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ABSTRACT

With advances in electronic-skin and wearable technologies, it is
possible to continuously measure stress markers from the skin and
sweat to monitor and improve wellbeing and health. Understand-
ably, the sensor’s engineering and resolution are important towards
its function. However, we find that people looking for an e-skin
stress sensor may look beyond measurement precision, demanding
a private and stealth design to reduce, for example, social stigma-
tization. We introduce the idea of a stress sensing "wear index,"
created from the combination of human-centered design (n=24),
physiological (n=10), and biochemical (n=16) data. This wear index
can inform the design of stress wearables to fit specific applications,

*Both authors contributed equally to this research.

e.g., human factors may be relevant for a wellbeing application,
versus a relapse prevention application that may require more sens-
ing precision. Our wear index idea can be further generalized as a
method to close gaps between design and engineering practices.

CCS CONCEPTS

« Human-centered computing — User studies; « Hardware
— Flexible and printable circuits; » Applied computing — Health
informatics.
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1 INTRODUCTION

Daily stress is defined as the body and mind reaction to routine
stressors, i.e. challenges of day-to-day living. These stressors can
either be predictable (e.g., daily commutes) or unpredictable (e.g.
a sudden deadline) and occur in 40% of all days [1]. Daily stress
has been shown to cause psychological distress and exacerbate
symptoms of existing physical health conditions [41]. Repeated
triggering of daily stress can also lead to chronic stress, which
has been associated with a variety of pathophysiological risks—
conditions that impair quality of life, shorten life expectancy, and
lead to developing mental illness [17, 41]. Despite its prevalence,
we have no objective tests or scalable technologies for detecting
stress on time to help design stress management interventions.

One promising area of research focuses on the continuous sens-
ing of physiological and biochemical data using wearable sen-
sors (Wearables), widely used for lifestyle and medical monitoring
[13, 34, 44]. When designing these wearables, biosignal acquisition
often dictates design choices, such as form factor, while user needs
are a secondary concern. However, in the case of wearables for
wellness and health applications, such as stress management, both
biosignals and human factors are important to consider to improve
adoption and adherence, especially when used for preventative pur-
poses. Common form factors include wristwatches and emerging
adhesive bandages (e.g., SenseON and AMPStrip [56]). Watch-based
sensors are the most common, but they tend to provide less data
granularity and are difficult to integrate for precision applications.
Additionally, users may often take them off, making it difficult to
obtain continuous data [24]. As a result, there has been increas-
ing interest in electronic-skin (e-skin) wearables that are not only
able to extract new metrics, such as cortisol (a hormone directly
related to stress), but also more private, more flexible in form factor,
disposable, easy to apply across the body, and potentially more com-
fortable compared to hard electronics (Fig. 1). These advantages
can help boost new designs of personalized solutions for stress
management.

In this work, we examine how healthy users might react to an
e-skin wearable device prototype designed to help them manage
stress. Based on a collaborative effort between human-computer in-
teraction (HCI), chemical engineering, and psychiatry researchers,
we present a way to combine human factors with biosignal data
to inform future designs. Our research questions include: Where
would healthy users be comfortable placing an e-skin stress sensor
on their bodies and why? How might their preferred placement loca-
tions impact signal strength for electrophysiology (HRV, EDA) and
biochemical (cortisol) stress markers? And, can we unify these two
visions in a single design parameter?

To answer these questions, we collected three sources of data:
human factors, on-skin electrical and optical biosignals, and sweat
biochemical biosignals. First, we investigated n=24 healthy users
on their perceptions and preferences for e-skin wearables for stress
management, factors that contribute to adoption and adherence,
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and explored how these preferences might change after a short
wear session. We complemented these data with on-body biosignal
data, namely heart rate variability (HRV) and skin conductance
(SC) (n=10), and sweat-based cortisol levels (n=16) sampled at some
of these preferred/not preferred body locations.

Our results suggest that, while the wrist and the forehead are rich
for sensing, users tend to prefer more discreet wear locations for
privacy, such as the upper arm and torso. Thus, we used a combined
weighting mechanism to merge both human factors and biosignals
(Fig. 1c). This weighting yielded the upper arm as one of the most
desired wear locations, followed by the forearm. Our results also
suggest that stigmatization of stress management is a key design
factor and that factors such as comfort, size, and concealability
were viewed as critical to adoption and factored into participant’s
choice in where to wear our stress management prototype.

