

1  
2  
3  
4     **Turnover of retroelements and satellite DNA drives centromere reorganization**  
5         **over short evolutionary timescales in Drosophila**  
6  
7

8     Cécile Courret<sup>1\*</sup>, Lucas W. Hemmer<sup>1</sup>, Xiaolu Wei<sup>1</sup>, Prachi D. Patel<sup>2</sup>, Bryce J. Chabot<sup>2</sup>,  
9     Nicholas J. Fuda<sup>1</sup>, Xuewen Geng<sup>1</sup>, Ching-Ho Chang<sup>3</sup>, Barbara Mellone<sup>2,4</sup>, Amanda M.  
10    Larracuente<sup>1\*</sup>

11  
12  
13  
14  
15    1. Department of Biology, University of Rochester; Rochester, New York, USA  
16    2. Department of Molecular and Cell Biology, University of Connecticut, Storrs,  
17      Connecticut, USA  
18    3. Division of Basic Sciences, Fred Hutchinson Cancer Center, United States  
19    4. Institute for Systems Genomics, University of Connecticut, Storrs, CT

20  
21  
22  
23    \*Corresponding authors:  
24    E-mail : [ccourret@ur.rochester.edu](mailto:ccourret@ur.rochester.edu), [alarracu@bio.rochester.edu](mailto:alarracu@bio.rochester.edu)  
25  
26  
27

28 **ABSTRACT**  
29

30 Centromeres reside in rapidly evolving, repeat-rich genomic regions, despite their  
31 essential function in chromosome segregation. Across organisms, centromeres are rich  
32 in selfish genetic elements such as transposable elements and satellite DNAs that can  
33 bias their transmission through meiosis. However, these elements still need to cooperate  
34 at some level and contribute to, or avoid interfering with, centromere function. To gain  
35 insight into the balance between conflict and cooperation at centromeric DNA, we take  
36 advantage of the close evolutionary relationships within the *Drosophila simulans* clade –  
37 *D. simulans*, *D. sechellia*, and *D. mauritiana* – and their relative, *D. melanogaster*. Using  
38 chromatin profiling combined with high resolution fluorescence in situ hybridization on  
39 stretched DNA, we characterize all centromeres across these species. We discovered  
40 dramatic centromere reorganization involving recurrent shifts between retroelements and  
41 satellite DNAs over short evolutionary timescales. We also reveal the recent origin (<240  
42 Kya) of telocentric chromosomes in *D. sechellia*, where the X and 4<sup>th</sup> centromeres now sit  
43 on telomere-specific retroelements. Finally, the Y chromosome centromeres, which are  
44 the only chromosomes that do not experience female meiosis, do not show dynamic  
45 cycling between satDNA and TEs. The patterns of rapid centromere turnover in these  
46 species are consistent with genetic conflicts in the female germline and have implications  
47 for centromeric DNA function and karyotype evolution. Regardless of the evolutionary  
48 forces driving this turnover, the rapid reorganization of centromeric sequences over short  
49 evolutionary timescales highlights their potential as hotspots for evolutionary innovation.

50

51

52

53 **INTRODUCTION**

54  
55 Cell division is an essential process for the viability of all organisms. Centromeres are  
56 chromosomal structures that are indispensable for faithful genome inheritance during cell  
57 division—they maintain sister chromatid cohesion and ensure proper chromosome  
58 segregation. Centromere defects can lead to the loss of genetic information and are  
59 associated with diseases (reviewed in [1]).

60  
61 In eukaryotes, centromeres are generally marked epigenetically by the presence of the  
62 centromere-specific histone H3 variant CENP-A (also known as CID in *Drosophila*) [2–  
63 4]. CENP-A plays a central role in centromere identity and function, where it recruits  
64 kinetochore proteins, forming a macromolecular structure that allows spindle microtubule  
65 attachment [3]. The role of the underlying DNA in centromere function is not well  
66 understood, although some sequence properties or abundance may contribute to  
67 centromere specification and strength (e.g., [5–7]). In most species, centromeres are  
68 embedded in repetitive sequences [8], which makes it difficult to identify their precise  
69 organization. Despite the technical difficulties in studying such complex repetitive  
70 structures, recent studies highlight the importance of centromeric DNA in centromere  
71 stability and their impact on cell division and disease [9,10].

72  
73 Centromeres vary widely in size and composition across species, from the point  
74 centromeres of *Saccharomyces cerevisiae* to the megabase-sized arrays of the human  
75 centromeric  $\alpha$ -satellite [8,11]. Although essential for proper chromosome segregation,  
76 both CENP-A and centromeric sequences are rapidly evolving, even among closely  
77 related species [12–14]. Centromeric DNA is often repetitive and, in general, both higher  
78 mutation rates and relaxed selective constraints should lead to rapid evolution [15].  
79 However, this hypothesis assumes that repetitive sequences at centromeres are non-  
80 functional and the role of centromeric DNA in centromere specificity and function is  
81 unclear. That said, the relaxed selection hypothesis cannot explain the rapid evolution and  
82 positive selection on centromeric proteins [16], which do have essential functions. One  
83 potential explanation for the paradox [12] is that genetic conflicts cause rapid centromere  
84 evolution [17]. Stronger centromeres can take advantage of the asymmetry in female

85 meiosis to bias their transmission to the egg, rather than the polar body [18,19] – a process  
86 called centromere drive. Centromere proteins, in turn, may evolve rapidly to keep up with  
87 rapid DNA sequence evolution at centromeres [16] or restore fair segregation [17]. Centromere  
88 drive has been observed in plants [20] and mammals [21–23]. Centromere  
89 strength may be partially determined by the ability of centromeric DNA to recruit  
90 kinetochore proteins or the spread of CENP-A nucleosomes. For example, some mouse  
91 centromeres with larger satellite DNA arrays recruit more centromeric proteins and thus  
92 increase their transmission through female meiosis [7]. These satellite repeats thus may  
93 behave like “selfish” elements by promoting centromeric chromatin expansion resulting in  
94 segregation bias. Centromeric DNA turnover may be driven by the constant replacement  
95 of sequences that can acquire more centromere proteins.

96

97 Satellite DNAs are not the only type of potentially selfish element occupying centromeres:  
98 transposable elements (TEs) are common features of centromeres in some fungi, plants,  
99 and animals [24]. TEs can proliferate within and spread between genomes, even when  
100 this comes at a cost to their host [25]. While centromere function may not require any  
101 specific repeat sequence, some properties of satellite DNAs—e.g., secondary structure  
102 [5,6], homogenized arrays, nucleosome-sized repeat units—may facilitate centromere  
103 maintenance and function [26]. TEs that insert in centromeres may interrupt otherwise  
104 homogenous arrays of satellites and affect centromere function [12,26]. However, the  
105 ubiquity of TEs at centromeres across a wide range of taxa suggest that they may instead  
106 play a conserved role in centromere specification, or even in centromere function  
107 (reviewed in [24,27]), for instance through their active transcription [28]. Therefore,  
108 studying centromere evolutionary dynamics over short evolutionary timescales is  
109 important for understanding the balance between conflict and cooperation that may exist  
110 at centromeric DNA.

111

112 The small, but complex genomes of *Drosophila* species make them excellent models for  
113 the study of centromere function and evolution. In *Drosophila melanogaster*, centromeres  
114 correspond to islands of complex DNA highly enriched in retroelements and flanked by  
115 simple tandem satellite repeats [29]. While each centromere has a unique organization,

116 they all share only one common component: a non-LTR retroelement called *G2/Jockey-*  
117 3. *G2/Jockey-3* is also present in the centromeres of a closely related species, *D.*  
118 *simulans*, suggesting that it could be a conserved feature of *Drosophila* centromeres.  
119 While recent reports suggest that *D. melanogaster* and *D. simulans* centromeric regions  
120 have distinct satellite repeats [8], we do not know the precise organization of centromeres  
121 outside of *D. melanogaster*.

122

123 Here we combine (epi)genomic and cytogenetic approaches to study the evolutionary  
124 dynamics of centromeres in three closely related species of the *simulans* clade - *D.*  
125 *simulans*, *D. sechellia* and *D. mauritiana*. These species diverged from each other only  
126 ~240,000 years ago, and from *D. melanogaster* ~2.4 million years ago [estimated in  
127 [30,31]], allowing us to study centromere evolution on two different timescales at high  
128 resolution. We discover that there has been a complete turnover of centromeric  
129 sequences in the ~2.4 Myr since these species diverged from *D. melanogaster*: none of  
130 the *D. melanogaster* retroelement-rich centromeres are conserved in the *D. simulans*  
131 clade. Instead, two complex satellites – a 365-bp and a 500-bp tandem satellite repeat –  
132 now occupy the centromeres of these species. The centromere-associated *G2/Jockey-3*  
133 retroelement remains active in one of the lineages (*D. simulans*) but not the others. We  
134 also discover the origins of telocentric chromosomes in *D. sechellia*, where the  
135 centromeres of chromosomes X and 4 now sit on retroelements with telomere-specific  
136 functions. These replacement events imply that centromeres can shift their composition  
137 rapidly, and between categorically different sequence types: TEs and satellite DNAs. The  
138 only chromosomes that do not show these categorical shifts in composition are the Y  
139 chromosomes, which have male-specific transmission. This suggests that the selection  
140 forces driving rapid centromere evolution are female-specific, consistent with recurrent  
141 genetic conflicts over transmission through the female germline. Our comparative study  
142 of detailed centromere organization has implications for the roles of retroelements and  
143 satellites in centromere function and evolution, and karyotype evolution.

144 **RESULTS**

145

146

147 **Satellite emergence at *simulans* clade centromeres**

148

149 To identify the detailed organization of centromeres in the *simulans* clade, we performed  
150 CUT&Tag [32] on embryos from each species (*D. simulans*, *D. sechellia*, and *D.*  
151 *mauritiana*) using a CENP-A antibody. The resulting reads were mapped to versions of  
152 each species' genome assembly with improved representation of heterochromatic regions  
153 from previous work [33]. Because centromeres sit in highly repetitive genome regions, we  
154 analyzed unique and all reads (including multi-mappers) independently (Fig 1, S1-3 Figs).  
155 We identified centromere candidates as the top reproducible CENP-A-enriched contigs  
156 (between-replicate irreproducible discovery rate [IDR] < 0.05, S1 Table and S4 Fig). We  
157 also used an assembly-free analysis to detect the enrichment of complex repeats in the  
158 CENP-A CUT&Tag reads (see Methods). We validated our approach with CUT&Tag in *D.*  
159 *melanogaster*, which recovered the same centromere islands as in Chang, Palladino, and  
160 Chavan et al. [29] (S5 Fig).

161

162 Like *D. melanogaster*, all three *simulans* clade species have a pair of large metacentric  
163 "major" autosomes (chromosomes 2 and 3), a pair of small autosomes (chromosome 4;  
164 referred to as the "dot" chromosome), and a pair of sex chromosomes (X and Y). For each  
165 species, there were five contigs that were consistently among the most CENP-A-enriched  
166 contigs (S4 Fig), which we considered to be the centromere candidates for each  
167 chromosome (S2 Table). We found almost no consistent CENP-A signal outside of these  
168 centromere candidates (S4 Fig, S1 Table). None of the *simulans* clade centromere  
169 candidates we identified were like *D. melanogaster* centromeres, suggesting a turnover  
170 in centromere identity in the ~2.4 My since these species diverged. Instead, both our  
171 assembly-based (Fig 1A, D, G, S1-3 Figs) and assembly-free (Fig 1B, E, H) approaches  
172 identify the 500-bp complex satellite among the most CENP-A enriched sequences (Fig  
173 1). The centromere candidate contigs for the major autosomes in *D. simulans*, *D.*  
174 *mauritiana* and *D. sechellia* (Fig 1A, D, G, S1-3 Figs) and the X chromosome in *D.*  
175 *simulans* and *D. mauritiana* (Fig 2, S1-3 Figs) are mainly comprised of the 500-bp satellite  
176 repeat. This complex satellite was previously identified as being associated with the

177 centromeres in *D. simulans* [8]. While the 500-bp satellite is the primary repeat type in  
178 these *simulans* clade centromeres, they also contain transposable element insertions,  
179 including G2/Jockey-3 (Fig 1A, D, G, S1-3 Figs and Fig 2, S1-3 Figs).

180

181 The 500-bp satellite is enriched in, but not specific to, *simulans* clade centromeres, as we  
182 also find it in the proximal pericentromeric regions. In *D. melanogaster*, the  
183 heterochromatin domain makes up approximately 60Mb of the genome [34], of which  
184 centromeres only represent a small fraction (1/200th [29]). In the *simulans* clade  
185 centromeres, the CENP-A domain appears restricted to a 50-kb to 200-kb subset of the  
186 500-bp satellite array (Figs 1A, D, G and 2). This is similar to human centromeres, where  
187 the CENP-A domain sits on a subset of  $\alpha$ -satellite repeats within an array [35]. We also  
188 identified a second complex satellite associated with centromere candidates, which we  
189 named the 136-bp satellite. While less abundant, 136-bp is interleaved with the 500-bp  
190 satellite and is associated with the same centromeres (Figs 1 and 2, S6A Fig).

191

192 To validate that the 500-bp and 136-bp satellites are associated with the centromere, we  
193 used a cytogenetic approach with IF-FISH on mitotic chromosome spreads from larval  
194 brains using Oligopaints targeting each complex satellite [36]. We confirmed the  
195 localization of centromeric protein CENP-C, a kinetochore protein that marks the  
196 centromeres and has documented overlap with CENP-A [37], on the 500-bp (Fig 1C, F,  
197 and I) and 136-bp (S6A Fig) satellites. Because mitotic spreads offer limited resolution, it  
198 is challenging to distinguish between the centromeric and proximal pericentromeric  
199 domains. However, the 500-bp signal extends beyond the CENP-C domain, indicating its  
200 presence in both the centromeric and proximal pericentromeric regions, consistent with  
201 our genome assemblies and CUT&Tag data. While the major autosomal centromeres  
202 primarily consist of the same complex satellites in the three species, the distal  
203 pericentromere appears more divergent. In *D. simulans* and *D. mauritiana*, the major  
204 autosomal pericentromeres contain the *dodeca* satellite (Fig 1C, F), while in *D. sechellia*  
205 they contain the *Rsp-like* satellite (Fig 1I). We also found the *Rsp-like* satellite on the X  
206 pericentromere of *D. simulans* (Fig 2A), which was absent in *D. mauritiana* (Fig 2B)  
207 [38,39]. The combination of satellites flanking the CENP-A domain (Fig 1C, F, I and Fig

208 2) allows us to assign the 500-bp enriched contigs to either the major autosomes (Fig 1A,  
209 D and G) or the X chromosome (Fig 2). Unfortunately, we cannot morphologically  
210 distinguish between the chromosomes 2 and 3 because of their similarity.

211

212 We used a BLAST approach to explore origins of the 500-bp and 136-bp centromeric  
213 complex satellites and did not find any evidence of their presence outside of the *D.*  
214 *simulans* clade, even as single copy sequences (S3 and S4 Tables). For example, in *D.*  
215 *melanogaster*, the best hit had 85% identity with the 500-bp consensus sequence but only  
216 covered 106 bp of the query (S3 Table). This suggests that these satellites emerged after  
217 the divergence between *D. melanogaster* and the *D. simulans* clade 2.4 Mya [30,31],  
218 although it is possible that the primary sequence emerged earlier but was lost in *D.*  
219 *melanogaster*. In either case, these satellites recently expanded in the *D. simulans* clade  
220 centromeres (S7 Fig).

221

222

223 **Fig 1. Centromeres of chromosomes 2 and 3 in *D. simulans*, *D. sechellia*, and *D.***  
224 ***mauritiana* are predominantly 500-bp satellite.** (A,D,G) CENP-A CUT&Tag enrichment  
225 on the centromere candidates for the major autosomes (2 and 3) of *D. simulans* (A), *D.*  
226 *mauritiana* (D) and *D. sechellia* (G). The label 'Autosome 2/3' indicates that we cannot  
227 distinguish between the 2<sup>nd</sup> and 3<sup>rd</sup> chromosome centromeres. The y-axis represents  
228 normalized CENP-A enrichment in Reads Per Million (RPM). Black and gray plotted lines  
229 represent the enrichment based on uniquely mapping and all reads (including multi-  
230 mappers), respectively. The black and gray tracks below each plot correspond to MACS2  
231 peaks showing significantly enriched regions based on the uniquely mapping and all reads  
232 (including multi-mappers), respectively. The precise locations of all peaks are listed in  
233 Table S1. The colored cytoband track at the bottom of the plot shows the repeat  
234 organization. The color code is shown in the legend at the bottom of the Figure. (B,E,H)  
235 Assembly-free analysis showing the normalized enrichment score (in RPM) of CENP-A  
236 for complex repeats, including transposable elements and complex satellites across all  
237 centromeres. The Top 20 most enriched repeats are represented for *D. simulans* (B), *D.*  
238 *mauritiana* (E) and *D. sechellia* (H). (C,F,I) IF-FISH on mitotic chromosomes from larval  
239 brains with CENP-C antibody and 500-bp and dodeca probes, for *D. simulans* (C) and *D.*

240 *mauritiana* (F) or 500-bp and *Rsp-like* probes for *D. sechellia* (I). The insets represent a  
241 zoom on each major autosome centromere. Bars represent 5  $\mu$ m. The data underlying  
242 this Figure can be found at <https://doi.org/10.5061/dryad.1zcrjdg2g> [40].

243  
244  
245

246 **Fig 2. X chromosome centromeres in *D. simulans* and *D. mauritiana* are enriched**  
247 **in 500-bp satellite.** The left panel shows the CENP-A CUT&Tag enrichment on the X  
248 centromere candidate in *D. simulans* (A) and *D. mauritiana* (B). The y-axis represents  
249 the normalized CENP-A enrichment in RPM. Black and gray plotted lines represent the  
250 enrichment based on uniquely mapping and all reads (including multi-mappers),  
251 respectively. The black and gray tracks below each plot correspond to MACS2 peaks  
252 showing significantly enriched regions based on the uniquely mapping and all reads  
253 (including multi-mappers), respectively. The precise locations of all peaks are listed in  
254 Table S1. The colored cytoband at the bottom of the plot shows the repeat organization.  
255 The color code is shown in the legend at the bottom of the Figure. The right panel shows  
256 IF-FISH on mitotic chromosomes from larval brains with CENP-C antibody and 500-bp  
257 and *Rsp-like* probes. The inset represents a zoom on each X chromosome centromere.  
258 Bars represent 5  $\mu$ m. The data underlying this Figure can be found at  
259 <https://doi.org/10.5061/dryad.1zcrjdg2g> [40].

260

261 **Dot chromosome centromeres are enriched with a chromosome-specific complex**  
262 **satellite**

263  
264 In *D. simulans* and *D. mauritiana*, the centromere of the small autosomal dot chromosome  
265 (i.e., Chromosome 4) contains a different complex satellite: the 365-bp satellite (Fig 3).  
266 The 365-bp satellite shares no homology with the 500-bp satellite, suggesting an  
267 independent origin. This repeat is consistently enriched in CENP-A chromatin in both our  
268 assembly-based (Fig 3) and assembly-free (Fig 1B and E) approaches. The CENP-A  
269 domain is restricted to the 365-bp satellite and flanked by the AATAT satellite on at least  
270 one side (Fig 3), which is confirmed by our FISH with CENP-C IF on chromosome spreads  
271 (Fig 3 insets). Unlike the 500-bp satellite, 365-bp is specific to the dot chromosome  
272 centromere. We do not find evidence of the 365-bp satellite outside of one CENP-A  
273 enriched contig in each assembly (Fig 3), consistent with the FISH signals (Fig 3 insets).

274

275 We used a BLAST-based approach to explore the origin of the 365-bp satellite and did  
276 not find evidence of this satellite outside of the *D. simulans* clade species (S5 Table). For  
277 example, in *D. melanogaster*, the best hit had 82% identity with the 365-bp consensus  
278 sequence but was only 57 bp long (S5 Table) suggesting that, like the 500-bp satellite,  
279 the 365-bp satellite emerged after the split with *D. melanogaster* and likely emerged at  
280 the dot centromeres in the ancestor of the *D. simulans* clade (S7 Fig). One intriguing  
281 possibility is that 365-bp may share origins with (or be derived from) a sequence similar  
282 to those currently at *D. melanogaster* centromeres, as some short sequence fragments  
283 with similarity to a subset of the 365-bp satellite are on *D. melanogaster* X and dot  
284 centromeres (S5 Table).

285

286 Interestingly, 365-bp was lost from *D. sechellia*: we did not find cytological (S6B Fig) or  
287 genomic evidence of this satellite, even as a single copy sequence in the genome  
288 assembly, the genomic Illumina reads (S5 Table), or the CENP-A CUT&Tag reads (Fig  
289 1H). However, the pericentromeric AATAT satellite appears to be conserved (S6B Fig).

290

291

292 **Fig 3. Dot chromosome centromeres in *D. simulans* and *D. mauritiana* are enriched**  
293 **in 365-bp satellite.** The left panel represents the CENP-A CUT&Tag enrichment in *D.*

294 *simulans* (A) and *D. mauritiana* (B). The y-axis represents the normalized CENP-A  
295 enrichment in RPM. Black and gray plotted lines represent the enrichment based on  
296 uniquely and multi-mapping reads, respectively. Black and gray plotted lines represent  
297 the enrichment based on uniquely mapping and all reads (including multi-mappers),  
298 respectively. The black and gray tracks below each plot correspond to MACS2 peaks  
299 showing significantly enriched regions based on the uniquely mapping and all reads  
300 (including multi-mappers), respectively. The precise locations of all peaks are listed in  
301 Table S1. The colored cytoband track at the bottom of the plot shows the repeat  
302 organization. The color code is shown in the legend at the bottom of the Fig. The right  
303 panel represents the IF-FISH on mitotic chromosomes from the larval brain with CENP-C  
304 antibody and 365-bp and AATAT probes. The insets represent a zoom on each dot  
305 chromosome centromere. Bars represent 5  $\mu$ m. The data underlying this Figure can be  
306 found at <https://doi.org/10.5061/dryad.1zcrjdg2g> [40].

