Dev.* 8 3593–619
- Fisher R A *et al* 2018b Vegetation demographics in earth system models: a review of progress and priorities *Glob. Change Biol.* **24** 35–54
- Foster A C, Armstrong A H, Shuman J K, Shugart H H,
 Rogers B M, Mack M C, Goetz S J and Ranson K J 2019
 Importance of tree- and species-level interactions with
 wildfire, climate, and soils in interior Alaska: implications
 for forest change under a warming climate *Ecol. Modelling*409 108765
- Foster A C, Shugart H H and Shuman J K 2016 Model-based evidence for cyclic phenomena in a high-elevation, two-species forest *Ecosystems* 19 437–49
- Foster A C, Shuman J K, Rogers B M, Walker X J, Mack M C, Bourgeau-Chavez L L, Veraverbeke S and Goetz S J 2022 Bottom-up drivers of future fire regimes in western boreal North America *Environ. Res. Lett.* 17 025006
- Fritsch M, Lischke H and Meyer K M 2020 Scaling methods in ecological modelling *Methods Ecol. Evol.* 11 1368–78
- Fyfe J C, von Salzen K, Gillett N P, Arora V K, Flato G M and McConnell J R 2013 One hundred years of Arctic surface temperature variation due to anthropogenic influence Sci. Rep. 3 2645
- Gädeke A *et al* 2020 Performance evaluation of global hydrological models in six large Pan-Arctic watersheds *Clim. Change* **163** 1329–51
- Goosse H et al 2018 Quantifying climate feedbacks in polar regions Nat. Commun. 9 1919
- Grant R F, Mekonnen Z A, Riley W J, Arora B and Torn M S 2017 Mathematical modelling of arctic polygonal tundra with ecosys: 2. Microtopography determines how CO₂ and CH₄ exchange responds to changes in temperature and precipitation J. Geophys. Res.: Biogeosci. 122 3174–87
- Hansen W D, Fitzsimmons R, Olnes J and Williams A P 2021 An alternate vegetation type proves resilient and persists for decades following forest conversion in the North American boreal biome J. Ecol. 109 85–98
- Hansen W D, Foster A, Gaglioti B, Seidl R and Rammer W 2023
 The permafrost and organic layer module for forest models
 (POLE-FM) 1.0 Geosci. Model Dev. 16 2011–36
- Harsch M A, Hulme P E, McGlone M S and Duncan R P 2009 Are treelines advancing? A global meta-analysis of treeline response to climate warming *Ecol. Lett.* 12 1040–9
- Haverd V, Smith B, Nieradzik L P and Briggs P R 2014 A stand-alone tree demography and landscape structure module for Earth system models: integration with inventory

- data from temperate and boreal forests *Biogeosciences* 11 4039–55
- Haynes K D, Baker I T, Denning A S, Stöckli R, Schaefer K, Lokupitiya E Y and Haynes J M 2019 Representing grasslands using dynamic prognostic phenology based on biological growth stages: 1. Implementation in the simple biosphere model (SiB4) J. Adv. Model. Earth Syst. 11 4423–39
- Haynes K, Baker I and Denning S 2020 The simple biosphere model version 4.2: siB4 technical description *Technical Report* (Colorado State University)
- Heijmans M M P D et al 2022 Tundra vegetation change and impacts on permafrost Nat. Rev. Earth Environ. 3 68–84
- Hewitt R E, Bennett A P, Breen A L, Hollingsworth T N, Taylor D L, Chapin F S and Rupp T S 2016 Getting to the root of the matter: landscape implications of plant-fungal interactions for tree migration in Alaska *Landscape Ecol*. 31 895–911
- Holtmeier F-K and Broll G 2019 Treeline research—from the roots of the past to present time. A review *Forests* 11 38
- Jorgenson M T, Brown D R N, Hiemstra C A, Genet H, Marcot B G, Murphy R J and Douglas T A 2022 Drivers of historical and projected changes in diverse boreal ecosystems: fires, thermokarst, riverine dynamics, and humans *Environ. Res. Lett.* 17 045016
- Kemppinen J, Niittynen P, Virkkala A-M, Happonen K, Riihimäki H, Aalto J and Luoto M 2021 Dwarf shrubs impact tundra soils: drier, colder, and less organic carbon *Ecosystems* 24 1378–92
