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Abstract—This paper presents a decentralized stability analysis 
of power systems comprising grid-forming (GFM) inverters. We 
leverage a decentralized stability framework capable of ensuring 
the stability of the entire interconnection through individual 
assessments at each bus. The key novelty lies in incorporating 
voltage dynamics and their coupling with reactive power, in 
addition to the angle dynamics and their coupling with active 
power. We perform loop transformation to address the challenge 
posed by the non-Laplacian nature of the network Jacobian 
matrix in this case. This methodology is applied to characterize 
conditions on the droop gains of GFM controllers that can 
preserve system-wide stability. Our proposed stability criteria 
exhibit scalability and robustness, and can be extended to 
accommodate delays, variations in network conditions, and plug-
and-play of new components in the network.

Index Terms—Stability, decentralized criteria, grid-forming 
inverters, power systems, robustness.

I. INTRODUCTION

Increasing shares of renewable generation are being de-
ployed worldwide as a major effort to transition towards 
more sustainable power systems [1]. The ongoing transition 
leads to significant challenges for maintaining system stability 
due to substituting synchronous machines (and their well-
known dynamics) with inverter-based resources (IBRs) whose 
dynamics and interaction with the rest of the system are yet 
to be fully understood [2]. For example, the West Murray 
Zone is a region in Australia that has significant penetration of 
renewable IBRs and low system strength. The Australian En-
ergy Market Operator (AEMO) has observed subsynchronous 
oscillations (SSO) of 16 to 19 Hz in that region on various 
occasions from August 2020 through December 2021 [3].

Future power systems will host a mix of heterogeneous 
resources including synchronous machines and numerous 
distributed IBRs that interact with each other through the 
network. It is imperative to develop rigorous and efficient 
methods that can ensure system stability under this circum-
stance. However, there are many challenges. First, system 
dynamics will become much more complex. Conventional 
stability analysis approaches such as eigenvalue analysis [4] 
and transient stability analysis [5] will face significant compu-
tational challenges, especially when detailed inverter models 
are considered [6]–[9]. Moreover, the unpredictable nature 
of renewable generation introduces significant v ariability in 
operating points, further contributing to the challenge. Most 
importantly, unlike the case for synchronous machines whose 
dynamics are governed by physics, the IBR dynamics, as 
seen from the system level, are dictated by the implemented 
controllers. However, due to the proprietary designs of IBRs,
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there is a lack of transparency in control implementations, 
which leaves the system more obscure for grid operators 
[10] and makes model-based methods such as the well-known 
energy function-based method [11] challenging be to applied.

To overcome these challenges, in this paper, we extend 
the decentralized stability framework introduced in [12] to 
establish decentralized stability criteria for IBR-based power 
systems. These criteria, derived from local device dynamics, 
ensure system-wide stability with the need for certification 
only at the individual component level. The key novelty in 
our development lies in incorporating voltage dynamics (in 
addition to the angle dynamics) and the coupling between 
reactive power and voltage magnitude (in addition to the 
coupling between active power and angle) to model IBR 
dynamics. However, integrating voltage dynamics prevents 
the method from being trivially applicable to the power 
system model of interest. The primary bottleneck in this 
case is the non-Laplacian nature of the network Jacobian 
matrix, characterized by non-zero row sums. To address this 
challenge, we perform loop transformation to achieve an 
equivalent network feedback interconnection. Subsequently, 
we apply the decentralized stability analysis, combined with 
the Gershgorin’s Circle Theorem, to characterize conditions 
on the droop gains of grid-forming (GFM) inverters that can 
preserve system-wide stability. We further illustrate and verify 
the efficacy of our decentralized stability criteria through 
numerical examples. Finally, it is worth mentioning that, the 
constructed stability condition inherently exhibits robustness 
to changes in operating points and network configurations, 
accommodating seamless integration or removal of devices.