In summary, the contributions of this work include (i) a mul-
tidisciplinary effort for combined user-centric and biosignal data
acquisition, (ii) a visualization and weighting approach that bal-
ances user-centered design with engineering-centered biosignal
measurement into a single "wear index" to identify wear locations
for designing stress wearables, and (iii) a discussion on the poten-
tial use cases for this methodology and to extend it beyond stress
management to close the gap between design and engineering
approaches to build wellbeing and health wearable sensors.

2 RELATED WORK
2.1 Adoption of E-skin Wearables

2.1.1  Medical Applications. Existing medical wearables range from
diabetes monitoring devices to adhesive patches for contraception
(e.g., [49]) or smoke cessation (e.g., [15]). E-skin, devices are a rel-
atively new and experimental class of medical wearables. E-skin
wearables tend to be devices made of flexible plastics [35, 55], or
more experimental substrates (e.g., organic polymers), containing
electronic or biochemical components [50, 72]. The construction
of these devices is complex and often blends material sciences, bio-
chemistry, and numerous other disciplines to create technologies
capable of seamlessly monitoring wearers to provide a wealth of
data for care providers. However, many existing medical wearables
in commercial and academic domains focus on biosignal quality
because they are often designed for short-term monitoring with
the goal of acquiring high-quality medical data. For example, elec-
trocardiography (ECG) data is the most important factor for a heart
monitoring patch, and it is typically worn for about 14 days for
diagnostic purposes.

While biosignal quality is very important, it is necessary to ex-
amine human factors during the design process, particularly when
considering long-term continuous monitoring. For example, pri-
vacy concerns with respect to how biosignal data might be accessed
or who might have access could be a concern for some users con-
sidering engaging in monitoring actionable medical information.
Moreover, Garabet et al. [20] found that the degree of acceptability
of the design was related to the perceived control the wearer had
may greatly impact the perceptions of passive e-skins.

2.1.2  User-centric Exploration. Human-Computer Interaction (HCI)
and Ubiquitous Computing studies have been exploring the use of
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Figure 1: Skin-like stress sensor design process. (a) Desired engineering design properties of the device: (i) skin-like and
imperceptible; (ii) private - safeguarding sensitive data; (iii) multi-sensory - collecting necessary physiological biosignals such
as skin conductance (SC), heart rate variability (HRV), and cortisol levels; (iv) personalized - tailored to each individual, and
use case; and (v) low-cost and disposable to ensure ease-of-use and reliability. (b) Overview of the combined design approach
used in this study. We collected user preference data from a user study, and performed on-body sensing to assess the quality
of the biosignals at the preferred body locations. Then we weighted both human factors and biosignal qualities to create a
combined wear index ([, eqr) for different body locations. (c) Visual depiction of wear location combining user preference data
(SPreference) and biosignal data (Sgiosignais) used to find desired wear locations (Iyear)-

wearable technologies for more than a decade ([5, 19]), as well as
studies of digital phenotyping using smartphones and wearables
for mental health monitoring[14, 51]. The majority of e-Skin ap-
plications have focused on exploring new materials (e.g., [26]) or
fabrication methods (e.g., [40]) that support touch interactions with
personal computing devices [38, 67, 68]. In addition, researchers
have explored user reactions to such devices [27, 37] and differ-
ences across cultures (e.g., [25]). With regard to their use in public,
findings point to two extremes, from users who are interested in
adopting the technology to those who are more averse to their
use even by others [28, 48, 70]. As a result, there is an increasing
interest in studying early user reactions to make recommendations
about design, form factors, and properties to increase the likelihood
of adoption.

2.2 Biosignal Measurement

A growing body of literature indicates physiological parameters
suchas HRV [2, 11, 31], SC [10, 53, 62], and biochemical signals such
as cortisol [9, 36, 43, 58] are linked to stress, anxiety, and depression
[12]. SC measures the eccrine sweat gland activity in response to
stress [10]. HRV measures the balance between the autonomic
nervous systems—sympathetic (SNS) and parasympathetic (PNS).
SNS gets activated when facing threats or stressors, while PNS
handles the body’s relaxed state [8]. Finally, cortisol is the body’s
main stress hormone. In response to internal or external stressors,
cortisol is released from the adrenal glands and puts the body into
a heightened alert state. Chronic activation of the stress-response
system results in overexposure to cortisol, which can disrupt almost



all body processes [57]. Thus, monitoring biosignals is increasingly
viewed as fundamental in diagnostics and precision health [18].