307  
308 **Centromere shifts to telomere-specialized retroelements: telocentric chromosomes**  
309 **in *D. sechellia***  
310

311 In *D. sechellia*, the dot and X chromosome are distinct from those of *D. simulans* and *D.*  
312 *mauritiana*. We did not identify any 500-bp-enriched contig that might correspond to the X  
313 chromosome centromere and 365-bp is completely missing from the *D. sechellia* genome.  
314

315 Instead, we identified two *D. sechellia* contigs that are significantly enriched for CENP-A  
316 containing an array of non-LTR retroelements well known for their role at telomeres: *Het-*  
317 *A*, *TART* and *TAHRE* (also known as the *HTT* elements) [41]. The *HTT* elements are also  
318 among the most CENP-A-enriched elements in our assembly-free approach (Fig 1H).  
319 *Drosophila* species lack telomerases; instead, telomere size and integrity are maintained  
320 by the transposition activity of *HTT* retroelements [41]. *HTT* elements have specialized  
321 functions at telomeres of most *Drosophila* species, including *D. melanogaster* and the *D.*  
322 *simulans* clade [41].

323  
324 On one *HTT*-CENP-A enriched contig, the *HTT* domain is adjacent to the 500-bp satellite,  
325 suggesting that it corresponds to the X chromosome centromere (Fig 4C). However, in *D.*

326 *sechellia*, CENP-A is enriched on the *HTT* domain instead of the 500-bp satellite (Fig 4A),  
327 suggesting a repositioning of the centromere to the retroelements that normally occupy  
328 the telomere. Similarly, on the second *HTT*-CENP-A enriched contig, the CENP-A domain  
329 is flanked by a simple ATAG satellite only specific on X and dot chromosomes [42] (Fig  
330 4B). Thus, we infer that this second contig corresponds to the dot chromosome  
331 centromere.

332

333 To validate our observations, we designed Oligopaints targeting the *HTT* array on the X  
334 and dot chromosome centromere candidates in *D. sechellia*. The IF-FISH on mitotic  
335 chromosomes from larval brains confirmed that the centromeric protein CENP-C is indeed  
336 associated with the *HTT* domain on both the X and dot chromosomes. The 500-bp satellite  
337 appears adjacent to the *HTT* on the X chromosome (Fig 4C).

338

339 To visualize these regions at higher resolution, we performed IF-FISH on stretched  
340 chromatin fibers using a CENP-A antibody and Oligopaints targeting the 500-bp satellite  
341 and the *HTT* elements. These fibers confirm that CENP-A nucleosomes are seated on the  
342 *HTT* domain, and are flanked by, but do not overlap, the 500-bp satellite (Fig 4D). On  
343 average,  $89.82 \pm 19.4\%$  of the CENP-A signal overlaps with the *HTT* signal, while only  
344  $6.2 \pm 13.6\%$  overlaps with the 500-bp signal (S6 Table). The chromatin fibers appear to  
345 end shortly after the CENP-A/*HTT* signal, strongly suggesting that the centromere is on a  
346 telomeric *HTT* array, making these chromosomes telocentric (Fig 4D). In some fibers, we  
347 observed a lack of CENP-A/*HTT* signal at the very ends, similar to what we show in Fig  
348 4C. It is possible that there is a small amount of non-*HTT* sequence distal to the *HTT*  
349 signal on these chromatin fibers. However, we believe that the absence of *HTT* signal at  
350 the fiber ends is likely a technical artifact due to the loss of the FISH signal, as this  
351 observation was variable across fibers (see S8 Fig). Regardless, the overlap between  
352 CENP-A and *HTT* signal confirms that these centromeres are telocentric.

353

354 We also observed patterns from stretched chromatin fibers consistent with our predictions  
355 for the other chromosome centromeres (S8 Fig). On the dot chromosome  $73.02 \pm 32.76\%$   
356 of the CENP-A signal overlaps with the *HTT* signal, with no 500-bp signal nearby (S8 Fig,

357 S6 Table). On the autosomes, 100% of the CENP-A signal overlaps with the 500-bp signal  
358 (S8 Fig, S6 Table).

359  
360 Interestingly, the dot chromosome centromere of *D. mauritiana* is flanked by the AATAT  
361 satellite on one side and by the *HTT* on the other side (Fig 3B). Unfortunately, the contig  
362 is not long enough to establish how long the *HTT* domain is after the centromere, but it  
363 suggests that in *D. mauritiana*, and possibly *D. simulans*, both centromeric and telomeric  
364 domains are very close to each other.

365  
366 It was very surprising to find the centromeric protein associated with telomeric sequences,  
367 as centromeres and telomeres are chromosome domains with distinct functions. Although  
368 both the X and the dot chromosomes were considered to be acrocentric chromosomes  
369 based on the similarity in karyotype with *D. melanogaster* [43,44], our high-resolution  
370 approach allowed us to reveal that these chromosomes are actually telocentric. We  
371 demonstrate here that centromeres can share sequence components with telomeres [45].  
372 Currently, we lack the ability to ascertain whether the centromere and telomere share a  
373 common domain or exist as separate domains within the *HTT* array.

374  
375  
376 **Fig 4. The Dot and X chromosome centromere in *D. sechellia* are telocentric.** CENP-  
377 A CUT&Tag enrichment along the X (**A**) and dot (**B**) chromosome centromeres. The y-  
378 axis represents the normalized CENP-A enrichment in RPM. Black and gray plotted lines  
379 represent the enrichment based on uniquely and multi-mapping reads, respectively. Black  
380 and gray plotted lines represent the enrichment based on uniquely mapping and all reads  
381 (including multi-mappers), respectively. The black and gray tracks below each plot  
382 correspond to MACS2 peaks showing significantly enriched regions based on the uniquely  
383 mapping and all reads (including multi-mappers), respectively. The precise locations of all  
384 peaks are listed in Table S1. The colored cytoband track at the bottom of the plot shows  
385 the repeat organization. The color code is shown in the legend at the bottom of the Figure.  
386 **C)** IF-FISH on mitotic chromosomes from the larval brain with CENP-C antibody and 500-  
387 bp and *HTT* probes. The inset represents a zoom on the X and dot chromosome

388 centromeres. Bar represents 5 um. **D)** IF-FISH on chromatin fibers from the larval brain  
389 with CENP-A antibody and 500-bp and *HTT* probes, representing the telocentric X  
390 chromosome of *D. sechellia*. Bar represents 5  $\mu$ m. The data underlying this Figure can be  
391 found at <https://doi.org/10.5061/dryad.1zcrjdg2g> [40].

392  
393 **The Y chromosome centromeres are unusual.**  
394

395 In all three species analyzed, the Y chromosome centromeres are unique in their  
396 composition and organization compared to the rest of the centromeres in the genome.  
397 Unlike the other chromosomes, we did not identify any complex satellites associated with  
398 the Y chromosome centromere. Instead, CENP-A is enriched in a region with high density  
399 of transposable elements (Fig 5). Despite being mainly enriched in retroelements, the Y  
400 chromosomes from each species have a unique composition (Fig 5, S7 Table). For  
401 example, the most abundant elements associated with the Y centromere are  
402 *HMSBEAGLE* and *Jockey-1* in *D. simulans*, *mdg4* in *D. mauritiana*, and *R1* and  
403 *G2/Jockey-3* in *D. sechellia* (S7 Table). Interestingly, centromeric sequences form higher  
404 order repeats in both the *D. simulans* and *D. sechellia*, but not in *D. mauritiana* (S9 Fig).  
405

406 To validate our candidate Y centromeres, we designed Oligopaints specific to the Y contig  
407 of each species (*cenY*). We performed IF-FISH on mitotic chromosomes with a CENP-C  
408 antibody and the Oligopaint targeting the putative Y centromeres. Our Oligopaints give a  
409 signal specific to a unique region of the Y chromosome which consistently co-localizes  
410 with the CENP-C signal (Fig 5), confirming the Y chromosome centromeres.  
411

412 While simple satellites are present within the pericentromeric region of all the other  
413 chromosomes, we do not find any simple satellites in the flanking region of the Y  
414 centromere (Fig 5). This is surprising, especially given that these Y chromosomes in these  
415 species are highly enriched in simple satellites in general [46,47].  
416  
417

418 **Fig 5. The Y chromosome centromeres of *D. simulans*, *D. mauritiana* and *D.***  
419 ***sechellia* are rich in transposable elements.** The left panel shows the CENP-A

420 CUT&Tag enrichment for the Y centromere of *D. simulans* (A), *D. mauritiana* (B) and *D.*  
421 *sechellia* (C). The y-axis represents the normalized CENP-A enrichment in RPM. Black  
422 and gray plotted lines represent the enrichment based on uniquely mapping and all reads  
423 (including multi-mappers), respectively. The black and gray tracks below each plot  
424 correspond to MACS2 peaks showing significantly enriched regions based on the uniquely  
425 mapping and all reads (including multi-mappers), respectively. The precise locations of all  
426 peaks are listed in Table S1. The colored cytoband track at the bottom of the plot shows  
427 the repeat organization. The pie chart on the top represents the repeat composition of the  
428 CENP-A domain. The color code of the cytoband and pie chart is shown in the legend at  
429 the bottom of the Figure. The right panel shows the IF-FISH on mitotic chromosomes from  
430 the larval brain with CENP-C antibody and *cenY* Oligopaints specific to each species'  
431 centromere. The insets represent a zoom on each Y chromosome centromere. Bar  
432 represents 5  $\mu$ m. The data underlying this Figure can be found at  
433 <https://doi.org/10.5061/dryad.1zcrjdg2g> [40]

434  
435 **G2/Jockey-3 is associated with centromeres within the *D. simulans* clade.**  
436  
437 In *D. melanogaster*, the only common sequence among all centromeres is G2/Jockey-3  
438 [29]. We asked if this element was also found within the *simulans* clade centromeres. In  
439 *D. simulans*, G2/Jockey-3 is the most enriched repeat among the CENP-A reads (Fig 1B).  
440 We identified G2/Jockey-3 insertions in each centromere except for the X chromosome,  
441 where it directly flanks the centromere (Fig 2A). We confirmed the presence of G2/Jockey-  
442 3 at each centromere by IF-FISH on mitotic chromosomes (Fig 6C). In *D. sechellia*,  
443 G2/Jockey-3 is also the most enriched repeat in CENP-A chromatin (Fig 1H); however,  
444 we only detect it on the Y chromosome and one of the autosomal centromeres (Figs 1G,  
445 5C, 6C). Similarly, in *D. mauritiana*, G2/Jockey-3 is associated with only one of the  
446 autosomal centromeres (Figs 1D, 6C), and is less enriched than in the two other species  
447 (Fig 1E). This suggests that the association of G2/Jockey-3 with the centromere was lost.  
448  
449 To better understand the evolutionary history of this specific retroelement, we inferred the  
450 phylogeny for all G2/Jockey-3 ORFs in the *D. melanogaster* clade assemblies.  
451 G2/Jockey-3 has two open reading frames (ORFs), but we only used ORF2 for inferring

452 phylogenies, as ORF1 is more evolutionarily labile across species [48]. While all *D.*  
453 *melanogaster* G2/Jockey-3 insertions cluster together in a unique clade, the *D. simulans*  
454 clade insertions separate into two different clades, which we designate as clade 'A' —with  
455 sequences more closely related to *D. melanogaster* G2/Jockey-3 — and clade 'B' (Fig 6A,  
456 S10 Fig). Within each clade, insertions largely form species-specific clusters. All  
457 centromeric insertions are part of the clade 'A' and retain a conserved ORF2. Like *D.*  
458 *melanogaster*, clade 'A' G2/Jockey-3 insertions are enriched at centromeres (Fig 6B).  
459 That is, 53% of clade 'A' G2/Jockey-3 insertions are centromeric in *D. simulans* and *D.*  
460 *sechellia*, which is more than expected if these TEs were randomly distributed in the  
461 genome (Fisher's exact tests:  $P_{sim} < 10^{-16}$ ;  $P_{sec} < 10^{-16}$ ;). The enrichment is less  
462 pronounced in *D. mauritiana* (17%;  $P_{mau} = 0.0567$ ). However, the consensus ORF is  
463 incomplete in *D. sechellia* and *D. mauritiana*, implying that most clade 'A' G2/Jockey-3  
464 copies are degenerated in these species, in line with their inconsistent association with  
465 centromeres. These findings suggest that a subset of G2/Jockey-3 elements likely had  
466 centromere-biased insertion activity in the *D. melanogaster* clade ancestor. This activity  
467 may have continued after the speciation event between *D. melanogaster* and the *D.*  
468 *simulans* clade but was lost in *D. sechellia* and *D. mauritiana* lineages, explaining the  
469 inability of G2/Jockey-3 to jump into centromeres. While the clade 'B' appears to have  
470 been recently active in the *simulans* clade, none of the insertions are centromeric. This  
471 clade was either lost from *D. melanogaster* or may have been introduced into the *D.*  
472 *simulans* ancestor through a horizontal transfer event. The latter appears to be more likely  
473 as we find fragmented copies of G2/Jockey-3 from *D. yakuba* that cluster with clade 'B'.  
474 However, we do not have sufficient node support to draw strong conclusions about the  
475 origins of this clade. Taken together, our data suggest that the clade 'A' G2/Jockey-3  
476 targeted the centromeres for insertion in both *D. melanogaster* and the *D. simulans* clade  
477 species despite having distinct centromeric sequences, suggesting that this element may  
478 preferentially target centromeric chromatin rather than particular DNA sequences.  
479

480 **Fig 6. G2/Jockey-3 is associated with the centromeres within the *D. simulans* clade.**  
481 **A)** Maximum likelihood phylogenetic tree of G2/Jockey-3 ORF2 from *D. melanogaster*, *D.*  
482 *simulans*, *D. sechellia*, *D. mauritiana*, *D. yakuba*, and *D. erecta*. G2/Jockey-3 within the

483 *simulans* clade species diverged into two different clades, one that is more closely related  
484 to the *D. melanogaster* elements (clade 'A') and one that is more divergent (clade 'B').  
485 Centromeric insertions are indicated by a pink \* at the tip of the branch. We do not know  
486 centromere identity in *D. yakuba* and *D. erecta*. **B)** ORF2 conservation analyses of the  
487 clade 'A' G2/Jockey-3 centromere-associated clade. The circles below the species name  
488 represents each centromere. Centromeres containing G2/Jockey-3 insertions (based on  
489 CUT&Tag and FISH) are shown in black. The pie chart represents the proportion of  
490 centromeric (black) and non-centromeric (white) insertions among the clade 'A'  
491 G2/Jockey-3 within each species' genome, where we indicate the number of insertions  
492 within the pie charts. The consensus sequence of G2/Jockey-3 ORFs is schematized  
493 below the pie chart, indicating that only *D. melanogaster* and *D. simulans* consensus  
494 sequences have an intact ORF2. **C)** IF-FISH on mitotic chromosomes from the larval brain  
495 with CENP-C antibody and G2/Jockey-3 probes showing consistent centromere-  
496 association in *D. simulans*, but not in *D. mauritiana* and *D. sechellia*. In *D. simulans*, the  
497 G2/Jockey-3 insertions on the X chromosome are adjacent to the CENP-A domain, rather  
498 than within. The inset represents a zoom on each centromere. Bars represent 5µm. The  
499 data underlying this Figure can be found at <https://doi.org/10.5061/dryad.1zcrjdg2g> [40].  
500

## 501 DISCUSSION

502  
503 In the last decade, several studies have shed light on the rapid evolution of centromere  
504 sequences in a wide range of species [11]. Centromeres are dynamic in their genomic  
505 location and can rapidly diverge in sequence between related species. However they  
506 generally consist of different variants of the same type of repeat element (either  
507 retroelements or satellites) [49–56] therefore maintaining a certain homogeneity among  
508 closely related species. For example, the centromeres of human and its closely related  
509 species — chimpanzee, orangutan, and macaque —are populated by different  
510 subfamilies of the  $\alpha$ -satellite repeat [51,52]. *Arabidopsis* species, *A. thaliana* and *A. lyrata*,  
511 also experienced a turnover of centromere sequences since their divergence, but between  
512 related satellites [57]. In this study we reveal that *Drosophila* centromeres appear to  
513 experience recurrent turnover between different repeat types over short evolutionary

514 timescales (Fig7). We hypothesize that the ancestral centromeres resembled the  
515 retroelement-rich islands of *D. melanogaster* and that centromere turnover in the *D.*  
516 *simulans* clade species was facilitated by the rapid spread of the 500-bp and 365-bp  
517 complex satellite repeats (<2.4 Mya). The only retroelement countering the domination of  
518 these complex satellites and preventing the complete homogenization of centromeres is  
519 G2/Jockey-3. Following the emergence of the centromeric complex satellites, the  
520 centromere shifted to the neighboring telomeric *HTT* in *D. sechellia* on the X and dot  
521 chromosomes (in <240 Kya). This rapid evolution of centromere sequences seems to be  
522 a general feature of the *Drosophila* genus [58]. One clade where centromere evolution  
523 seems to experience similar dynamics is in the *Equus* genus, where evolutionarily new  
524 centromeres appear in chromosomal regions free from satellite DNAs (e.g.,[59]).

525

526 The dramatic shifts in centromere composition that we described here raise questions  
527 about the role of DNA sequences in centromere function and the dynamic processes  
528 driving such shifts. There are two primary hypotheses that could explain such rapid  
529 centromere turnover: 1) relaxed selective constraints on centromeric DNA; and 2) positive  
530 selection – either for particular DNA sequences that make 'better' centromeres or due to  
531 selfish DNA sequences trigger evolutionary arms races. It is possible that the rapid  
532 turnover of centromeric sequences is due to neutral processes, as satellite DNAs are  
533 known to rapidly expand and contract through recombination-mediated processes  
534 (reviewed in [15]). Transposable elements are generally regarded as deleterious, and  
535 therefore have the potential to create conflict in the genome, however insertions in the  
536 centromere might not be. There may be relaxed constraints on centromere sequence  
537 evolution, particularly if DNA sequences do not play a major role in centromere functions.  
538 Alternatively, the rapid turnover in centromeric DNA sequences could be driven by  
539 selection, either of the classic variety where selection favors divergence in DNA  
540 sequences, or from selfish processes like meiotic drive. The centromere drive hypothesis  
541 predicts an evolutionary arms race between centromere sequences and centromeric  
542 proteins and might explain how a chromosome domain with essential function can evolve  
543 so rapidly [12,17]. Support for this hypothesis was originally based on centromere  
544 sequence divergence between more distantly related species and the rapid evolution of

545 centromeric proteins [12,17]. Our study highlights how rapid this centromere sequence  
546 evolution can be. We speculate that many of the observations we made about centromere  
547 evolution in the *D. simulans* clade are consistent with a history of genetic conflict. The  
548 365-bp and 500-bp satellite DNAs are clade-specific satellites that emerged recently and  
549 spread rapidly across centromeres. Expansions of these repeats could correspond to  
550 stronger centromeres that behaved selfishly, perhaps driving in female meiosis. Repeat  
551 expansions may be accompanied by the accumulation of centromeric chromatin, thus  
552 recruiting more kinetochore proteins and biasing their segregation to the oocyte, as is the  
553 case for the minor satellite at mouse centromeres [7]. The spread of 500-bp to what is  
554 now pericentromeres may be a signature of past expansion – CENP-A may have  
555 restricted its domain to a subset of the 500-bp satellite array to avoid centromere  
556 asymmetry. However, whether these changes occur within a stable CENP-A chromatin  
557 domain that the 500-bp and 365-bp complex satellites invaded, or CENP-A relocated to  
558 new sites that contained 500-bp and 365-bp complex satellites remains an open question.  
559 Future experimental and evolutionary genetic studies of centromere dynamics may help  
560 distinguish between these hypotheses. Regardless of driving forces behind this turnover,  
561 the rapid reorganization of centromeric sequences over short evolutionary timescales  
562 underscores the dynamic nature of centromeres and highlights their potential as hotspots  
563 for evolutionary innovation.

564

565 The X and dot chromosomes of the *melanogaster* species are classified as acrocentric  
566 based on cytological observations of mitotic chromosomes (reviewed in [43]). Here, our  
567 epigenetic profiling and high-resolution cytology allows us to distinguish between  
568 chromosomes with independent, but nearby centromere and telomere domains (e.g., in  
569 *Mus musculus* where centromeres are positioned 10–1,000 kb away from the telomere  
570 [60,61]), and telocentric chromosomes where centromeres and telomeres are on adjacent  
571 sequences (e.g. *Mus Pahari* [45]) or both occupy the same repetitive array. While the  
572 centromere shift to the *HTT* could be a cause or consequence of the loss of the  
573 centromeric satellite, the presence of 500-bp satellite adjacent to the telocentromeric  
574 domain on the X chromosome (Fig 4A-C) suggests the latter scenario. We therefore  
575 suspect that the association of the *HTT* retroelements and the centromere is due to

576 centromere shift rather than centromere-targeted transposition. While in *D. sechellia* X  
577 and dot chromosomes are clearly telocentric, we think that centromeres are close to the  
578 telomeres in *D. simulans* and *D. mauritiana*. Our observations raise important questions  
579 regarding the respective roles of centromeres and telomeres in chromosome biology as  
580 well as their functional association. Interestingly, in fission yeast the telomere bouquet is  
581 essential for spindle formation through telomere-centrosome contacts. However, if the  
582 telomere bouquet is disrupted, centromere-centrosome contacts can rescue the spindle  
583 defect, suggesting that centromeres and telomeres have functional similarities and  
584 interchangeable roles [62]. Similarly in mice, one of the shelterin complex proteins that is  
585 essential for telomere function (TRF1) is also required for centromere and kinetochore  
586 assembly [63]. In the case of *D. sechellia*, *HTT* elements with historical telomere-specific  
587 functions now need to also carry out and avoid interfering with centromere functions, at  
588 least at the structural level.

