

Analysis of Snow Multi-Bands and Their Environments with High-Resolution Idealized Simulations

Nicholas M. Leonardo and Brian A. Colle

School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY

Submitted to the Mon. Wea. Rev.

14 September 2023

Revised

1 January 2024

*Corresponding author address:

Dr. Nicholas M. Leonardo

School of Marine and Atmospheric Sciences

Stony Brook University / SUNY

Stony Brook, NY 11794-5000

Email: Nicholas.leonardo@stonybrook.edu

24

Abstract

25 Nested idealized baroclinic wave simulations at 4-km and 800-m grid spacing are used
26 to analyze the precipitation structures and their evolution in the comma head of a developing
27 extratropical cyclone. After the cyclone spins up by hour 120, snow multi-bands develop
28 within a wedge-shaped region east of the near-surface low center within a region of 700-500-
29 hPa potential and conditional instability. The cells deepen and elongate northeastward as they
30 propagate north. There is also an increase in 600-500-hPa southwesterly vertical wind shear
31 prior to band development. The system stops producing bands 12 hours later as the differential
32 moisture advection weakens, and the instability is depleted by the convection.

33 Sensitivity experiments are run in which the initial stability and horizontal temperature
34 gradient of the baroclinic wave are adjusted by 5-10%. A 10% decrease in initial instability
35 results in less than half the control run potential instability by 120 h and the cyclone fails to
36 produce multi-bands. Meanwhile, a 5% decrease in instability delays the development of
37 multi-bands by 18 h. Meanwhile, decreasing the initial horizontal temperature gradient by
38 10% delays the growth of vertical shear and instability, corresponding to multi-bands
39 developing 12-18 hours later. Conversely, increasing the horizontal temperature gradient by
40 10% corresponds to greater vertical shear, resulting in more prolific multi-band activity
41 developing ~12 hours earlier. Overall, the relatively large changes in band characteristics over
42 a ~12-hour period (120-133 h) and band evolutions for the sensitivity experiments highlight the
43 potential predictability challenges.

44

45 Significance Statement

46 The purpose of this study is to better understand the mechanisms that organize winter
47 storm precipitation into multi-banded structures. These small-scale bands are difficult to
48 predict and can greatly impact snowfall forecasts. The analysis is performed on a conceptual
49 low pressure system in a numerical model to systematically isolate the roles of different
50 ambient conditions. The results emphasize that environments with instability (e.g., where
51 temperature and moisture decrease with height) and wind shear (winds increase with height)
52 favor the development of banded structures as the system intensifies. Decreasing the

53 instability by 10% suppresses band development, while increasing (decreasing) the horizontal
54 temperature change across the system by up to 10% corresponds to the bands developing up to
55 12 h earlier (later).

56

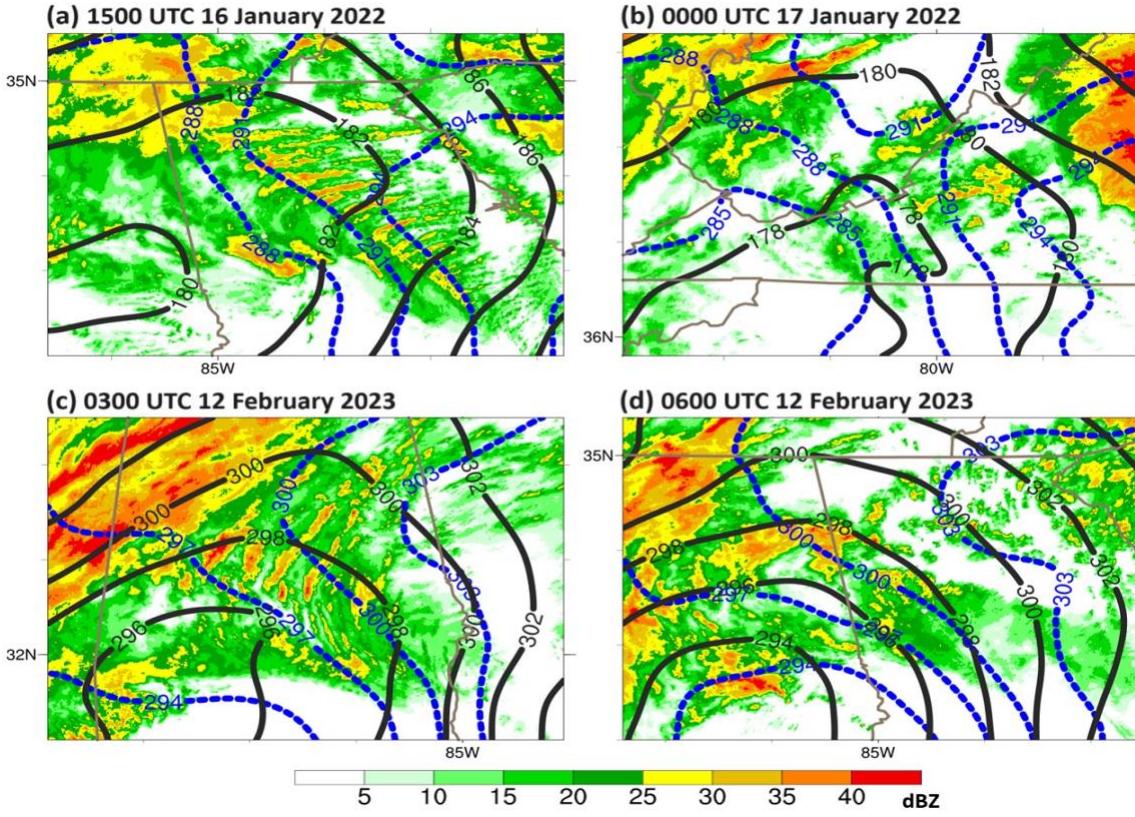
57 **1. Introduction:**

58 *a. Background.*

59 Snowbands within the comma head of extratropical cyclones cause locally enhanced
60 snow accumulations, ice accretion on tree limbs and powerlines, and travel hazards. The
61 small-scale nature of these bands makes them difficult to forecast. Much of the past work has
62 focused on primary (single) snowbands with widths typically on the order of tens of kilometers
63 and lengths over 200 km (Novak et al. 2004, 2008, 2009, 2010; Kenyon 2013). These bands
64 are often associated with well-defined mid-level frontogenesis and weak stability, potential
65 instability, or conditional instability (Novak et al. 2008, 2010; Ganetis et al. 2018). Less
66 attention has been given to multi-bands. While multi-bands are generally defined as two or
67 more elongated enhanced features in reflectivity, the criteria vary between studies. Novak et
68 al. (2004) defined multi-bands as being 5-20 km wide with intensities >10 dBZ over the
69 background reflectivity maintained for >2 hours. Kenyon et al. (2013) defined bands as having
70 aspect ratios $>4:1$ and reflectivity >10 dBZ over the background for >3 hours.

71 A few mechanisms have been proposed for the development of multi-bands. Early
72 studies emphasized that frontogenesis in an environmental with conditional symmetric
73 instability (CSI) is associated with multi-bands (Xu 1992; Nicosia and Grumm 1999).
74 Conditional instability (CI) or CSI has been shown to occur more often in multi-bands than
75 single-band cases (Novak et al., 2010; Ganetis et al. 2018). However, CSI is not a necessary
76 condition in multi-band genesis (Novak et al. 2004; Connelly and Colle 2019), with some cases
77 occurring in a shallow layer of CI instead (Shields et al. 1991). Ganetis et al. (2018) completed
78 a band climatology over 20 winters and showed that many small-scale bands were not
79 associated with CSI or frontogenesis. Rather, there was CI or potential instability (PI) for
80 many of these bands, and the lifting mechanism to trigger the bands was unclear. Previous
81 work has also suggested that gravity waves within a stable ducted layer may provide the

82 forcing mechanism for multi-bands (Uccellini and Koch 1987; Plougonven and Zhang 2014;
83 Kawashima 2016; Rauber et al. 2017). Lastly, vertical wind shear at low-levels can stretch the
84 fallout from generating cells aloft into banded features (Evans et al. 2005; Rosenow et al. 2014;
85 Keeler et al. 2016a,b).


86

87 *b. Motivation*

88 There have been many previous investigations of primary bands using case studies,
89 which have been relatively well simulated and validated with observations (Novak et al. 2004,
90 2008, 2010; Kenyon 2013; Baxter and Schumacher 2017). In contrast, few studies have
91 analyzed multi-band cases, which have been more difficult to simulate (Connelly and Colle
92 2019).

93 Given the complexity of case studies, idealized simulations have been used to more
94 systematically investigate the processes associated with precipitation bands. For example, Norris
95 et al. 2014, 2017 used the idealized baroclinic wave setup in Weather Research and Forecasting
96 Model (WRF; Skamarock et al. 2008) to examine precipitation bands and analyze their
97 sensitivity to surface enthalpy and momentum fluxes. However, they focused on the cold frontal
98 region in later stages of the system, rather than the comma head region where snow bands are
99 traditionally found.

100 As further motivation for the multi-bands in this idealized modeling study, Figure 1
101 shows two multi-banding events from 16 January 2022 and 12 February 2023 using the Multi-
102 Radar Multi-Sensor (MRMS; Zhang et al. 2016) composite reflectivity and the high-resolution
103 rapid refresh analysis (HRRR; Dowell et al. 2022). The bands are located to the northeast of the
104 cyclone center (Fig. 1a,c), similar to the multi-band climatology in Novak et al. (2004) and
105 Ganetis et al. (2018). The individual bands are 100-200 km in length, stretching southwest-to-
106 northeast in orientation and propagating northward around the low center. The “wedge” of
107 bands for each case only lasted 3-9 hours, after which the convection east of the low center
108 becomes more sparse and less organized (Figs. 1b,d). The short duration of these bands
109 highlights some of the predictability challenges.

110

111 Figure 1: MRMS composite reflectivity (shaded), and HRRR analysis 800-hPa geopotential heights (black
 112 contour; every 2 dam) and potential temperature (blue dash; every 2 K), valid at (a) 1500 UTC 16 January
 113 2022 and (b) 0000 UTC 17 January 2022. MRMS composite reflectivity (shaded), and HRRR analysis 700-
 114 hPa geopotential heights (black contour; every 2 dam) and potential temperature (blue contour; every 2 K),
 115 valid at (a) 0300 UTC 12 February 2023 and (b) 0600 UTC 12 February 2023.

116

117 This study seeks to investigate the band structures and the environmental factors
 118 associated with their development using nested runs of an idealized baroclinic wave model down
 119 to 800 m grid spacing. These simulations will help address the following questions:

120

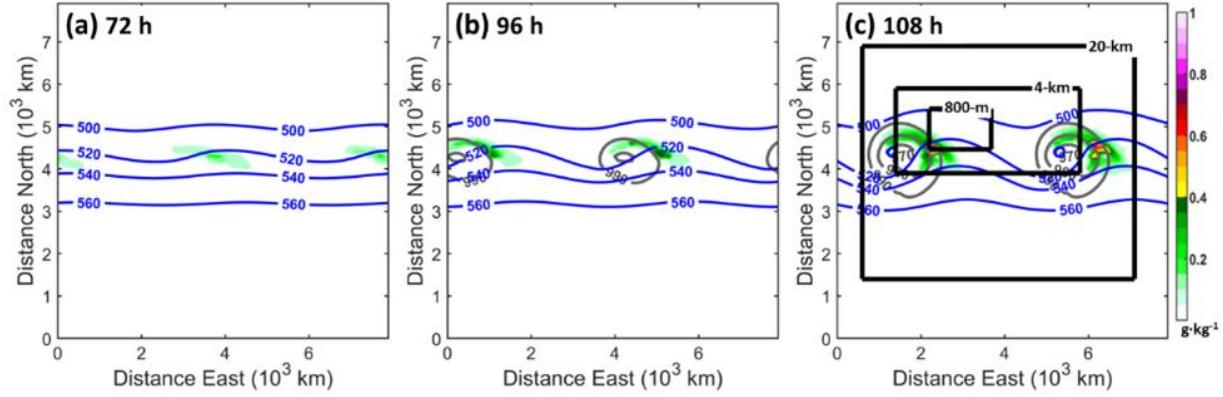
- 121 • How do the precipitation structures in the comma head evolve as the cyclone
 develops?
- 122 • How are changes in the ambient frontogenesis (forcing), vertical shear, and instability
 around the cyclone related to changes in the precipitation structures?
- 123 • How do small changes in the initial stability and temperature gradient of the
 baroclinic wave affect subsequent band development?

124

125

126 The remainder of this paper is organized as follows. Section 2 will highlight the setup of
127 the model and methodology. Section 3 will analyze the structure and evolution of the snow
128 bands, while section 4 will assess the development of the large-scale environment associated
129 with the bands. Section 5 will analyze the sensitivity of the simulated bands to changes in the
130 initial stability and temperature gradient. Summary and conclusions will be presented in the
131 final section. A follow-up paper will investigate more of the mesoscale processes within the
132 bands in these simulations.

133


134 **2. Data and Methods**

135 This study uses the idealized baroclinic-wave setup in version 3.4.1 of the Advanced
136 Research core of the Weather Research and Forecasting Model (ARW-WRF; Skamarock et al.
137 2008). The model version and methodology are the same as Norris et al. (2014), except that our
138 inner nests are centered on the comma head region of the low. The model is initialized with a
139 $60\text{-}70\text{-m}\cdot\text{s}^{-1}$ zonal jet centered at ~ 300 hPa (Fig. 3a), which Rotunno et al. (2004) derived by
140 inverting a baroclinically unstable PV distribution in the y-z plane. The initial moisture is
141 prescribed by a relative humidity profile that linearly decreases from 70% at the surface to 10%
142 at 8 km AGL. Impacts of the setup on band development are shown in section 5.

143 The outer domain is 8000-by-8000 km in size, with 100-km grid spacing and periodic
144 boundary conditions in the x-direction. The zonal extent of the domain is twice the wavelength
145 of the most unstable mode in the initial jet, such that two nearly identical baroclinic waves
146 develop. These waves propagate from left to right and take more than 72 h to develop a surface
147 low (Fig. 2a through 2c). Inner one-way nests with grid spacing of 20 km and 4 km are added at
148 108 h to capture the left wave in Fig. 2c after it reenters the western edge of the 100-km grid.
149 The one-way nesting enables an assessment of the sensitivity to horizontal grid spacing. An 800-
150 m nest is then added between 114 h and 132 h during the peak band activity to the northeast of
151 the low. All grids have 64 vertical levels from the surface up to 16 km.

152 The WRF setup uses an f-plane approximation, the Thompson microphysics scheme
153 (Thompson et al. 2008), and the Yonsei University boundary layer scheme (Hong et al. 2006).
154 The Kain-Fritsch convection scheme is used only in the outer 100-km and 20-km grids.

155 Following Norris et al. (2014, 2017), surface fluxes are enabled by setting the sea surface
 156 temperature to the initial temperature of the lowest model level, and the surface roughness length
 157 is set to 0.2 mm.