II. PRELIMINARIES

A. Notation
Vector: We use vec({xi}i∈V) = [xT

1 , x
T
2 , . . . , x

T
p ]

T to
denote a stacked vector based on the ordering in the index
set V = {1, 2, . . . , p}.

Matrix: We define the identity matrix by I . We define
diag({ai}i∈V) to be a matrix that has terms ai sitting on
the diagonal in order and zero elsewhere. For two Hermitian
matrices A,B ∈ Cn×n, we write A ⪰ B if A−B is positive
semi-definite.

Graph: For a connected graph G = (V, E), V and E denote
the set of buses and edges, respectively. Let Ni ≜ {j ∈ V :
(i, j) ∈ E} be the set of buses who are adjacent to bus i.

Transfer function: We denote the space of transfer func-
tion of stable linear time-invariant systems by H∞, describ-
ing the Hardy space of functions that are analytic on the
open right half-plane C>0 with bounded norm ∥g(s)∥∞ :=
sups∈C>0

|g(s)|. We denote the subset of H∞ that is continu-
ous on the extended imaginary axis by A0.



B. Power System Model

Figure 1. Block diagram of the power system model.

In this paper, we concentrate our analysis on IBR-based 
power systems1. We consider a (connected) network-reduced 
power system consisting of buses indexed by V := {1, . . . , 
N}, where N denotes the number of IBRs in the network, with 
the block diagram structure given in Fig. 1. Without loss of 
generality, we assume that the first node provides an angle 
reference to the rest of the network. We denote each 
transmission line by the unordered pair (j, k) ∈ E . We define 
the following:

vec
({[

Pi

Qi

]}
i∈V

)
= [P1, Q1, . . . , PN , QN ]

T .

s

We use similar definitions for vec({[dP,i, dQ,i]
T }i∈V }), 

vec({[Pi
0, Qi

0]T }i∈V }), and vec({[θ̇i, V̇i]T }i∈V }).
The closed-loop system is modeled as the feedback in-

terconnection of bus dynamics H(s) and the linearized net-
work model 1 LB . For the i-th bus, the exogenous signals

V̇

[Pi
0, Qi

0]T ∈ R2×1 and [dP,i, dQ,i]
T ∈ R2×1 respectively 

represent the power injection setpoint and power fluctuations 
around the setpoint that indicates, for example, variations in 
power drawn by local loads. The output signals [θ̇i, V̇i]T ∈ R2×1 

represent the bus frequency and voltage derivative, 
respectively. Through the network, the signals [θ̇i, i]

T are 
mapped to the power demand [Pi, Qi]

T . Furthermore, we make 
the following assumptions for the power system model. First, 
transmission lines are lossless. Second, at equilibrium, the 
angle difference across each transmission line is less than 90◦. 
These assumptions are well-justified and generally hold for 
most transmission systems [13]. In addition, we use Vmax,0j to 
represent the maximum per unit steady state voltage magnitude 
of bus j. We denote the maximum steady state voltage among 
all buses j neighboring bus i as maxj∈Ni {V0j }.

We now discuss the model of the different components in 
the system in more detail.

1) Bus dynamics: In this paper, we work with droop-based 
GFM inverters. The dynamics are composed of the droop-

1Although the results can be generalized to encompass a mix of syn-
chronous machines and various types of IBRs, we restrict to the homogeneous 
IBR-based systems due to space limitation.

based control laws described by [6], [14],
θ̇i = ωi

ωi = ω0
i +mp

i f
p
i (s)((P

0
i + dP,i)− Pi),

Vi = V 0
i +mq

i f
q
i (s)((Q

0
i + dQ,i)−Qi),

∀i ∈ V , (1)

where mp
i ∈ R>0 and mq

i ∈ R>0 are the droop gains; ω0
i and

V 0
i are the frequency and voltage setpoints; P 0

i and Q0
i are the

power setpoints; fp
i (s) =

βp
i

τp
i s+1

and fq
i (s) =

βq
i

τq
i s+1

represent

i i i

the low-pass filters applied to the power measurements with 
DC gains βp ∈ R>0 and βq ∈ R>0, and time constants τ q ∈
R>0 and τp ∈ R>0. Substituting in the expression of low-passi

filters, we 
get

ωi = ωi
0+

( 
mpi β

p
i

p
i s + 1

)
((Pi

0+ dP,i) − Pi) (2)