589

590 Although the dot and X centromeres of *D. sechellia* are unique due to their association  
591 with telomere-specialized retroelements, transposable elements (TEs) are commonly  
592 found in the centromeres of the *simulans* clade, even when satellite DNA is the  
593 predominant repeat. *G2/Jockey-3* seems to have actively targeted centromeric regions in  
594 the ancestor of *D. melanogaster* and the *D. simulans* clade, despite their disparate  
595 underlying sequence composition. This suggests that this element may target centromeric  
596 chromatin itself rather than a specific sequence. Such centromere-chromatin targeting by  
597 retroelements may also exist in maize [64,65] and *Arabidopsis* [57,66,67]. Transformation  
598 experiments in *Arabidopsis* showed that the centromere-associated *Ta1* retroelement  
599 from *A. lyrata* is able to target *A. thaliana* centromeres [66] despite divergent (30%)  
600 centromeric satellites in these species [68].

601

602 On one hand, TEs may limit harm to their host by inserting at centromeres, far from  
603 protein-coding genes and with little opportunity for deleterious ectopic recombination  
604 [27,69,70]. They may also escape host defenses by inserting in CENP-A nucleosomes  
605 [71]. However, a high density of TEs may inactivate centromeres through  
606 heterochromatinization [26,72]. On the other hand, centromeres may tolerate TEs that

607 contribute positively to a proper chromatin and transcription environment for centromere  
608 assembly, and in a sense therefore cooperate with the genome. Indeed, there is evidence  
609 across species that RNA is important for centromere assembly [73–77]. Centromeric  
610 copies of *G2/Jockey-3* are transcribed in *D. melanogaster* [28], therefore these TEs might  
611 contribute to centromere function despite having properties of an opportunistic selfish  
612 genetic element.

613

614 This apparent balance between TE-mediated conflict and cooperation could play an  
615 important role in fueling rapid centromere evolution. Klein and O'Neill [27] proposed that  
616 retroelement transcription can favor the recruitment of new insertions at neocentromeres,  
617 recruiting more CENP-A to stabilize the centromere. Recurrent insertions may also  
618 facilitate the emergence, or the spread, of satellites, which if favored by selection or selfish  
619 dynamics, can become the major component of centromeres. While there might not be  
620 direct competition between retroelements and satellites, both can coexist and cooperate  
621 to allow or even facilitate centromere function, centromeres may then cycle between  
622 retroelement-rich and satellite-rich domains through repeated bouts of retroelement  
623 invasion, followed by satellite birth and satellite expansion events (Fig 7B). The  
624 centromeres that we study here might represent different stages of this cycle.

625

626

627 The unique composition of Y chromosome centromeres, where we do not observe  
628 centromere turnover, may be because it is the only chromosome that never experiences  
629 female meiosis (Fig 7B). While selfish centromere drivers (e.g., driving satellites) cannot  
630 invade Y chromosomes, these chromosomes still offer a safe haven for transposable  
631 element insertions. However, Y chromosomes are subject to different evolutionary  
632 pressures and mutation patterns that might affect its sequence evolution [33], although  
633 not exclusively at the centromere. Distinguishing between drive and any alternative  
634 hypotheses will require future empirical studies of chromosome transmission and the  
635 development of formal population genetic models for centromere drive.

636

637 In conclusion, we demonstrate the extremely rapid turnover of centromeric DNA in the *D.*  
638 *melanogaster* subgroup, which could be driven by multidimensional selfish behaviors.  
639 First, TEs can insert centromeres to ensure their own transmission without hampering  
640 host fitness. In turn, the changes in centromeric sequences could alter centromeric  
641 chromatin, and possibly bias chromosome transmission through female meiosis, e.g.  
642 centromere drive. Lastly, the high mutation rates at centromeres might further promote  
643 the birth and turnover of centromeric satellites. If the genetic elements occupying  
644 centromeres are indeed selfish, competition for centromere invasion and potential for  
645 biased transmission to the next generation can drive rapid turnover of centromere  
646 composition. In these species, retroelements and satellite DNA may be competing,  
647 perhaps indirectly, for centromere occupancy. These dynamics have implications not just  
648 for the role of centromeric DNAs in chromosome segregation, but also for the role of  
649 retroelements in genome function, and karyotype evolution [78] broadly.

650

651

652 **Fig 7. Shifting centromere composition in the *D. simulans* clade species and *D.***  
653 ***melanogaster*. A)** Schematic illustration of the centromere structure and composition in  
654 the melanogaster clade. Each chromosome's structure is depicted in grey above each  
655 column. Below, we provide a detailed view of the centromeric and pericentromeric regions  
656 for each species. The centromere is represented as a circle. Each region is color-coded  
657 based on the dominant repeat composition, with the legend at the bottom of the figure  
658 explaining the color scheme. **B)** An evolutionary model for the centromere sequence  
659 turnover in the *melanogaster* clade species representing the cycling between  
660 retroelement-rich and satellite-rich centromeres in the *D. melanogaster* clade species.  
661 Retroelements and satellites may be engaged in their own conflicts and thus indirectly  
662 compete to occupy centromeres. Representative examples of specific replacement events  
663 in different stages of the conflicts are depicted in the outside circles. For example, while  
664 *D. melanogaster* centromeres are rich in transposable elements, *D. simulans* clade  
665 centromeres are now primarily occupied by satellite DNA. The satellite-rich centromeres  
666 of *D. simulans* are still targeted by G2/Jockey-3 retroelements and *D. sechellia*'s X and

667 dot (4th) chromosome centromeres shifted to the specialized telomeric *HTT*  
668 retroelements. C. The Y chromosome centromeres do not cycle between retroelements  
669 and satellite DNAs in the *simulans* clade species. Despite satellite DNAs being a major  
670 component of these Y chromosomes, their centromeres remain rich in retroelements. We  
671 speculate that this is because the dynamic turnover of centromere content is driven by  
672 female-specific selection like centromere drive in female meiosis.

673 **MATERIALS AND METHODS**

674

675

676 **Fly strains**

677

678 For *D. sechellia* and *D. mauritiana*, we used the same sequenced strains used to build  
679 the heterochromatin enriched genome assemblies [30]: Rob12 (Cornell SKU: 14021-  
680 0248.25) and w12 (Cornell SKU :14021-0241.151), respectively. For *D. simulans*, we  
681 used the wXD1 strain that is maintained in the Larracuente lab. While it is the same strain  
682 as the one used to build the heterochromatin enriched assembly, our isolate appears to  
683 have a structural polymorphism on the X chromosome pericentromeric compared to the  
684 assembly [33]. All the experiments conducted in this study were performed using the same  
685 isolate. For *D. melanogaster*, we used an inbred strain from the Netherlands (N25) [79].

686

687

688 **Antibodies used**

689

690 The list of primary and secondary antibodies that we used for this study is details below:

691 - anti-CENP-A antibody ( $\alpha$ -CID20): polyclonal rabbit antibody synthesized for this  
692 study (by Covance). The CENP-A antibody was raised against the  
693 MPRHSRAKRAPRPSAC peptide [8]. The final serum was proteinA purified. We  
694 used this antibody at 1:50 dilution for the CUT&Tag. We validated the specificity of  
695 the antibody by Western Blot (S11 Fig).

696 - anti-CENP-C antibody ( $\alpha$ -CENP-C12): polyclonal rabbit antibody synthesis for this  
697 study (by Genscript). The CENP-C antibody was raised against the  
698 NNRRSMRRSGNPGC peptide. The final serum was affinity purified. We used  
699 this antibody at 1:100 dilution for the Immunostaining on mitotic chromosomes.

700 - anti-CENP-A antibody ( $\alpha$ -CIDH32): polyclonal chicken antibody, gift from the  
701 Mellone lab. We used the antibody at 1:100 dilution for the Immunostaining on  
702 chromatin fibers.

703 - Anti-Mouse IgG H&L antibody (abcam, ab46540): rabbit antibody that we used as  
704 a negative control for the CUT&Tag at 1:100 dilution.

705 - anti-H3K9me3 antibody (abcam, ab176916): rabbit monoclonal antibody. We used  
706 this antibody as a positive control for the CUT&Tag at 1:100 dilution.

707 - anti CENP-C primary antibody: Guinea Pig antibody from [80]. We used this  
708 antibody for larval brain squashes for *G2/Jockey-3* IF-FISH at 1:500 dilution.

709 - Guinea Pig anti-rabbit unconjugated (Novus Biologicals, NBP1-72763). We used  
710 this secondary antibody for the CUT&Tag at 1:100 dilution.

711 - Goat anti-rabbit IgI H&L conjugate with Alexa Fluor 488 (abcam, ab150077). We  
712 used this secondary antibody for the Immunostaining on mitotic chromosomes  
713 spread at 1:500 dilution.

714 - Goat anti-Chicken IgY (H+L) Secondary Antibody, Alexa Fluor™ 488 (Invitrogen,  
715 A-11039)

716 - Goat anti Guinea Pig conjugate with AlexaFlour 546 (Thermo Catalog # A-11074).  
717 We used this secondary antibody for the Immunostaining on mitotic chromosomes  
718 spread at 1:500, for *G2/Jockey-3* IF-FISH.

719

720 **Western blot**

721

722 Twenty flies from each species were homogenized in 200 $\mu$ l 1x Laemmli buffer (diluted  
723 from BioRad 4x Laemmli Sample Buffer [1610747] with 2-mercaptoethanol [Sigma] and  
724 1x Pierce EDTA-free Protease inhibitors [ThermoFisher A32965]), denatured by  
725 incubation at 95C for 10 minutes, centrifuged at 15000 rpm for 5 minutes at 4C, and 20 $\mu$ l  
726 of each the supernatant and PageRuler Prestained Protein Ladder (ThermoFisher  
727 [26616]) was run 4-15% Mini-Protean TGX gel. The protein was transferred to PVDF  
728 membrane (Novex Invitrolon [LC2005]), blocked (Li-Cor Intercept Blocking buffer [927-  
729 60001]), incubated with 1:1000 Rabbit anti-CENP-A(lab stock), washed 3 times with  
730 TBS/0.1% Tween-20, incubated with 1:20000 Goat Anti-Rabbit IgG (H+L) DyLight800  
731 (Invitrogen SA5-10036), washed 3 times with TBS/0.1% Tween-20, and imaged with Li-  
732 Cor Odyssey CLx imaging system.

733

734

735 **CUT&Tag**

736

737 **Nuclei isolation**

738

739 We collected Drosophila embryos overnight at 25°C in cages containing a grape juice-  
740 agar plate with yeast paste. We used 0-16h embryos to perform nuclei isolation as in [81].  
741 We washed embryos in the embryo wash buffer (0.7% NaCl, 0.04% Triton-X100) then  
742 dechorionated using 50% bleach for 30s. We ground embryos in 1ml buffer B (pH7.5,  
743 15mM Tris-HCl, 15mM NaCl, 60mM KCl, 0.34M Sucrose, 0.5mM Spermidine, 0.1%  $\beta$ -  
744 mercaptoethanol, 0.25mM PMSF, 2mM EDTA, 0.5mM EGTA) using a homogenizer and  
745 filtered to remove large debris. We centrifuged nuclei at 5000g for 5 min and resuspended  
746 in 500 $\mu$ l of buffer A (pH7.5, 15mM Tris-HCl, 15mM NaCl, 60mM KCl, 0.34M Sucrose,  
747 0.5mM Spermidine, 0.1%  $\beta$ -mercaptoethanol, 0.25mM PMSF), twice. We resuspended  
748 the final pellet in CUT&Tag wash buffer (20mM HEPES pH 7.5, 150mM NaCl, 0.5 mM  
749 Spermidine) to a final concentration of 1,000,000 nuclei/ml.

750  
751 **CUT&Tag**  
752

753 We performed CUT&Tag using around 100,000 nuclei per sample. We used the pA-Tn5  
754 enzyme from Epicypher and followed the manufacturer's protocol (CUT&Tag Protocol  
755 v1.5). For each species we performed 3 replicates with the anti-CID20 antibody (1:50),  
756 one positive control using anti-H3K9me3 (1:100), and one negative control using the anti-  
757 IgG antibody (1:100).

758 While a spike in control would allow us to measure quantitative variation between  
759 samples, our analysis of centromere chromatin is qualitative. We therefore elected to  
760 exclude a spike in to maximize our centromere-associated read recovery.

761  
762 **Library preparation**  
763

764 For the library preparation, we used the primers from [82] (S8 Table). We analyzed each  
765 library on Bioanalyzer for quality control, representative profiles of CENP-A and  
766 H3K27me3 profiles are provided in S11B Fig. Before final sequencing, we pooled 2 $\mu$ l of  
767 each library and performed a MiSeq run. We used the number of resulting reads from  
768 each library to estimate the relative concentration of each library and ensure an equal  
769 representation of each library in the final pool for sequencing. We sequenced the libraries  
770 in 150-bp paired-end mode on HiSeq Illumina. We obtained around 10 million reads per

771 library, except for the IgG negative control, which usually has a lower representation (S9  
772 Table).

773

#### 774 **Centromere identification**

775  
776 We trimmed paired-end reads using trimgalore (v0.4.4) [83] (*trim\_galore --paired --nextera*  
777 *--length 75 --phred33 --no\_report\_file --fastqc*) and assessed read quality with FASTQC.  
778 We mapped reads against the reference genome with bwa (v7.4) using the *BWA-MEM*  
779 algorithm (default parameters). We used the heterochromatin-enriched assemblies of *D.*  
780 *melanogaster* [40], *D. simulans*, *D. sechellia* and *D. mauritiana* [33]. We converted the  
781 resulting sam alignment files into bam files and sorted using respectively samtools (v1.11)  
782 *view* and *sort* command. We removed PCR duplicates using *MarkDuplicates* from  
783 Picardtools (v2.12.0) (<https://broadinstitute.github.io/picard/>). Because we are working  
784 with highly repetitive sequences, we analyzed both the unique and multi-mapping reads.  
785 We thus performed two different filtering based on mapping quality using samtools *view*  
786 [84]. To include multi-mapping reads, we use the following parameters: *-b -h -f 3 -F 4 -F*  
787 *8 -F 256 -F 2048*. To keep only the uniquely mapping reads we use the following  
788 parameters: *-b -h -f 3 -F 4 -F 8 -F 256 -F 2048 -q30*.

789 We estimated read coverage using the *bamCoverage* command from deeptools (v3.5.1)  
790 using the option *--scaleFactor -bs 1 --extendReads* and normalized the read coverage to  
791 RPM (reads per million).

792 We called peaks based on fragment size using MACS2 callpeak [85] (v2017-10-26)  
793 (option *-f BAMPE -g dm -q 0.01 -B --call-summits*) and performed an IDR analysis  
794 (<https://github.com/nboley/idr>) to identify high confidence peaks that overlapped between  
795 replicates (IDR <0.05, S1 Table). The localization of these high confident peaks allowed  
796 us to identify the candidate centromere contigs (S1 Fig).

797 We calculated mappability along each centromere candidate contig using GenMap  
798 (<https://github.com/cpockrandt/genmap>) with 150-mers to mimic read length.

799  
800 **Repeat enrichment analyses**  
801  
802 For this analysis, we used the multi-mapping bam file. We annotated the reference  
803 genome (S1-4 Files) using a custom repeat library specific to each species (S5-8 Files)

804 with Repeatmasker [86] (options `-no_is -a -inv -pa 20 -div 20`). Using htseq-count [87] we  
805 counted the number of reads that map to each repeat and calculated RPM. To determine  
806 the enrichment, we normalized the RPM counts for CENP-A by RPM counts for IgG  
807 (negative control). The 25 % most enriched repeats are presented in S10 Table, and the  
808 top 20 most enriched repeats among all replicates are presented in Fig 1 B, E, H.

809 To explore origins of the centromeric complex satellites we blasted (*blastn* with default  
810 parameter) the consensus sequences of 500-bp, 136-bp and 365-bp satellites against the  
811 genome of *D. melanogaster* [47], the *simulans* clade [33] and more distant species, *D.*  
812 *yakuba*, *D. ananassae*, *D. pseudoobscura*, *D. erecta* and *D. virilis* [88]. All hits are  
813 reported in S3-5 Tables.

814 The dotplots of the Y chromosome centromeres cenY (S9 Fig) were generated using re-  
815 DOT-able v1.1 (<https://www.bioinformatics.babraham.ac.uk/projects/redotable/>).

## 816 817 **G2/Jockey-3 evolutionary analyses**

818

819 We surveyed G2/Jockey-3 evolution in additional species with improved genome  
820 assemblies of *D. simulans*, *D. sechellia*, and *D. mauritania* [89] and publicly-available  
821 Nanopore assemblies of *D. yakuba*, *D. erecta*, and *D. ananassae* [90]. We identified  
822 G2/Jockey-3 sequences with two complementary methods. First, we annotated each  
823 genome assembly with our custom Drosophila TE library including the *D. melanogaster*  
824 G2/Jockey-3 consensus sequence [71] using Repeatmasker v4.1.0. The annotations and  
825 500 bp flanking regions were extracted with BEDTools v2.29.0[81] and aligned with  
826 MAFFT [91] to generate a species-specific consensus sequence with Geneious v.8.1.6  
827 [92]. Each assembly was annotated again using Repeatmasker with the appropriate  
828 species-specific G2/Jockey-3 consensus sequence. Second, we constructed *de novo*  
829 repeat libraries for each species with RepeatModeler2 v.2.0.1 [93] and identified  
830 candidate G2/Jockey-3 sequences which shared high similarity with G2/Jockey-3 in *D.*  
831 *melanogaster* identified with BLAST v.2.10.0. We did the same with Jockey-1  
832 (LINEJ1\_DM) as confirmation of our methods, and to use it as an outgroup for the TE  
833 fragment alignment. We removed candidates shorter than 100 bp from the analysis. We  
834 identified ORFs within consensus TE sequences with NCBI ORFfinder. We used  
835 Repeatmasker to annotate the genome assemblies with the *de novo* Jockey-3 consensus

836 sequences. To infer a phylogenetic tree of TEs, we aligned *G2/Jockey-3* fragments  
837 identified in each species with MAFFT and retained sequences corresponding to the ORF  
838 bounds of the consensus sequences; We removed ORF fragments <400 bp. We inferred  
839 the tree with RAxML v.8.2.11 [94] using the command “raxmlHPC-PTHREADS -s  
840 alignment\_Jockey-3\_melsimyak\_400\_ORF2\_mafft.fasta -m GTRGAMMA -T 24 -d -p  
841 12345 -# autoMRE -k -x 12345 -f a”.

842

843

#### 844 **Oligopaint design and synthesis**

845

846 We designed Oligopaint probes targeting 500-bp, 136-bp, 365-bp, *Rsp-like*, *HTTs* and the  
847 Y centromere islands of each species using ProbeDealer [95] with some modifications.  
848 We extracted the fasta sequences containing the target repeat from the reference  
849 genomes and used it as the input for ProbeDealer. After designing all the possible oligo  
850 probes, ProbeDealer usually maps them back against the reference genome to eliminate  
851 multimapping oligos. Because we are working with highly repetitive sequences, we  
852 skipped this step. We mapped the oligos to the reference genome to manually inspect for  
853 potential off targets. The final oligo list is in S11 Table. Oligopaints libraries were  
854 synthesized by Genscript. We then synthesized and purified each Oligopaint sublibrary  
855 as described in [29].

856

#### 857 **IF-FISH on mitotic chromosome**

858 We dissected brains from third instar larvae (both sexes) in PBS, incubated 8 min in 0.5%  
859 sodium citrate. We fixed for 6 min in 4% formaldehyde, 45% acetic acid before squashing.  
860 We squashed the brains between a poly-lysine slide and coverslip and before immersing  
861 in liquid nitrogen. After 5 min in PBS and 10 min in PBS, we blocked slides for at least 30  
862 min in blocking buffer (3%BSA, 1% goat serum in PBST). For immunofluorescence (IF),  
863 we incubated slides in primary antibody ( $\alpha$ -CENP-C12 1:100) overnight at 4°C. We  
864 washed slides 3 times for 5 min in PBST. We incubated slides in secondary antibody (anti-  
865 rabbit 1:500) for 1-3h at room temperature and washed 3 times for 5 min in PBST. We  
866 post-fixed the slides using 10% formaldehyde diluted in 4XSSC, incubating 20 min at room  
867 temperature and washed 3 times for 3 min with 4XSSC and one time for 5 min with  
868 2XSSC. For the hybridization, we used 20 pmol of primary probes (S11 Table) and 80

869 pmol of the secondary probes (S12 Table) in 50  $\mu$ l of hybridization buffer (50% formamide,  
870 10% dextran sulfate, 2XSSC). We heated slides for 5 min at 95°C to denature and  
871 incubated them overnight at 37°C in a humid chamber. We then washed the slides 3 times  
872 for 5 min with 4XSSCT and 3 times for 5min with 0.1SSC before mounting in slowfade  
873 DAPI.

874 We use acetic acid to obtain high quality chromosome spreads, however this also  
875 removes histones. Thus, it is not feasible to perform IF on mitotic spread using anti-histone  
876 antibodies, such as CENP-A. We therefore use CENP-C,—a kinetochore protein that  
877 marks centromeres and overlaps with CENP-A [37].