One challenge for these wearable sensors is signal acquisition
and maintaining quality in the field. HRV and SC are normally
collected with desktop signal acquisition units, while cortisol levels
in bodily fluids are measured using enzyme-linked immunosorbent
assay (ELISA) [22] and liquid chromatography/mass spectrometry
(LC/MS) in lab settings. Signal strengths of SC, HRYV, and cortisol
also vary significantly on the body. HRV is often derived from
the photoplethysmography (PPG) signal, which depends on the
arterial blood signal collected by an optical sensor. The higher the
signal from the arteries, the better the PPG signal quality. Therefore,
locations where the arteries are near the skin’s surface provide
excellent PPG signal. The forehead and the underside of the wrist
are usually good choices for reflection-mode PPG sensing [32, 33].
On the other hand, SC depends on the density of the eccrine sweat
glands, which is highest on the fingers and the shoulders, but drops
roughly by half on the wrist and the arm [6, 59, 64] (Fig. 1c). van
Dooren has shown opportunities to extend traditional SC sensing
from the hands to feet and shoulders in ambulatory settings [64],
which shows an opportunity to try biosignal acquisition in other
parts of the body. Again, this work was done in isolation only for
SC data, without other biosignals, and without considering human
factors.

As for cortisol sensing, saliva or sweat is typically collected and
sent to the lab to be analyzed. Gathering a large enough sample
for analysis is often an invasive process. Samples must be properly
stored for transport, tend to degrade over time (e.g, due to evapora-
tion), and the technology used to analyze samples is prohibitively
expensive [7]. However, recent advancements in e-skin and wear-
able technology are making it increasingly easy to measure these
signals (e.g., HRV [42, 63], SC [47, 69], and cortisol [46, 61]) at the
sources where signals are strongest.

2.3 Wearable Sensor Placement

There have been few studies that aim at understanding the place-
ment of wearable sensors based on more than just technical or
design issues. For example, Zeagler developed various body con-
tour maps that incorporate social and technical aspects such as
motion impedance as a concern or that certain areas of the body are
optimal for PPG sensing [71]. However, these factors were viewed
retrospectively, and we are unable to know if they were dominated
by engineering or social parameters. Although Zeagler’s contours
informed some elements of our data-collection process, we decided
to directly study where people prefer to place stress sensors, because
the impact of social stigmatization was not captured in Zeagler’s
work. In this work, we use a multi-factorial (human factors and
biosignals) design approach (Fig. 1c). We combine wearability pref-
erences (Spreference) With biosignal intensities (Spiosignats)- We
then proposed a combined wear index created using a weighting
mechanism: (Iweqr = W1 X Spyeference + W2 X SBiosignals)- We then
visualize this data to explore tradeoffs between how Spy¢ference
and Sgjosignals are utilized to suggest optimal wear locations.
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3 MULTI-FACTORIAL DATA COLLECTION
AND INTEGRATION

We present three methods to collect Human Factors, On-Skin Phys-
iology, and Biochemical data. Three teams of researchers from HCI,
Chemical Engineering, and Psychiatry collected each dataset, re-
spectively, following best practices for human factors, biosignal en-
gineering design, and psychophysiology data collection procedures,
with their respective limitations and caveats. All data collection
procedures followed IRB protocols approved by the Committee
for Protection of Human Subjects at our university (protocol no.,
IRB-45825 and IRB-41837). The data collected was then integrated
into a single combined index and visualization to balance human
factors and biosignals.

3.1 Custom-built Sensor

Both human factors and biosignal data, except for cortisol, were
obtained using a custom-built wearable sensor depicted on Figure
2b. This sensor had two modules, a flexible electronics (e-skin) mod-
ule to be used for microfluidics sweat extraction (1 inch x 1 inch),
and a hard electronics module (1 inch x 1 inch) used for increased
accuracy of the Skin Conductance (SC) and Heart Rate Variabil-
ity (HRV) on-skin data (2 inch x 1 inch overall). To obtain valid
human factors data, the HCI team kept both modules, despite the
possibility to have simulated a fully flexible version. The sensor
included a pair of electrodes with hydrogel for SC data, and an
optical sensor for HRV interfaced with the nRF52832 Bluetooth
transceiver using a serial peripheral interface (SPI). We ensured a
typical range of 0-50 uS for SC using a feedback loop with a Texas
Instruments TLV9102, dual 1MHz, 16-V rail-to-rail op amps to guar-
antee <10pA current flows. The output signal was sampled using a
12-bit analog-to-digital-converter (ADC) of a Nordic Semiconductor
nRF52832 Bluetooth transceiver. The HRV signal was obtained from
PPG signals collected by an optical sensor SFH 7050 from OSRAM
Opto Semiconductors Inc. Red (660 nm) and NIR (950 nm) lights
were used to collect the PPG signals at 100 Hz sampling frequency.
The NIR signal was used in a peak detection algorithm to find the
systolic peaks. HRV was calculated using a time-domain RMSSD