V̇
i = V̇i

0+ (τ
mq

iβ
q
i s

τ qi s + 1

)
((Qi

0 + dQ,i) − Qi) (3)

which respectively give the following transfer functions of 
frequency and voltage dynamics:

hi
θ(s) = mp

i β
p
i

τpi s + 1
, (4)

q
iβ

q
i s

τhi
V (s) = 

m
qi s + 1

. (5)

The term mp
i β

p
i and mq

iβ
q
i represent the effective droop gains.

Furthermore, the matrix of bus dynamics H(s) is modeled as( )
H(s) = diag {diag(hi

θ(s), hi
V (s))}i∈V . (6)

Remark 1. The chosen GFM inverter model (1) is relatively 
simplified because we intend to capture important system-level 
dynamics. For future studies involving more detailed inverter 
modeling, for example, incorporating lower-level control loops 
and integrating various other devices into a multi-machine 
multi-inverter system, we anticipate dynamic coupling between 
voltage magnitude V and angle θ in the bus dynamics. This 
coupling is expected to result in a multi-input-multi-output 
(MIMO) non-diagonal matrix H .

2) Network model: We consider linearized decoupled power 
flow equations. This is under the assumption of a lossless 
network with small angle differences in steady state, which 
results in very weak coupling between P -V , as well as Q-θ. It 
is important to note that this assumption may not hold in 
scenarios such as a low voltage distribution system with a high 
R/X ratio or in a microgrid. The network model is given by,

vec
({[

Pi

Qi

]}
i∈V

)
=

1

s
LB vec

({[
θ̇i
V̇i

]}
i∈V

)
(7)

where

LB =


P̃θ,11 0 . . . P̃θ,1N 0

0 Q̃v,11 . . . 0 Q̃v,1N

...
...

. . .
...

...
P̃θ,N1 0 . . . P̃θ,NN 0

0 Q̃v,N1 . . . 0 Q̃v,NN

 ∈ R2N×2N ,



Figure 2. General feedback interconnection.

and

P̃θ,ij =
∂

∂θj

∑
l∈Ni

−ViVlBil sin (θi − θl)
∣∣∣ θ=θ0
V=V0

=

{
−
∑

l∈Ni
V0iV0lBil cos (θ0i − θ0l), i = j,

V0iV0jBij cos (θ0i − θ0j), i ̸= j,

Q̃V,ij =
∂

∂Vj

(
V 2
i Bii +

∑
l∈Ni

ViVlBil cos (θi − θl)

)∣∣∣ θ=θ0
V=V0

=

{
2V0iBii +

∑
l∈Ni

V0lBil cos (θ0i − θ0l), i = j,

V0iBij cos (θ0i − θ0j), i ̸= j.

(8)

In these equations, V0 ∈ RN and θ0 ∈ RN denote the voltage
magnitudes and angles at the buses in steady state. The term
Bik ≤ 0 (∀i ̸= k) denotes the mutual susceptance of the
transmission line connecting buses i and k, Bik = 0 if there
is no line, and Bii = −

∑
k∈Ni

Bik ≥ 0 denotes the self
susceptance of bus i.

III. MAIN RESULTS

In this section, we develop the main decentralized stability
criteria for GFM IBR-based power systems. Note that this
result can be extended to more general scenarios in multi-
machine multi-inverter systems. Due to the space limitation,
we defer the discussion of such cases in future work.

We build on a decentralized stability result [12, Th. 1],
which is replicated below in Theorem 1. The theorem is
applicable to a general feedback interconnection as in Fig. 2
with single-input-single-output (SISO) bus dynamics (there-
fore diagonal matrix G(s)) and network model 1

sL. The
system equations are described by,

yi(s) = gi(s)(ei(s) − ui(s)),

s

1
u(s) = Ly(s).