878

879

### 880 **IF-FISH on chromatin fibers**

881

882 We dissected 3rd instar larval brains in 1XPBS (3-4 brains per slide) and incubated in  
883 250 $\mu$ l of 0.5% sodium citrate with 40 $\mu$ g of dispase-collagenase, for 12 min at 37°C. The  
884 tissue was transferred to a poly-lysine slide using Shandon Cytospin 4 at 1,200 rpm for 5  
885 minutes. We positioned slides vertically in a tube containing the Lysis buffer (500nM NaCl,  
886 25mM Tris-HCL pH7.5, 250nM Urea, 1% Triton X-100) and incubated for 16 min. For the  
887 fiber stretching, we allow the buffer to slowly drain from the tube with the hole at the bottom  
888 (by removing the tape). A steady flow rate will generate a hydrodynamic drag force which  
889 generates longer and straighter fibers. We incubated slides in a fixative buffer (4%  
890 formaldehyde) for 10 min and then 10 min in 1XPBST (0.1% Triton). For the IF, we first  
891 blocked the slides for 30 min in blocking buffer (1.5% BSA in 1XPBS). We incubated slides  
892 overnight at 4°C with the primary antibody ( $\alpha$ -CIDH32, 1:100) and washed 3 times for 5  
893 min in 1xPBST. We incubated slides with the secondary antibody (anti-chicken, 1:500) for  
894 1-3 h at room temperature and washed 3 times for 5min with 1XPBST. We post-fixed the  
895 slide with 10% formaldehyde for 20 min and washed 3 times for 5 min in 1XPBST. We  
896 then incubated slides for 10 min in 2XSSCT at room temperature and 10 min in 2XSSCT  
897 - 50% formamide at 60°C. For the hybridization, we used 40 pmol of primary probes (S11  
898 Table) and 160 pmol of the secondary probes (S12 Table) in 100  $\mu$ l of hybridization buffer  
899 (50% formamide, 10% dextran sulfate, 2XSSC). We heated slides for 5 min at 95°C to  
900 denature and incubated them overnight at 37°C in a humid chamber. We then washed the

901 slides 15 min with 2XSSCT at 60°C, 15 min with 2XSSCT at room temperature, and 10  
902 min with 0.1XSSC at room temperature. We incubated slides for 5 min in DAPI (1mg/ml)  
903 before mounting in SlowFadeTM Gold (Invitrogen S36936).

904

### 905 **G2/Jockey-3 IF-FISH**

906 *D. simulans*, *D. sechellia*, and *D. mauritania* third instar larval brains were dissected in 1X  
907 PBS and all attached tissue or mouth parts were removed with forceps. Brains were  
908 immersed in 0.5% sodium citrate solution for 8 min in a spot well dish. The tissue was  
909 placed in a 6 $\mu$ l drop of 45% acetic acid, 2% Formaldehyde on a siliconized (Rain X)  
910 coverslip for 6 min. A poly-lysine coated slide was inverted and placed on the brains to  
911 make a sandwich. After flipping the slide and gently removing excess fixative between a  
912 bibulous paper, the brain was squashed using the thumb by firmly pressing down. Slides  
913 were then immersed in liquid nitrogen and the coverslip flipped off using a razor blade and  
914 transferred to 1X PBS for 5 min to rehydrate before proceeding with IF-FISH. Slides were  
915 then washed with 1X PBST (0.1% Triton X-100) for 5 min on a rotator, repeated 3 times.  
916 Slides were then transferred to a coplin jar containing blocking solution (1% BSA in 1X  
917 PBST) for 30 min while rocking. Diluted antibodies were applied to the slides coating the  
918 brains with 50  $\mu$ l of primary antibodies, covered with parafilm and stored in a dark chamber  
919 at 4°C overnight. The following day slides were washed 4 times with 1X PBST for 5 min  
920 while rocking. Secondary antibodies diluted with block were applied to the brains and  
921 covered with parafilm, then incubated at room temperature for 1 hr. After the 1hr  
922 incubation, slides were washed 4 times in 1X PBST for 5 min while rotating. Slides were  
923 then post-fixed with 3.7% Formaldehyde diluted with 1X PBS for 10 min in the dark. Slides  
924 were washed for 5 min in 1X PBS while rotating before proceeding to FISH. The following  
925 FISH protocol for G2/Jockey-3 labeling and the synthesis of the G2/Jockey-3 probe was  
926 performed as described in the methods of Chang et al 2019. Slides were dehydrated in  
927 an ethanol row (3 min washes in 70%, 90%, and 100% ethanol) and allowed to air-dry  
928 completely for a few minutes. Probe mix (20  $\mu$ L) containing 2xSSC, 50% formamide  
929 (Sigma-Aldrich), 10% dextran sulfate (Merck), 1  $\mu$ L RNase cocktail (ThermoFisher), and  
930 100 ng of DIG-labeled G2/Jockey-3 probe was boiled at 80°C for 8 min, incubated on ice  
931 for 5 min, and then applied to slides, covered with a glass coverslip, and sealed with paper

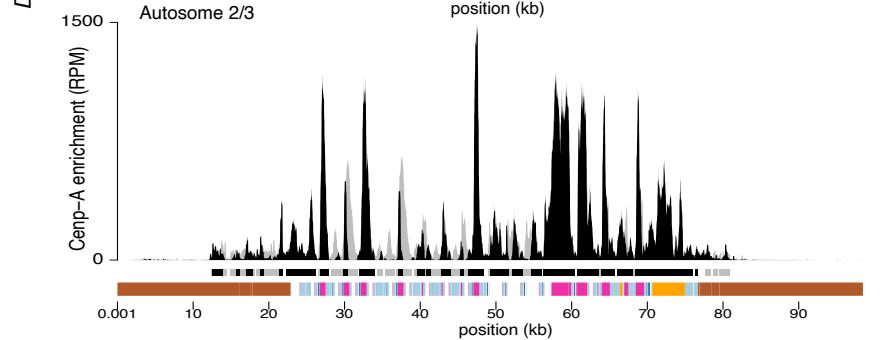
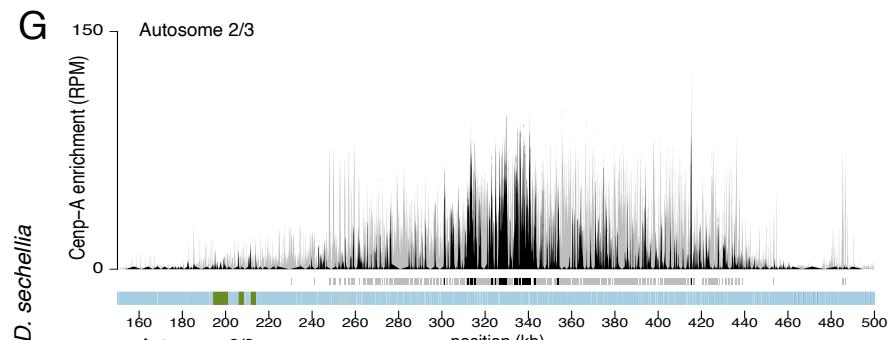
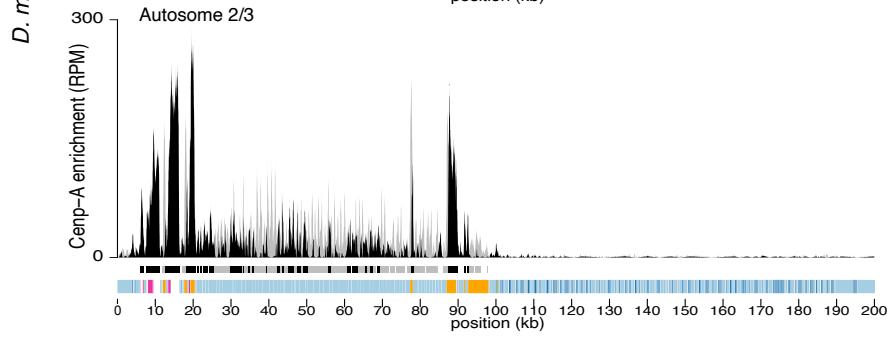
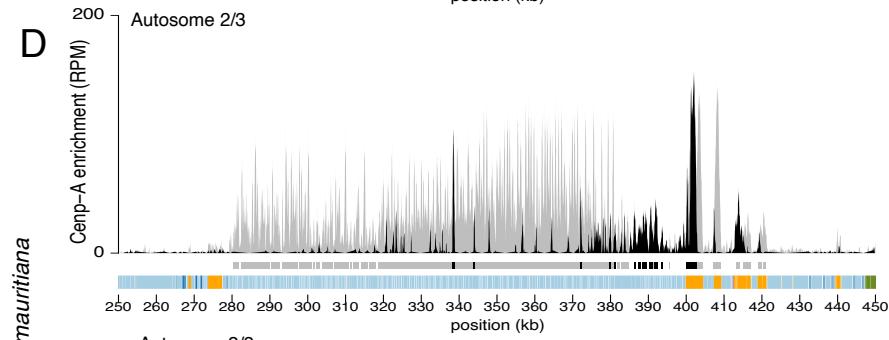
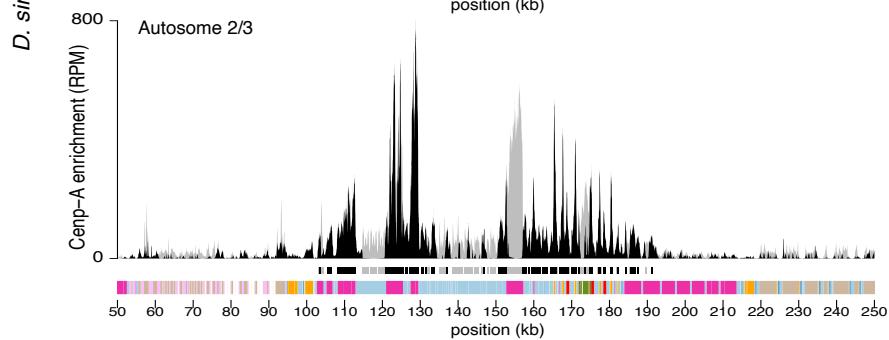
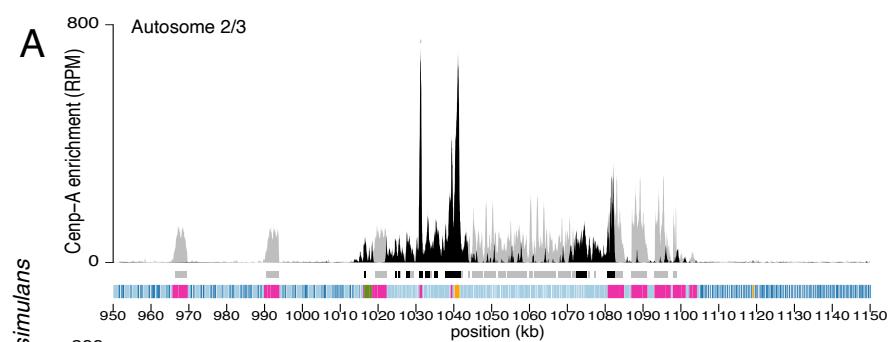
932 cement. Sealed slides were denatured on a slide thermocycler for 5 min at 95°C and  
933 incubated at 37°C overnight to hybridize. Slides were then washed three times in a coplin  
934 jar for 5 min in 2xSSC, 50% formamide at 42°C. Slides were then washed three times for  
935 5 min in 0.1xSSC at 60°C, and then blocked in block buffer 1% BSA, 4xSSC, 0.1% Tween-  
936 20 at 37°C for 45 min. Slides were incubated with 50  $\mu$ L of block buffer containing a  
937 fluorescein-labeled anti-DIG antibody (sheep, 1:100, Roche) for 60 min at 37°C. Slides  
938 were then washed three times for 5 min in 4xSSC, 0.1% Tween-20 at 42°C. Slides were  
939 washed with 1X PBS briefly in a coplin jar and finally mounted on a coverslip with Slowfade  
940 and DAPI, then sealed with nail polish.

941

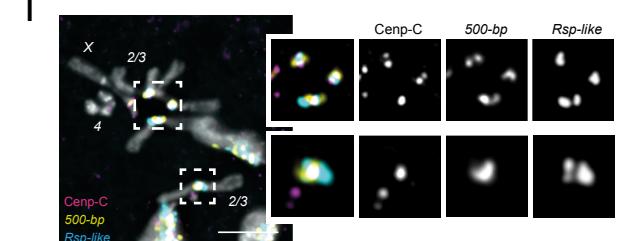
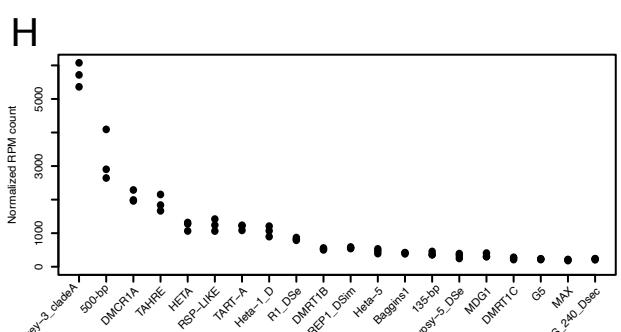
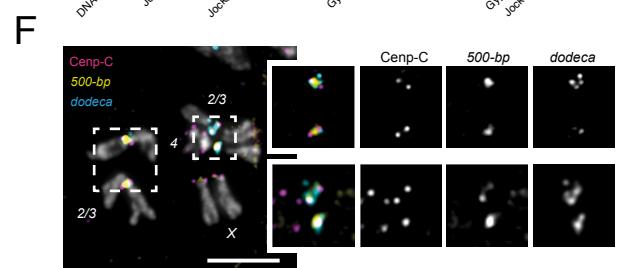
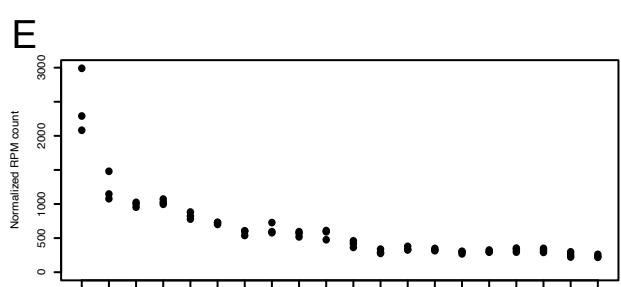
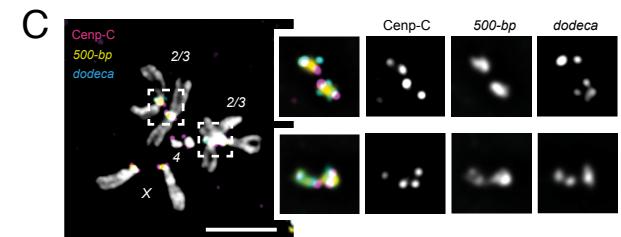
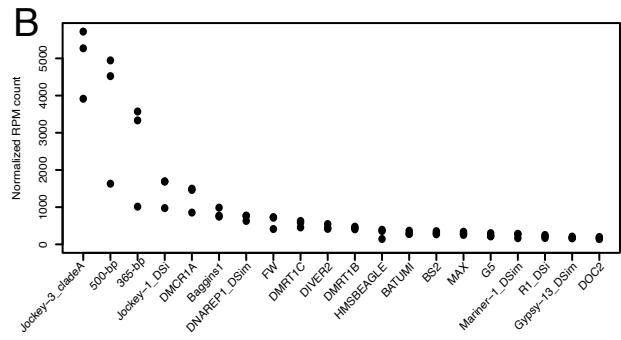
#### 942 **Image acquisition**

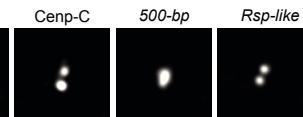
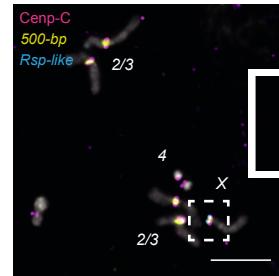
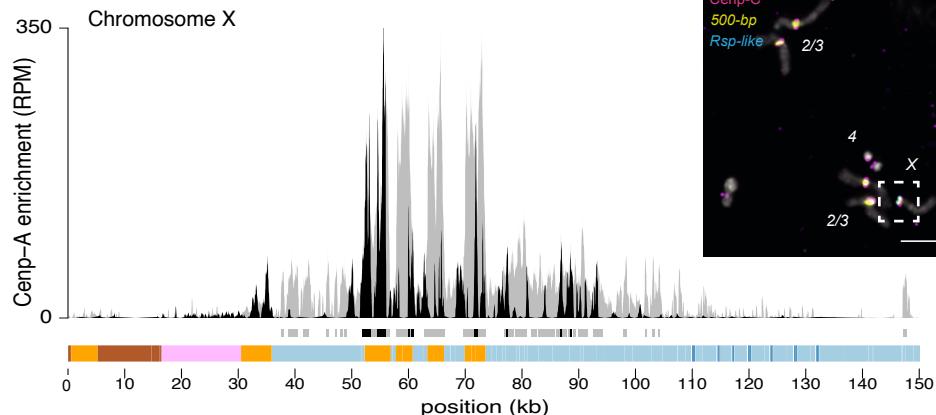
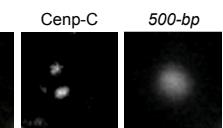
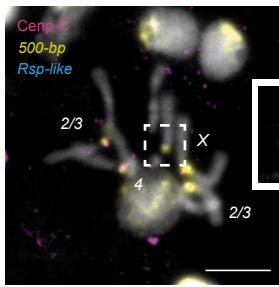
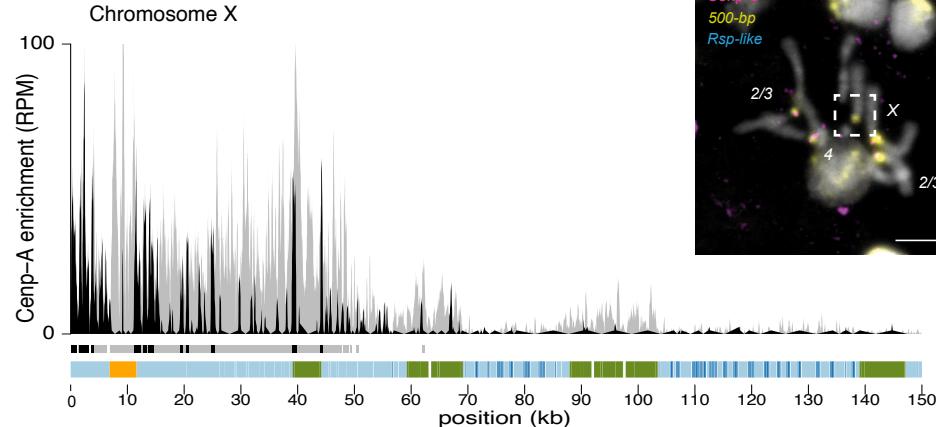
943 We imaged using a LEICA DM5500 microscope with a 100x/oil immersion objective or  
944 Delta vision using an Olympus UPLansApo 100x/1.40 oil immersion objective, maintaining  
945 all exposures consistent across each experiment. Images obtained with the Deltavision  
946 microscope were deconvolved with Softworks using 5 iterations with the ‘conservative’  
947 setting. Images were edited, cropped and pseudocolored using Fiji.

948







#### 949 **Data availability**

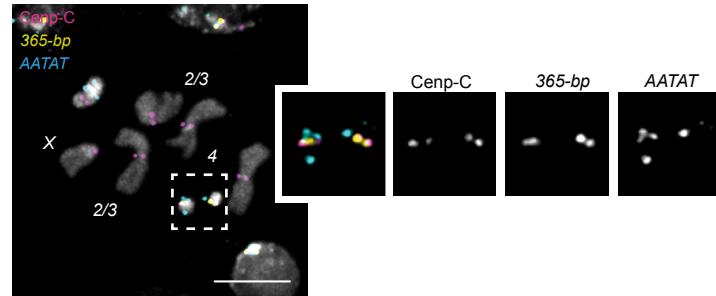
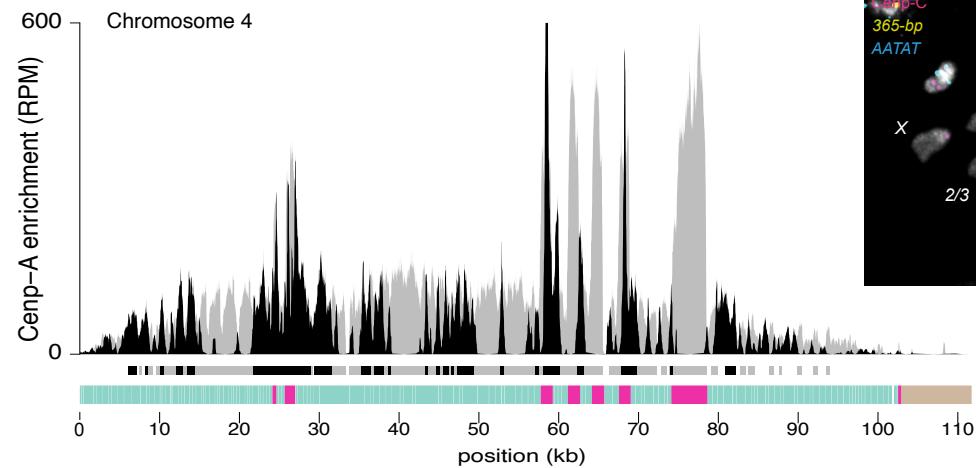
950 All sequences are available from NCBI SRA under Bioproject accession PRJNA1007690  
951 All the BASH pipelines and R scripts used in this study are available on github:  
952 [https://github.com/LarracuenteLab/SimClade\\_Centromere\\_2024](https://github.com/LarracuenteLab/SimClade_Centromere_2024) and on Dryad [40]. All  
953 files necessary to reproduce the plots are on Dryad [40].