158
 159 Figure 2: 500-hPa geopotential heights (blue contours; every 20 dam), sea level pressure (grey contours; every
 160 10 hPa below 1000 hPa), and 700-hPa snow and ice mixing ratios (shaded in g kg^{-1}) for the 100-km control
 161 domain at (a) 72 h, (b) 96 h, and (c) 108 h. The boxes in (c) indicate the positions of the inner 20-km (d02), 4-
 162 km (d03), and 800-m (d04) nests.

163

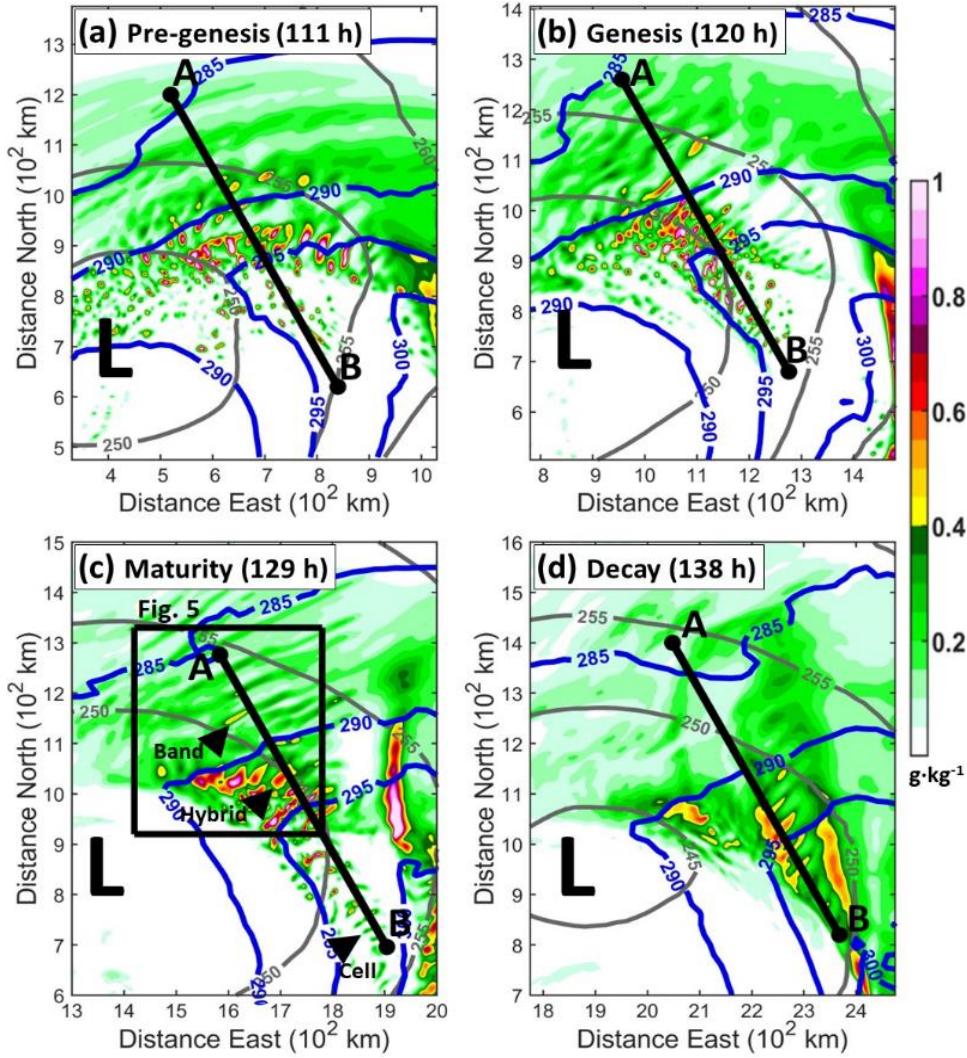
164

165 **3. Idealized Band Evolution**

166 *a. Band Structures*

167 Three phases in the banding activity are identified throughout the 4-km control run:
 168 genesis, maturity, and decay. The genesis phase (~120-126 h) is when the system begins
 169 producing multi-bands, which start as convective cells to the east of the surface low. The
 170 mature activity (127-133 h) is defined by when the bands are most intense and numerous,
 171 extending to the north the cyclone comma head. Decay (136-140 h) is when the system stops
 172 producing well-defined bands. Figure 3 demonstrates the organization of precipitation
 173 structures around the low center during these phases. The plots are zoomed-in, with a domain
 174 that follows the low center within the 4-km grid. Note that the precipitation within this region
 175 north and east of the low is almost entirely snow.

176 At 111 h, nine hours before the genesis phase, the 295-K isentrope averaged for 700-600
 177 hPa delineates a trough of warm air aloft (e.g., TROWAL, Penner 1955; Galloway 1960; Martin

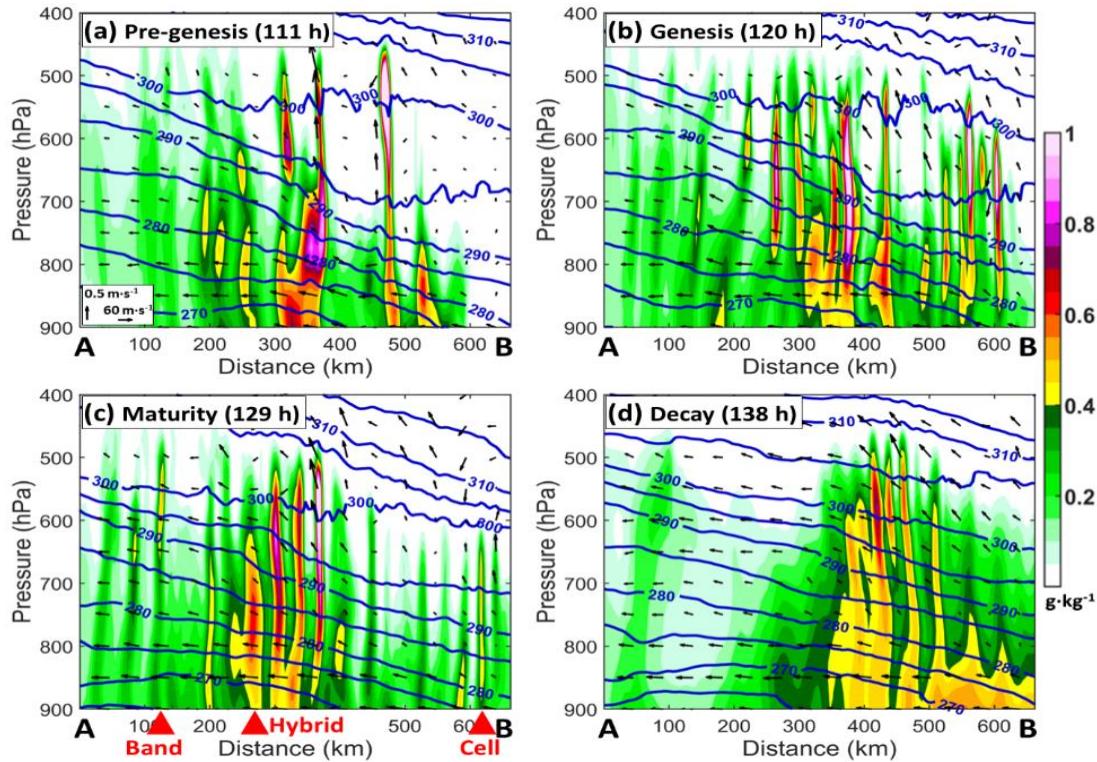

178 1998), which is east of the low center enclosed by the 250-dam geopotential height contour (Fig.
179 3a). The surface pressure of the deepening cyclone center is \sim 970 hPa (not shown). Linear
180 convective elements are apparent to the north of the TROWAL, but they have aspect ratios less
181 than 4:1 and diminish within the subsequent hour (not shown), such that, following the
182 definitions by Kenyon et al. (2013), they are not considered bands. A more persistent region of
183 convective cells develops to the west of the TROWAL, 100-200 km northwest of point B.

184 At the start of the genesis phase at 120 h, the cellular convection 200-300 km to the
185 northeast of the surface cyclone fills, forming a “wedge” shape region that extends southeast-to-
186 northwest along the TROWAL (Fig. 3b). As the cells at the tip of the wedge move
187 northwestward from points B to A, they elongate into distinct bands oriented southwest-to-
188 northeast. These bands slowly dissipate as they advance further northward away from the low.
189 The total life cycle of each individual band from its development as a cell to its dissipation is
190 three to six hours. The system continues to generate multiple bands throughout the subsequent
191 15 to 18 hours. The structure of this “wedge” and bands are similar to the two observed cases
192 shown in Fig. 1.

193 The multi-band activity to the northeast of the cyclone reaches maturity by 129 h, during
194 which several bands are clearly visible near point A (Fig. 3c). These southwest-northeast
195 orientated bands reach more than 200 km in length and persist more than 500 km north of the
196 low center. The surface pressure of the low center has further deepened to \sim 963 hPa (not
197 shown). The different stages of the bands’ lifecycle are annotated, from the isolated cells near
198 point B (one of which is marked “Cell”), to the deeper embedded convection gaining linear
199 attributes while crossing the middle point between B and A (“Hybrid”), to the discreet elongated
200 bands near A (“Band”).

201 The multi-band activity decays by 138 h (Fig. 3d), at which point the convection
202 broadens and forms a large band along the TROWAL axis. While some embedded linear
203 features are visible, they are much weaker than those over the same area at 129 h, with snow
204 mixing ratios \sim 40 percent smaller. The bands that were northeast of the low at 129 h have since
205 dissipated without being replaced by new bands from the south. The surface low has since
206 reached its lowest pressure of \sim 960 hPa (not shown). In the subsequent six hours, the pressure

207 slowly rises, consistent with the low occluding and becoming more disconnected from the warm
 208 air to the southeast (not shown).



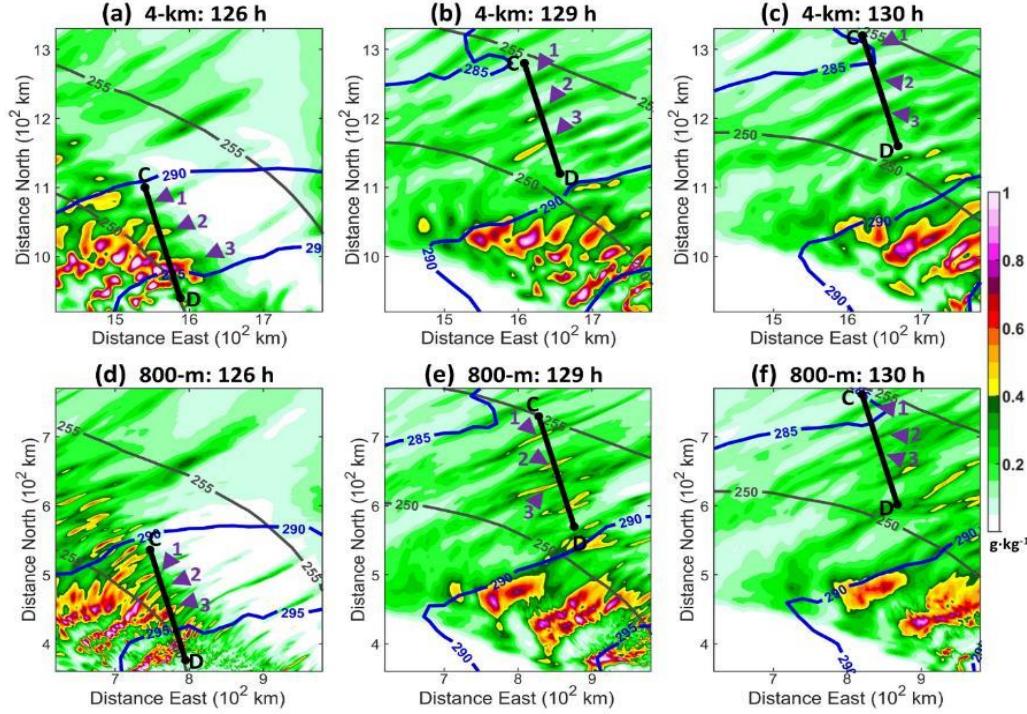
209
 210 Figure 3: 700-hPa snow and ice mixing ratios (shaded every 0.05 g kg⁻¹), 700-hPa geopotential heights (black
 211 contours every 5 dam), and 700-600-hPa potential temperature (blue contours every 5 K) for the 4-km control
 212 run at (a) 111 h, (b) 120 h, (c) 129 h, and (d) 138 h. Each tick is 200 km. The position of the 700-hPa low
 213 pressure center is marked by an L. The black lines mark the locations of cross-sections taken from A to B in
 214 Fig. 4. In (c), the box marks the area that Fig. 5 focuses on, and the stages of band development during the
 215 mature phase are annotated with arrows in (c).

216
 217 The vertical structures of the bands are examined in northwest-to-southeast cross-sections
 218 (points A and B in Fig 3). The section is orientated along where the bands start as cells (cell and
 219 hybrid region in Fig 4c), and mature and decay (hybrid and band in Fig. 4c) to the northeast of
 220 the cyclone. Between the pre-genesis (111 h; Fig. 4a) and genesis (120 h; Fig. 4b) phases, there

221 is an increase in the number of convective plumes (e.g., the three bands with 700-600-hPa snow
 222 mixing ratios $>0.3 \text{ g}\cdot\text{kg}^{-1}$ within 150 km from point A in Fig. 4b). These convective structures
 223 grow upwards as they move northwest toward point A along the frontal zone. The bands then
 224 weaken within ~ 200 km of point A.

225 During maturity at 129 h (Fig. 4c), the largest snow mixing ratios develop above 700 hPa,
 226 as seen in the three plumes right of the “Hybrid” between 300 and 400 km from point A. The
 227 largest upward motion within these plumes is $0.2\text{-}0.5 \text{ m}\cdot\text{s}^{-1}$ and elevated between 650 and 500
 228 hPa. By comparison, the upward motion associated with the three plumes < 100 km from point
 229 A is $0.1\text{-}0.3 \text{ m}\cdot\text{s}^{-1}$. The convective plumes are surrounded by narrow regions of weak subsidence
 230 ($0.1\text{-}0.2 \text{ m}\cdot\text{s}^{-1}$) between 650 and 500 hPa (not shown). During the decay phase at 138 h, only
 231 several embedded plumes are visible (Fig 4d). The snow and vertical motions associated with
 232 these plumes are 30-50% weaker than those at 129 h.