(9)

Theorem 1. [12, Th. 1] Let PR and ESPR denote the set of 
positive real and extended strictly positive real functions, 
respectively. If there exists a function f(s) ∈ PR ∩ A0 where 
for all bus dynamics it holds that g(s) ∈ Gf , where

Gf := {g(s) ∈ H∞ :

g(0) ̸= 0, f(s)
(
1 +

g(s)

s

)
∈ ESPR},

Figure 3. Equivalent system to Fig. 1 unto loop transformation.

then the feedback interconnection in (9) is stable for any 
network model L ∈ L, where

L := {L : L = LT , 0 ⪯ L ⪯ I}.

Remark 2. The key strengths of Theorem 1 include its 
capability to handle cases when components are added or 
removed from the network, and when the operating point 
changes [12].

A. Application to IBR-Based Power Systems
We observe that the dynamics of voltage angle and magni-

tude in (6) are completely decoupled. Consequently, we can
treat our model of interest as having separate SISO dynamics,
allowing us to utilize the result from Theorem 1 to formulate
the decentralized stability criteria. The key challenge that
prevents the application of Theorem 1 to the power system
configuration in Fig. 1 lies in that LB is not necessarily in L.
In this section, we address this challenge by performing loop
transformation. We define the following terms,

ĥV
i (s) := mq

iβ
q
i /τ

q
i ,

ki := 1/mq
iβ

q
i ,

γp
i := 2

∑
j∈Ni

Vmax,0iVmax,0jBij ,

γq
i := kiVmax,0i + 2V 2

max,0iBii,

Ĥ(s) := diag({diag(hθ
i (s), ĥ

V
i (s))}i∈V),

K := diag(0, k1, 0, k2, . . . , 0, kN ),

Γ := diag(γp
1 , γ

q
1 , γ

p
2 , γ

q
2 , . . . , γ

p
N , γq

N ),

C := diag(1, V01, 1, V02, . . . , 1, V0N ),

B := diag(0, 2V01B11, 0, 2V02B22, . . . , 0, 2V0NBNN ),

L̂B := LB −B.
(10)

It can be shown that the block diagram in Fig. 1 can be
transformed equivalently into Fig. 3, with the correspond-
ing terms defined above. Upon combining the two feedback



branches in Fig. 3, we obtain that the corresponding G(s) and 
L in Fig. 2 are defined by

G(s) = Γ1/2C−1Ĥ (s)Γ1/2,

L = Γ−1/2((K + B) + L̂B)CΓ−1/2.
(11)

Next, we show that, facilitated by the loop transformation, the 
resulting L in (11) can be made to satisfy 0 ⪯ L ⪯ I .

Lemma 1. If for all buses i ∈ V it holds that

max
j∈Ni

{V0j } − V0i

( )
βq
i ≤ 1

2mq
i |Bii|

, (12)

then L as given by (11) satisfies 0 ⪯ L ⪯ I .

Proof. By definition in (11), L is symmetric. As a conse-
quence of Gershgorin’s Circle Theorem [15], the eigenvalues
of∑ matrix L := {lij } live in a ball centered at lii of radius

j∈Ni 
lij . Let π : {1, . . . , N} −→ {1, . . . , N} be a bijection. 

Then every odd row i in L satisfies

λπ(i)(L) ≥ lii −
∑
j∈Ni

|lij |

=
1

γpi

∑
j∈N

|V0iV0jBij cos (θ0i − θ0j )|

−
∑
j∈Ni

i∣∣∣∣ 1γpi
∣∣

V0iV0jBij cos (θ0i − θ0j )∣∣ = 0.

