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Abstract—We consider the problem of controlling the fre-
quency response of weakly-coupled multi-machine multi-inverter
low-inertia power systems via grid-forming inverter-based re-
sources (IBRs). In contrast to existing methods, our approach
relies on dividing the larger system into multiple strongly-coupled
subsystems, without ignoring either the underlying network or
approximating the subsystem response as an aggregate harmonic
mean model. Rather, through a structured clustering and recur-
sive dynamic shaping approach, the frequency response of the
overall system to load perturbations is shaped appropriately. We
demonstrate the proposed approach for a three-node triangular
configuration and a small-scale radial network. Furthermore,
previous synchronization analysis for heterogeneous systems
requires the machines to satisfy certain proportionality property.
In our approach, the effective transfer functions for each cluster
can be tuned by the IBRs to satisfy such property, enabling us
to apply the shaping control to systems with a wider range of
heterogeneous machines.

Index Terms—inverter-based resources, grid-forming devices,
frequency-shaping control, weakly-coupled networks

I. INTRODUCTION

The increasing shift towards decarbonizing the existing grid
architecture by integrating renewable energy resources has
gathered momentum over the past decade. A large portion of
these zero-carbon sources are interfaced to the grid through
power electronic devices, commonly known as inverter-based
resources (IBRs). These IBRs have very different character-
istics from the conventional generators, which could lead to
poor system response and even compromise grid stability and
resilience in the event of disturbances, as witnessed through
several incidents across the globe in recent times [1], [2]. Thus,
designing proper control for IBRs is important for maintaining
reliable and efficient operation of IBR-integrated grids [3].

The common control strategies include grid-following con-
trol, droop-control, and virtual synchronous machines [4].
These strategies usually aim to make the IBRs mimic the
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response of synchronous generators, due to the extensive un-
derstanding of their operation and control schemes. However,
such strategies do not fully exploit the inherent advantages
that IBRs have to offer. One alternative is the so-called grid-
shaping control, which aims to shape the frequency response
of the system to load changes by leveraging the flexible power
output of the IBRs [5], [6], [7]. However, these existing shap-
ing controls have limitations: in [5], the approach is designed
for grid-following inverters; in [6], the design requires the
IBRs to be coherent with the synchronous generator bus,
which limits it to systems with strong connectivity. In [7],
the grid-shaping control is extended to overcome the strong
connectivity assumption.

In this paper, we extend the grid-shaping control in [7] to
multi-unit scenarios. In [7], only a single IBR connected to a
single machine representing an equivalent grid was considered.
In contrast, here, the contribution is the clustering method that
allows us to apply the methods from [7] to multi-IBR/multi-
machine systems in a systematic way, i.e., dividing the system
into smaller subsystems and applying the grid-shaping control
design from [7] sequentially. Moreover, in contrast to [6],
this work considers network impedances and is not limited to
strongly coupled systems. This multi-unit grid-shaping control
also relaxes the homogeneity assumptions for turbine time
constants in [8], and widens the scope of synchronization
results developed therein. We then demonstrate the proposed
approach in two use cases. First, for a three-node triangular
configuration, the desired target response of the overall system
to load perturbations is achieved via a three-step approach
involving IBR controller design and kron-reduction. Second,
we demonstrate how the grid-shaping approach can be applied
to radial small-scale microgrids, through clustering.

II. SYSTEM MODELING

In this work, we investigate shaping the dynamic response
of the frequency of a low-inertia power system through grid-
forming IBRs. We motivate this by considering a two-node
system (see Fig. 1) containing a synchronous machine (SM)
that models the aggregate frequency dynamics of a conven-



tional multi-machine power system [8] and a grid-forming
voltage source inverter (VSI).

The aggregate response of the SM frequency deviation
wsm to the deviation of the power py, € R injected by the
SM, is modeled by swing dynamics Ggy(s) with a first-order
turbine/governor model G(s), where
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where a, € Ry denotes the aggregate speed governor gain
(i.e., inverse frequency droop constant), ay € R denotes the
aggregate frequency sensitivity of load, and 7 € Ry is the
aggregate turbine time constant.
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Fig. 1: Interconnection of a synchronous machine and grid-forming VSI.
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Fig. 2: The synchronous machine-IBR viewed as a feedback system.