233

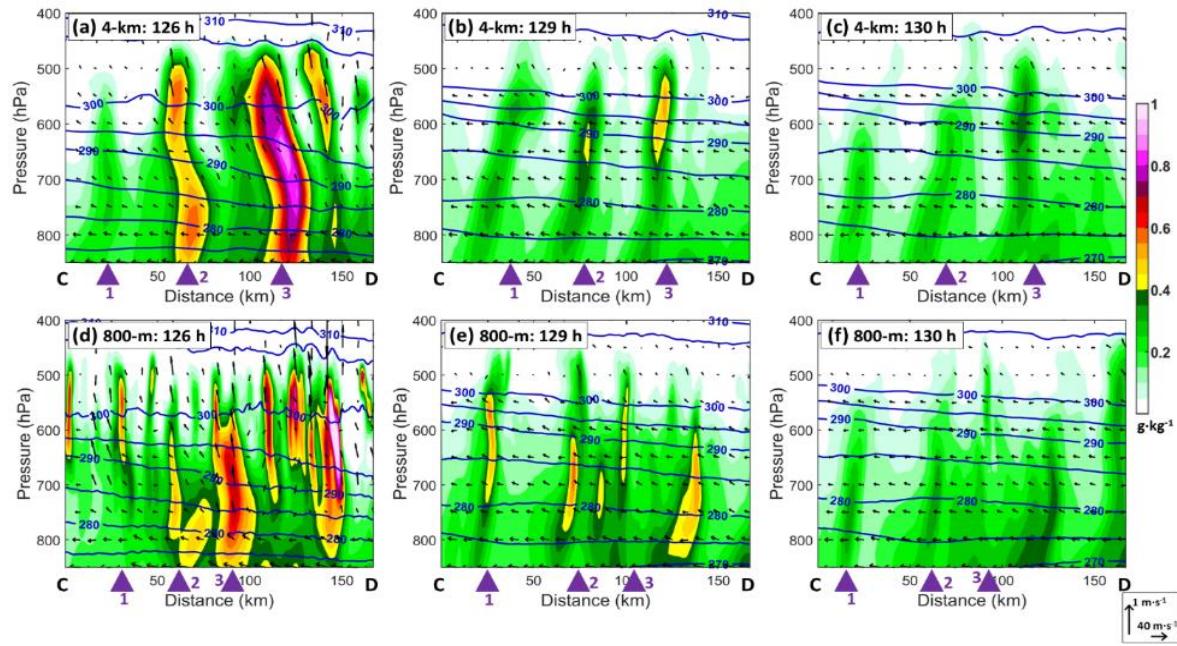

234 Figure 4: cross-sections of snow and ice mixing ratios (shaded), potential temperature (blue contours; every 5
 235 K), and circulation vectors of the 4-km at (a) 111 h, (b) 120 h, (c) 129 h, and (d) 138 h. The locations of the
 236 cross-sections are plotted in Fig. 3. The stages of the bands from Fig. 3c are annotated with arrows.

237

238 *b. Impact of Resolution and Band Evolution.*

239 To show the impact of horizontal resolution on the band structures, Fig. 5 illustrates the
240 4-km and 800-m domains during the peak in band activity. The plots are zoomed on the
241 northeast flank of the 700-hPa low and north of the TROWAL (e.g., the black box in Fig 3c), to
242 capture the evolution of bands marked “1”, “2”, and “3”. These bands are among the group
243 northeast of the low at 129 h, with band 3 being the same mature band annotated in Fig. 3c. At
244 126 h, the three features appear disorganized in the 4-km, embedded within a mass of cellular
245 activity (Fig 5a). The 4-km elongates these features into distinct bands by 129 h (Fig. 5b). Band
246 3 reaches the greatest intensity and stretches ~60-km from southwest to northeast, as measured
247 by the $0.4\text{-g}\cdot\text{kg}^{-1}$ contour (yellow shading) in snow mixing ratios. Through 130 h, the three
248 bands continue to broaden northeastward, though their maximum snow mixing ratios decrease by
249 20-40% compared to 129 h (Fig. 5c).

250 These same three bands in the 4-km are similar in the 800-m grid. At 126 h, the 800-m
251 has more linear convective structures embedded north of the TROWAL than the 4-km (Figs. 5a,
252 d). Smaller-scale precipitation features are between the developing bands. However, each of
253 these features persists less than an hour (not shown). By 129 h, the three bands elongate and
254 have a similar intensity as the 4-km grid, with the 0.4-g/kg snow mixing ratio contour around
255 band 3 reaching ~80 km in length (Fig 5e). The bands further broaden by 130 h, while also
256 weakening in amplitude much like in the 4-km (Fig 5f). The bands continue to track northward
257 before completely dissipating ~131.5 h (not shown). Overall, there is little difference in
258 horizontal band structure and evolution between the 4-km and 800-m grids.


259
260 Figure 5: 700-hPa snow and ice mixing ratios (shaded), 700-hPa geopotential heights (black contours; every 5
261 dam), and 700-600-hPa potential temperature (blue contours; every 5 K) of the 4-km control run at (a) 126 h,
262 (b) 129 h, and (c) 130 h. Each tick is 100 km. The locations of three developing bands are marked with purple
263 arrows, numbered 1, 2, and 3. (d), (e), and (f), are the same as (a), (b), and (c), except for the 800-m. The
264 black lines mark the locations of cross-sections taken from C to D and plotted in Figs. 6 and 7.

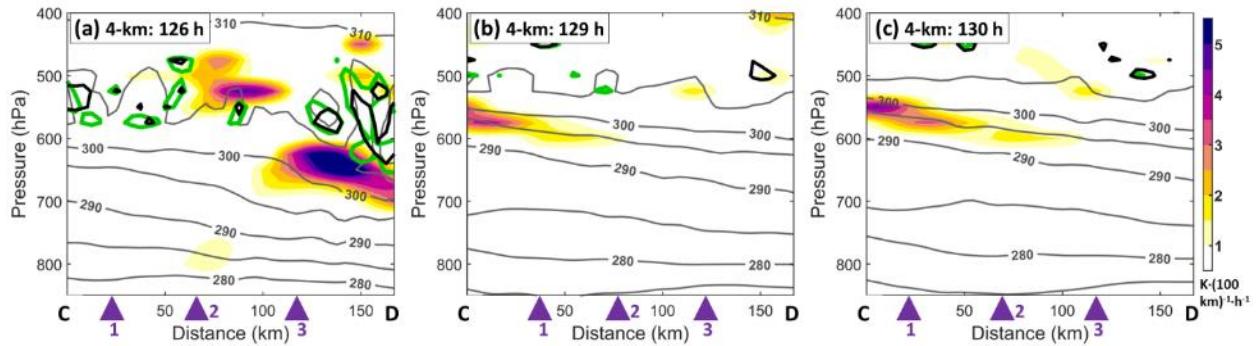
265
266 Cross-sections following the three bands (1, 2, and 3 in Fig. 5) help document their
267 evolution in the 4-km and 800-m grids. At 126 h, the bands in the 4-km start as broad intense
268 plumes (Fig. 6a). The $0.4\text{-g}\cdot\text{kg}^{-1}$ contour in snow mixing ratios around band 3 reaches ~ 30 km in
269 width. These plumes are separated from each other by 40-50 km. By comparison, in the 800-m,
270 the same three plumes are narrower by 5-10 km and band 1 has twice as much snow above 650
271 hPa (Fig. 6d). The 800-m also separates the plumes by only 20-30 km and has more transient
272 activity surrounding them.

273 By 129 h, the bands in the 4-km have matured (cf. Fig. 4b), at which point the $0.4\text{-g}\cdot\text{kg}^{-1}$
274 snow contour of band 3 has narrowed to ~ 15 km in width (Fig. 6b). The largest snow mixing
275 ratios ($0.3\text{-}0.5\text{ g}\cdot\text{kg}^{-1}$) in the three bands are elevated between 650 and 500 hPa and correspond to
276 vertical velocities of $0.2\text{-}0.3\text{ m}\cdot\text{s}^{-1}$ in this layer. The separation between the 4-km bands is 30-40
277 km. The same three bands in the 800-m have now narrowed to less than 10 km in width (Fig.
278 6e). Band 1 in the 800-m still has 60% more snow than band 1 in the 4-km. Similar to the 4-km,

279 the 800-m now separates the bands by 30-40 km and the largest snowfall and ascent in each
 280 plume are located around 650-500 hPa.

281 By 130 h, the snow and upward motion in both the 4-km (Fig. 6c) and 800-m (Fig. 6f)
 282 bands have decreased by 20-50%. The snow plumes in the two grids are comparable, separated
 283 by 30-50 km. Thus, the bands in the 4-km and 800-m grids become more comparable in spacing
 284 and length scale as they begin to elongate. The bands in both grids then decay in a similar
 285 manner. Given the similarities between the 4-km and 800-m bands, the rest of the paper will
 286 utilize the 4-km grid.

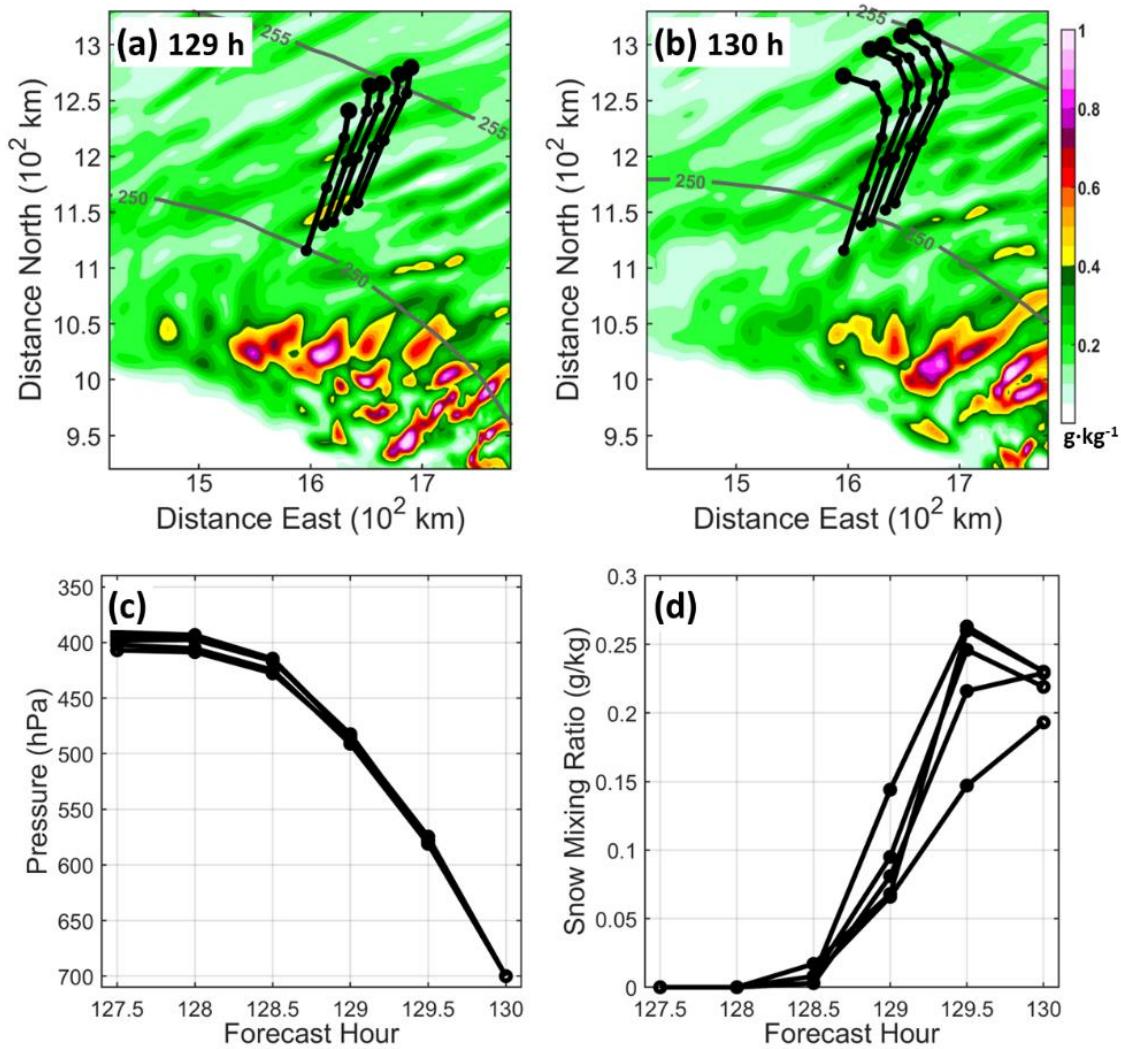
287


288 Figure 6: cross-sections of snow and ice mixing ratios (shaded), θ (blue contours; every 5 K), and circulation
 289 vectors of the 4-km at (a) 126 h, (b) 129 h, and (c) 130 h. The locations of the three bands tracked in Fig. 5 are
 290 marked by arrows. (d), (e), and (f), are the same as (a), (b), and (c), except for the 800-m.

291

292 The similar growth and decay of the bands in the 4-km and 800-m nests is likely due to
 293 similarities in the environments that the bands encounter as they advance further north of the
 294 low. The same C-D cross-section is used to examine the stability and 2D Pettersen (1936)
 295 frontogenesis. To minimize perturbations from the convection, only the 4-km is plotted, and a
 296 nine-point smoothing filter is applied to each vertical level of frontogenesis 20 times. The
 297 conditional (CI) and potential instabilities (PI) encountered by the bands are also assessed by
 298 contouring negative regions in the height-rate-of-change in saturated equivalent potential

299 temperature ($d\theta_{es}/dz$) and equivalent potential temperature ($d\theta_e/dz$), respectively. Inertial and
 300 symmetric instabilities were also examined but found to be less significant (further discussion in
 301 Section 4).