- Kim J, Kim Y, Zona D, Oechel W, Park S-J, Lee B-Y, Yi Y, Erb A and Schaaf C L 2021 Carbon response of tundra ecosystems to advancing greenup and snowmelt in Alaska Nat. Commun. 12 6879
- Kooijmans L M J *et al* 2021 Evaluation of carbonyl sulfide biosphere exchange in the simple biosphere model (SiB4) *Biogeosciences* 18 6547–65
- Krause A, Haverd V, Poulter B, Anthoni P, Quesada B, Rammig A and Arneth A 2019 Multimodel analysis of future land use and climate change impacts on ecosystem functioning *Earth's Future* 7 833–51
- Krogh S A and Pomeroy J W 2021 Simulating site-scale permafrost hydrology: sensitivity to modelling decisions and air temperature J. Hydrol. 602 126771
- Kropp H et al 2021 Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems Environ. Res. Lett. 16 015001
- Lambert M S A, Tang H, Aas K S, Stordal F, Fisher R A, Fang Y, Ding J and Parmentier F-J W 2022 Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic-boreal zone in CLM5.0-FATES-Hydro Geosci. Model Dev. 15 8809–29
- Larson E J L, Schiferl L D, Commane R, Munger J W,
 Trugman A T, Ise T, Euskirchen E S, Wofsy S and
 Moorcroft P M 2022 The changing carbon balance of tundra
 ecosystems: results from a vertically-resolved peatland
 biosphere model *Environ. Res. Lett.* 17 014019
- Le Roux P C, Aalto J and Luoto M 2013 Soil moisture's underestimated role in climate change impact modelling in low-energy systems *Glob. Change Biol.* **19** 2965–75
- Li Q, Serbin S P, Lamour J, Davidson K J, Ely K S and Rogers A 2022 Implementation and evaluation of the unified stomatal optimization approach in the functionally assembled terrestrial ecosystem simulator (FATES) Geosci. Model Dev. 15 4313–29
- Limpens J, Fijen T P M, Keizer I, Meijer J, Olsthoorn F, Pereira A, Postma R, Suyker M, Vasander H and Holmgren M 2021 Shrubs and degraded permafrost pave the way for tree establishment in subarctic Peatlands *Ecosystems* 24 370–83
- Loehle C 2018 Disequilibrium and relaxation times for species responses to climate change *Ecol. Modelling* **384** 23–29
- Longo M *et al* 2019 The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the ecosystem demography

- model, version 2.2—Part 1: model description *Geosci. Model Dev.* 12 4309–46
- Mack M C, Bret-Harte M Syndonia, Hollingsworth T N, Jandt R R, Schuur E A, Shaver G R and Verbyla D L 2011 Carbon loss from an unprecedented Arctic tundra wildfire Nature 475 489–92
- Mack M C, Walker X J, Johnstone J F, Alexander H D, Melvin A M, Jean M and Miller S N 2021 Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees *Science* 372 280–3
- Maleki K, Gueye M A, Lafleur B, Leduc A and Bergeron Y 2019 Modelling post-disturbance successional dynamics of the canadian boreal mixedwoods *Forests* 11 3
- Maleki K, Lafleur B, Leduc A and Bergeron Y 2021 Modelling the influence of different harvesting methods on forest dynamics in the boreal mixedwoods of western Quebec, Canada For. Ecol. Manage. 479 118545
- Maliniemi T, Kapfer J, Saccone P, Skog A and Virtanen R 2018 Long-term vegetation changes of treeless heath communities in northern Fennoscandia: links to climate change trends and reindeer grazing *J. Veg. Sci.* **29** 469–79
- Mallen-Cooper M, Graae B J and Cornwell W K 2021 Lichens buffer tundra microclimate more than the expanding shrub Betula nana *Ann. Bot.* **128** 407–18
- Massey R, Rogers B M, Berner L T, Cooperdock S, Mack M C, Walker X J and Goetz S J 2023 Forest composition change and biophysical climate feedbacks across boreal North America Nat. Clim. Change 13 1368–75
- McManus K M, Morton D C, Masek J G, Wang D, Sexton J O, Nagol J R, Ropars P and Boudreau S 2012 Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986 to 2010 Glob. Change Biol. 18 2313–23