. "' (Peak;—Peaki.1)? . .
metric \/ Li ( eaj_l eakin1) from a window of n=>5 systolic peaks.

3.2 Data Collection 1: Human Factors

3.2.1 Procedure. To assess user perceptions of this emerging e-
skin sensor for stress monitoring the HCI research team applied a
two-part design probe method. First, we set up three public kiosks
at a university café, university bookstore, and local public library.
We recruited passersby for brief semi-structured interviews (Me-
dian=24 min, SD=4.5 min). In addition to questions about wearable
device use, participants marked on paper body contour maps (Sup-
plementary Fig. 3) where they would and would not wear an e-skin
stress sensor while “thinking aloud” to explain their rationale. Par-
ticipants then attached a non-working low-fidelity version of our
custom-built e-skin sensor (Fig. 2a and Supplementary Fig. 4) to
their preferred body location using medical grade tape. The lo-fi
prototype had a similar form factor to the wearable used to collect
biosignals (Fig. 2b) in terms of size, shape, and weight, as well as the
planned attachment method. After a short experience, participants
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Thighs 11 46% 9 38% Yes
Lower torso 9 38% 4 17%
Pelvis 9 38% 12 50%
Legs 7 29% 3 13%
Ankles 6 25% 3 13%
Forearms 6 25% 5 21%
Armpits 6 25% 6 25%
Knees 4 17% 8 33%
Neck 3 13% 9 38%
Wrists & hands 2 8% 12 50% No
Feet 1 4% 11 46% Human
Face/head 1 4% 19 79% factors
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Figure 2: Summary of human factors data collection procedure. (a) Participants interacting with lo-fi devices with the same form
factor of the custom-built wearable. (b) Custom-built sensor utilized for collecting SC data (using hydrogel-coated electrodes)
and HRV data (derived from photoplethysmography (PPG) signals obtained by an optoelectronic sensor). (c) Summary of body
locations where they would prefer to wear (Yes/red) or not to wear (No/blue) the device - the complete dataset is provided in
Supplementary Fig. 5. (d) Summary body contour plot showing positive preference (red), and negative preference (blue), and
dots indicating the places (from table c) that participants marked on paper body contours.

completed a short survey (derived from the WEAR scale [29, 30])
about demographics, comfort, and perceived social acceptability.
Participants were then asked if they would like to change the loca-
tion of the probe (e.g., to a potentially more comfortable location)
and, if not, to go about the rest of their day while continuing to wear
the prototype, to later complete a post-study survey about their
experience. If they changed the location of the prototype, partici-
pants were asked to explain why they did it. The follow-up survey
was emailed to participants on the evening of their participation.
Participants received 3/4 of their compensation after completing
the first part and the remainder for completing the follow-up survey

at the end of the day. A depiction of the complete procedure can be
found in Supplementary Fig. 1.

We recruited n=24 participants (12 male, 11 female, 1 non-binary)
whose age was (Mean=35.8, Median=28, SD= 15.4). Most (79%) had
bachelor’s and higher education, and most (79%) were white or
asian, working full-time (50%) or studying (38%). Perceived Stress
Scale (PSS-4) [23, 66] indicated that most experienced moderate
levels of stress over the last month (Median=6.44, SD=3.29) as shown
in Supplementary Fig. 2.

3.2.2  Data Pre-Processing. Data from this study includes survey
responses, paper body contour maps, and interview transcripts. De-
scriptive statistics were calculated from closed-form survey results



and body contour maps, while open-response questions were the-
matically analyzed. All interviews were professionally transcribed
for computer-assisted qualitative data analysis. A researcher de-
signed a preliminary codebook based on our research questions and
concepts raised in prior literature. Two other researchers indepen-
dently coded random selections of 12% of the interview transcripts
according to the preliminary codebook, and inter-rater reliability
(IRR) was measured using Cohen’s kappa (k). Between rounds, the
researchers met to resolve disagreements and update the codebook.
An overall k=0.83, considered an almost perfect agreement, was
achieved after two rounds of coding. The remaining interviews
were then independently coded by the two researchers.