(13)

For every even row i, Gershgorin’s Circle Theorem gives

λπ(i)(L) ≥lii −
∑
j∈Ni

|lij | ≥
1

γqi
kiV0i +

2

γqi
V0

2
iBii

+
1

γqi

∑
j∈Ni

V0iV0jBij cos (θ0i − θ0j )

−
∑
j∈Ni

| 1
γqi

V0iV0jBij cos (θ0i − θ0j )|.

(14)

Now, suppose the voltage magnitude at each bus j neighboring
bus i satisfies (12). Then,

ki ≥ 2
(
max
j∈Ni

{V0j } − V0i

)
|Bii|

≥ 2
∑
j∈Ni

max
j∈Ni

{V0j }|Bij | − 2V0i|Bii|.
(15)

γq
i

Since 1 V0i ≥ 0, (15) ensures λπ(i) ≥ 0 for all even i in (14).
Therefore, L is positive semi-definite, or L ⪰ 0, as a direct 
consequence of (13), (14), and (15).

Furthermore, we want to prove that it holds that L ⪯ I with a 
similar reasoning. For every odd row i, Gershgorin’s Circle 
Theorem gives λπ(i)(I − L) satisfies

λπ(i)(I − L) ≥ (1 − lii) −
∑
j∈Ni

|lij |

= 1 −
2

γpi

∑
j∈Ni

|V0iV0jBij cos (θ0i − θ0j )|

≥ 0.
(16)

For every even row i, Gershgorin’s Circle Theorem gives

λπ(i)(I − L) ≥ (1 − lii) −
∑
j∈Ni

|lij |

= 1 −
1

γqi

(
kiV0i + 2V0

2
iBii

)
≥ 0.

(17)

Thus, (16) and (17) imply I − L ⪰ 0 or, equivalently, I ⪰ L. 
Therefore, satisfying (12) implies 0 ⪯ L ⪯ I.

B. Decentralized Stability Criteria for IBR-Based Systems
Combining the results in Theorem 1 and Lemma 1, we 

derive the final result on decentralized stability criteria for 
droop-controlled IBR-based power systems.

Theorem 2. Given the feedback interconnection in Fig. 1 
consisting of droop-controlled IBRs whose dynamics are given

i , mq
iin (1), with the droop constants mp ∈ R≥0 and the filter

time constants τpi , τ qi ∈ R>0. The grid-forming IBR-based
power system is stable whenever each controller gain satisfies,

max
j∈Ni

{V0j } − V0i

( )
βq
i ≤ 1

2mq
i |Bii|

, ∀i ∈ V. (18)

Remark 3. For any nodes j neighboring i where it holds that 
maxj∈Ni {V0j } > V0i, one can represent (18) as

mq
iβ

q
i ≤ Ki, ∀i ∈ V (19)

where we define

Ki :=
1

2 (maxj∈Ni {V0j } − V0i) |Bii|
. (20)

The term mq
iβ

q
i represents the effective droop gain, as demon-

strated in (5). Additionally, we can observe from (20) that the 
higher |Bii|, the lower the value of K(i).

Proof. By treating our MIMO model as two SISO dynamical 
subsystems, the stability of the entire bus dynamics can be 
ensured by independently verifying the stability of each SISO 
system. After transforming our model from Fig. 1 to Fig. 3, we 
can consider the feedback loop as equivalent to Fig. 2 where G 
and s

1 L are given by (11). Suppose (18) is fulfilled, then 
Lemma 1 implies that our network model s

1 L satisfies 0 ⪯ L ⪯ 
I . Therefore, we can utilize Theorem 1 to verify the stability.

i and gθiLet gV describe the voltage magnitude and angle
dynamics of bus i, respectively. We then can define

gi
V=

γqi m
q
iβ

q
i

V0iτi
q .

Since gVi ≥ 0 for all i, then by Theorem 1 we can easily
ichoose any positive constant f ∈ PR∩A0 such that gV ∈ Gf .

We also have

gi
θ=

γpi m
p
i β

p
i

V0i(τ
p
i s + 1)

.