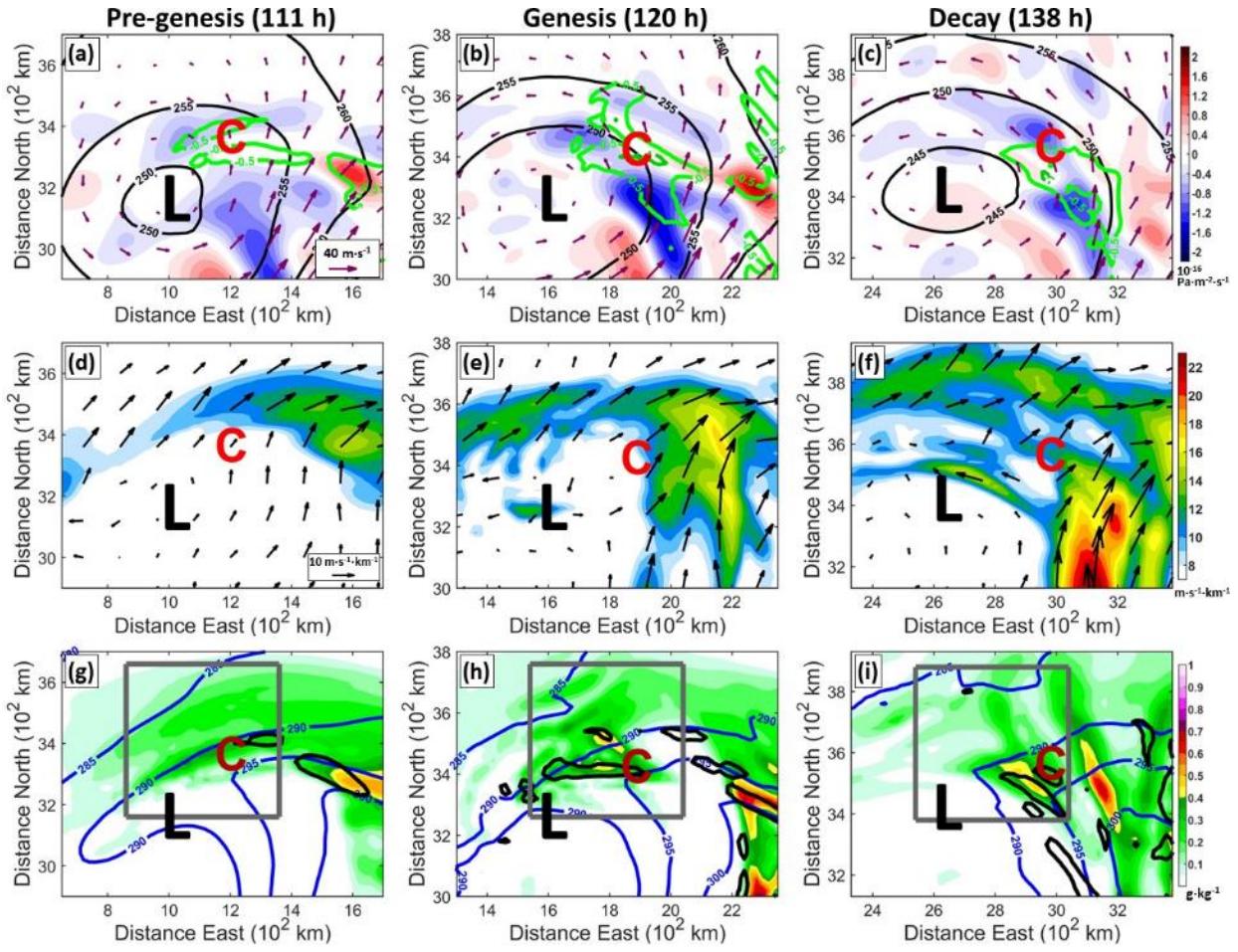

302 At 126 h, band 3 is near a region of $5-7 \text{ K} \cdot (100 \text{ km})^{-1} \cdot \text{h}^{-1}$ frontogenesis between 700 and
 303 600 hPa (Fig. 7a). The frontogenesis slopes upwards to ~ 500 hPa near band 2 and weakens
 304 northward toward band 1. There are also regions of CI and PI between 650 and 500 hPa, sloping
 305 upwards from point D to C. By 129 h, the bands have moved away from the 700-600-hPa
 306 frontogenesis to the south, which is now less than $1 \text{ K} \cdot (100 \text{ km})^{-1} \cdot \text{h}^{-1}$ near band 3 (Fig. 7b).
 307 Band 1 is approaching a thin weaker layer of $\sim 3 \text{ K} \cdot (100 \text{ km})^{-1} \cdot \text{h}^{-1}$ frontogenesis located near C
 308 above 600 hPa. The CI and PI near all three bands are now almost completely depleted. By 130
 309 h, the bands have moved deeper into the 600-550-hPa frontogenesis near point C (Fig. 7c);
 310 however, all three bands quickly weaken regardless (Fig. 6). The 4-km captures many of the
 311 overall characteristics of these bands and their interaction with the environments they encounter.

312
 313 Figure 7: cross-sections of 2D Pettersen frontogenesis (shaded) and θ_e (grey contours; every 5 K) of the 4-km
 314 at (a) 126 h, (b) 129 h, and (c) 130 h. Regions where $d\theta_{es}/dz$ and $d\theta_e/dz$ are negative are contoured in black
 315 and green, respectively. The locations of the three bands tracked in Fig. 6 are marked by arrows.

316
 317 The persistence of the bands after they move out of a region of instability and
 318 frontogenesis may be related in part to the time it takes for snow to fallout within the bands. To
 319 understand this fallout and the origin of the air entering the bands, trajectories are calculated in
 320 the 4-km. More specifically, five backwards hydrometeor trajectories are released at 700 hPa
 321 along band 1 while it was weakening and elongating at 130 h (e.g., the northernmost points in
 322 Fig. 8b). The trajectory calculation uses the mean fall speed weighted by the mixing ratios of the
 323 different types of precipitation. Prior to reaching band 1 between 128 and 129 h (Fig. 8a), the

324 trajectories move north-northeast, maintaining the same elevation at \sim 400 hPa (Fig. 8c). The
 325 trajectories begin to fall as they encounter the snow mass at 129 h, curving westward while
 326 encountering easterly winds around the 700-hPa low (Figs. 8b,d). The alignment and spacing of
 327 the trajectories change little during this fallout period, suggesting that the precipitation organizes
 328 into a band aloft at 500-400 hPa and not while falling to 700 hPa. Overall, even after the upward
 329 motion has substantially weakened by 130 h, the snow that developed near the top of the band
 330 takes 1.5 hours to descend 300 hPa (\sim 3.5 km).

331


332 Figure 8: 700-hPa snow and ice mixing ratios (shaded every 0.05 g kg^{-1}), 700-hPa geopotential heights (black
 333 contours; every 5 dam), and 700-hPa θ (blue contours; every 5 K) of the 4-km control run at (a) 129 h, and (b)
 334 130 h. Each tick is 100 km. The five hydrometeor trajectories are marked with black lines, their positions
 335 every 30 minutes from 127.5 h marked by dots. (c) pressure and (d) snow mixing ratios of the trajectories with
 336 time.

337

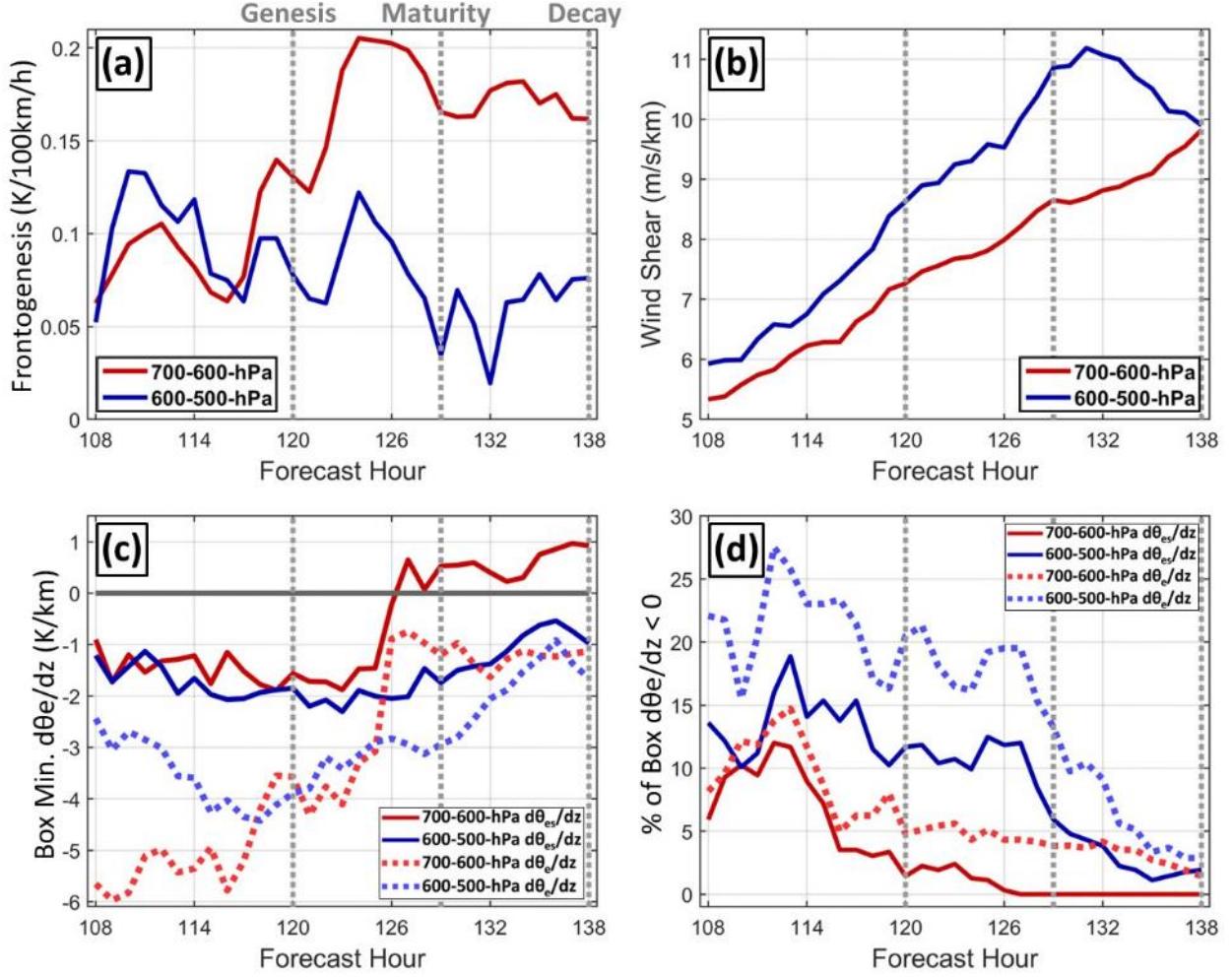
338 **4. Large-Scale Banding Environment**

339 The stages of band activity (genesis, maturity, and decay) are put in the context of the
340 larger scale synoptic features and ingredients (e.g., lift and stability). For this analysis, the 20-
341 km grid is examined. The forcing for ascent is quantified using Q-vectors (Hoskins et al. 1978)
342 and Pettersen frontogenesis. To remove small-scale variations, a nine-point smoothing filter is
343 applied ten times to the temperature and height fields. The 700-500-hPa layer is analyzed for Q-
344 vectors and 600-700-hPa for the frontogenesis, as these layers would favor the triggering of the
345 precipitation bands. To put these results in context with the 4-km results, point C marks the
346 middle point of the cross-sections in Fig. 3. At 111 h, there is 700-500-hPa Q-vector
347 convergence along a boundary 200-400 km southeast of the 700-hPa low center and 100-200 km
348 north of the low (Fig. 9a). In between these regions is 700-500-hPa upward motion over point C.
349 The 700-600-hPa frontogenesis shows the most consistency with the eastern portion of this
350 convection (Fig. 9g), albeit it is generally weak ($<1 \text{ K} \cdot (100 \text{ km})^{-1} \cdot \text{h}^{-1}$). By the genesis phase at
351 120 h, the largest upward motion over the development region increases by 70%, and the
352 adjacent Q-vector convergence increases by 20-40% (Fig. 9b). Meanwhile, the enhanced
353 frontogenesis near point C now exceeds $2 \text{ K} \cdot (100 \text{ km})^{-1} \cdot \text{h}^{-1}$. By 138 h, the Q-vector
354 convergence (Fig. 9c), frontogenesis (Fig. 9i), and upward motion decrease $\sim 20\%$. Thus, the
355 700-500-hPa Q-vector convergence and frontogenesis peak around the genesis phase of the
356 system and decrease afterwards.

357 The stages in band development are also put in context of the evolving vertical shear in
358 the 600-500 hPa layer. At 111 h, the shear is $8-10 \text{ m} \cdot \text{s}^{-1} \cdot \text{km}^{-1}$ in a southwesterly (band-parallel)
359 direction within ~ 200 km north and west of point C (Fig. 9d). By 120 h, the southwesterly shear
360 has increased up to $13 \text{ m} \cdot \text{s}^{-1} \cdot \text{km}^{-1}$ over a band extending 200-400 km northwest of point C and a
361 broader region from the east (Fig. 9e). At 138 h, the area of shear $> 11 \text{ m} \cdot \text{s}^{-1} \cdot \text{km}^{-1}$ broadens,
362 encompassing point C (Fig. 9f). Thus, southwesterly wind shear generally increases throughout
363 the phases in banding activity.

364

365 Figure 9: 700-500-hPa Q-vector divergence (shaded), 700-hPa geopotential heights (black contours; every 5
 366 dam), 700-500-hPa wind vectors, and 700-500-hPa $\omega < 0$ (green contours; every $0.5 \text{ Pa} \cdot \text{s}^{-1}$) of the 20-km
 367 control at (a) 111 h, (b) 120 h, and (c) 138 h. Each tick is 200 km. “C” marks the middle of the cross-sections
 368 in Fig 3. (d), (e), and (f), are the same as (a), (b), and (c), except showing 600-500-hPa vertical wind shear
 369 vectors and speed (shaded). (g), (h), and (i) are the same as (a), (b), and (c), except showing 700-hPa snow and
 370 ice mixing ratios (shaded), 700-600-hPa potential temperature (blue contours; every 5 K), 700-600-hPa
 371 frontogenesis $> 1 \text{ K} \cdot (100 \text{ km})^{-1} \cdot \text{h}^{-1}$ (black contours), and the box used to create the area-average timeseries in
 372 Fig. 10.


373

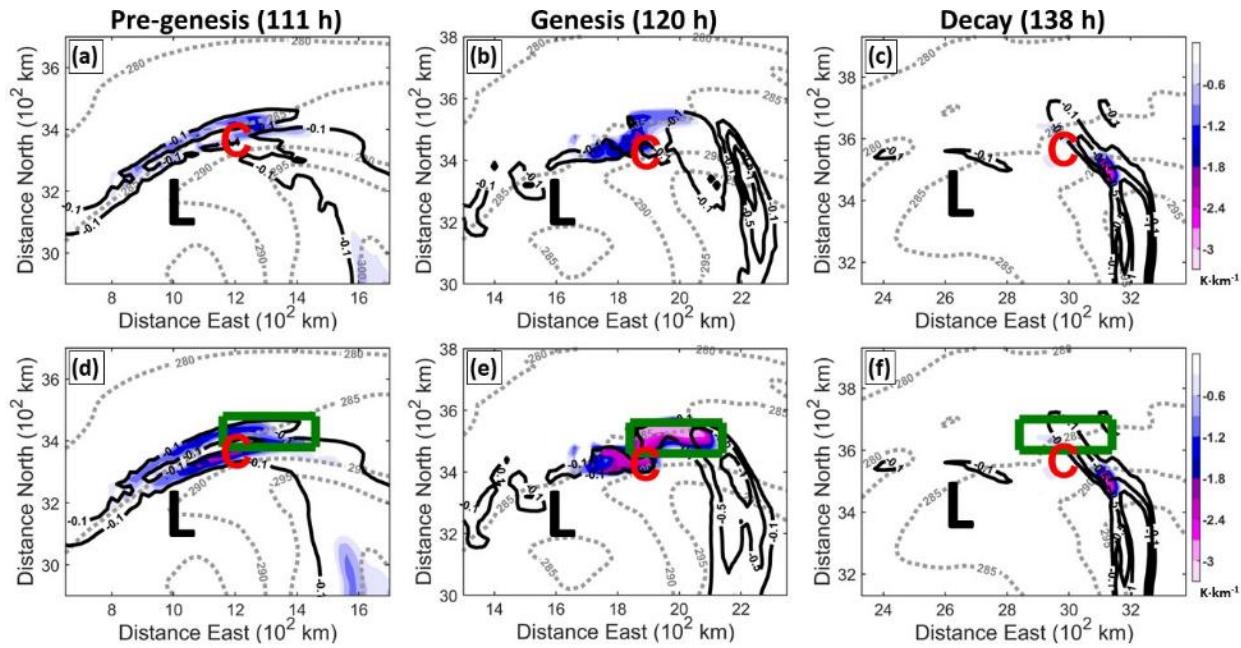
374 To better examine the relationship between the environmental changes and the stages of
 375 band development, several environmental variables are calculated within a 500-by-500-km box
 376 following cyclone in the region of the 20-km grid where the bands develop (e.g., the box in Fig.
 377 10g-h). The box moves such that it captures the wedge of snowbands to the northwest of the
 378 700-600-hPa TROWAL. The size of the box is a compromise that also captures the shear further
 379 northwest, and the forcing and instability from the south. For clarity, the results are only shown
 380 for the 700-600-hPa and 600-500-hPa layers. The box-averaged 700-600-hPa frontogenesis

381 quickly increases at 117 h and reaches its maximum by 124-127 h before gradually decreasing
382 (Fig. 10a). The vertical wind shear is largest at 600-500 hPa and almost doubles between 108 h
383 and 130 h (Fig. 10b). Thus, the shear may be too weak to organize the convection into parallel
384 bands prior to 120 h.