3.2.3 Preferred On-Body Placement. Participants showed a strong
preference for the upper arms and upper torso (i.e., chest and back)
followed by the stomach, waist, and thighs (Fig. 2c). Participants
reported that concealability and comfort were the top decision
factors. Thus, we note that all these body locations are usually
covered by everyday clothes (e.g., t-shirt, shorts). On the other hand,
visible locations such as the head and extremities (i.e., hands, wrists,
and feet) were undesirable. Similarly, they disliked locations where
the placement of the wearable would interfere with the body’s
natural movement (e.g., elbows, knees). A condensed version of the
body map results is shown in Fig. 2d, where red indicates desirable
locations, blue indicates undesirable locations, and points represent
the locations listed in Fig. 2c. The complete set of results is presented
in Supplementary Fig. 5.

3.24 Additional Qualitative Findings.

Prior Experience with Wearables. A majority of participants (87%,
21/24) associated wearables with wrist-worn technology for fitness
tracking, in particular, smartwatches. A third (33%, 8/24) defined
wearables as devices that monitor user’s health. Nearly half men-
tioned medical devices as examples of wearables including heart
monitors, nicotine patches, and hearing aids. While some (17%, 4/24)
had worn wearables for fitness or medical reasons, only a small
fraction (8%, 2/24) used a wearable at the time of the interview. A
majority (75%, 18/24) did not see a utility in a wearable that was
not covered by other devices like their smartphones. High cost and
lack of comfort were also reported as barriers to ownership. Of the
few using a wearable, most cited utility and comfort as top criteria
in selecting devices.

Adoption and Social Acceptability. Most participants (58%, 14/24)
expressed interest in e-skin wearables for stress monitoring. A ma-
jority (79%, 19/24) said they would be more likely to use it if their
doctor recommended it. Of those not interested, over a third (37%,
5/14) said medical advice would not impact their decision. More
than half (58%, 14/24) said appearance is an important factor, em-
phasizing that the ideal wearable should be fashionable ([16]) and
inconspicuous - seamlessly blending in with the wearer’s attire
to avoid unwanted attention. A third (33%, 8/24) said a wearable
would be more acceptable if it was part of a social trend normalizing
stress management. While participants were initially somewhat
concerned about judgment by others, after wearing the device, their
interest in the e-skin wearable increased, and showed less concern
that the wearable might make others uncomfortable, cause awk-
wardness, or result in them being ridiculed. However, paradoxically,
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they became more worried about what the device might commu-
nicate about them—being marked as someone in need of stress or
mental health support (Supplementary Fig. 6).

Usability. Assuming an ideal scenario where a wearable is cheap,
durable, and waterproof, most participants would prefer to change
it weekly or bi-weekly, with some of them choosing daily or monthly.
Participants rationalized these choices by balancing personal hy-
giene, signal continuity, convenience, and cost (Supplementary Fig.
7).

3.3 Data Collection 2: On-Skin Physiological
Biosignals

3.3.1 Procedure and Participants. Volunteers were asked to put on
the sensor attached with medical tape for 2 minutes to obtain SC
and HRV data on 6 different locations (1. wrist, 2. forearm, 3. upper
arm, 4. forehead, 5. upper chest, 6. stomach), while remaining in a
calm seated position (Fig. 3a). Although the wrist and the forehead
were not preferred locations indicated in the human factor study,
we chose the forehead due to the high biosignal intensities and the
wrist because most commercial wearables are wrist-worn. n=10
volunteers (6 male, 4 female) were recruited from among healthy
university graduate student population (age mean = 26).

3.3.2 On-Body Biosignal Magnitudes. Fig. 3b shows the average
PPG signal magnitude and variation at different places on the body.
NIR PPG signal was normalized for each participant, and the av-
erage value (bar height) and the standard deviation (error bar) of
the normalized data are shown in Fig. 3b. The complete dataset of
n=10 participants is shown in Supplementary Fig. 8. The forehead
provides the highest signal magnitude (100%). For NIR light, the
average normalized PPG signal percentages are approximately 49,
17, 13, 100, 2, and 4 on the wrist, forearm, upper arm, forehead,
upper chest, and stomach, respectively. The reproducibility of the
measurement is shown in Supplementary Fig. 9, where 5 consecu-
tive PPG measurements were collected from one participant while
donning and doffing the sensor for each measurement. The upper
chest showed the lowest signal magnitude and was susceptible to
motion artifacts during breathing. A similar study was performed
for measuring SC.