Let f(s) = s
s+T for some T ∈ R>0. Let

F :=
s

s+ T

(
1 +

γpi m
p
i β

p
i

sV0i(τ
p
i s+ 1)

)
− ϵ.



We will show that for all i, there exists an ϵ > 0 such that

F ∈ PR (21)

and, thus, gθi ∈ Gf . Simplifying the expression of F , we get

F =
ξ2,is

2 + ξ1,is+ ξ0,1
η2,is2 + η1,is+ η0,1

,

where ξ2,i := (1−ϵ)τ qi , ξ1,i := 1−ϵ−Tϵτ qi , ξ0,i := γpi mp
i β

p
i −

, η1,i := V0i(1 + T τ qiT ϵ, η2,i := V0iτi
q ), η0,i := V0iT . We can

choose T sufficiently large and ϵ small enough such that, for all 
i, (√

ξ0,iη2,i −
√
ξ2,iη0,i

)2 ≤ ξ2,iη0,i ≤ ξ1,iη1,i,

from which the result (21) immediately follows [16, Cor. 11]. 
Therefore, satisfying (18) makes the feedback interconnection 
in Fig. 1 stable.

IV. NUMERICAL ILLUSTRATION

Figure 4. Three-bus power system.

Table I
PARAMETER VALUES OF THE NETWORK

Parameter Symbol Value Unit
Reactance X1, X2, X3 0.15, 0.20, 0.15 p.u.

Droop gain mp
1 , mp

2 , mq
1, mq

2 0.05, 0.05, 0.05, 0.05 −
Filter gain βp

1 , βp
2 1, 1 −

Upper bound K1/m
q
1, K2/m

q
2 0.75, 0.86 −

Time constant τ p1 , τ p2 , τ q1 , τ q2 50, 50, 50, 50 rad/s

We consider a three-bus system consisting of two GFM
IBRs and an infinite bus in a network as shown in Fig. 4.
Nominal parameter values of the system are given in Table
I. We choose various operating points and DC gain βq as
listed in Table II, then use the small-disturbance (eigenvalue)
analysis to analyze the stability around the equilibrium point
under those values.

Table II
SIMULATION CASES

Case βq
1 , βq

2 P 0
1 , P 0

2 Q0
1, Q0

2 V 0
1 , V 0

2

1 0.50, 0.50 1.0, 1.0 0.2, 0.2 1.0, 1.0
2 0.75, 0.75 1.0, 1.0 0.2, 0.2 1.0, 1.0
3 0.75, 0.75 0.8, 0.8 0.1, 0.1 0.9, 0.9

Eigenvalues of the linearized system are presented in Table
III. It is noteworthy that meeting condition (18) results in
eigenvalues with negative real parts in all cases, for all the
chosen operating points. This implies stable dynamics around
the equilibrium points.

Table III
EIGENVALUES OF THE LINEARIZED SYSTEM (×104)

Case 1 Case 2 Case 3
−1.7934 + j0.0000 −2.6878 + j0.0000 −2.6326 + j0.0000
−0.7321 + j0.0000 −1.0962 + j0.0000 −1.0648 + j0.0000
−0.0025 + j0.2063 −0.0025 + j0.2063 −0.0025 + j0.1823
−0.0025− j0.2063 −0.0025− j0.2063 −0.0025− j0.1823
−0.0027 + j0.1282 −0.0027 + j0.1282 −0.0026 + j0.1173
−0.0027 − j0.1282 −0.0027− j0.1282 −0.0026− j0.1173

V. CONCLUSION

We present decentralized stability criteria for droop-
controlled grid-forming inverters. Our approach involves ana-
lyzing the Q−V coupling in the network Jacobian matrix and 
applying loop transformation for adjustments. The resulting 
criteria rely solely on properly tuning the droop gains of each 
local controller, as illustrated through numerical exam-ples. 
Future works include expanding our analysis on models with 
higher fidelity and incorporating heterogeneous grid-edge 
components, including grid-following IBRs.
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