954

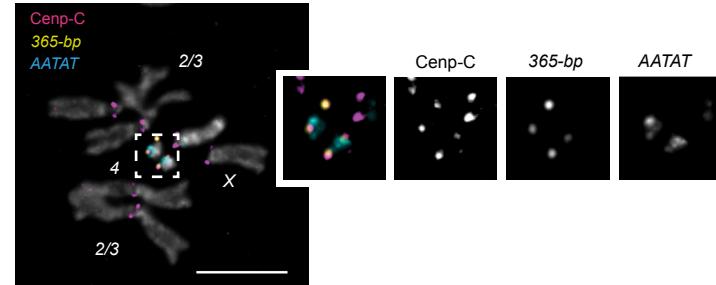
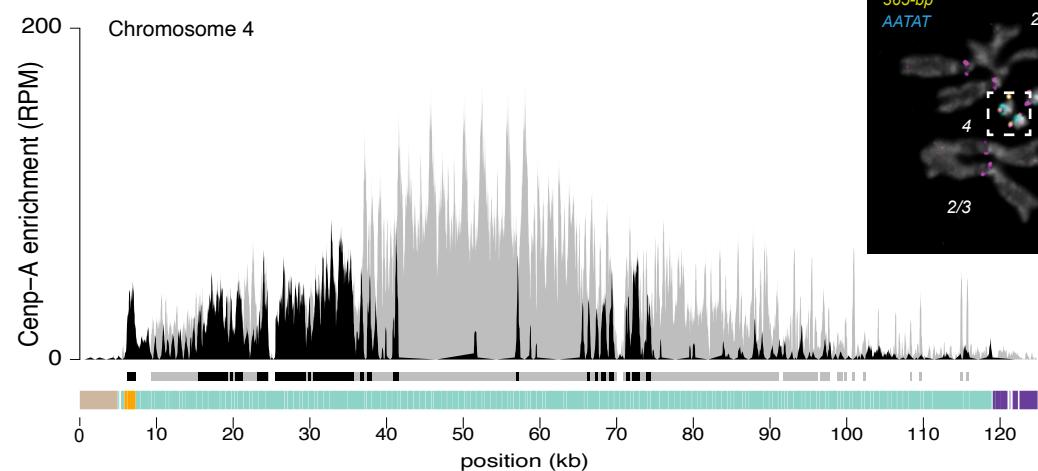






#### 955 **Acknowledgments**

956 We would like to thank the members of the Larracuente and Mellone labs for helpful  
957 discussion and Emiliano Martí for comments on the manuscript. We are grateful to the  
958 University of Rochester Center for Integrated Research Computing for access to  
959 computing cluster resources and the University of Rochester Genomics Research Center  
960 for sequencing services.



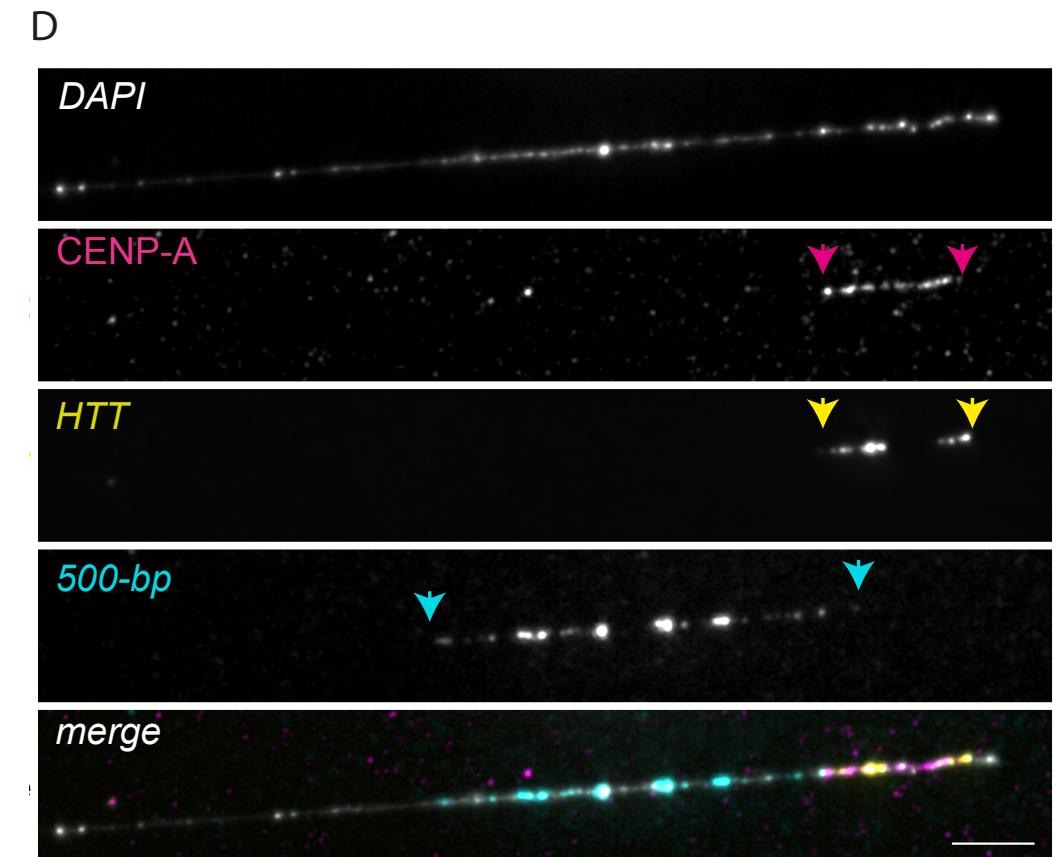
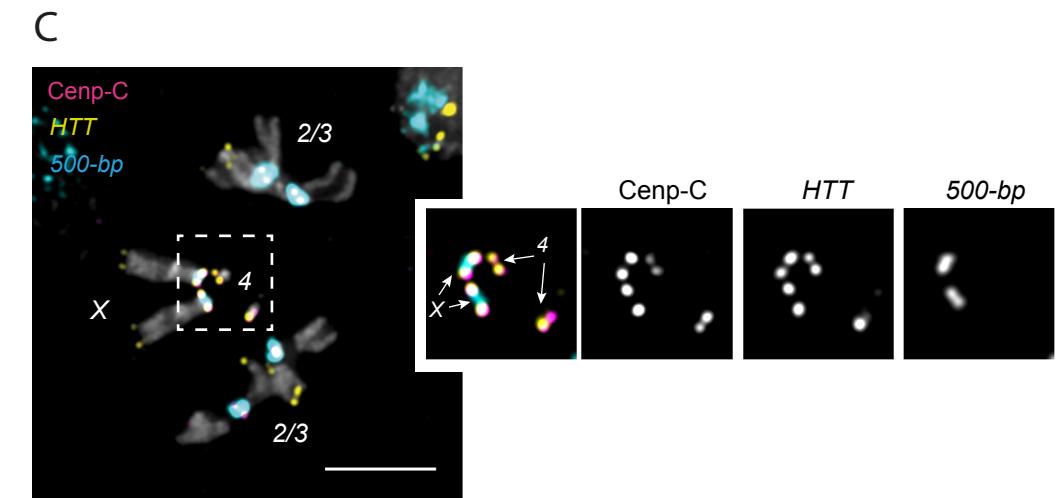
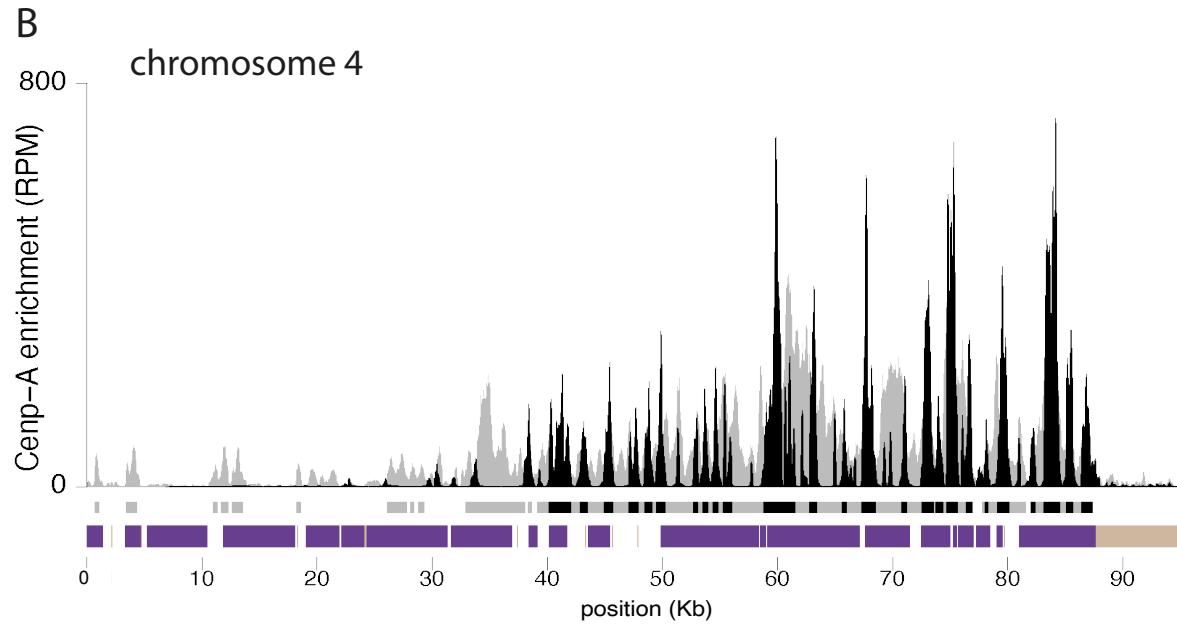
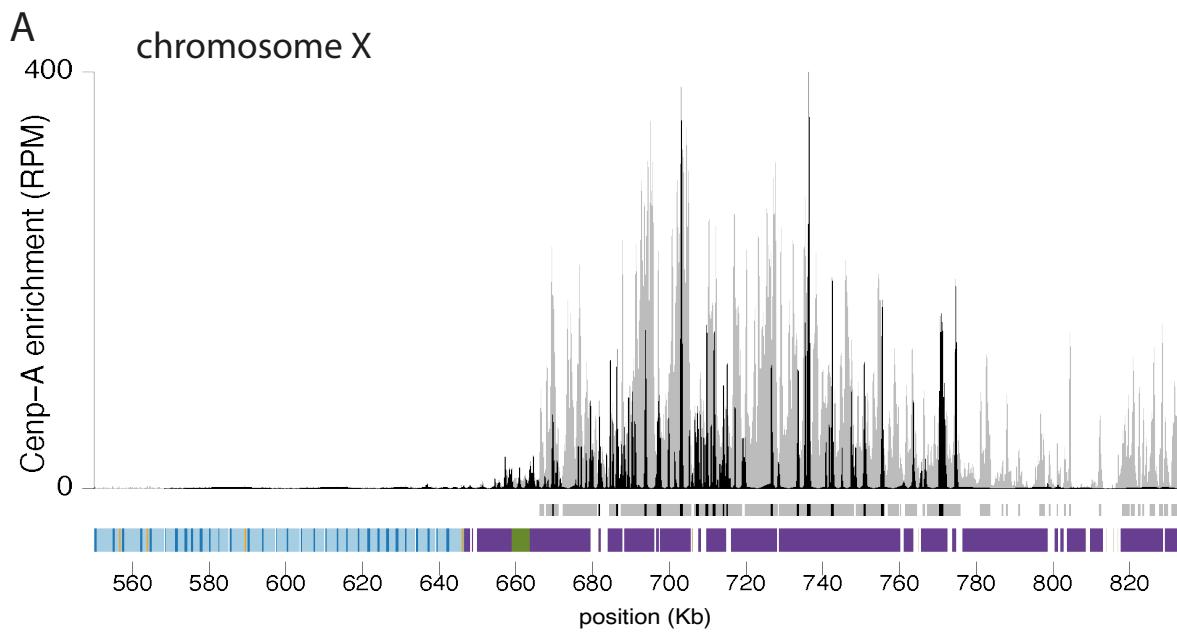


■ DNA transposon ■ LTR retrotransposon ■ 500-bp ■ G2/Jockey-3 ■ Other  
 ■ Non-LTR retrotransposon ■ SimpleSatellite ■ 136-bp ■ Rsp-Like





**A***D. simulans***B***D. mauritiana*

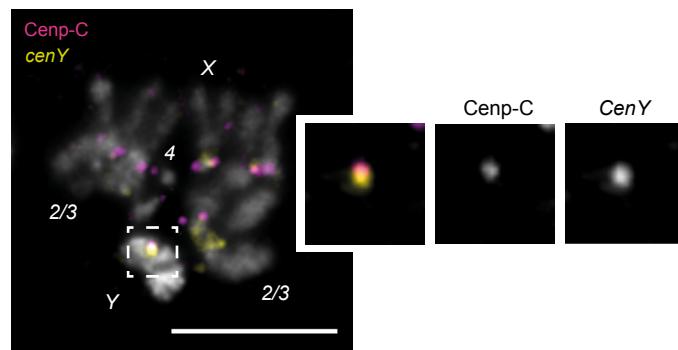
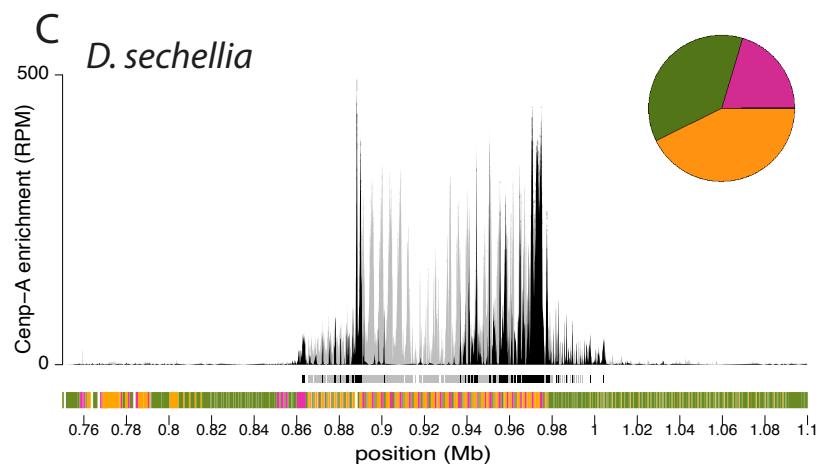
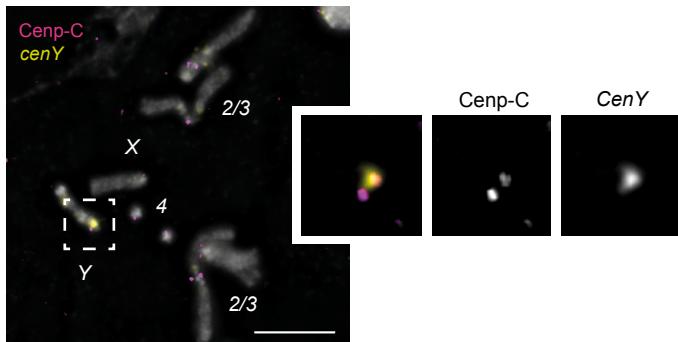
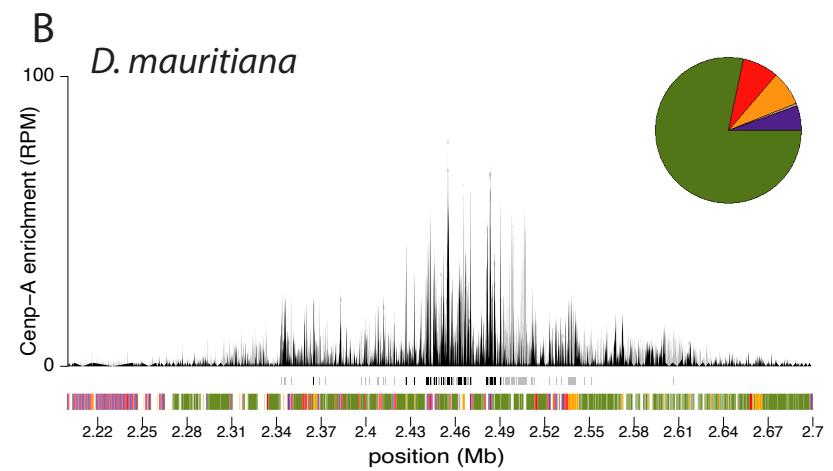
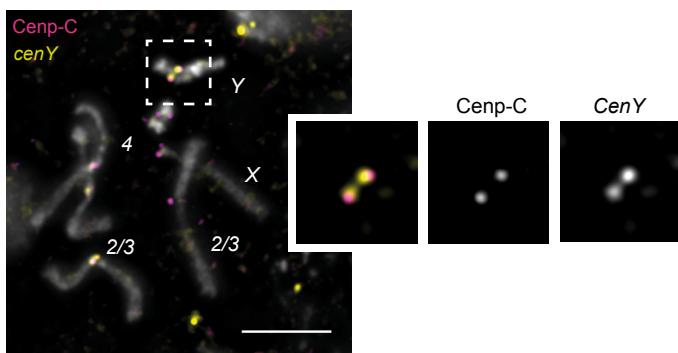
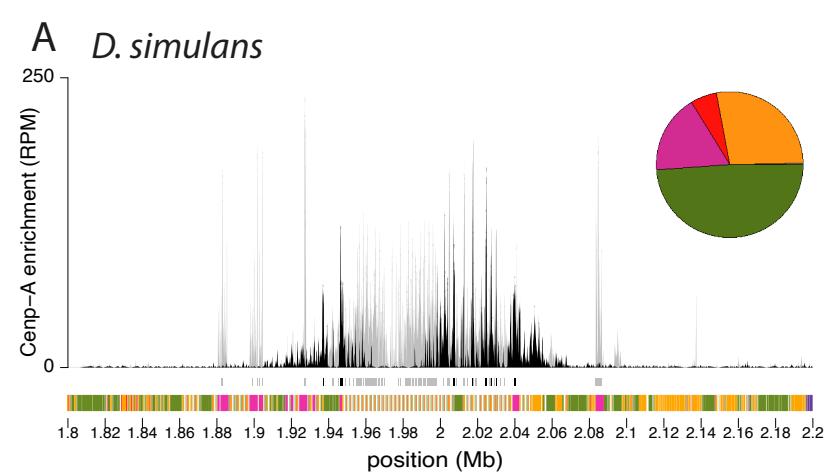
|                         |                     |        |             |       |
|-------------------------|---------------------|--------|-------------|-------|
| DNA transposon          | LTR retrotransposon | 500-bp | G2/Jockey-3 | Other |
| Non-LTR retrotransposon | SimpleSatellite     | 136-bp | Rsp-Like    |       |

A *D. simulans*


## B *D. mauritiana*

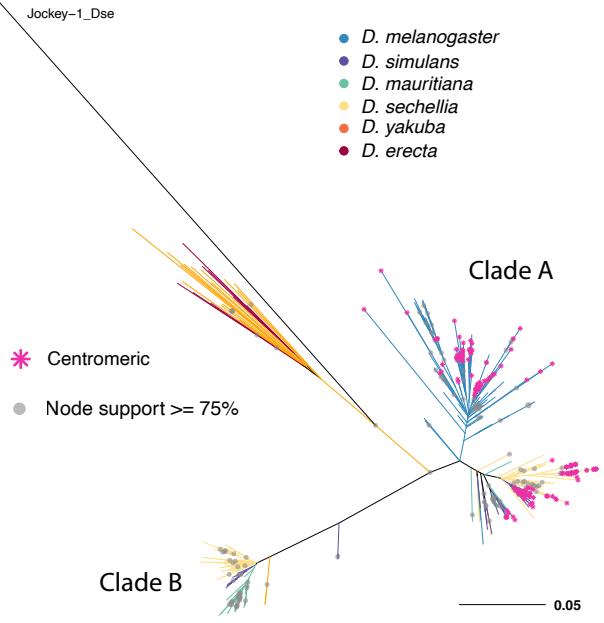








Legend for genomic tracks:

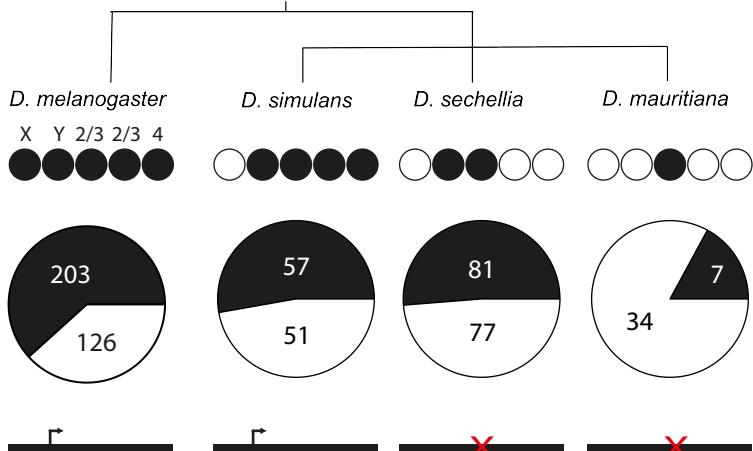
- DNA transposon
- LTR retrotransposon
- 365-bp
- G2/Jockey-3
- Non-LTR retrotransposon
- Simple Satellite
- Other
- HTT



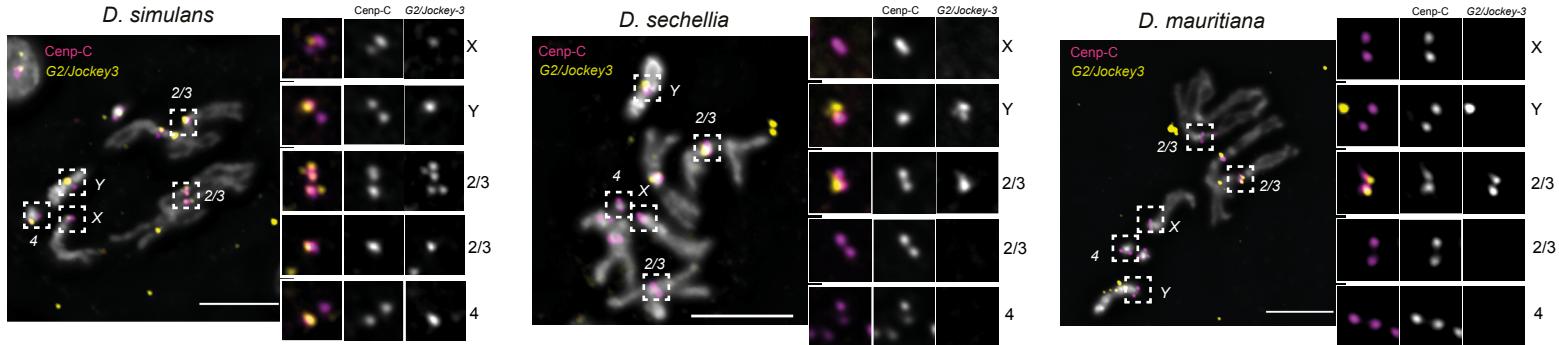
Legend for genomic features:

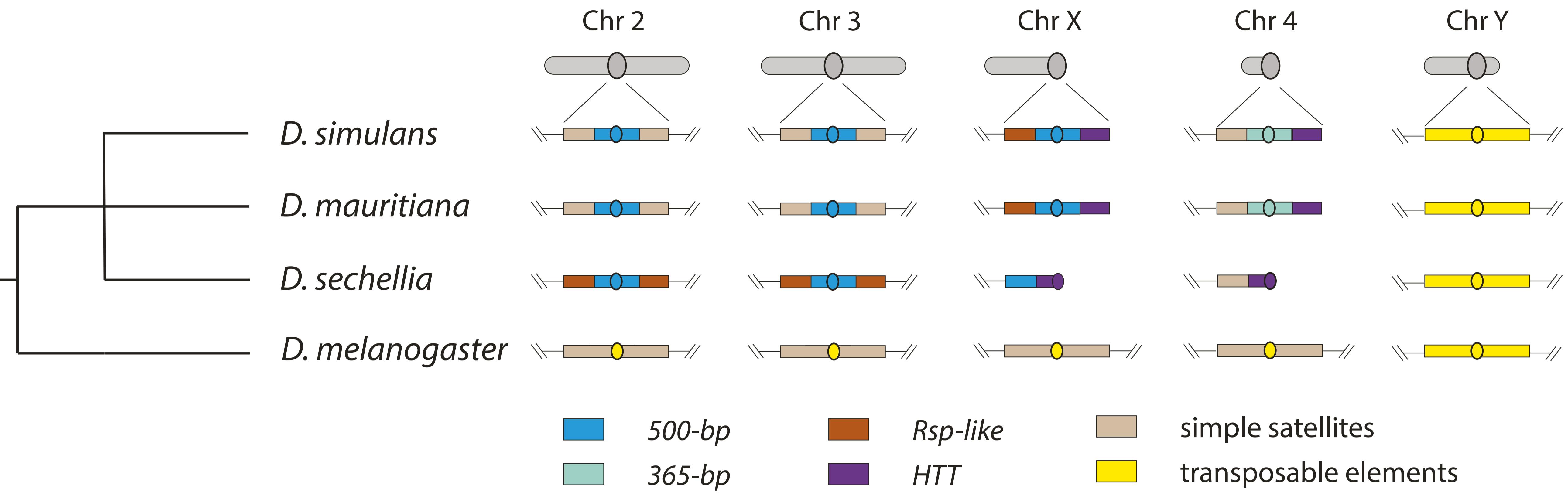
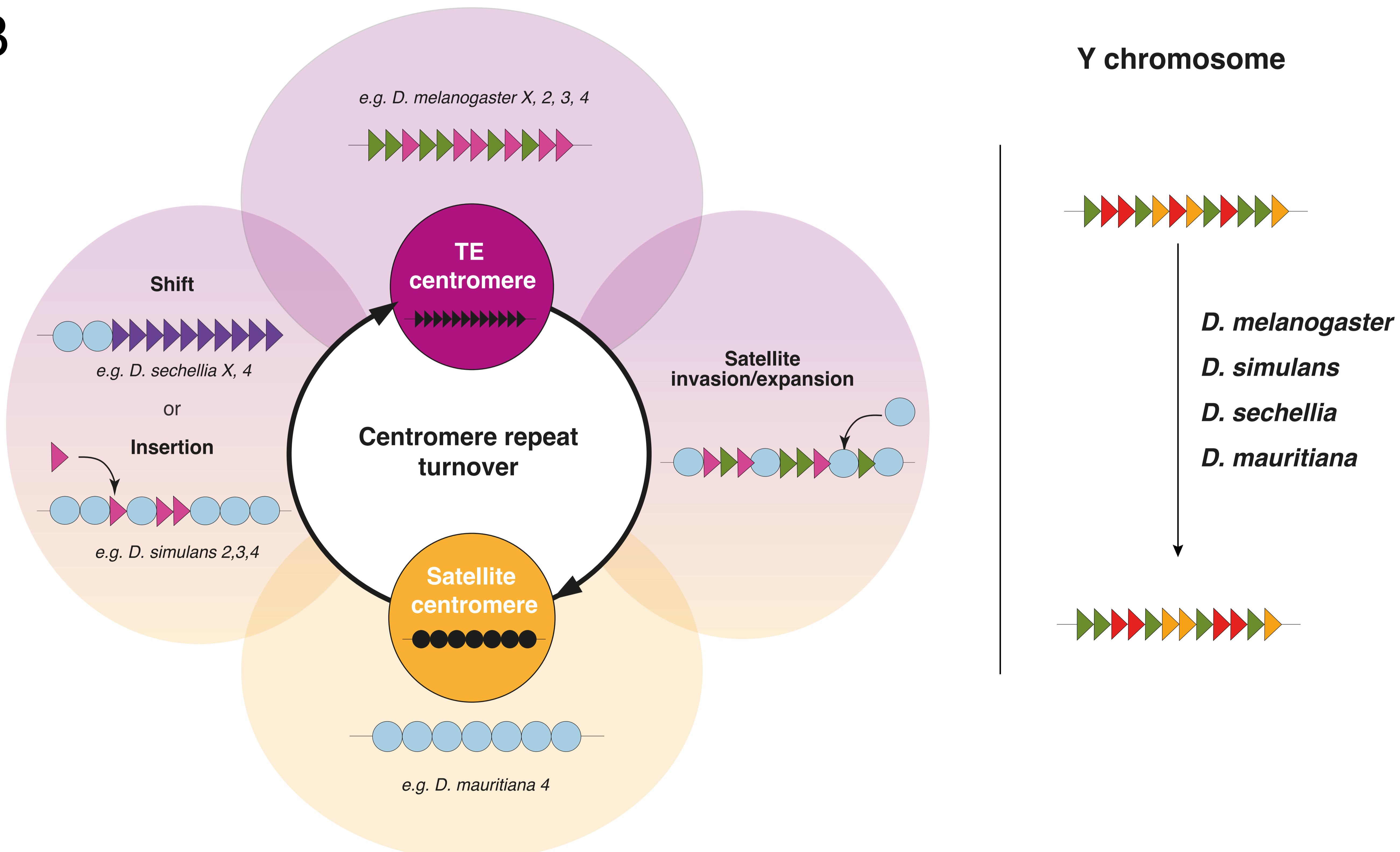

- Non-LTR retrotransposon (orange)
- LTR retrotransposon (green)
- HTT (purple)
- Simple Satellite (brown)
- 500-bp (light blue)
- 136-bp (dark blue)




Legend for genomic element distribution:

- DNA transposon (red)
- LTR retrotransposon (green)
- Non-LTR retrotransposon (orange)
- Simple Satellite (brown)
- Other (pink)
- HTT (purple)


A


B



C



**A****B**

961 **REFERENCES**

1. Barra V, Fachinetti D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. *Nat Commun.* 2018;9: 4340.
2. Karpen GH, Allshire RC. The case for epigenetic effects on centromere identity and function. *Trends Genet.* 1997;13: 489–496.
3. Mendiburo MJ, Padeken J, Fülöp S, Schepers A, Heun P. *Drosophila CENH3* is sufficient for centromere formation. *Science.* 2011;334: 686–690.
4. Mellone BG, Fachinetti D. Diverse mechanisms of centromere specification. *Curr Biol.* 2021;31: R1491–R1504.
5. Kasinathan S, Henikoff S. Non-B-Form DNA Is Enriched at Centromeres. *Mol Biol Evol.* 2018;35: 949–962.
6. Patchigolla VSP, Mellone BG. Enrichment of Non-B-Form DNA at *D. melanogaster* Centromeres. Valverde SF, editor. *Genome Biol Evol.* 2022;14: evac054.
7. Iwata-Otsubo A, Dawicki-McKenna JM, Akera T, Falk SJ, Chmátlá L, Yang K, et al. Expanded Satellite Repeats Amplify a Discrete CENP-A Nucleosome Assembly Site on Chromosomes that Drive in Female Meiosis. *Curr Biol CB.* 2017;27: 2365–2373.e8.
8. Talbert PB, Kasinathan S, Henikoff S. Simple and Complex Centromeric Satellites in *Drosophila* Sibling Species. *Genetics.* 2018;208: 977–990.
9. Black EM, Giunta S. Repetitive Fragile Sites: Centromere Satellite DNA As a Source of Genome Instability in Human Diseases. *Genes.* 2018;9: 615.
10. Saha AK, Mourad M, Kaplan MH, Chefetz I, Malek SN, Buckanovich R, et al. The Genomic Landscape of Centromeres in Cancers. *Sci Rep.* 2019;9: 11259.
11. Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. *Genome Biol.* 2013;14: R10.
12. Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. *Science.* 2001;293: 1098–1102.
13. Haaf T, Willard HF. Chromosome-specific  $\alpha$ -satellite DNA from the centromere of chimpanzee chromosome 4. *Chromosoma.* 1997;106: 226–232.
14. Haaf T, Willard HF. Orangutan  $\alpha$ -satellite monomers are closely related to the human consensus sequence. *Mamm Genome.* 1998;9: 440–447.
15. Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. *Int J Mol Sci.* 2021;22: 4309. doi:10.3390/ijms22094309
16. Malik HS, Henikoff S. Adaptive Evolution of Cid, a Centromere-Specific Histone in *Drosophila*. *Genetics.* 2001;157: 1293–1298.
17. Malik HS, Henikoff S. Major Evolutionary Transitions in Centromere Complexity. *Cell.* 2009;138: 1067–1082.
18. Zwick ME, Salstrom JL, Langley CH. Genetic Variation in Rates of Nondisjunction: Association of Two Naturally Occurring Polymorphisms in the Chromokinesin nod With Increased Rates of Nondisjunction in *Drosophila melanogaster*. *Genetics.* 1999;152: 1605–1614. doi:10.1093/genetics/152.4.1605
19. Novitski E. Genetic measures of centromere activity in *Drosophila melanogaster*. *J Cell Comp Physiol.* 1955;45: 151–169. doi:10.1002/jcp.1030450509
20. Fishman L, Saunders A. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. *Science.* 2008;322: 1559–1562.
21. De Villena FP-M, Sapienza C. Female Meiosis Drives Karyotypic Evolution in

1007 Mammals. Genetics. 2001;159: 1179–1189.

1008 22. Akera T, Chmátl L, Trimm E, Yang K, Aonbangkhen C, Chenoweth DM, et al. Spindle  
1009 asymmetry drives non-Mendelian chromosome segregation. Science. 2017;358: 668–672.

1010 23. Chmátl L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, Searle JB, et al.  
1011 Centromere Strength Provides the Cell Biological Basis for Meiotic Drive and Karyotype  
1012 Evolution in Mice. Curr Biol. 2014;24: 2295–2300.

1013 24. Presting GG. Centromeric retrotransposons and centromere function. Curr Opin Genet  
1014 Dev. 2018;49: 79–84.

1015 25. Hickey DA. Selfish DNA: A sexually-transmitted nuclear parasite. Genetics. 1982;101:  
1016 519–531.

1017 26. Csink AK, Henikoff S. Something from nothing: the evolution and utility of satellite  
1018 repeats. Trends Genet. 1998;14: 200–204.

1019 27. Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity,  
1020 and centromere conflict. Chromosome Res. 2018;26: 5–23.

1021 28. Santinello B, Sun R, Amjad A, Hoyt S, Ouyang L, Courret C, et al. Transcription of a  
1022 centromere-enriched retroelement and local retention of its RNA are significant features of the  
1023 CENP-A chromatin landscape. 2024. doi:10.1101/2024.01.14.574223

1024 29. Chang C-H, Chavan A, Palladino J, Wei X, Martins NMC, Santinello B, et al. Islands of  
1025 retroelements are major components of Drosophila centromeres. Becker PB, editor. PLOS Biol.  
1026 2019;17: e3000241.

1027 30. Lachaise D, Cariou M-L, David JR, Lemeunier F, Tsacas L, Ashburner M. Historical  
1028 Biogeography of the *Drosophila melanogaster* Species Subgroup. In: Hecht MK, Wallace B,  
1029 Prance GT, editors. Evolutionary Biology. Boston, MA: Springer US; 1988. pp. 159–225.  
1030 Available: [http://link.springer.com/10.1007/978-1-4613-0931-4\\_4](http://link.springer.com/10.1007/978-1-4613-0931-4_4)

1031 31. Russo. Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol.  
1032 1995. Available: <https://academic.oup.com/mbe/article/12/3/391/979928/Molecular-phylogeny-and-divergence-times-of>

1033 32. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, et al.  
1034 CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun.  
1035 2019;10: 1930.

1036 33. Chang C-H, Gregory LE, Gordon KE, Meiklejohn CD, Larracuente AM. Unique structure  
1037 and positive selection promote the rapid divergence of Drosophila Y chromosomes. eLife.  
1038 2022;11: e75795. doi:10.7554/eLife.75795

1039 34. Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A, Kaminker JS, et al.  
1040 Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol.  
1041 2002;3: research0085.1.

1042 35. Willard HF. Chromosome-specific organization of human alpha satellite DNA. Am J  
1043 Hum Genet. 1985;37: 524–532.

1044 36. Beliveau BJ, Apostolopoulos N, Wu C. Visualizing Genomes with Oligopaint FISH  
1045 Probes. Curr Protoc Mol Biol. 2014;105. Available:  
1046 <https://onlinelibrary.wiley.com/doi/10.1002/0471142727.mb1423s105>

1047 37. Przewloka MR, Zhang W, Costa P, Archambault V, D'Avino PP, Lilley KS, et al.  
1048 Molecular Analysis of Core Kinetochore Composition and Assembly in Drosophila  
1049 melanogaster. Sullivan B, editor. PLoS ONE. 2007;2: e478. doi:10.1371/journal.pone.0000478

1050 38. Larracuente AM. The organization and evolution of the *Responder* satellite in species of  
1051 the *Drosophila melanogaster* group: dynamic evolution of a target of meiotic drive. BMC Evol  
1052 Biol. 2014;14: 233.

1053

1054 39. Sproul JS, Khost DE, Eickbush DG, Negm S, Wei X, Wong I, et al. Dynamic Evolution  
1055 of Euchromatic Satellites on the X Chromosome in *Drosophila melanogaster* and the simulans  
1056 Clade. Parsch J, editor. *Mol Biol Evol*. 2020;37: 2241–2256.

1057 40. Courret C, Hemmer LW, Wei X, Patel PD, Chabot BJ, Fuda NJ, et al. Turnover of  
1058 retroelements and satellite DNA drives centromere reorganization over short evolutionary  
1059 timescales in *Drosophila*. doi:<https://doi.org/10.5061/dryad.1zcrjdg2g>

1060 41. Pardue ML, Danilevskaya ON, Lowenhaupt K, Slot F, Traverse KL. *Drosophila*  
1061 telomeres: new views on chromosome evolution. *Trends Genet*. 1996;12: 48–52.

1062 42. Jagannathan M, Warsinger-Pepe N, Watase GJ, Yamashita YM. Comparative Analysis of  
1063 Satellite DNA in the *Drosophila melanogaster* Species Complex. *G3 GenesGenomesGenetics*.  
1064 2017;7: 693–704.

1065 43. Kaufman TC. A Short History and Description of *Drosophila melanogaster* Classical  
1066 Genetics: Chromosome Aberrations, Forward Genetic Screens, and the Nature of Mutations.  
1067 *Genetics*. 2017;206: 665–689.

1068 44. Marchetti M, Piacentini L, Berloco MF, Casale AM, Cappucci U, Pimpinelli S, et al.  
1069 Cytological heterogeneity of heterochromatin among 10 sequenced *Drosophila* species. Perrimon  
1070 N, editor. *Genetics*. 2022;222: iyac119.

1071 45. Gambogi CW, Pandey N, Dawicki-McKenna JM, Arora UP, Liskovskykh MA, Ma J, et al.  
1072 Centromere innovations within a mouse species. *Sci Adv*. 2023;9: eadi5764.  
1073 doi:10.1126/sciadv.adi5764

1074 46. Lohe AR, Hilliker AJ, Roberts PA. Mapping simple repeated DNA sequences in  
1075 heterochromatin of *Drosophila melanogaster*. *Genetics*. 1993;134: 1149–1174.

1076 47. Chang C-H, Larracuente AM. Heterochromatin-Enriched Assemblies Reveal the  
1077 Sequence and Organization of the *Drosophila melanogaster* Y Chromosome. *Genetics*.  
1078 2019;211: 333–348.

1079 48. Tambones IL, Haudry A, Simão MC, Carareto CMA. High frequency of horizontal  
1080 transfer in Jockey families (LINE order) of drosophilids. *Mob DNA*. 2019;10: 43.  
1081 doi:10.1186/s13100-019-0184-1

1082 49. Wang N, Liu J, Ricci WA, Gent JI, Dawe RK. Maize centromeric chromatin scales with  
1083 changes in genome size. Britt A, editor. *Genetics*. 2021;217: iyab020.

1084 50. Yang Z, Ge X, Li W, Jin Y, Liu L, Hu W, et al. Cotton D genome assemblies built with  
1085 long-read data unveil mechanisms of centromere evolution and stress tolerance divergence. *BMC  
1086 Biol*. 2021;19: 115. doi:10.1186/s12915-021-01041-0

1087 51. Logsdon GA, Rozanski AN, Ryabov F, Potapova T, Shepelev VA, Mao Y, et al. The  
1088 variation and evolution of complete human centromeres. *Genomics*; 2023 May. Available:  
1089 <http://biorxiv.org/lookup/doi/10.1101/2023.05.30.542849>

1090 52. Logsdon GA, Vollger MR, Hsieh P, Mao Y, Liskovskykh MA, Koren S, et al. The structure,  
1091 function and evolution of a complete human chromosome 8. *Nature*. 2021;593: 101–107.  
1092 doi:10.1038/s41586-021-03420-7

1093 53. Arora UP, Charlebois C, Lawal RA, Dumont BL. Population and subspecies diversity at  
1094 mouse centromere satellites. *BMC Genomics*. 2021;22: 279. doi:10.1186/s12864-021-07591-5

1095 54. Suzuki Y, Myers EW, Morishita S. Rapid and ongoing evolution of repetitive sequence  
1096 structures in human centromeres. *Sci Adv*. 2020;6: eabd9230.

1097 55. Singchat W, Ahmad SF, Jaisamut K, Panthum T, Ariyaphong N, Kraichak E, et al.  
1098 Population Scale Analysis of Centromeric Satellite DNA Reveals Highly Dynamic Evolutionary  
1099 Patterns and Genomic Organization in Long-Tailed and Rhesus Macaques. *Cells*. 2022;11: 1953.  
1100 doi:10.3390/cells11121953

1101 56. Koch MA, Kiefer M. Genome evolution among cruciferous plants: a lecture from the  
1102 comparison of the genetic maps of three diploid species--*Capsella rubella*, *Arabidopsis lyrata*  
1103 subsp. *petraea*, and *A. thaliana*. *Am J Bot.* 2005;92: 761–767.

1104 57. Włodzimierz P, Rabanal FA, Burns R, Naish M, Premetis E, Scott A, et al. Cycles of  
1105 satellite and transposon evolution in *Arabidopsis* centromeres. *Nature.* 2023;618: 557–565.

1106 58. Gebert D, Hay AD, Hoang JP, Gibbon AE, Henderson IR, Teixeira FK. Analysis of 30  
1107 chromosome-level *Drosophila* genome assemblies reveals dynamic evolution of centromeric  
1108 satellite repeats. 2024. doi:10.1101/2024.06.17.599346

1109 59. Nergadze SG, Piras FM, Gamba R, Corbo M, Cerutti F, McCarter JGW, et al. Birth,  
1110 evolution, and transmission of satellite-free mammalian centromeric domains. *Genome Res.*  
1111 2018;28: 789–799. doi:10.1101/gr.231159.117

1112 60. Kipling D, Ackford HE, Taylor BA, Cooke HJ. Mouse minor satellite DNA genetically  
1113 maps to the centromere and is physically linked to the proximal telomere. *Genomics.* 1991;11:  
1114 235–241.

1115 61. Garagna S, Zuccotti M, Capanna E, Redi CA. High-resolution organization of mouse  
1116 telomeric and pericentromeric DNA. *Cytogenet Genome Res.* 2002;96: 125–129.

1117 62. Fennell A, Fernández-Álvarez A, Tomita K, Cooper JP. Telomeres and centromeres have  
1118 interchangeable roles in promoting meiotic spindle formation. *J Cell Biol.* 2015;208: 415–428.

1119 63. Jeon H-J, Oh JS. TRF1 Depletion Reveals Mutual Regulation Between Telomeres,  
1120 Kinetochores, and Inner Centromeres in Mouse Oocytes. *Front Cell Dev Biol.* 2021;9: 749116.

1121 64. Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo D-H, Shi J, et al. Maize  
1122 Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals  
1123 Dynamic Loci Shaped Primarily by Retrotransposons. Malik HS, editor. *PLoS Genet.* 2009;5:  
1124 e1000743.

1125 65. Schneider KL, Xie Z, Wolfgruber TK, Presting GG. Inbreeding drives maize centromere  
1126 evolution. *Proc Natl Acad Sci.* 2016;113. doi:10.1073/pnas.1522008113

1127 66. Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-i T, et al. Centromere-targeted  
1128 de novo integrations of an LTR retrotransposon of *Arabidopsis lyrata*. *Genes Dev.* 2012;26: 705–  
1129 713.

1130 67. Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T. Bursts of  
1131 retrotransposition reproduced in *Arabidopsis*. *Nature.* 2009;461: 423–426.

1132 68. Kawabe A, Nasuda S. Structure and genomic organization of centromeric repeats in  
1133 *Arabidopsis* species. *Mol Genet Genomics.* 2005;272: 593–602.

1134 69. Birchler JA, Presting GG. Retrotransposon insertion targeting: a mechanism for  
1135 homogenization of centromere sequences on nonhomologous chromosomes. *Genes Dev.*  
1136 2012;26: 638–640.

1137 70. Sultana T, Zamborlini A, Cristofari G, Lesage P. Integration site selection by retroviruses  
1138 and transposable elements in eukaryotes. *Nat Rev Genet.* 2017;18: 292–308.