Next, consider a VSI coupled to the aggregate frequency
dynamics (1) through a lossless transmission line with sus-
ceptance b € R+ as depicted in Fig. 1. We will refer to the
grid as weakly-coupled if b is small (e.g., for grids with low
short-circuit ratio) and strongly-coupled if b is large. Notably,
this relaxes the assumption in [6] that b — oo. Next, let
Oysi(s) = %wvsi(s) and Oy, (s) = %wsm(s) denote the voltage
phase angles at the IBR and SM bus. Then, using the DC
power flow approximation at 1 p.u. voltage magnitude and
zero angle difference [8], the IBR power injection pyg(s) is
equal to the power flowing across the line, i.e.,

pvsi(s) =b (gvsi(s) - gsm(s)) = %b (wvsi(s) - wsm(s))' (2)

The combination of the synchronous machine and the IBR
can be interpreted as the VSI in feedback with the synchronous
machine as shown in Fig. 2. To this end, let

o"Y\’Si(s) = _Gwvmpm(s) pvsi(s)ﬂ 3)

represent the dynamics of the grid-forming VSI. Combing (2)
and (3), the relation between the generator frequency wsy, and
the inverter power pysi(s) is

1
vsi = - —————————— Wsm($)- 4
P <S) %S+Gwv<i7pv<i(s) “ (S) ( )
= Gpmiqwsm(s)

Using the load perturbation pg, psm = P¢ — Pusi, and (4) to
close the loop between (3) and (1), results in the closed-loop
transfer function
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from the load perturbation p, to the aggregate frequency wgp.

In [7], we illustrated that shaping the system response to be
second-order target transfer functions GS*  (s) improves the
peak power injections from the VSI relative to the approach in
[6]. To this end, consider the standalone synchronous machine
transfer function G, p..(s) defined in (1). Let

U::{pER‘O§p<T} (6)

define the set of effective turbine time constants. Next, con-
sider a candidate transfer function in the form of (1) with an
effective turbine time constant p € U, i.e.,
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We wish to design the control transfer function G, p. ()
in order to realize the target function Gﬁf:‘m p, (8) for the overall
system. Thus, the design problem for the grid-forming VSI

transfer function is such that
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We note that the right hand side terms of (8) can be
realized through a Proportional-Integral-Derivative (PID) type
controller Gy, p (5), 1.€.,

k;
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with the PID control gains
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where b is an exact estimate for b.



III. MULTI-IBR THREE-NODE TRIANGULAR SYSTEMS

In the previous section, we considered systems with one
VSI. When appropriately chosen, the controller gains result
in an overall second-order, closed-loop response while also
minimizing peak power injections. The understanding devel-
oped for the two-node scenario enables us to design controller
gains in systems with more than one VSI, by sequentially
applying the approach. To illustrate this we start with a three-
node triangular configuration with two VSIs.

Consider a three-node system comprising one aggregate
machine model and two IBRs connected in a triangular config-
uration, through lossless transmission lines with susceptances
b12, b1s, bas € Rsq as depicted in Fig. 3. Let the Laplacian
matrix of this network be L. Consider a load perturbation py(s)
at the machine bus. Let pysi 1(S), Dysi,2(s), and pgn(s) be the
resulting power injections from the VSIs and the machine;
p12(8), p1s(s), and pos(s) be the power flows on the lines;
Oysi,1(8), Oysia(s), and Oyy(s) denote the voltage angles at
the buses. Then, under DC power flow approximations at
1p.u. voltage magnitude and zero angle difference, we have
p12(5) = b12(0vsi1(5) — Ousi2(8)), P1s(s) = brs(Ovsii(s) —
Osm(s)), and pas(s) = bas(Ovsi2(s) — Osm(s)). Finally, let the
dynamics of the VSIs and the aggregate generator be captured
through the transfer functions Gy 1(s), Gysi2(s), and Gsm(s)
respectively. The relationships between the power injections
and the frequency excursions at the buses are

wi(s) = —Gysi,1(8) Dusi,1 (8), wa(s) = —Glsi2(8) Pysis2(s)

wsm(s) =

Gsm(8) Psm(8). (11

Fig. 3: Three-node triangular configuration with two IBRs.

Designing the transfer functions Giysi1(s), Gysiz(s) for
the VSIs, such that the resulting frequency dynamics depict
certain characteristic behaviors is complex. Previous solutions
assume strong coupling and approximate the overall response
as a harmonic mean of the individual transfer functions [9].
An alternative approach, without these assumptions, is the
sequential application of the shaping algorithm, in which the
gains are functions of the network coupling. To this end, we
propose a three-step approach as illustrated in Fig. 4.

(i) In the first step, we choose one VSI device (Gysi 1(s)),
and the synchronous machine Ggy(s) (with an original
turbine time constant 7) as a two-node subsystem, without
considering their connection with the other node.