385 Given that box-averages result in cancellation between the negative and positive regions
386 of $d\theta_e/dz$ and $d\theta_{es}/dz$, the minimum value anywhere within the box is used. The box-minimum
387 in $d\theta_e/dz$ indicates that PI in both the 700-600-hPa and 600-500-hPa layers is largest in
388 amplitude between 108 h and 118 h (Fig. 10c). During this period, the magnitude of CI in both
389 layers is less than half that of PI. The 700-600-hPa CI is depleted (e.g., $d\theta_{es}/dz$ reaches zero) by
390 126 h. Meanwhile, CI in the 600-500-hPa layer and PI in both layers are not fully depleted by
391 the decay phase, with $d\theta_{es}/dz$ and $d\theta_e/dz$ reaching $-1 \text{ K} \cdot \text{km}^{-1}$ between 126 and 136 h. The 600-
392 500-hPa PI decays slowest, only reaching $-1 \text{ K} \cdot \text{km}^{-1}$ by 136 h. Thus, the amplitude of 600-500-
393 hPa PI shows the most consistency with the stages in banding activity, growing largest shortly
394 before the genesis stage and maintaining most of its amplitude through the mature stage as it
395 slowly decays.

396 The areal coverages of CI and PI are given by the percentages of grid points inside the
397 box where $d\theta_{es}/dz$ and $d\theta_e/dz$ are negative, respectively (Fig. 10d). CI and PI in both layers are
398 most extensive around 112 h, though they are $\sim 10\%$ larger in the 600-500-hPa layer. In the 600-
399 500-hPa layer, the area of PI between 112 h and 129 h is $\sim 10\%$ larger than that of CI. Thus, 600-
400 500-hPa PI covers the largest area within the region where the bands develop.

401

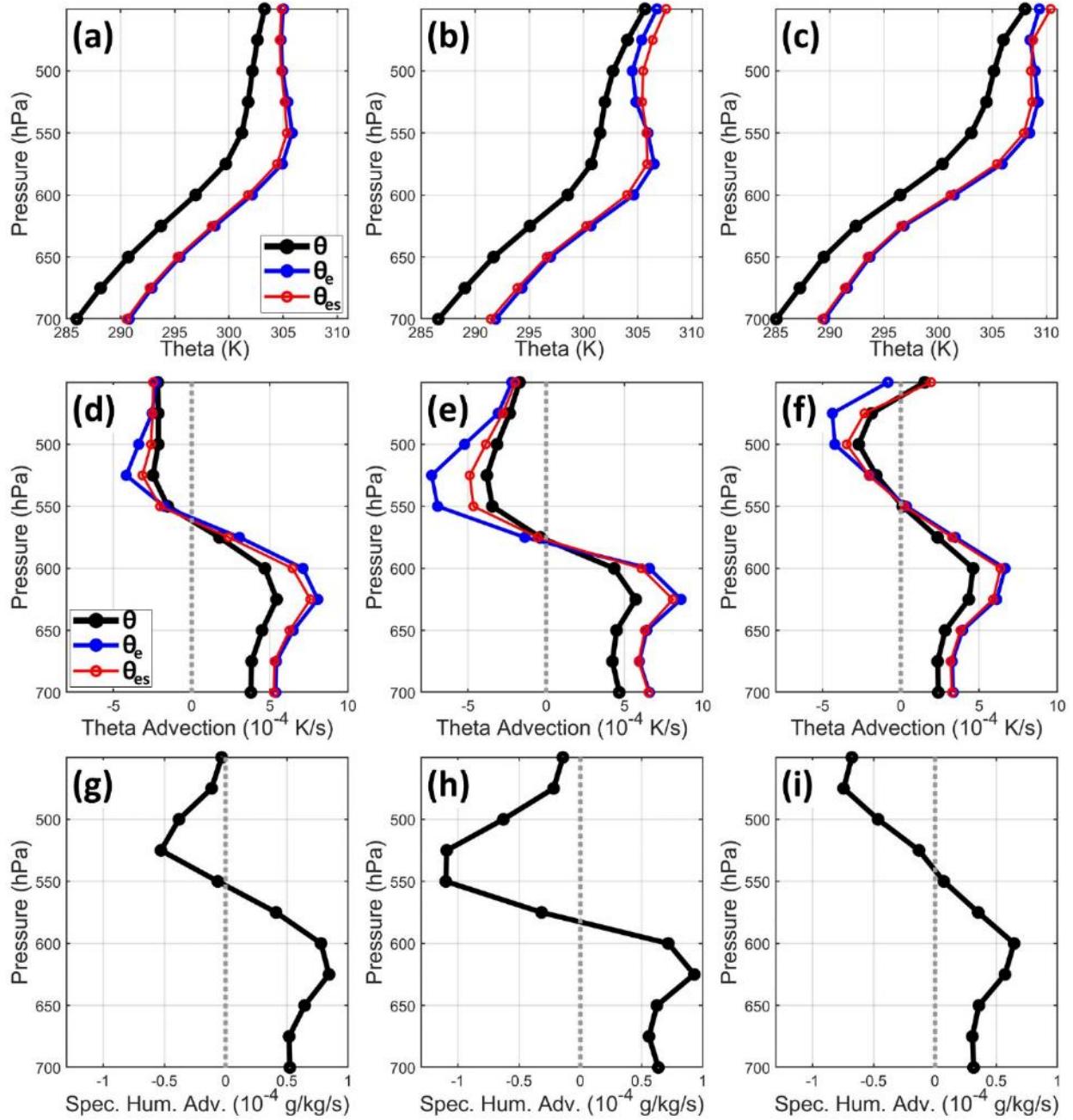

402 Figure 10: time series of statistics calculated within the moving box shown in Fig. 9. The statistics are
 403 calculated from the 20-km domain averaged over the layers indicated in the legend. (a) area-averaged
 404 frontogenesis, (b) area-averaged vertical wind shear, (c) box-minima in $d\theta_e/dz$ (dashed lines) and $d\theta_{es}/dz$ (solid
 405 lines), and (d) the percentage of the box in which $d\theta_e/dz$ (dashed lines) and $d\theta_{es}/dz$ (solid lines) are negative.
 406

407 The development of the instabilities is further analyzed in Figure 11, which shows the
 408 locations of CI, CSI, PI, and PSI relative to the developing baroclinic wave at three different
 409 times. The 600-550-hPa layer is used since this is where the instabilities are largest in the band
 410 cross-sections (e.g., Fig. 7). Inertial instability was also analyzed but was not present anywhere
 411 near the banding activity (not shown).

412 At 111 h, $d\theta_{es}/dz$ is between -0.5 and -1.5 $\text{K} \cdot \text{km}^{-1}$ at ~ 400 km west and ~ 100 km north of
 413 point C (Fig. 11a). CI is also present at 700-650 hPa over a narrow band south of point C, where
 414 the cells develop in the wedge (not shown). Given the large overlap between CI and negative

415 saturated moist potential vorticity (MPV*) around point C, much of this convective activity is
 416 not from CSI. By the genesis phase at 120 h, the negative $d\theta_{es}/dz$ at 600-550-hPa grew from -1.5
 417 to $-2.0 \text{ K}\cdot\text{km}^{-1}$ extending 100-200 km north and west of point C (Fig. 11b). CSI only exists
 418 (negative MPV* but no CI) to the southeast of point C. During the decay phase at 138 h, the CI
 419 has been depleted, leaving only a small region 50-100 km southeast of point C where $d\theta_{es}/dz$ is $-$
 420 $1.5 \text{ K}\cdot\text{km}^{-1}$ (Fig. 11c).

421 Surrounding this CI is a region of PI in the 600-550-hPa layer. The negative values in
 422 $d\theta_e/dz$ range from $-2.0 \text{ K}\cdot\text{km}^{-1}$ at 111 h (Fig. 11d), to $-3.5 \text{ K}\cdot\text{km}^{-1}$ at 120 h (Fig. 11e), to -2.5
 423 $\text{K}\cdot\text{km}^{-1}$ at 138 h (Fig. 11f). Thus, 600-550-hPa CI and PI are the dominant instabilities where the
 424 bands develop northeast of the low, both of which increase leading up to the genesis phase and
 425 are depleted approaching the decay phase. The cells first develop within 700-600-hPa CI at the
 426 southern tip of the wedge and grow into bands as they move northward into 600-500-hPa PI.


427
 428 Figure 11: 600-550-hPa $d\theta_{es}/dz < 0$ (shaded) and $\text{MPV}^* < 0$ (black contours; PVU), and 700-hPa potential
 429 temperature (grey dash; every 5 K) of the 20-km control at (a) 111 h, (b) 120 h, and (c) 138 h. Each tick is 200
 430 km. “C” and “L” mark the middle point of the cross-sections and the surface low center positions in Fig 3,
 431 respectively. 600-550-hPa $d\theta_e/dz < 0$ (shaded) and $\text{MPV} < 0$ (contours; PVU), and 700-hPa potential
 432 temperature (green contours; every 5 K) of the 20-km control at (d) 111 h, (e) 120 h, and (f) 138 h. The green
 433 box is where area-averages are calculated to create the vertical profiles in Fig. 12.

434

435 The source of the 600-500-hPa PI before the genesis phase is examined with vertical
436 profiles averaged over a box (300 km west-to-east and 100 km south-to-north) targeting the PI
437 that grew north of point C by 120 h (e.g., Fig. 11e). This same region relative to point C is
438 traced back to 111 h for comparison, at which point there was only half as much PI (Fig. 11d).
439 The subsequent decrease in PI is also investigated by following the boxed region north of point C
440 to 138 h (Fig. 11f). The profiles of saturated equivalent potential temperature (θ_{es}) and
441 equivalent potential temperature (θ_e) at 111 h both decrease by ~ 1 K between 550 and 475 hPa,
442 confirming that there is CI and PI within this layer (Fig 12a). By 120 h, the θ_e profile becomes
443 steeper, decreasing by 2 K between 575 and 500 hPa (Fig. 12b). Meanwhile, the dry θ profile
444 becomes slightly more stable within the 550-500-hPa layer, such that most of the change in θ_e
445 comes from changes moisture. At 138 h, the layer of PI is elevated, though θ_e only decreases by
446 0.7 K between 525 and 450 hPa (Fig. 12c).

447 The increase in PI between 111 h and 120 h is consistent with differential θ_e advection in
448 the vertical. More specifically, θ_e advection within the box at 111 h switches from positive at
449 ~ 600 hPa to negative at ~ 550 hPa (Fig. 12d). At 120 h, the negative advection at ~ 550 hPa
450 increases by $\sim 70\%$, such that the differential θ_e advection increases, resulting in a steeper more
451 unstable θ_e profile in the 600-550-hPa layer (Fig. 12e). While the 550-hPa dry θ advection also
452 becomes more negative, it is around half as large as the θ_e advection, suggesting the importance
453 of moisture advection. At 138 h, the negative θ_e advection weakens by $\sim 70\%$ and elevates above
454 500 hPa, consistent with the differential θ_e advection decreasing and a less unstable θ_e profile in
455 the 600-500-hPa layer (Fig. 12f).

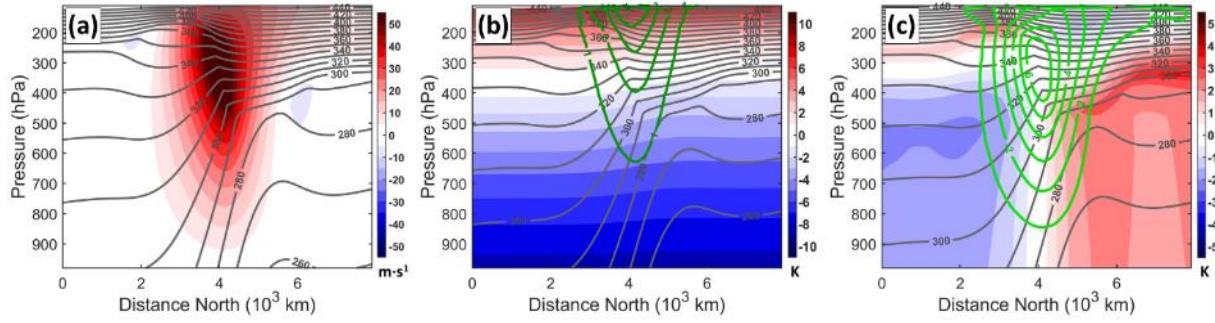
456 The importance of moisture in the changes in PI is analyzed within the same box. The
457 profile of specific humidity advection at 111 h is consistent with the θ_e advection, switching from
458 positive at ~ 600 hPa to negative (dry) at ~ 550 hPa (Fig. 12g). At 120 h, the dry advection at
459 ~ 550 hPa doubles in magnitude, consistent with the increase in differential θ_e advection (Fig.
460 12h). At 138 h, the dry advection is halved and elevates above 500 hPa, consistent with the θ_e
461 advection (Fig. 12i).

462

463 Figure 12: Box-average profiles of potential temperature, equivalent potential temperature, and saturated
 464 equivalent potential temperature at (a) 111 h, (b) 120 h, and (c) 138 h. Box-average profiles of advection of
 465 potential temperature, equivalent potential temperature, and saturated equivalent potential temperature at (d)
 466 111 h, (e) 120 h, and (f) 138 h. Box-average profiles of specific humidity advection at (g) 111 h, (h) 120 h,
 467 and (i) 138 h.