- Mekonnen Z A, Grant R F and Schwalm C 2018a Modelling impacts of recent warming on seasonal carbon exchange in higher latitudes of North America *Arctic Sci.* 4 471–84
- Mekonnen Z A, Riley W J and Grant R F 2018b Accelerated nutrient cycling and increased light competition will lead to 21st century shrub expansion in North American Arctic Tundra J. Geophys. Res.: Biogeosci. 123 1683–701
- Mekonnen Z A, Riley W J, Grant R F, Salmon V G, Iversen C M, Biraud S C, Breen A L and Lara M J 2021 Topographical controls on hillslope-scale hydrology drive shrub distributions on the Seward Peninsula, Alaska *J. Geophys. Res.: Biogeosci.* 126 e2020JG005823
- Mekonnen Z A, Riley W J, Randerson J T, Grant R F and Rogers B M 2019 Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire *Nat. Plants* 5 952–8
- Mekonnen Z A, Riley W J, Randerson J T, Shirley I A, Bouskill N J and Grant R F 2022 Wildfire exacerbates high-latitude soil carbon losses from climate warming *Environ. Res. Lett.* 17 094037
- Melton J R and Arora V K 2016 Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0 *Geosci. Model Dev.* 9 323–61
- Melton J R, Verseghy D L, Sospedra-Alfonso R and Gruber S 2019 Improving permafrost physics in the coupled Canadian land surface scheme (v.3.6.2) and Canadian terrestrial ecosystem model (v.2.1) (CLASS-CTEM) Geosci. Model Dev. 12 4443–67
- Melvin A M, Murray J, Boehlert B, Martinich J A, Rennels L and Rupp T S 2017 Estimating wildfire response costs in Alaska's changing climate *Clim. Change* 141 783–95
- Miner K R, Turetsky M R, Malina E, Bartsch A, Tamminen J, McGuire A D, Fix A, Sweeney C, Elder C D and Miller C E 2022 Permafrost carbon emissions in a changing Arctic *Nat. Rev. Earth Environ.* 3 55–67
- Molina E, Valeria O, Martin M, Montoro Girona M and Ramirez J A 2022 Long-term impacts of forest management practices under climate change on structure, composition, and fragmentation of the canadian boreal landscape *Forests* 13 1292

- Murphy L 2014 SORTIE-ND User Manual version 7.02 (Cary Institute of Ecosystem Studies)
- Myers-Smith I H et al 2015 Climate sensitivity of shrub growth across the tundra biome Nat. Clim. Change 5 887–91
- Myers-Smith I H *et al* 2020 Complexity revealed in the greening of the Arctic *Nat. Clim. Change* **10** 106–17
- Ninomiya H, Kato T, Végh L and Wu L 2023 Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0) Geosci. Model Dev. 16 4155–70
- Osmanoglu B 2021 personal communication
- Pedron S A, Jespersen R G, Xu X, Khazindar Y, Welker J M and Czimczik C I 2023 More snow accelerates legacy carbon emissions from arctic permafrost *AGU Adv.* 4 1–9
- Pegoraro E F, Mauritz M E, Ogle K, Ebert C H and Schuur E A G 2021 Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming *Glob. Change Biol.* 27 1293–308
- Poggio L, de Sousa L M, Batjes N H, Heuvelink G B, Kempen B, Ribeiro E and Rossiter D 2021 SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty *Soil* 7 217–40
- Previdi M, Smith K L and Polvani L M 2021 Arctic amplification of climate change: a review of underlying mechanisms Environ. Res. Lett. 16 093003
- R Core Team 2022 R: A language and environment for statistical computing (R Foundation for Statistical Computing) (available at: https://www.R-project.org/)
- Rantanen M, Karpechko A Y, Lipponen A, Nordling K, Hyvärinen O, Ruosteenoja K, Vihma T and Laaksonen A 2022 The Arctic has warmed nearly four times faster than the globe since 1979 *Commun. Earth Environ.* 3
- Rees W G, Hofgaard A, Boudreau S, Cairns D M, Harper K, Mamet S, Mathisen I, Swirad Z and Tutubalina O 2020 Is subarctic forest advance able to keep pace with climate change? *Glob. Change Biol.* 26 3965–77