We observed SC with average normalized percentages of ap-
proximately 29, 39, 32, 100, 27, and 24 on the wrist, forearm, upper
arm, forehead, upper chest, and stomach, respectively. The SC data
was normalized for each participant, and the average value (bar
height) and the standard deviation (error bar) of the normalized
data are shown in Fig. 3c. The complete dataset of n=10 participants
is shown in Supplementary Fig. 10. We performed a reproducibility
study of the SC sensor, which is presented in Supplementary Fig. 11.

Figure 3d(1) shows the wrist data of a single volunteer. Fig-
ures 3d(2)-(6) show the red and NIR PPG signals and SC from the
forearm, upper arm, forehead, upper chest, and stomach, respec-
tively. The PPG signal is pristine on the wrist and the forehead,
but gets attenuated on the forearm and the upper arm. To calculate
HRYV, it is imperative that the PPG signal quality is good enough
for proper peak detection. Figures 3d(1)-(4) show that the NIR PPG
signals on the wrist, forearm, upper arm, and forehead are adequate
for peak detection. However, on the upper chest and the stomach,
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Figure 3: Heart rate variability (HRV) and skin conductance (SC) data distribution on the body. (a) Sensor placement locations - (1)
wrist, (2) forearm, (3) upper arm, (4) forehead, (5) upper chest, and (6) stomach for n=10 participants. (b) Photoplethysmogharpy
(PPG) signal magnitudes for near-infrared (NIR) light on the aforementioned 6 locations. HRV is derived from PPG, hence,
PPG signal magnitudes are used in the analysis. NIR PPG signal was normalized for each participant (bar height = average,
error bars = SD) (see Supplementary Fig. 8 for a complete PPG dataset). The forehead shows the highest signal magnitude and
gradually drops on the wrist, the forearm, and the upper arm. The signal is the lowest on the chest. (c) Variation of SC data
normalized for each participant (bar height = average, error bars = SD) (see Supplementary Fig. 10 for a complete SC dataset). (d)
PPG from red and NIR channels, systolic and diastolic peaks from PPG, heart rate (HR), HRV calculated from PPG signal, and
SC from the 6 locations. PPG signal is clear on the wrist, forearm, upper arm, and forehead, and gets attenuated on the upper
chest and stomach.

the signals barely show PPG peaks, making the data unusable. Both with respiration - data where respiration affects the PPG signal is
on the chest and the stomach, the PPG signals become modulated shown in Supplementary Fig. 12.
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Figure 4: Sweat cortisol distribution on the body. (a) Sweat
collection locations - (1) forehead, (2) right arm (cubital fossa),
(3) left arm (cubital fossa), (4) back of the right knee (popliteal
fossa), and (5) back of the left knee (popliteal fossa). (b) Sweat
cortisol concentrations on the aforementioned 5 locations.
Sweat cortisol concentrations were normalized for each par-
ticipant in the n=16 participant study, and bar heights repre-
sent the average of the normalized value and the error bars
represent the standard deviation of the normalized value.
The complete dataset of n=16 participants is shown in Sup-
plementary Figure 13.

3.4 Data Collection 3: Cortisol from Sweat

3.4.1  Procedure. Cortisol, a molecule highly correlated with stress,
and present in body fluids, was collected separately from the e-skin
sensor, which did not have the microfluidics capacity to extract
enough quantities of sweat, nor the ability to elicit sweat directly
using methods such as iontophoresis, which involves sending an
electrical current to the epidermis to elicit sweat production. The
psychophysiology team had the challenge to generate sufficient
sweat to obtain a valid cortisol signal. This is a hard task, as normally
cortisol is obtained from saliva, where cortisol concentrations are
about an order of magnitude higher than sweat. The team decided
to use a body temperature manipulation method that guarantees
minimum quantities of sweat which was approved as part of a
larger protocol. However, cortisol signal can be obtained from ion-
tophoretically generated sweat as demonstrated by Wang et al. [65]
and Torrente-Rodriguez et al. [61]. Furthermore, our latest gener-
ation of wearable has the capability of wearable cortisol sensing
in addition to the SC and HRV measurements. n=16 volunteers
were recruited to sit in a portable dry infrared sauna that zipped
up around the chin. Their whole body was enclosed in the sauna
except their head. The sauna temperature was set to 60 °C (140 °F).
Volunteers remained in the sauna until either 45 min had elapsed,
or until their core body temperature reached the maximum safety
limit of 39.4 °C (103 °F). Volunteers had their core body temperature
measured using an infrared tympanic membrane thermometer ev-
ery 3 min that they were in the sauna to ensure that their core body
temperature did not get too high. We collected sweat samples from
participants as their bodies attempted to regulate their core body
temperature. Sweat was collected utilizing an array of non-woven
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dental sponges to absorb the sweat from the skin surface. Dental
sponges were affixed to the body using a transparent stretchable
and waterproof medical dressing (Tegaderm, 3M).