468

469

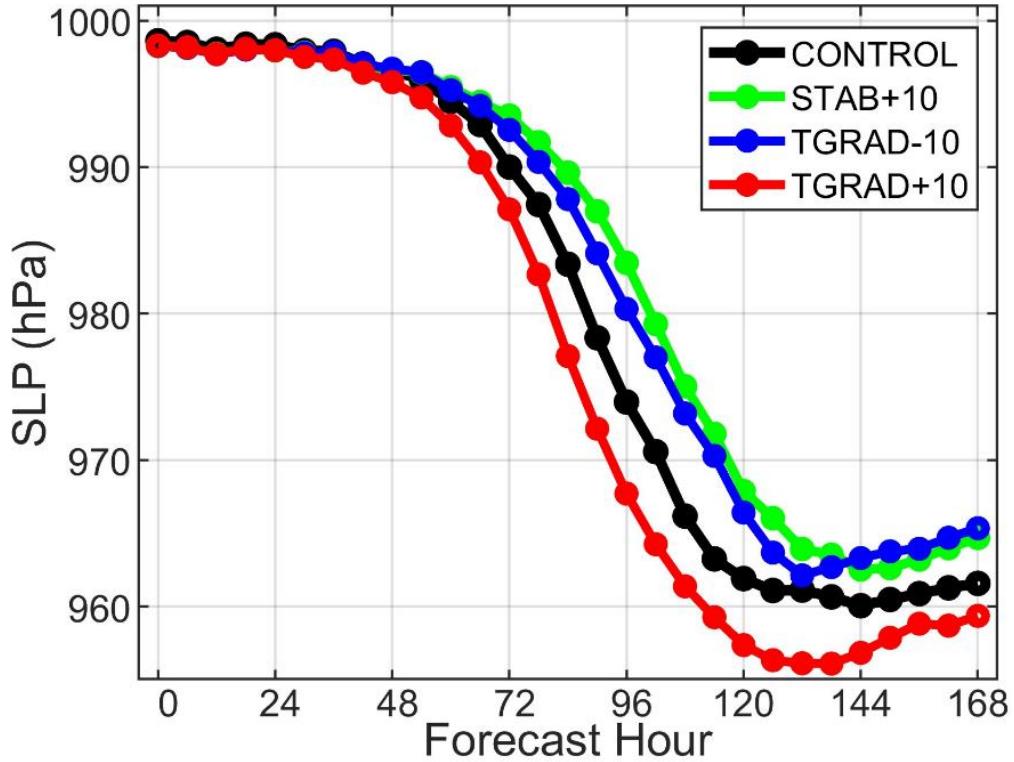

470

471 **5. Band Sensitivity to Changes in Environmental Parameters**

472 a. *Approach*

473 Additional experiments test the sensitivity to small changes in the initial conditions,
474 adjusting environmental parameters that are expected to affect snow band development. In one
475 experiment, the initial dry stability is effectively increased by $\sim 10\%$ throughout the domain
476 (hereafter called “STAB+10”). More specifically, the potential temperature (θ) profile at each
477 grid point is adjusted by a linear function, such that the top (bottom) model level is 8.5 K warmer
478 (cooler) than the original control run. As a result, the height-rate-of-change in potential
479 temperature ($d\theta/dz$) is increased by $\sim 1 \text{ K}\cdot\text{km}^{-1}$ everywhere. Note that, in each of these
480 experiments, the mass and wind fields are adjusted to maintain hydrostatic and geostrophic
481 balance. Thus, when the initial STAB+10’s jet winds are $\sim 4 \text{ m}\cdot\text{s}^{-1}$ faster than the control run
482 above the break in the tropopause (Fig 13b). For the second experiment (STAB+5), the initial
483 stability is increased by only 5% across the domain. Experiments in which the stability is
484 reduced by 5-10% become numerically unstable before 108 h and are therefore not included.

485 The last experiment (TGRAD-10) tests the effects of reducing the initial horizontal θ
486 gradient by 10%. This is achieved by first finding the domain-average θ at each vertical level.
487 Then, the anomaly with respect to that average θ is calculated at each grid point. These
488 anomalies are then multiplied by 0.9, thus reducing their departure from the domain-average by
489 $\sim 10\%$. As a result, the 1000-400-hPa θ is reduced (increased) on the warm southern (cool
490 northern) side of the jet (Fig 13c). The reduced θ gradient corresponds to the 300-hPa jet
491 weakening by $\sim 6 \text{ m}\cdot\text{s}^{-1}$. The effects of reducing the θ gradient by 5% (TGRAD-5) and
492 increasing the θ gradient by 5% (TGRAD+5) and 10% (TGRAD+10) are also tested. In each of
493 these experiments, the 1000-700-hPa temperatures remain at least 10 K below freezing where the
494 bands develop northeast of the low, such that the precipitation is largely snow.



495

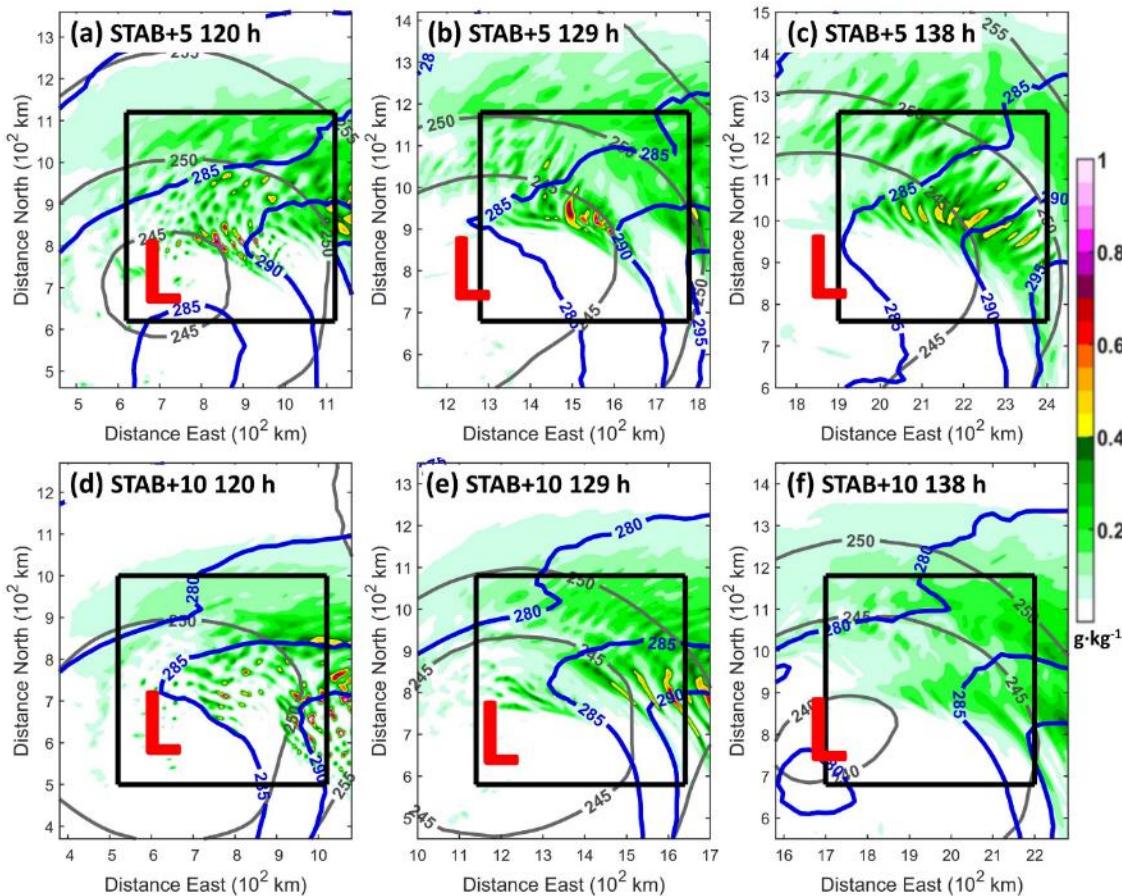
496 Figure 13: (a) U-wind (shaded; every 5 m·s⁻¹), and potential temperature (contours; every 5 K) of the initial
 497 input jet data used for the control run. (b) Initial STAB+10 – control run differences in θ (shaded) and U-wind
 498 (dark green contours > 0 , light green contours < 0 ; m·s⁻¹), and STAB+10 θ (grey contours; every 5 K). (c)
 499 Initial TGRAD-10 – control run differences in θ (shaded) and U-wind (dark green contours > 0 , light green
 500 contours < 0 ; m·s⁻¹), and TGRAD-10 θ (grey contours; every 5 K).

501

502 Adjusting the thermal stability and horizontal temperature gradient of the initial
 503 conditions also affects the development of the large-scale baroclinic wave. The sea-level
 504 pressure minimum in the 100-km grid is associated with the developing low pressure center (Fig.
 505 14). The runs in which either the initial stability is increased or the horizontal temperature
 506 gradient is decreased delay the development of the low by ~ 12 h. Changing the horizontal θ
 507 gradient affects the intensity of the jet and hence the forward speed of the surface low (not
 508 shown). As the analysis moves with the low center, the locations compared within the domain
 509 will differ between runs.

510

511 Figure 14: time series of the grid-point-minimum sea-level pressure within the 100-km control (black line),
 512 STAB+10 (green line), TGRAD+10 (red line), and TGRAD-10 (blue line) runs.


513

514 *b.* Results

515 The convective activity around the developing system is compared between the 4-km
 516 runs in which the initial stability is increased. Differences in the extent of convection develop at
 517 120 h (the genesis phase of the control run). The STAB+5 run spins-up a region of cellular
 518 convection that resembles a wedge 100-300 km east-northeast of the surface low and west of the
 519 290-K isentrope protruding along the 700-hPa TROWAL (Fig 15a). At 129 h (the mature phase
 520 of the control run), the STAB+5 run further organizes the convection northeast of the low into a
 521 wedge more closely resembling the control run, forming small (<100 km long) bands oriented
 522 southwest-to-northeast (Fig. 15b). At 138 h (the decay phase of the control run), the STAB+5
 523 run shows an increase in bands oriented southwest-to-northeast (Fig. 15c). This banding activity
 524 persists for four hours (not shown), compared to the 18-hour duration in the control run.

525 By comparison, the STAB+10 run has a less organized region of cellular activity east of
 526 the low at 120 h (Fig. 15d). At 129 h, the STAB+10 run develops a narrow wedge of convection

527 100-200 km east-northeast of the low (Fig. 15e). The snow mixing ratios within this wedge are
 528 less than half that of the STAB+5 run. East along the TROWAL, four 200-km-long bands are
 529 oriented northwest-to-southeast, parallel to the 800-700-hPa vertical wind shear. These bands
 530 dissipate within the subsequent three hours (not shown). At 138 h, any band activity in the
 531 STAB+10 run has disappeared (Fig 15f). Thus, there is an overall decrease in banding activity
 532 during the mature stage with increased initial stability. However, increasing the stability by only
 533 five percent results in bands developing nine hours later than the control run.

534

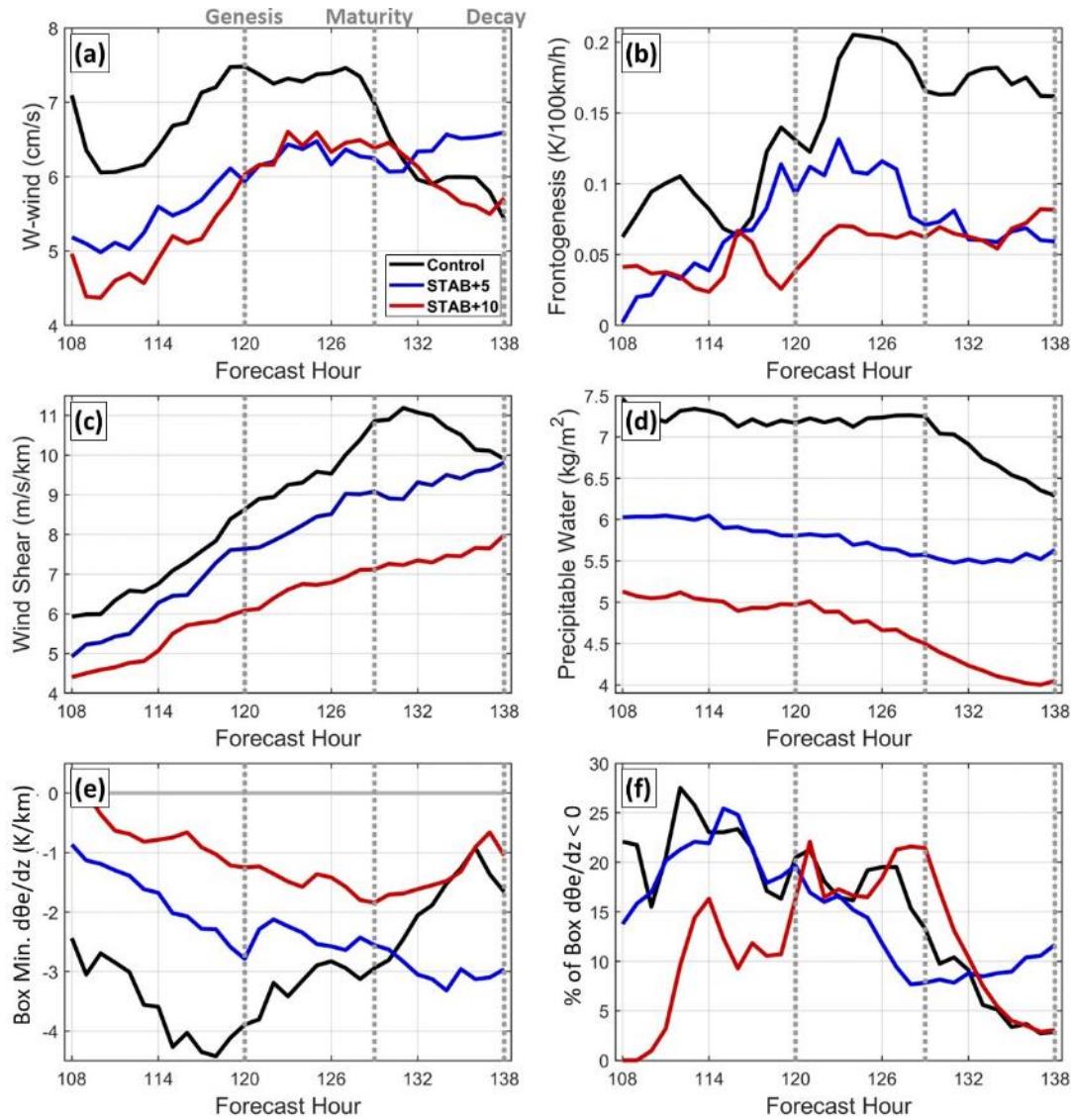
535 Figure 15: 700-hPa snow and ice mixing ratios (shaded), 700-hPa geopotential heights (black contours; every 5
 536 dam), and 700-600-hPa potential temperature (blue contours; every 5 K) of the 4-km STAB+5 run at (a) 120 h,
 537 (b) 129 h, and (c) 138 h. The position of the surface low pressure center is marked by an L, and the box is
 538 where area-averages are taken in the 20-km grid to create the time series in Fig. 16. (d), (e), and (f) are the
 539 same as (a), (b), and (c), except for the 4-km STAB+10 run.