1139 71. Hemmer LW, Negm S, Geng X, Courret C, Navarro-Domínguez B, Speece I, et al.  
1140 Centromere-associated retroelement evolution in *Drosophila melanogaster* reveals an underlying  
1141 conflict. *Genomics;* 2022 Nov. doi:10.1101/2022.11.25.518008

1142 72. Palladino J, Chavan A, Sposato A, Mason TD, Mellone BG. Targeted De Novo  
1143 Centromere Formation in *Drosophila* Reveals Plasticity and Maintenance Potential of CENP-A  
1144 Chromatin. *Dev Cell.* 2020;52: 379-394.e7.

1145 73. Bergmann JH, Rodríguez MG, Martins NMC, Kimura H, Kelly DA, Masumoto H, et al.  
1146 Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly  
1147 on a synthetic human kinetochore: H3K4me2 and kinetochore maintenance. *EMBO J.* 2011;30:

1148 328–340.

1149 74. Carone DM, Zhang C, Hall LE, Obergfell C, Carone BR, O'Neill MJ, et al.

1150 Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A

1151 loading. *Chromosome Res.* 2013;21: 49–62.

1152 75. Chen C-C, Bowers S, Lipinszki Z, Palladino J, Trusiak S, Bettini E, et al. Establishment

1153 of Centromeric Chromatin by the CENP-A Assembly Factor CAL1 Requires FACT-Mediated

1154 Transcription. *Dev Cell.* 2015;34: 73–84. doi:10.1016/j.devcel.2015.05.012

1155 76. Mejía JE, Alazami A, Willmott A, Marschall P, Levy E, Earnshaw WC, et al. Efficiency

1156 of de Novo Centromere Formation in Human Artificial Chromosomes. *Genomics.* 2002;79: 297–

1157 304.

1158 77. Quénét D, Dalal Y. A long non-coding RNA is required for targeting centromeric protein

1159 A to the human centromere. *eLife.* 2014;3: e26016.

1160 78. Bracewell R, Chatla K, Nalley MJ, Bachtrog D. Dynamic turnover of centromeres drives

1161 karyotype evolution in *Drosophila*. *eLife.* 2019;8: e49002.

1162 79. Grenier JK, Arguello JR, Moreira MC, Gottipati S, Mohammed J, Hackett SR, et al.

1163 Global Diversity Lines—A Five-Continent Reference Panel of Sequenced *Drosophila*

1164 *melanogaster* Strains. *G3 GenesGenomesGenetics.* 2015;5: 593–603.

1165 80. Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen GH, Straight AF. Genome-wide

1166 analysis reveals a cell cycle–dependent mechanism controlling centromere propagation. *J Cell*

1167 *Biol.* 2008;183: 805–818.

1168 81. Chen T, Wei X, Courret C, Cui M, Cheng L, Wu J, et al. The nanoCUT&RUN technique

1169 visualizes telomeric chromatin in *Drosophila*. Barbash DA, editor. *PLOS Genet.* 2022;18:

1170 e1010351.

1171 82. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying

1172 Chromatin Accessibility Genome-Wide. *Curr Protoc Mol Biol.* 2015;109. Available:

1173 <https://onlinelibrary.wiley.com/doi/10.1002/0471142727.mb2129s109>

1174 83. Krueger F, James F, Ewels P, Afyounian E, Schuster-Boeckler B.

1175 FelixKrueger/TrimGalore: v0.6.7 - DOI via Zenodo. Zenodo; 2021. Available:

1176 <https://zenodo.org/record/5127899>

1177 84. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence

1178 Alignment/Map format and SAMtools. *Bioinformatics.* 2009;25: 2078–2079.

1179 85. Gaspar JM. Improved peak-calling with MACS2. 2018. doi:10.1101/496521

1180 86. Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2015 2013. Available:

1181 <http://www.repeatmasker.org>

1182 87. Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F. Analysing high-throughput

1183 sequencing data in Python with HTSeq 2.0. Boeva V, editor. *Bioinformatics.* 2022;38: 2943–

1184 2945. doi:10.1093/bioinformatics/btac166

1185 88. Kim BY, Wang JR, Miller DE, Barmina O, Delaney E, Thompson A, et al. Highly

1186 contiguous assemblies of 101 drosophilid genomes. *eLife.* 2021;10: e66405.

1187 89. Chakraborty M, Chang C-H, Khost DE, Vedanayagam J, Adrion JR, Liao Y, et al.

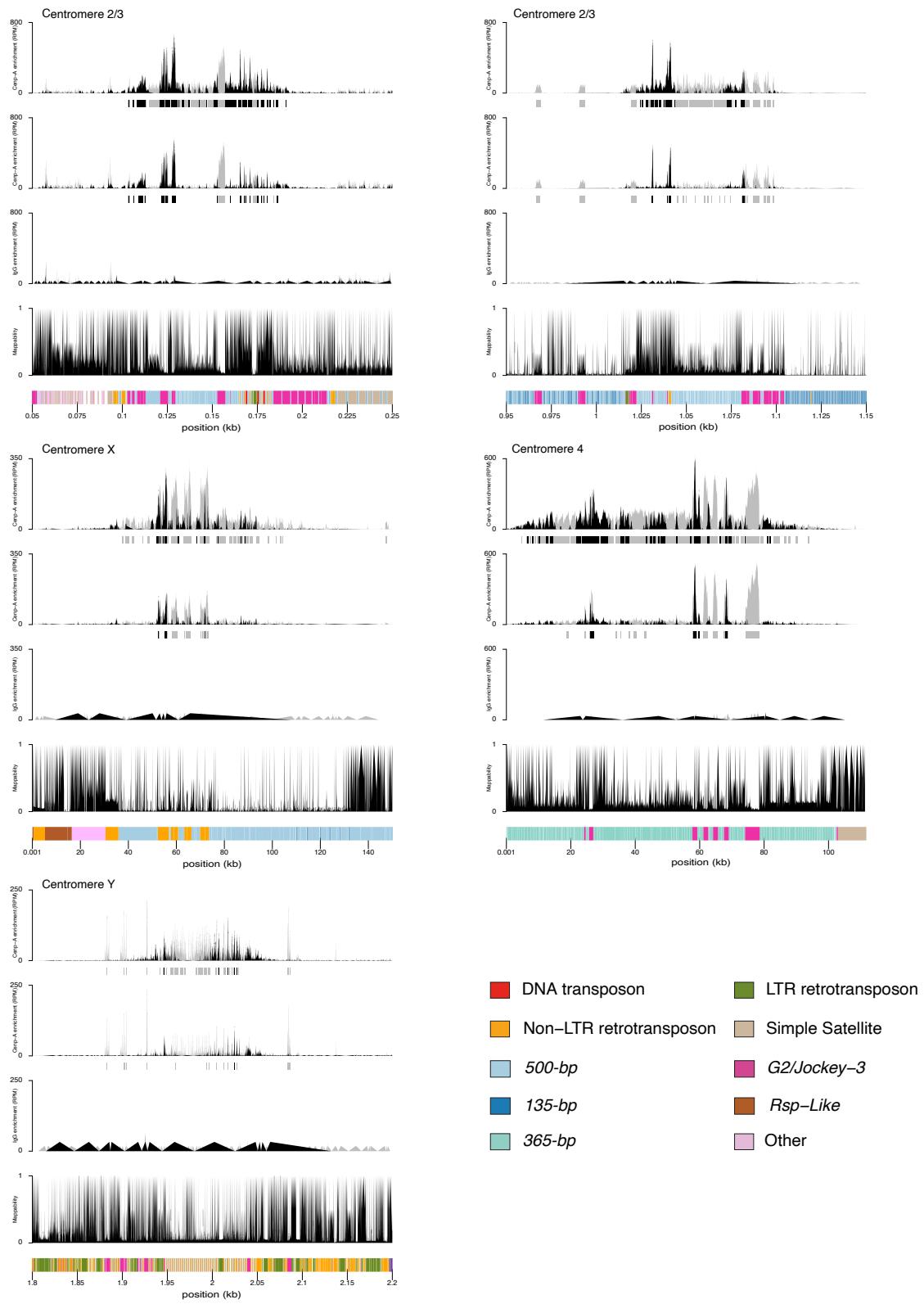
1188 Evolution of genome structure in the *Drosophila simulans* species complex. *Genome Res.*

1189 2021;31: 380–396.

1190 90. Miller DE, Staber C, Zeitlinger J, Hawley RS. Highly Contiguous Genome Assemblies of

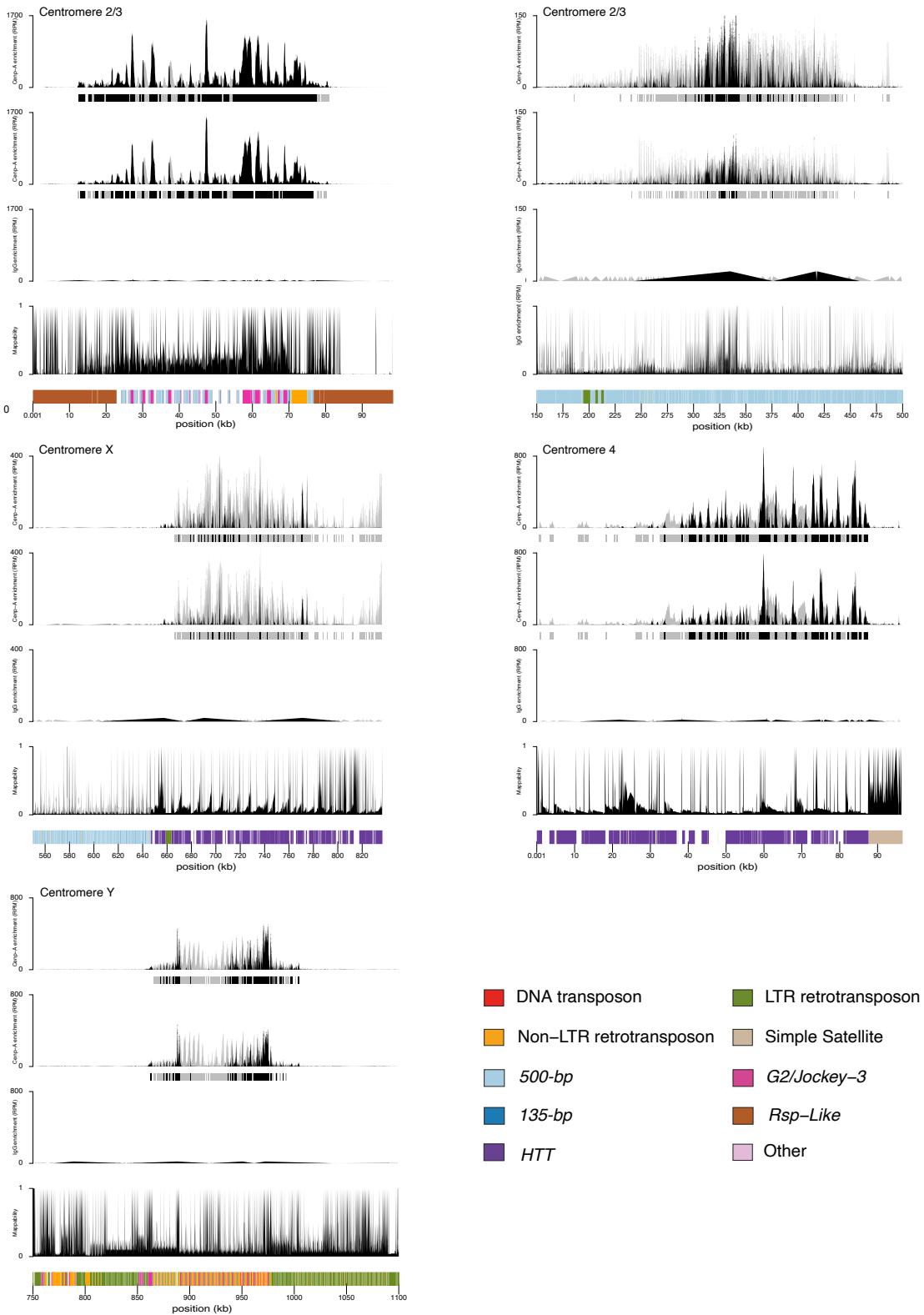
1191 15 *Drosophila* Species Generated Using Nanopore Sequencing. *G3 GenesGenomesGenetics.*

1192 2018;8: 3131–3141.


1193 91. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7:

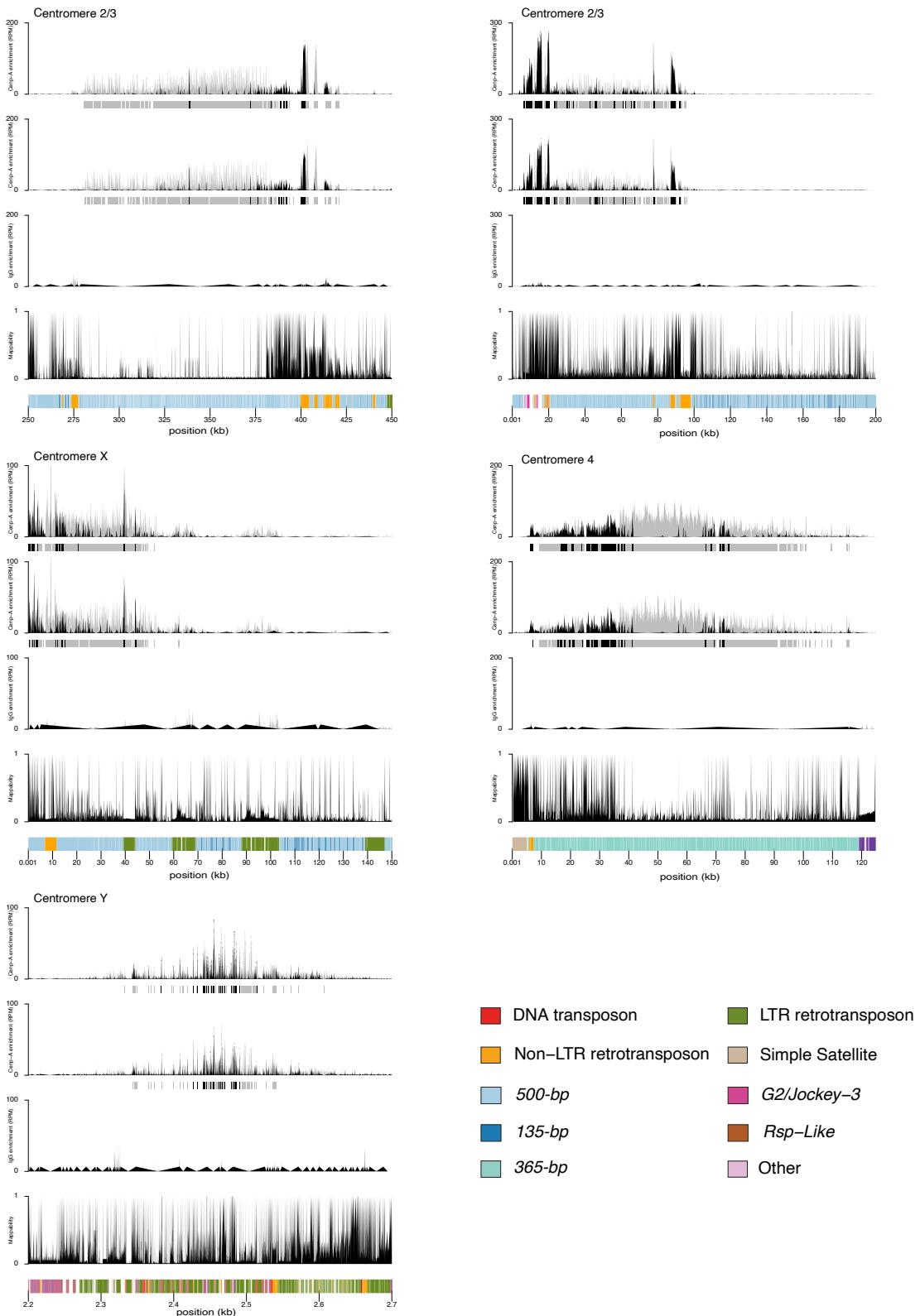
1194 Improvements in Performance and Usability. *Mol Biol Evol.* 2013;30: 772–780.

## Supporting information


### S1 Fig

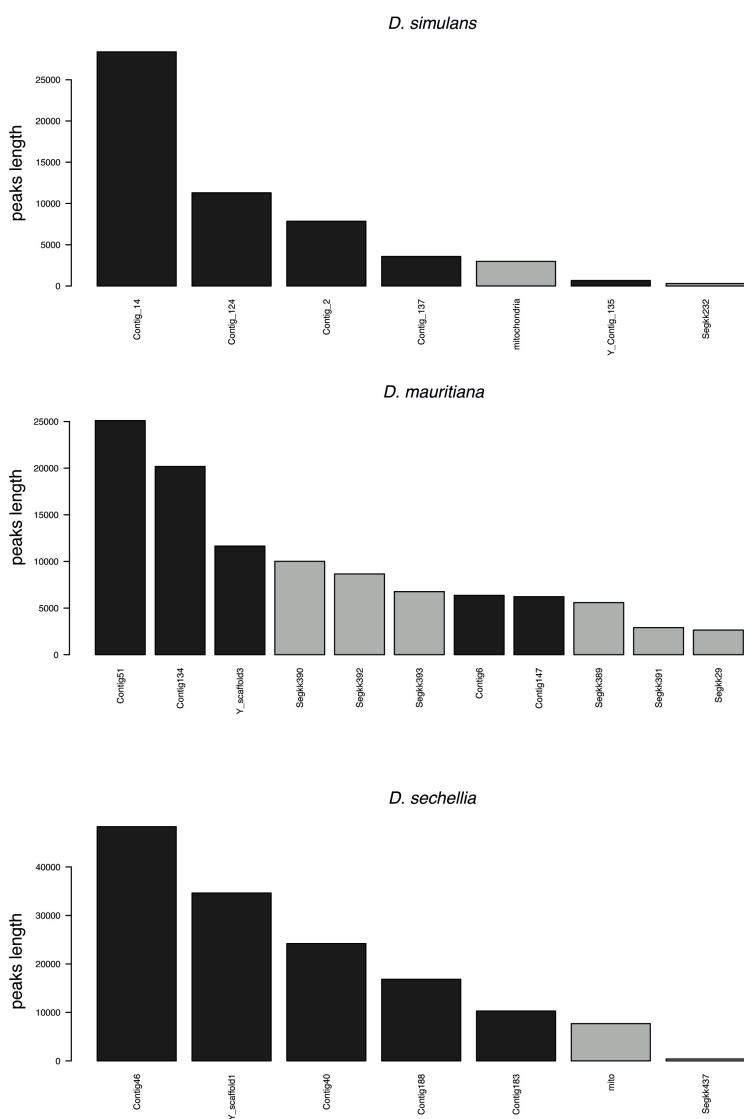
CUT&Tag results from the two additional CENP-A replicates (top two row) and the IgG negative control (third row) and the mappability score (bottom row) for each centromere in *D. simulans*. The y-axis represents the normalized CENP-A or IgG enrichment in RPM. Black and gray plotted lines represent the enrichment based on uniquely mapping and all reads (including multi-mappers), respectively. The black and gray tracks below each plot correspond to MACS2 peaks showing significantly enriched regions based on the uniquely mapping and all reads (including multi-mappers), respectively. The precise locations of all peaks are listed in Table S1. The colored cytoband at the bottom of the plot shows the repeat organization. The color code is shown in the legend at the bottom of the Figure. The data underlying this Figure can be found at <https://doi.org/10.5061/dryad.1zcrjdg2g> [40]




**S2 Fig**

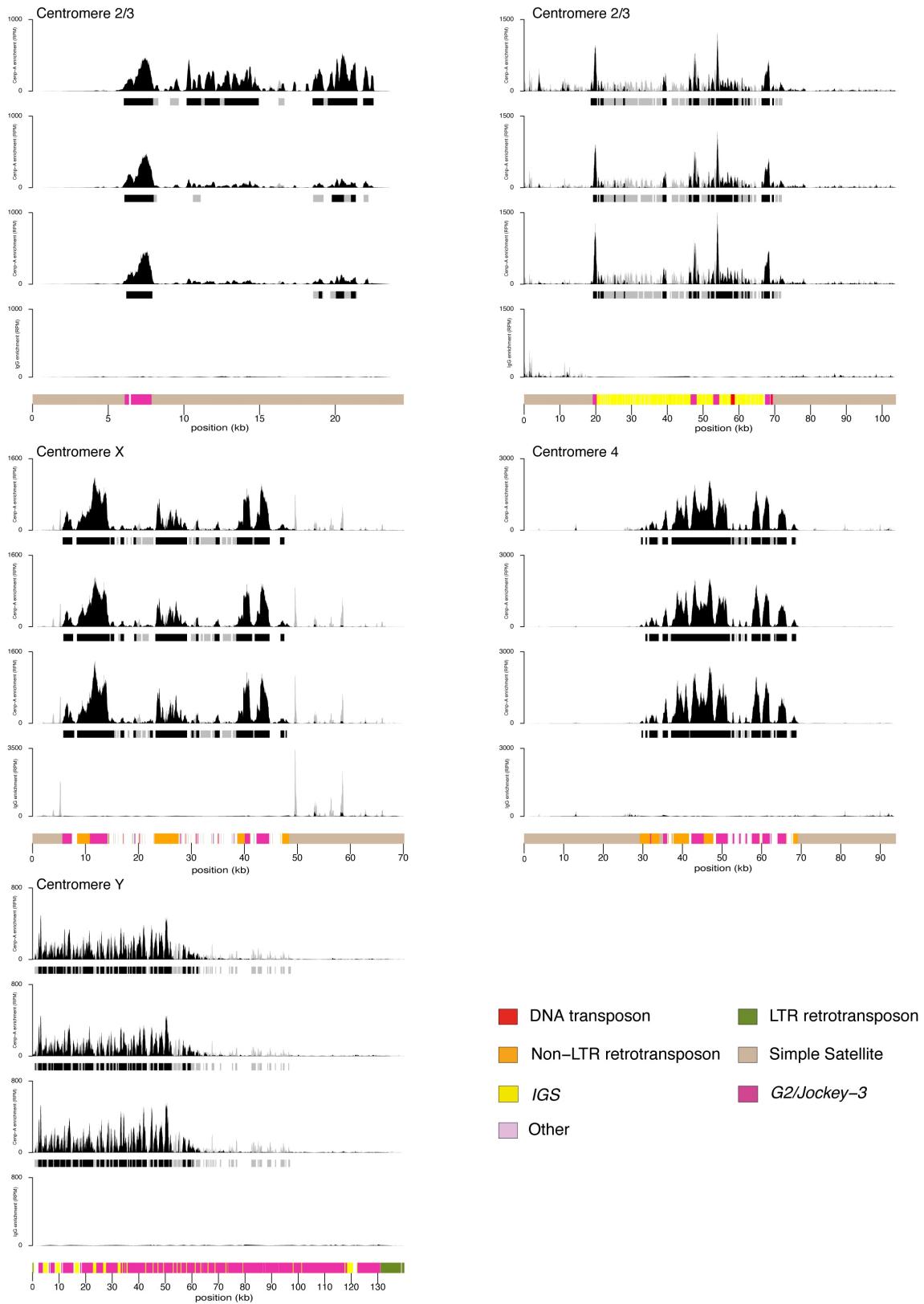
CUT&Tag results from the two additional CENP-A replicates (top two row) and the IgG negative control (third row) and the mappability score (bottom row) for each centromere in *D. sechellia*. The y-axis represents the normalized CENP-A or IgG enrichment in RPM. Black and gray plotted lines represent the enrichment based on uniquely mapping and all reads (including multi-mappers), respectively. The black and gray tracks below each plot correspond to MACS2 peaks showing significantly enriched regions based on the uniquely mapping and all reads (including multi-mappers), respectively. The precise locations of all peaks are listed in Table S1. The colored cytoband at the bottom of the plot shows the repeat organization. color code is shown in the legend at the bottom of the Figure. The data underlying this Figure can be found at <https://doi.org/10.5061/dryad.1zcrjdg2g> [40].