- Reid K A, Reid D G and Brown C D 2022 Patterns of vegetation change in Yukon: recent findings and future research in dynamic subarctic ecosystems *Environ. Rev.* 30 380–401
- Rogers A, Serbin S P, Ely K S and Wullschleger S D 2019 Terrestrial biosphere models may overestimate Arctic CO $_2$ assimilation if they do not account for decreased quantum yield and convexity at low temperature *New Phytol.* **223** 167–79
- Rogers B M, Soja A J, Goulden M L and Randerson J T 2015 Influence of tree species on continental differences in boreal fires and climate feedbacks *Nat. Geosci.* 8 228–34
- Rupp T S, Starfield A M and Chapin F S 2000 A frame-based spatially explicit model of subarctic vegetation response to climatic change: comparison with a point model *Landscape Ecol.* 15 383–400
- Salmon V G, Soucy P, Mauritz M, Celis G, Natali S M, Mack M C and Schuur E A G 2016 Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw Glob. Change Biol. 22 1927–41
- Sato H, Itoh A and Kohyama T 2007 SEIB–DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach Ecol. Modelling 200 279–307
- Sato H, Kobayashi H, Beer C and Fedorov A 2020 Simulating interactions between topography, permafrost, and vegetation in Siberian larch forest *Environ. Res. Lett.* 15 095006
- Scheller R M and Domingo J B 2005 LANDIS-II Core Model Despcription (University of Wisconsin-Madison)
- Schuur E A G et al 2022 Permafrost and climate change: carbon cycle feedbacks from the warming arctic Annu. Rev. Environ. Resour. 47 343–71
- Seidl R, Rammer W, Scheller R M and Spies T A 2012 An individual-based process model to simulate landscape-scale forest ecosystem dynamics Ecol. Modelling 231 87–100
- Shirley I A, Mekonnen Z A, Grant R F, Dafflon B, Hubbard S S and Riley W J 2022a Rapidly changing high-latitude

- seasonality: implications for the 21st century carbon cycle in Alaska *Environ. Res. Lett.* 17 014032
- Shirley I A, Mekonnen Z A, Grant R F, Dafflon B and Riley W J 2023 Machine learning models inaccurately predict current and future high-latitude C balances *Environ. Res. Lett.* 18 014026
- Shirley I A, Mekonnen Z A, Wainwright H, Romanovsky V E, Grant R F, Hubbard S S, Riley W J and Dafflon B 2022b Near-surface hydrology and soil properties drive heterogeneity in permafrost distribution, vegetation dynamics, and carbon cycling in a sub-arctic watershed *J. Geophys. Res.: Biogeosci.* 127 1–16
- Shrestha R K, Arora V K, Melton J R and Sushama L 2017 An assessment of geographical distribution of different plant functional types over North America simulated using the CLASS–CTEM modelling framework *Biogeosciences* 14 4733–53
- Shugart H H, Foster A, Wang B, Druckenbrod D, Ma J, Lerdau M, Saatchi S, Yang X and Yan X 2020 Gap models across microto mega-scales of time and space: examples of Tansley's ecosystem concept *For. Ecosyst.* 7 14
- Shugart H H, Wang B, Fischer R, Ma J, Fang J, Yan X, Huth A and Armstrong A H 2018 Gap models and their individual-based relatives in the assessment of the consequences of global change *Environ. Res. Lett.* 13 033001
- Shugart H H and West D C 1977 Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the Chestnut blight *J. Environ. Manag.* **5** 161–79
- Shuman J K, Shugart H H and Krankina O N 2014 Testing individual-based models of forest dynamics: issues and an example from the boreal forests of Russia *Ecol. Modelling* 293 102–10
- Siewert M B, Lantuit H, Richter A and Hugelius G 2021 Permafrost causes unique fine-scale spatial variability across Tundra soils *Global Biogeochem*. *Cycles* 35
- Simard M, Lecomte N, Bergeron Y, Bernier P Y and Paré D 2007 Forest productivity decline caused by successional paludification of boreal soils *Ecol. Appl.* 17 1619–37