540

541 The evolution of the environments in these runs are compared by averaging variables
 542 within a moving 500-by-500-km box in the 20-km grid. As with the control run in Fig. 10, the

543 box in each run encompasses the wedge of snowbands east of the surface low and west of the
544 700-600-hPa TROWAL, following the system as it advances eastward. The 600-500-hPa
545 vertical velocity in the control run reaches its peak between 118 and 127 h and is $\sim 1 \text{ cm}\cdot\text{s}^{-1}$
546 ($\sim 20\%$) greater than both the STAB+5 and STAB+10 runs (Fig. 16a). However, while the
547 control run upward motion weakens after 127 h, the STAB+5 run continues to slowly increase.
548 The weaker upward motion in the STAB+5 and STAB+10 runs is consistent with these runs also
549 having 25-50% weaker 700-600-hPa frontogenesis after 120 h, though the STAB+5
550 frontogenesis decreases after 126 h (Fig. 16b).

551 The less organized convection in the STAB+5 and STAB+10 runs may also correspond
552 to weaker vertical wind shear. By the genesis phase at 120 h, the 600-500-hPa wind shear of the
553 control run is up to 10% (40%) greater than the STAB+5 (STAB+10) run (Fig. 16c). However,
554 after 131 h, the control run wind shear starts to decrease, while the STAB+5 run increases to the
555 same magnitude as the control run by ~ 138 h. Thus, increases in initial stability also correspond
556 to decreases in wind shear during much of the genesis phase, resulting in less banding activity
557 northeast of the low.


558 Given the initial moisture of the model is prescribed by a relative humidity profile,
559 cooling the lower model levels to increase the stability also reduces the total moisture content.
560 The differences in precipitable water between the runs are generally consistent throughout time,
561 with the STAB+5 and STAB+10 runs having $\sim 1.0 \text{ mm}$ ($\sim 20\%$) and $\sim 2.0 \text{ mm}$ ($\sim 35\%$) less
562 moisture than the control run, respectively. This reduction in moisture may also contribute to the
563 weaker snowfall in general.

564 Prior to 108 h, the differences in PI around the low between the STAB+10 and control
565 runs grow well above 10%, corresponding to changes in differential temperature and moisture
566 advection (not shown). In Fig. 16d, the amplitude of PI is estimated by the box-minimum in
567 600-500-hPa $d\theta_e/dz$. Between 114 h and 120 h, the magnitudes of PI in the STAB+5 and
568 STAB+10 runs are $2 \text{ K}\cdot\text{km}^{-1}$ ($\sim 50\%$) and $3 \text{ K}\cdot\text{km}^{-1}$ ($\sim 80\%$) less than the control run,
569 respectively. However, between 118 h and 132 h, the magnitude of PI in the control run
570 decreases by $2.5 \text{ K}\cdot\text{km}^{-1}$ ($\sim 50\%$), while the STAB+5 run becomes $1.0 \text{ K}\cdot\text{km}^{-1}$ larger than the
571 control. After 132 h, the STAB+5 run maintains PI close to $-3 \text{ K}\cdot\text{km}^{-1}$.

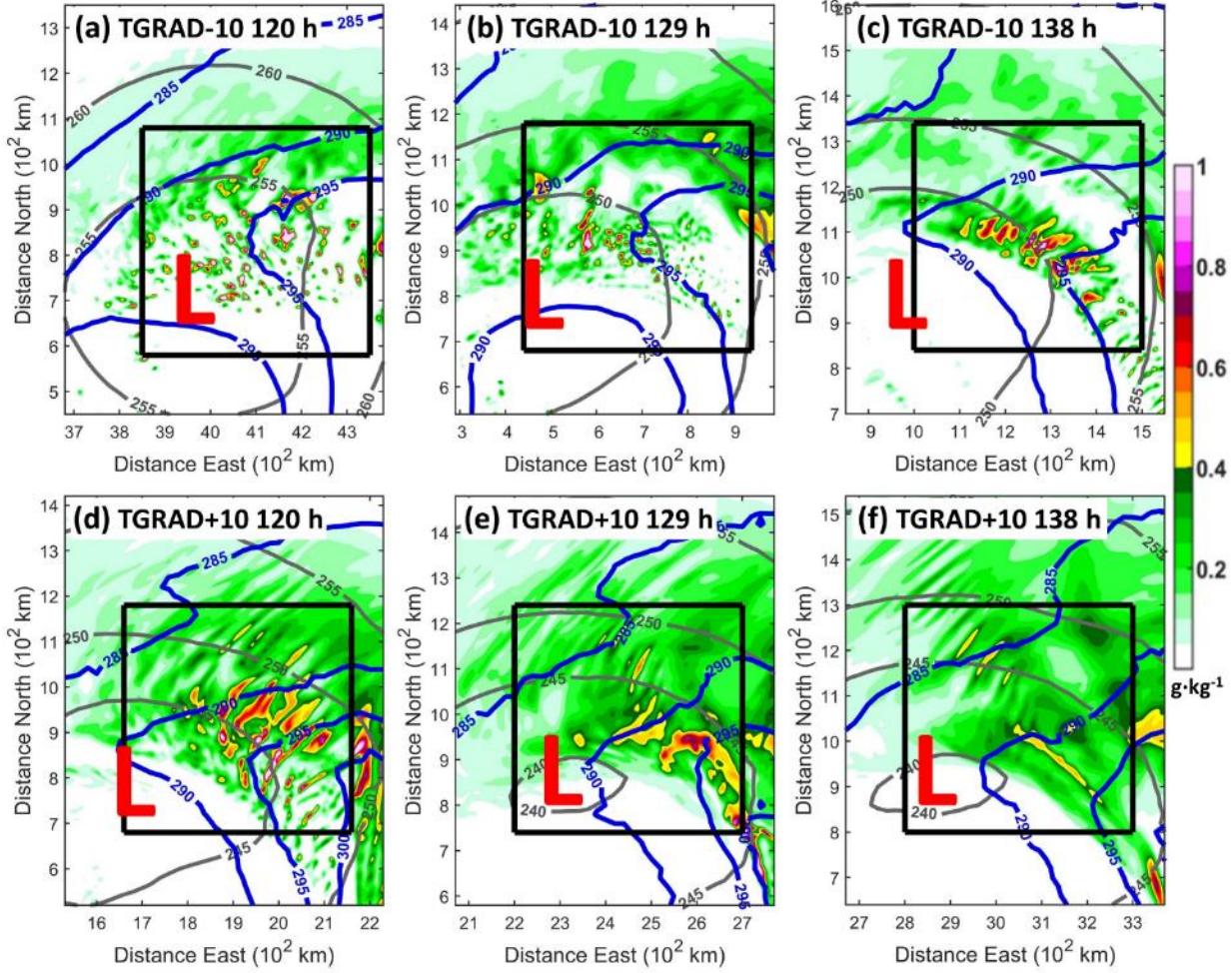
572 The area coverage of 600-550-hPa PI within the box is compared in Fig. 16f. Between
573 108 h and 132 h, the regions of PI in the STAB+5 and control runs are of similar size, while the

574 STAB+10 run is up to 15% smaller than the control run until 117 h. Then, between 133 h and
 575 138 h, the area of PI in the STAB+5 run is up to 7% larger than the STAB+10 and control runs.

576 Thus, the amplitude of PI in the runs with increased initial stability is 50-80% less than
 577 that of the control run by 120 h, corresponding to overall less convection and banding activity.
 578 However, the STAB+5 maintains more PI than the control run during the six hours prior to the
 579 decay phase, long enough for the vertical wind shear to increase to values more comparable to
 580 the control. As a result, the STAB+5 run briefly develops multi-bands later during the decay
 581 phase of the control run.

582

583 Figure 16: time series of statistics calculated within the moving boxes following the band development region
 584 in the 20-km domains of the control, STAB+5, and STAB+10 runs. Area-averaged (a) 600-500-hPa w-wind,


585 (b) 700-600-hPa frontogenesis, (c) 600-500-hPa vertical wind shear, and (d) precipitable water, and (e) box-
586 minimum 600-500-hPa $d\theta_e/dz$, and (f) the percentage of the box in which 600-500-hPa $d\theta_e/dz$ is negative.

587

588 The effects of changing the initial horizontal temperature gradient are examined by
589 comparing the 4-km precipitation (Fig. 17). Only the TGRAD+10 and TGRAD-10 runs are
590 shown during times corresponding to the genesis, mature, and decay phases of the control run.
591 Changing the gradient by only 5% results in precipitation patterns resembling a combination of
592 the control run and the runs changed by 10% (not shown). Between 0 and 120 h, the 700-600-
593 hPa temperature gradient along the northern edge of the TROWAL \sim 400 km east-northeast of
594 the low in the TGRAD+10 run amplifies (Fig 17d), becoming \sim 30% greater than the control run.
595 Meanwhile, the TGRAD-10 run temperature gradient along the northern edge of the TROWAL
596 is \sim 15% less than the control run at 120 h (Fig 17a).

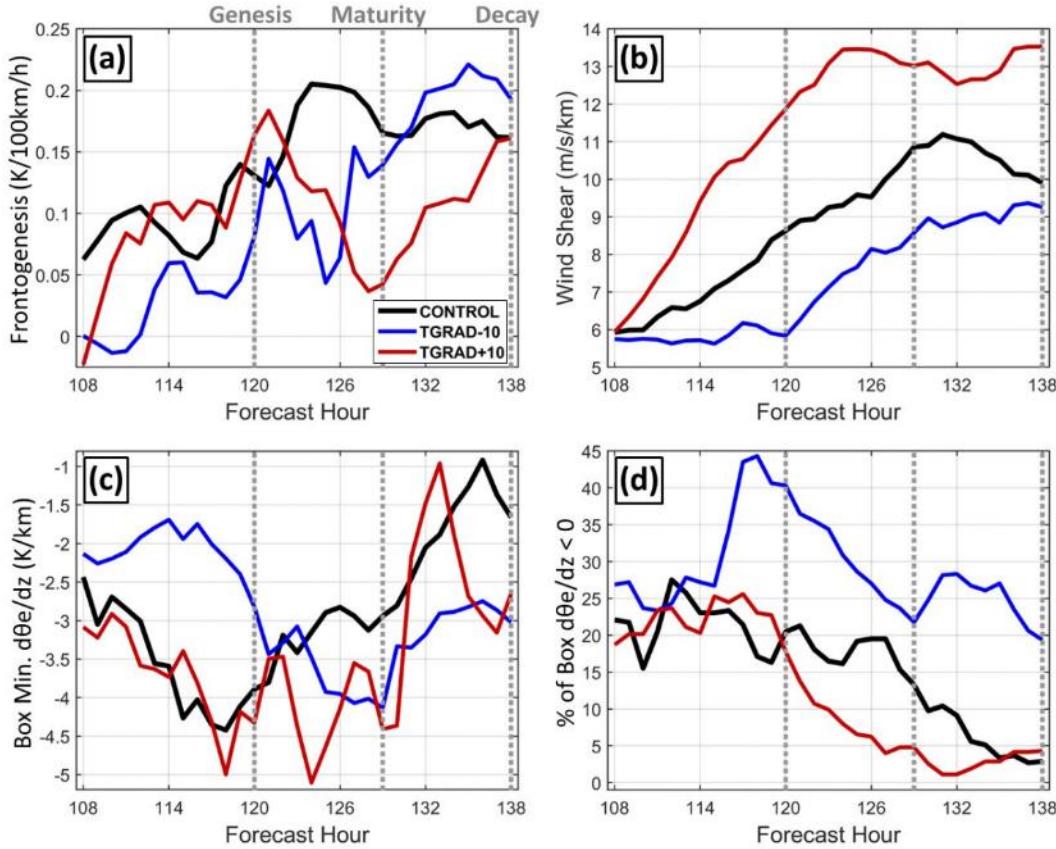
597 The TGRAD-10 run is still developing disorganized cellular convection within 300 km
598 east and north of the low at 120 h (Fig. 17a), whereas the control run at this time organized the
599 convection into a wedge shape. By 129 h, the TGRAD-10 run starts to develop cellular
600 convection 200-400 km east of the low and along the 295-K isentrope of the TROWAL (Fig.
601 17b). This convection forms small (\sim 100-km long) SW-NE segments by 138 h (Fig. 17c),
602 though they quickly dissipate as they propagate northward around the low (not shown).

603 The TGRAD+10 4-km run develops multiple SW-NE-oriented bands within a large
604 wedge east and north of the low by 120 h (Fig. 17d), already resembling the mature phase of the
605 control run (c.f. Fig. 3c). Between 129 h (Fig. 17e) and 138 h (Fig. 17f), the southern portion of
606 the wedge between the 290-K and 295-K isentropes along the TROWAL collapses into a single
607 NW-SE band. However, there are still SW-NE bands being generated more than 200 km north
608 of low. Thus, decreasing the temperature gradient by 10% delays the organization of convection
609 east of the low by nine hours and reduces the northward extent of the banding activity.
610 Conversely, increasing the temperature gradient promotes more banding activity that reaches its
611 peak nine hours earlier than the control run.

612

613 Figure 17: 700-hPa snow and ice mixing ratios (shaded), 614 700-hPa geopotential heights (black contour; every 5 615 dam), and 700-600-hPa potential temperature (blue contour; 616 every 5 K) of the 4-km TGRAD-10 run at (a) 120 617 h, (b) 129 h, and (c) 138 h. The position of the 618 surface low pressure center is marked by an L and the 619 box is where area-averages are taken to create the time series in 620 Fig. 18. (d), (e), and (f) are the same as (a), (b), and 621 (c), except for the TGRAD+10 run.

622


623 The evolution of the environments in the 20-km grids are again compared taking 624 averages within a moving 500-by-500-km box encompassing the wedge of multi-bands east of 625 the low. The 700-600-hPa frontogenesis of the TGRAD+10 run grows ~40% larger than the 626 control run by ~121 h (Fig. 18a). Afterwards, the TGRAD+10 frontogenesis decreases to ~30% 627 of the control run by 128 h, and then increases back to the same magnitude as the control run by 628 137 h. This reduction in frontogenesis corresponds to evaporative cooling from the intense 629 episode of precipitation reducing the temperature gradient (not shown). Meanwhile, the 630 TGRAD-10 run frontogenesis generally increases over time, exceeding the control by 131 h.

627 The 600-500-hPa wind shear of the TGRAD+10 run between 114 h and 138 h is on
628 average ~30% larger than the control run and ~60% larger than the TGRAD-10 run (Fig. 18b).
629 Between 131 and 138 h, the wind shear of the control run decreases, while the TGRAD-10 run
630 continues to increase, such that the difference between the two runs is less than 10% by 138 h.
631 The larger frontogenesis at ~122 h in the TGRAD+10 run corresponds to more convective
632 activity east of the low, while the larger shear corresponds to the convection organizing into
633 longer bands.

634 The amplitude of PI is again estimated from the minimum in 600-500-hPa $d\theta_e/dz$
635 anywhere within the box (Fig. 18c). The PI in the TGRAD+10 run is close to that of the control
636 between 108 h and 120 h. Afterwards, the TGRAD+10 PI decreases more slowly than the
637 control, remaining below -3.5 K/km until 131 h, which is ten hours later than the control.
638 Meanwhile, PI in the TGRAD-10 run increases between 116 h and 129 h, 20-50% greater than
639 the control after 123 h.