**S3 Fig**

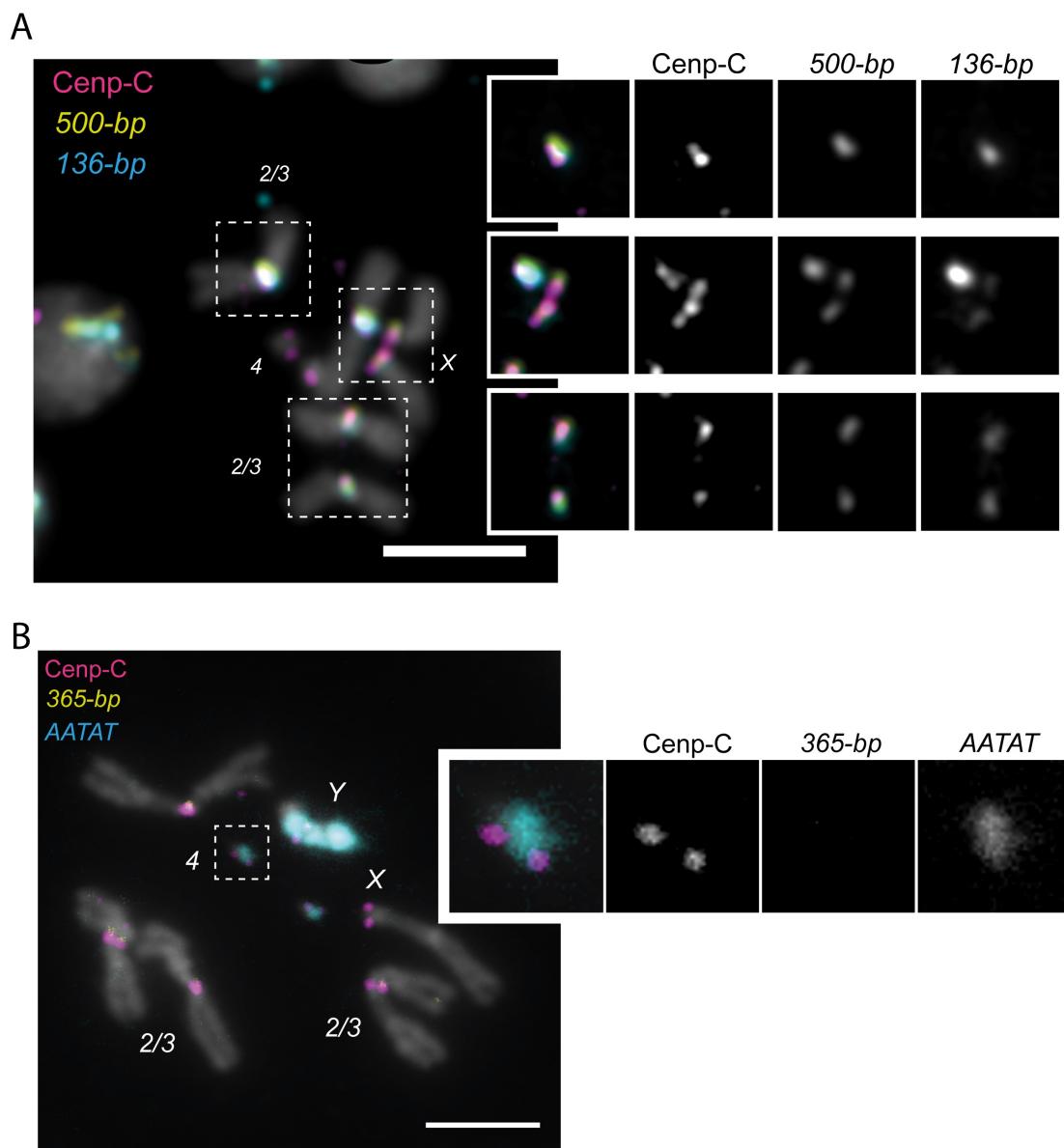
CUT&Tag results from the two additional CENP-A replicates (top two row) and the IgG negative control (third row) and the mappability score (bottom row) for each centromere in *D. mauritiana*. The y-axis represents the normalized CENP-A or IgG enrichment in RPM. Black and gray plotted lines represent the enrichment based on uniquely mapping and all reads (including multi-mappers), respectively. The black and gray tracks below each plot correspond to MACS2 peaks showing significantly enriched regions based on the uniquely mapping and all reads (including multi-mappers), respectively. The precise locations of all peaks are listed in Table S1. The colored cytoband at the bottom of the plot shows the repeat organization. The color code is shown in the legend at the bottom of the Figure. The data underlying this Figure can be found at <https://doi.org/10.5061/dryad.1zcrjdg2g> [40].




#### S4 Fig

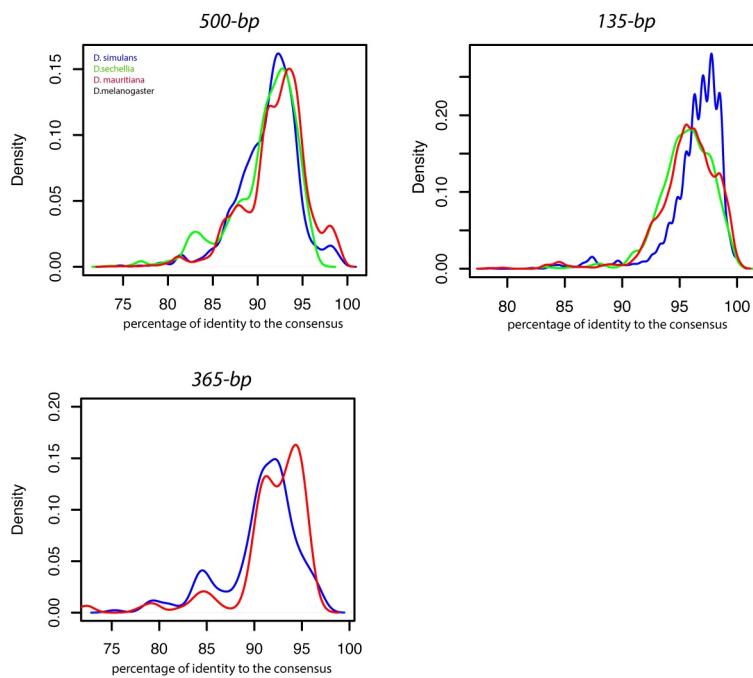
Location of the peaks resulting from the IDR analysis - significantly enriched region conserved between the three replicates. The y axis represents the sum of the peaks length for each contig. The contig corresponding to the centromere are colored in black. The data underlying this Figure can be found in S1 Table.




## S5 Fig

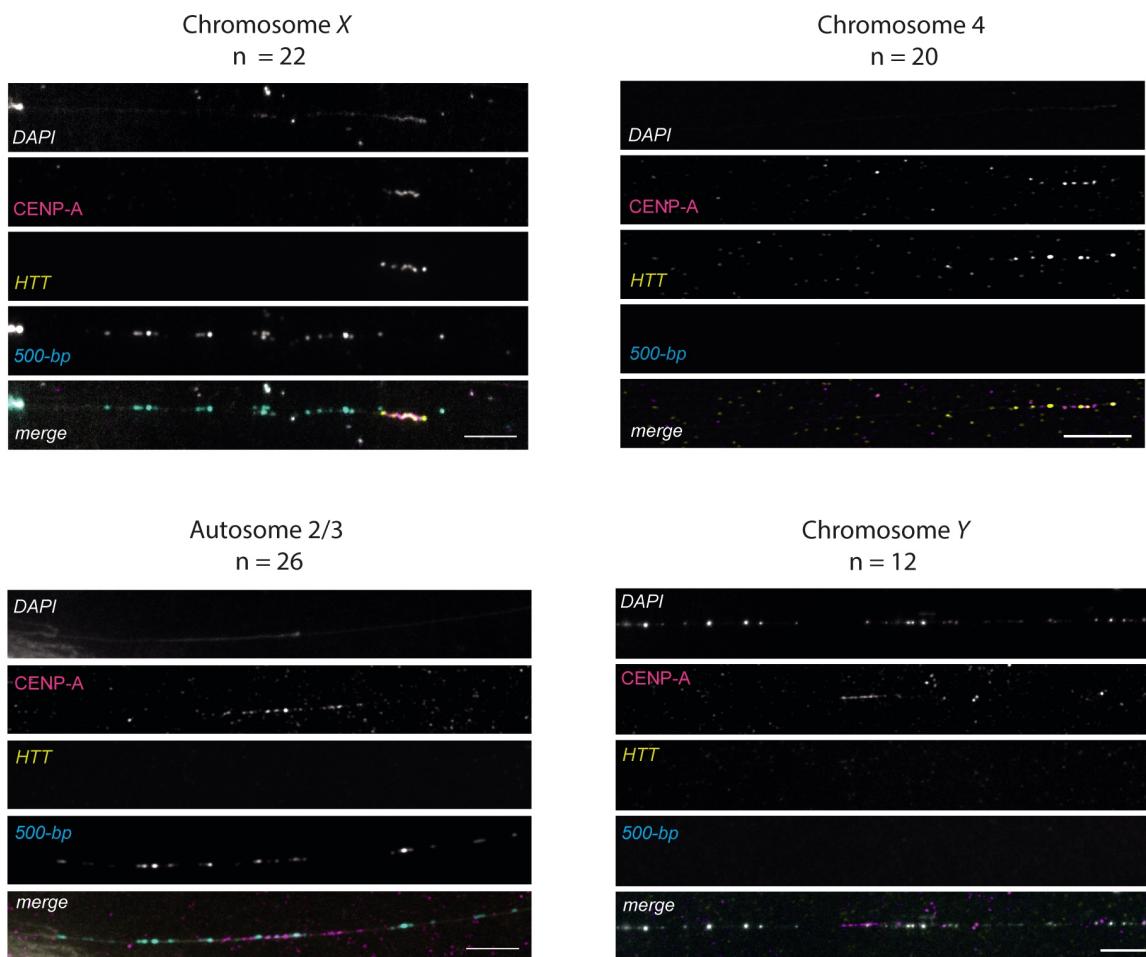
CUT&Tag results from the three CENP-A replicates (top two row) and the IgG negative control (bottom row) for each centromere in *D. melanogaster*. The y-axis represents the normalized CENP-A or IgG enrichment in RPM. Black and gray plotted lines represent the enrichment based on uniquely mapping and all reads (including multi-mappers), respectively. The black and gray tracks below each plot correspond to MACS2 peaks showing significantly enriched regions based on the uniquely mapping and all reads (including multi-mappers), respectively. The precise locations of all peaks are listed in Table S1. The colored cytoband at the bottom of the plot shows the repeat organization. The color code is shown in the legend at the bottom of the Figure. The data underlying this Figure can be found at <https://doi.org/10.5061/dryad.1zcrjdg2g> [40].




## S6 Fig

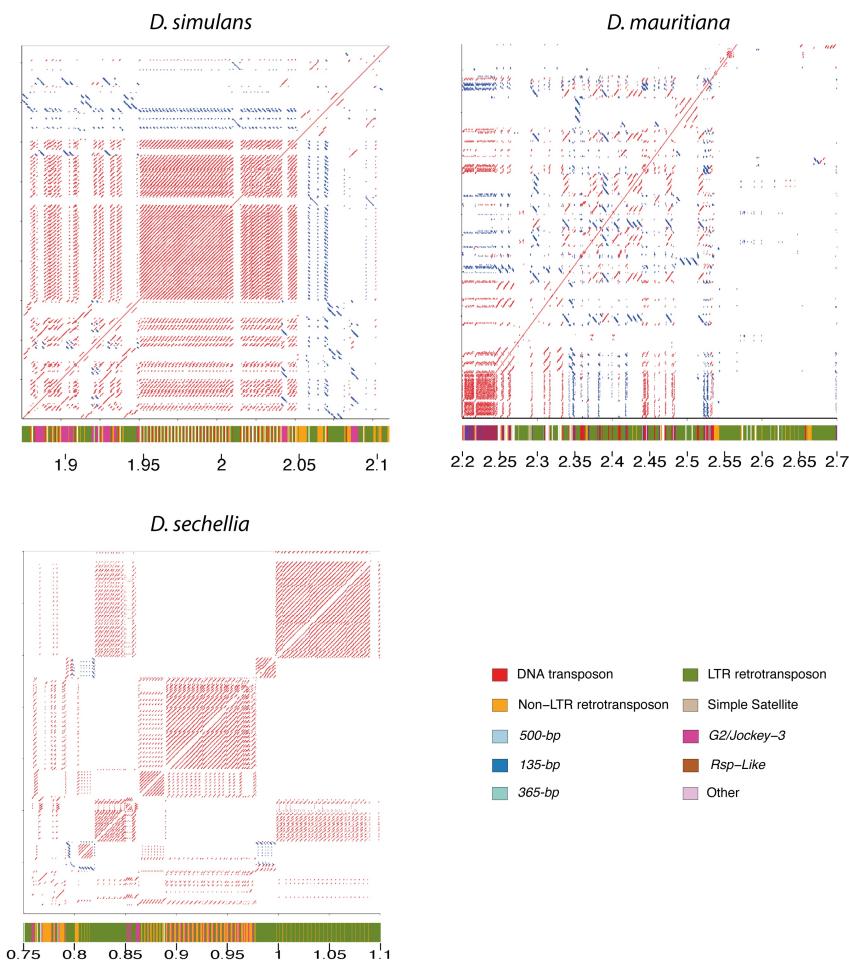
A. IF-FISH on mitotic chromosomes from the larval brain with CENP-C antibody and 500-bp and 136-bp probes. The inset represents a zoom on each centromere. B. IF-FISH on mitotic chromosomes from the larval brain from *D. sechellia* with CENP-C antibody and 365-bp and AATAT probes. The inset represents a zoom on the dot chromosome centromere.




## S7 Fig

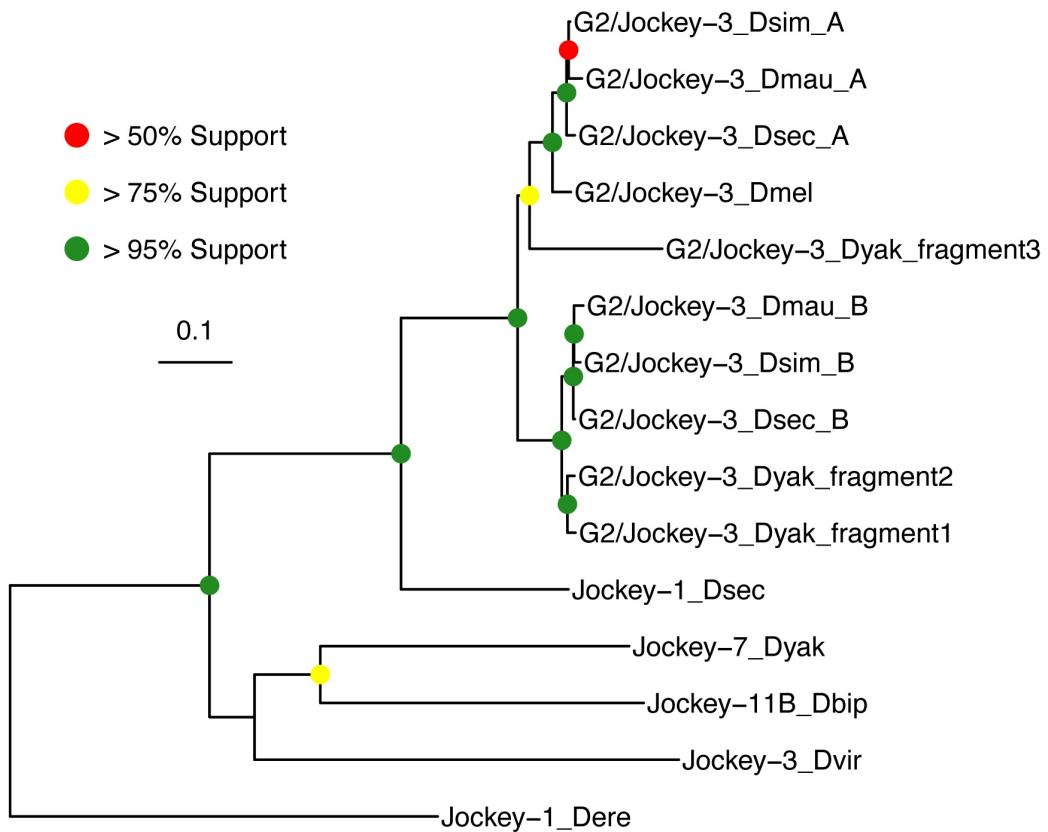
Distribution of the percentage of divergence of individual insertion from the consensus sequence for each centromeric satellite. Only insertions with a length  $> 80\%$  of consensus length were kept. The percentage of divergence was extracted from the Blast output. The data underlying this Figure can be found in S3-5 Table.




## S8 Fig

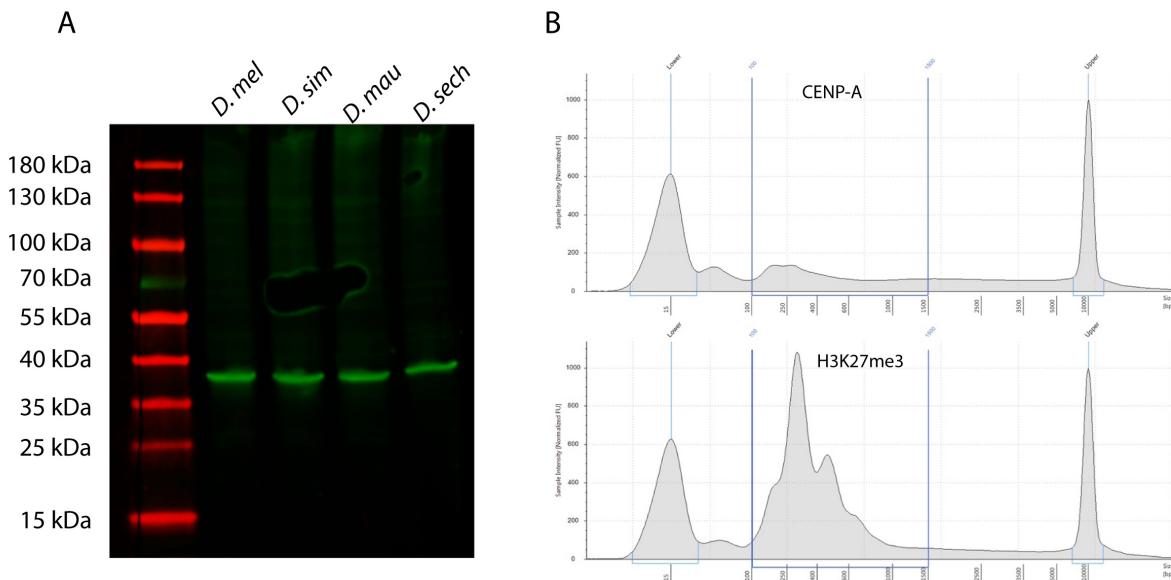
IF-FISH on chromatin fibers from the *D. sechellia* larval brains with CENP-A antibody and 500bp and HTT probes. A representative image of each centromere pattern is presented along with the total number of images collected for each pattern. CENP-A is present on the HTT region with or without 500-bp flanking, corresponding to the X and dot chromosome, respectively. CENP-A is also present on a 500bp region, corresponding to the autosomal centromeres and without 500-bp nearby, consistent with the Y chromosome.




### S9 Fig

Dotplot from the alignment on the Y chromosome centromere against itself to highlight higher order repeat. The Dotplot was produced using re-DOT-able with a sliding window of 100bp. the cytoband below each dotplot represent the repeat composition of the region. The color code is indicated in the legend.




## S10 Fig

Phylogenetic tree with node support of consensus G2/Jockey-3 ORF sequences in relation to closely-related Jockey elements. Closely-related Jockey elements were identified from [48]. Three *D. yakuba* fragments which span the >50% of the ORF are also included. The data underlying this Figure can be found at <https://doi.org/10.5061/dryad.1zcrjdg2g> [40].



## S11 Fig

CENP-A antibody validation. A. Western blots using our custom-generated CENP-A antibody on samples from all 4 species *D. melanogaster* clade species. B. Bioanalyzer profile of the CUT&Tag libraries obtained for our custom-generated CENP-A and H2K27me3 antibodies.