- Slevin D, Tett S F B, Exbrayat J-F, Bloom A A and Williams M 2017 Global evaluation of gross primary productivity in the JULES land surface model v3.4.1 *Geosci. Model Dev.* 10 2651–70
- Smith B, Wårlind D, Arneth A, Hickler T, Leadley P, Siltberg J and Zaehle S 2014 Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model *Biogeosciences* 11 2027–54
- Steenberg J W N, Duinker P N and Bush P G 2013 Modelling the effects of climate change and timber harvest on the forests of central Nova Scotia, Canada *Ann. For. Sci.* **70** 61–73
- Stevens-Rumann C S, Prichard S J, Whitman E, Parisien M-A and Meddens A J H 2022 Considering regeneration failure in the context of changing climate and disturbance regimes in western North America *Can. J. For. Res.* **52** 1281–302
- Still C J, Cotton J M and Griffith D M 2019 Assessing earth system model predictions of C $_4$ grass cover in North America: from the glacial era to the end of this century *Glob. Ecol. Biogeogr.* **28** 145–57
- Sulman B N, Salmon V G, Iversen C M, Breen A L, Yuan F and Thornton P E 2021 Integrating arctic plant functional types in a land surface model using above- and belowground field observations *J. Adv. Model. Earth Syst.* 13 e2020MS002396
- Tei S, Sugimoto A, Yonenobu H, Matsuura Y, Osawa A, Sato H, Fujinuma J and Maximov T 2017 Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change *Glob. Change Biol.* 23 5179–88
- Teufel B, Sushama L, Arora V K and Verseghy D 2019 Impact of dynamic vegetation phenology on the simulated pan-Arctic land surface state Clim. Dyn. 52 373–88
- Timoney K P, Mamet S D, Cheng R, Lee P, Robinson A L, Downing D and Wein R W 2019 Tree cover response to

- climate change in the forest-tundra of north-central Canada: fire-driven decline, not northward advance *Écoscience* **26** 133–48
- Tong S, Wang W, Chen J, Xu C-Y, Sato H and Wang G 2022 Impact of changes in climate and CO 2 on the carbon storage potential of vegetation under limited water availability using SEIB-DGVM version 3.02 *Geosci. Model Dev.* 15 7075–98
- Turetsky M R, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire A D and Tuittila E 2012 The resilience and functional role of moss in boreal and arctic ecosystems New Phytol. 196 49–67
- Urban D L 1990 A Versatile Model to Simulate Forest Pattern: A User's Guide to ZELIG Version 1.0 (Department of Environmental Sciences, University of Virginia) pp 108
- Vesala T *et al* 2022 Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest *Atmos. Chem. Phys.* 22 2569–84
- Werner R A, Holsten E H, Matsuoka S M and Burnside R E 2006 Spruce beetles and forest ecosystems in south-central Alaska: a review of 30 years of research *For. Ecol. Manag.* 227 195–206

- Xiaodong Y and Shugart H H 2005 FAREAST: a forest gap model to simulate dynamics and patterns of eastern Eurasian forests *J. Biogeogr.* **32** 1641–58
- Yang H *et al* 2020 Comparison of forest above-ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation-based estimates *Glob. Change Biol.* **26** 3997–4012
- Yu K, Ciais P, Seneviratne S I, Liu Z, Chen H Y H, Barichivich J, Allen C D, Yang H, Huang Y and Ballantyne A P 2022 Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks *Nat. Commun.* 13 2094
- Yu Q, Epstein H, Engstrom R and Walker D 2017 Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory Glob. Change Biol. 23 3895–907
- Zhang W, Jansson C, Miller P A, Smith B and Samuelsson P 2014 Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in regional Earth system dynamics *Biogeosciences* 11 5503–19
- Zhao B, Zhuang Q, Shurpali N, Köster K, Berninger F and Pumpanen J 2021 North American boreal forests are a large carbon source due to wildfires from 1986 to 2016 *Sci. Rep.* 11 7723