640 The percentage of the box where there is PI in each run is plotted in Fig. 18d. PI in the
641 TGRAD+10 run covers a region ~5% larger than the control between 115 h and 120 h.
642 Afterwards, the region of PI in the TGRAD+10 run becomes smaller than the control, falling
643 below 10% by ~123 h. While the PI in the TGRAD-10 run is overall weakest in amplitude, it
644 covers a region that is 10-20% broader than the control after 114 h.

645 The faster maturity of banding activity in the TGRAD+10 run by 120 h is consistent with
646 wind shear that is stronger than the control run throughout the simulation, a prior increase in
647 frontogenesis, and PI comparable to the control run. The persistence of the banding activity in
648 the TGRAD+10 run out to 138 h corresponds to the PI lasting longer than the control.
649 Meanwhile, the delayed development of PI in the TGRAD-10 run corresponds to the band
650 activity developing later, as the wind shear and frontogenesis increase to values comparable to
651 the control by 138 h.

652

653 Figure 18: time series of statistics calculated within the moving boxes following the band
 654 development region in the 20-km domains of the control, TGRAD-10, and TGRAD+10 runs. Area-averaged
 655 (a) 700-600-hPa frontogenesis, (b) 600-500-hPa vertical wind shear, and (c) box-minimum 600-500-hPa
 656 $d\theta_e/dz$, and (d) the percentage of the box in which 600-500-hPa $d\theta_e/dz$ is negative.

657

658 6. Conclusions

659 The goal of this study is to better understand the environmental conditions under which
 660 snow multi-bands develop in the comma head of winter storms. The structure and evolution of
 661 snow bands are examined using the idealized baroclinic wave setup within the WRF model,
 662 which is nested down to 4-km and 800-m grid spacing. The 4-km bands are similar to the 800-m
 663 bands, so 4-km is used for much of the analysis, while the 20-km grid is used for the
 664 environmental conditions.

665 The idealized WRF model develops a wedge of snow multi-bands east of the maturing
 666 surface low and along a 700-600-hPa TROWAL at 120-138 h. The individual bands start as
 667 cells at the tip of the wedge and elongate into southwest-to-northeast bands as they propagate

668 northward. Backwards hydrometeor trajectories taken within a mature band indicate that the
669 snow first develops along the band at 500-400 hPa and does not elongate much further as it falls
670 below 700 hPa. That is, the precipitation was already organized within a banded structure when
671 it formed aloft. This differs from the generating cell mechanism in which fallout from cells aloft
672 organizes into bands as it falls through a layer of shear or deformation.

673 PI and CI within the 700-500-hPa layer are the dominant instabilities where the bands
674 develop. More specifically, there is 700-600-hPa CI where the cells first develop and 600-500-
675 hPa PI extending north where the cells grow into bands. The PI is larger in amplitude, with
676 $d\theta_e/dz < -3.0 \text{ K} \cdot \text{km}^{-1}$, and decays northward where the bands gradually diminish in amplitude.
677 The appearance of the bands at ~ 120 h coincides with a growth in PI and CI from differential
678 moisture advection, which corresponds to a dry intrusion wrapping around the low pressure
679 system above 550 hPa. The activity dissipates 18 hours later after the differential advection
680 weakens and the instability is depleted by the convection. Frontogenesis within the 700-600-hPa
681 layer sharply increases up to the peak in banding activity at ~ 129 h and then gradually decreases
682 as the banding activity subsides. The largest frontogenesis is located where the cells first
683 develop and decays northward where the cells grow. The bands are oriented parallel to the 600-
684 500-hPa vertical wind shear, which extends north of the maximum frontogenesis and increases
685 from $6 \text{ m} \cdot \text{s}^{-1} \cdot \text{km}^{-1}$ at 108 h to $9-11 \text{ m} \cdot \text{s}^{-1} \cdot \text{km}^{-1}$ at 120 h.

686 Much like in case studies with multi-bands, the limited 18-hour time window over which
687 the banding activity occurs in the simulation suggests a predictability challenge. Additional
688 idealized experiments are conducted in which the stability profile and horizontal temperature
689 gradient of the initial baroclinic wave are adjusted by 5-10% across the domain. The initial
690 changes in stability grow such that the 600-500-hPa PI over the band development region in
691 these runs is 50-80% less than the original control run by 114 h. Meanwhile, the 5-10% changes
692 in the horizontal temperature gradient grow to 15-30% over the band development region by 120
693 h. Thus, the idealized baroclinic wave simulation is sensitive to small differences in the initial
694 conditions, which greatly impact the environmental parameters affecting the snow bands.

695 Increasing the initial stability by 10% fully suppresses the development of multi-bands
696 throughout the simulation, while increasing it by 5% only delays the development of multi-bands
697 by 18 hours, at which point the PI and wind shear have increased to magnitudes comparable to

698 the control run at 120 h. Meanwhile, decreasing the initial horizontal temperature gradient by
699 10% delays the growth of vertical shear and instability, corresponding to multi-bands developing
700 12-18 hours later. Conversely, increasing the horizontal temperature gradient by 10%
701 corresponds to greater vertical shear earlier in the run, resulting in more prolific multi-band
702 activity developing ~12 hours earlier. Thus, the 18-hour window in banding activity largely
703 depends on the peak development of PI coinciding with the growth in shear.

704 Future work will address remaining questions. The individual bands persist for more
705 than two hours despite moving into a region of weaker frontogenesis and PI over 500 km north
706 of the low. Thus, what mechanisms are maintaining the bands? The bands grow parallel to the
707 southwesterly 600-500-hPa shear. Does ambient shear play a role in this organization?

708

709 **Acknowledgements:** This work was funded by the National Science Foundation (AGS-
710 1904809) and NASA IMPACTS (80NSSC19K0394).

711

712 **Data Availability Statement:** The full model output from the WRF simulations is too large to
713 be publicly archived; each time step from the 4-km (800-m) grid is 3 GB (12 GB) in size. The
714 precipitation and state variables for the times and subsets of the domain shown in this paper are
715 archived in Stony Brook University's Google Drive

716 https://drive.google.com/drive/folders/14fbRYcAq14e0mxQ0U3eIxjqP04UIrCm6?usp=drive_link
717 k

718

719 **References:**

720 Baxter, M., and P. Schumacher, 2017: Distribution of Single-Banded Snowfall in Central U.S.
721 Cyclones. *Wea. Forecasting*, **32**, 533–554. DOI:10.1175/WAF-D-16-0154.1.

722 Connelly, R., and B. A. Colle, 2019: Validation of Snow Multibands in the Comma Head of an
723 Extratropical Cyclone Using a 40-Member Ensemble. *Wea. Forecasting*, **34**, 1343–
724 1363. DOI:10.1175/WAF-D-18-0182.1

725 Dowell, D. C., C. R. Alexander, E. P. James, S. S. Weygandt, S. G. Benjamin, G. S. Manikin, B.
726 T. Blake, J. M. Brown, J. B. Olson, M. Hu, T. G. Smirnova, T. Ladwig, J. S. Kenyon, R.
727 Ahmadov, D. D. Turner, J. D. Duda, and T. I. Alcott, 2022. The High-Resolution Rapid
728 Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part I:
729 Motivation and System Description. *Wea. Forecasting*, **37**, 1371–
730 1395. DOI:10.1175/WAF-D-21-0151.1.

731 Evans, A. G., J. D. Locatelli, M. T. Stoelinga, and P. V. Hobbs, 2005: The IMPROVE-1 Storm
732 of 1-2 February 2001. Part II: Cloud Structures and the Growth of Precipitation. *J.*
733 *Atmos. Sci.*, **62**, 3456–3473. DOI:10.1175/JAS3547.1.

734 Galloway, J. L., 1958: The Three-Front Model: It's Philosophy, Nature, Construction and Use.
735 *Weather*, **13**, 293–301.

736 ——, 1960: The Three-Front Model, the Developing Depression and the Occluding Process.
737 *Weather*, **15**, 293–301.

738 Ganetis, S. A., B. A. Colle, S. E. Yuter, and N. P. Hoban, 2018: Environmental Conditions
739 Associated with Observed Snowband Structures Within Northeast U.S. Winter Storms.
740 *Mon. Wea. Rev.*, **146**, 3675–3690. DOI:10.1175/MWR-D-18-0054.1.

741 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A New Vertical Diffusion Package With an Explicit
742 Treatment of Entrainment Processes. *Mon. Wea. Rev.*, **134**, 2318–2341.
743 DOI:10.1175/MWR3199.1.

744 Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A New Look at the ω -Equation. *Quart. J.*
745 *Roy. Meteor. Soc.*, **104**, 31–38. DOI:10.1002/qj.49710443903.

746 Kawashima, M., 2016: The Role of Vertically Propagating Gravity Waves Forced by Melting-
747 Induced Cooling in the Formation and Evolution of Wide Cold-Frontal Rainbands. *J.*
748 *Atmos. Sci.*, **73**, 2803–2836.

749 Keeler, K. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu,
750 and G. Thompson, 2016a: Dynamics of Cloud-Top Generating Cells in Winter
751 Cyclones. Part I: Idealized Simulations in the Context of Field Observations. *J. Atmos.*
752 *Sci.*, **73**, 1507–1527. DOI:10.1175/JAS-D-15-0126.1.

753 Keeler, K. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu,
754 and G. Thompson, 2016b: Dynamics of Cloud-Top Generating Cells in Winter
755 Cyclones. Part II: Radiative and Instability Forcing. *J. Atmos. Sci.*, **73**, 1529-1553.
756 DOI:10.1175/JAS-D-15-0127.1.

757 Kenyon, J. S., 2013: The Motion of Mesoscale Snowbands in Northeast U.S. Winter Storms.
758 M.S. thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany,
759 State University of New York, 108 pp.,
760 http://www.atmos.albany.edu/student/jkenyon/Kenyon_thesis.pdf.

761 Martin, J. E., 1998: The Structure and Evolution of a Continental Winter Cyclone. Part I: Frontal
762 Structure and the Occlusion Process. *Mon. Wea. Rev.*, **126**, 303–328

763 Nicosia, D. J., and R. H. Grumm, 1999: Mesoscale Band Formation in Three Major Northeastern
764 United States Snowstorms. *Wea. Forecasting*, **14**, 346–368. DOI:10.1175/1520-
765 0434(1999)014,0346:MBFITM.2.0.CO;2.

766 Norris, J., G. Vaughan, and D. Schultz, 2014: Precipitation Banding in Idealized Baroclinic
767 Waves. *Mon. Wea. Rev.*, **142**, 3081–3099. DOI:10.1175/MWR-D-13-00343.1.

768 Norris, J., G. Vaughan, and D. M. Schultz, 2017: Variability of Precipitation along Cold Fronts
769 in Idealized Baroclinic Waves. *Mon. Wea. Rev.*, **145**, 2971-2992. DOI: 10.1175/MWR-
770 D-16-0409.1

771 Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An Observational Study of
772 Cold Season–Banded Precipitation in Northeast U.S. Cyclones. *Wea. Forecasting*, **19**,
773 993–1010. DOI:10.1175/815.1.

774 —, B. A. Colle, and S. E. Yuter, 2008: High-Resolution Observations and Model Simulations
775 of the Life Cycle of an Intense Mesoscale Snowband Over the Northeastern United
776 States. *Mon. Wea. Rev.*, **136**, 1433–1456. DOI:10.1175/2007MWR2233.1.

777 —, —, and R. McTaggart-Cowan, 2009: The Role of Moist Processes in the Formation and
778 Evolution of Mesoscale Snowbands Within the Comma Head of Northeast U.S.
779 Cyclones. *Mon. Wea. Rev.*, **137**, 2662–2686. DOI:10.1175/2009MWR2874.1.

780 —, —, and A. R. Aiyyer, 2010: Evolution of Mesoscale Precipitation Band Environments
781 Within the Comma Head of Northeast U.S. Cyclones. *Mon. Wea. Rev.*, **138**, 2354–2374.
782 DOI:10.1175/2010MWR3219.1.

783 Penner, C. M., 1955: A Three-Front Model for Synoptic Analyses. *Quart. J. Roy. Meteor. Soc.*,
784 **81**, 89–91

785 Petterssen, S., 1936: Contribution to the Theory of Frontogenesis. *Geofys. Publ.*, **11** (6), 1–27

786 Plougonven, R., and F. Zhang, 2014: Internal Gravity Waves from Atmospheric Jets and Fronts.
787 *Rev. Geophys.*, **52**, 33–76.

788 Rauber, R. M., S. M. Ellis, J. Vivekanandan, J. Stith, W-C. Lee, G. M. McFarquhar, B. F. Jewett,
789 and A. Janiszkeski, 2017: Finescale Structure of a Snowstorm Over the Northeastern
790 United States: A First Look at High-Resolution HAIPER Cloud Radar Observations.
791 *Bull. Amer. Meteor. Soc.*, **98**, 253–269. DOI: 10.1175/BAMS-D-15-00180.1.

792 Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon,
793 2014: Vertical Velocity and Physical Structure of Generating Cells and Convection in
794 the Comma Head Region of Continental Winter Cyclones. *J. Atmos. Sci.*, **71**, 1538–
795 1558. DOI:10.1175/JAS-D-13-0249.1

796 Rotunno, R., W. C. Skamarock, and C. Snyder, 1994: An Analysis of Frontogenesis in
797 Numerical Simulations of Baroclinic Waves. *J. Atmos. Sci.*, **51**, 3373–3398.
798 DOI:10.1175/1520-0469(1994)051,3373:AAOFIN.2.0.CO;2.

799 Shields, M. T., R. M. Rauber, and M. K. Ramamurthy, 1991: Dynamical Forcing and Mesoscale
800 Organization of Precipitation Bands in a Midwest Winter Cyclonic Storm. *Mon. Wea.
801 Rev.*, **119**, 936–964. DOI:10.1175/1520-0493(1991)119,0936:DFAMOO.2.0.CO;2.

802 Skamarock, W., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X. -Y. Huang, and
803 W. Wang, 2008: A Description of the Advanced Research WRF Version 3. NCAR
804 Technical Note NCAR/TN-475+STR. DOI:10.5065/D68S4MVH.

805 Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit Forecasts of Winter
806 Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of
807 a New Snow Parameterization. *Mon. Wea. Rev.*, **136**, 5095–5115.
808 DOI:10.1175/2008MWR2387.1.

809 Uccellini, L. W., and S. E. Koch, 1987: The Synoptic Setting and Possible Energy Sources for
810 Mesoscale Wave Disturbances. *Mon. Wea. Rev.*, **115**, 721–729.

811 Xu, Q., 1992: Formation and Evolution of Frontal Rainbands and Geostrophic Potential Vorticity
812 Anomalies. *J. Atmos. Sci.*, **49**, 629–648, DOI:10.1175/1520-
813 0469(1992)049,0629:FAEOF.R.2.0.CO;2.

814 Zhang J., K. Howard, C. Langston, B. Kaney, Y. Qi, L. Tang, H. Grams, Y. Wang, S. Cocks, S.
815 Martinaitis, A. Arthur, K. Cooper, J. Brogden, and D. Kitzmiller, 2016: Multi-Radar
816 Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating
817 Capabilities. *Bulletin of the American Meteorological Society*, **97**(4), 621–638. DOI:
818 10.1175/BAMS-D-14-00174.1