(i) Next, we (a) shape the frequency response of this two-
node subsystem, i.e., determine the control gains for the
VSI device in step 1 (Gysi1(s)), such that closed-loop (with
the VSI) transfer function from the load perturbation to the
frequency of the machine is equivalent to the dynamics of a
machine with a time constant p (c.f. Section II); (b) compute
the kron-reduced admittance between (SG+VSI;) and VSI,
after eliminating the node with VSI;. This gives us a new
equivalent two-node system, as shown in Fig. 4.

(iii) Finally, we determine the gains of the other VSI device
(Gysi2(s)), such that the closed-loop transfer function (from
load perturbation to machine frequency) represents the dy-
namics of a machine with a time constant ¢ and other
parameters equal to ones in Gypy.
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Fig. 4: Three-step approach for three-node triangular networks.
Mathematically, as the structure of the problem still remains

as in the previous section, we can realize the VSI transfer
functions through PID type controllers, i.e.,
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where by, 1S the susceptance for the kron-reduced network
(removing node 1). While we assume complete knowledge of
the network, the gains may also be computed using parameter
estimates as in [7]. However, due to space constraints, a
stability and robustness analysis when using estimates is
deferred to future work.

Next, we present some simulation results for a three-node
triangular system with gains determined from the three-step
approach discussed above. To this end, consider a network
as in Fig. 3, with synchronous machine parameters from [7].
Let b1 = 100 p.u., b1s = 200 p.u., and bys = 150 p.u.
Let the desired target response from the overall system be a
second-order response with an effective time-constant of 0.8s.
To this end, we first design the gains of VSIj, such that its
combination with the synchronous machine has an effective
time constant of p = 0.9s, with other parameters unchanged.
Next, the gains of VSI; are computed such that the overall
system is an equivalent synchronous machine with second-
order dynamics and a time constant ( = 0.8s. Note that, the
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Fig. 6: The IBR power injections for the two VSIs for a 1 p.u. load step.

grid-shaping approach inherently ensures that the peak IBR
power injections are minimized.

In Fig. 5, we illustrate the frequency response of the system
to a 1 p.u. load step. The observed response corresponds to
computing the frequency dynamics for the three-node triangu-
lar network, after substituting the resulting transfer functions
for the two VSIs and the synchronous machine. Note that this
is almost identical to the desired response, i.e., a synchronous
machine with a time constant of ( = 0.8s. Furthermore,
we note the improvement in frequency nadir compared to
the original system with 7 = 1s. The corresponding power
injections from the VSIs are presented in Fig. 6.

IV. SMALL-SCALE RADIAL MICROGRIDS

In this section, we investigate controller design for isolated
small-scale radial networks with multiple VSIs and SMs. To
this end, we review two concepts: clustering in power grids
[10], and proportionally heterogeneous machines [8]. These
two ideas along with the sequential application of dynamic
frequency shaping become the basis for our design.

A. Background

The motivation for clustering in power systems is to dy-
namically identify sets of nodes/buses (chosen from the entire
network) that are strongly coupled. We recall that for any given
network with a laplacian L, the eigenvector v5(L) correspond-
ing to the second smallest eigenvalue \y(L) (also referred to
as the algebraic connectivity) is known as the Fiedler vector.
The elements of this vector provide a natural network partition
into two components, based on their sign, i.e., v2(L); < 0 or
vo(L); > 0. Specifically, the Fiedler vector-based clustering

is applied recursively, respecting the following assumptions,
until no further clusters can be obtained:

(i) The resulting clusters at each step should only consist
of connected components (i.e., partitioning based on the
obtained clusters, does not result in disconnected nodes).

(i) The final set of clusters should each have only one
aggregate synchronous generator. (Note that the aggregate
synchronous machine is an equivalent representation of
strongly-coupled multiple machines.)

These assumptions though appearing somewhat restrictive, can
still be applied to a wide range of networks.

Next, we revisit aggregate modeling of proportionally het-
erogeneous machines. Most of the control-theoretic analysis
in power systems has traditionally relied on the assumption
of homogeneity of machines. In order to cover more generic
scenarios, the authors in [8] proposed a theory for parameters
satisfying a certain proportionality. Specifically, for a represen-
tative machine transfer function go(s) and a rating parameter
fi» the transfer function for a generator at bus ¢ is

1(5) = Fa0ls)
3
While such a proportionality assumption f; can be tied to the
rating of the machines and is intuitive for transfer functions of
the form Gy (s), it is only justified for second-order transfer
functions (1), provided H; = f; Ho, oy, = fiaug, o =
fi apo, and 7; = 7. The turbine time constant is assumed to
be homogeneous for all generators regardless of their ratings.
In contrast, with the frequency shaping approach from grid-
forming IBRs, this assumption is no longer necessary, as the
turbine time constants can be made equal for all generators
in a network, extending the applicability of synchronization

results in [8] to real-world systems.

B. Modified IEEE-13 network case-study

Consider a modified IEEE-13 network as depicted in
Fig. 7(a), with one synchronous machine each at nodes 9
and 5. Further, the network comprises two grid-forming IBRs
at nodes 11 and 12. Finally, let node 9 be perturbed by a
disturbance py(s).

° 1 ° 1 1
3 3 3
® 2 I—:' 2 T 2
I—o—o 4 ——o 4 —®—=o 4
11 9 11 9 11 9
r« 10 rﬂ 10 rﬂ 10
Ple 5 Ple 5 Pre 5
12 12 12
——o —o —9 —o—0 (
7 13 7 13 7 l 13
8 8 8
(a) (b) (o)

Fig. 7: Grid-shaping approach for radial microgrids.

A classic approach to designing IBR controllers in such a
scenario involves matching the harmonic mean of the overall



system to a desired transfer function. This approach is rea-
sonable when the network is strongly coupled. However, ne-
glecting the underlying network topology and admittance can
be fraught with risks when designing the controls in weakly-
coupled grids, and more so in the absence of proper grid
parameters [7]. Furthermore, the ability of grid-shaping IBRs
to tune the turbine time constants of the coupled synchronous
machines makes grid-shaping a more attractive alternative.

To design the IBR controls, we follow the following ap-
proach. First, we determine the partitions/clusters using the
network Laplacian’s Fiedler vector v5(L). For the IEEE-
13 network under consideration, this results in two clusters
as indicated in Fig. 7(b). Next, in each cluster, we apply
Kron reduction techniques [11] removing all nodes without
an IBR, a machine, or load perturbation; and then computing
the effective susceptance between the IBRs and machines.
The IBR controller gains are then selected using the grid-
shaping approach! such that the turbine time constants of
all synchronous machines become identical. This reduces the
original network to Fig. 7(c), where nodes 9 and 5 represent
the aggregate machine and IBR dynamics. For larger radial
networks, this process is continued recursively, until we can
have no more partitions.

To validate the approach through simulations, we consider a
1 p.u. load step at bus 10 with the representative synchronous
machine parameters for go(s) from [7], the rating parameter
fo = 1, 79 = 1.2s for the machine at bus 9, f5 = 1.5,
75 = 1.5s for the machine at bus 5. The IBRs modify the
effective time constant of both the machines to be 1s. In Fig. §,
the frequency excursions before and after the IBR action are
illustrated. Note that the frequency nadir for both generators
improves after the IBR power injection. Furthermore, as in
the original network node, 5 is closer to the disturbance node
10 as compared to 9, we have a larger power injection and
a greater frequency change observed at 5. Finally, we plot
the weighted COI frequency (cor), which coincides with the
target frequency (&;), i.e., the theoretic coherent frequency for
proportionally heterogeneous machines (cf. (16) in [8]). The
corresponding VSI injections are presented in Fig. 9.

V. CONCLUSIONS

We extended the grid-forming frequency shaping control
for weakly-coupled grids to multi-unit scenarios. This was
achieved by dividing the larger system into smaller subsys-
tems, and iteratively applying the single generator, single IBR
controller design solution [7]. Compared to previous works,
which considered a harmonic mean approximate solution (i.e.,
ignores the parameters of the underlying network), our ap-
proach resulted in the controller gains being explicit functions
of these parameters. The multi-unit shaping control was then
validated through simulations on two classes of networks,
the three-node triangular configuration, and small-scale radial
microgrids. As part of future work, we aim to leverage this
structured approach for large-scale, mesh-connected networks.

INote that we can do this as there are only two nodes left in the cluster.

Ws Wy W9, IBR W5, IBR e (Ot == %= (WCO]
0 T T T T
N
T
£ —100 | g
>
Q
=
2 200 |- i
R
(=1
S
—300 - ! | |
0 2 4 6 8 10
Time (s)
Fig. 8: The frequency responses for a 1 p.u. load step.
—~ 0.3 I T T T
é s PDysi, 1] e Pysi 12
o
g
3]
©
g
=
)
2
o
Ay

Time (s)

Fig. 9: The IBR power injections at nodes 11, 12 for a 1 p.u. load step.

We will also explore techniques to update control gains when
the network structure and number of inverters are varied.
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