3.4.2 Data Collection and Analysis. Data was measured in five
body locations where there was a higher expectation of obtaining
sufficient sweat from the manipulation. Sufficient sweat for appro-
priate cortisol analysis was collected from (1) forehead proximal to
the frontal bone, (2) left and (3) right cubital fossa (inside of elbow),
and (4) left and (5) right popliteal fossa (back of the knee). Once
volunteers exited the sauna the sweat saturated dental sponges
were placed in centrifuge-compatible tubes originally designed to
extract saliva from cotton swabs (Salivette system, Sarstedt, inc).
The dental sponges were centrifuged at 3300 revolutions per minute
(rpm) for 10 min to separate sweat from the dental sponge. Sweat
samples were then frozen and stored at -80 °C until they were
thawed for analysis. The analysis of sweat samples was conducted
by Dresden lab service utilizing a standard ELISA with a 0.2 nmol
limit of detection (LOD) and a coefficient of variability of <7% for
both the inter-assay and intra-assay measures.

3.4.3 On-Body Cortisol Concentration. Sweat cortisol concentra-
tions were normalized for each participant, and the average value
(bar height) and the standard deviation (error bar) of the normal-
ized data are shown in Fig. 4b. We observed average normalized
cortisol percentages of approximately 82, 73, 78, 61, and 59 on the
aforementioned five locations, respectively. The complete dataset
is shown in Supplementary Fig. 13.

4 COMBINED PLACEMENT LOCATION
ANALYSIS

To visualize combined human factor and biosignals data, we cre-
ated body contour maps generated by interpolating the sensor data
using nearest neighbor multivariate interpolation, and derived a
common index associated with the visualizations - SC, HRV, and
cortisol contour maps are shown in Fig. 5a-c (The raw data is pro-
vided in Supplementary Figures 8-13). Here, red regions signify
higher signal quality, and blue regions signify lower signal quality,
while dots represent the data collection locations (9 locations for
SC and HRV = 6 original locations plus 3 replicated measurements
in the opposite arm, and 5 locations for cortisol). To combine biosig-
nals we normalized SC, HRV, and cortisol: Sgiosignat,normalized =

SBiosignal,i
max (SBiosignal) *
weighted: SBiosignals = W1 X SsC + W2 X SHRV + W3 X Scortisol>
where, w; = wy = wz = 0.33 (Fig. 5d). The user preference body
contour map was generated from the design probe study (Fig. 5e).
Here, red regions represent higher user preference, and blue re-
gions represent lower user preference. From the raw preference
data, we utilized the percentage of approval (Yes) or disapproval
(No) for generating Spye ference- This percentage data was assigned
a polarity of positive (Yes) or negative (No). Then, the summation of
them was normalized to max of (+1) highest preference and min of
(-1) lowest preference. The raw data is presented in Supplementary
Fig. 5 for clarity.

Finally, both human factors and biosignals were balanced to find
the optimal wear location using the wear index, Iyyeqr = w1 X
Spreference * W2 X Siosignals» s shown in Figs 5f-h. The impact of

To compound biosignals effects, data were equally



On Stress: Combining Human Factors and Biosignals

SSC
1.00

075 ——
10.50
0.25

0.00
Skin
conductance

SHRV
100

0.75
10.50

0.25

0.00

Heart rate
variability

sCortisol
1.00
0.75

10.50 —
0.25

0.00
Cortisol

f
IWear
f Hl.OO
— y 075
+0.50
SBiosignals H
/ \ 0.25
100 SBiosignals 25%
075 SPreference 75%
10.50
0.25
g
0.00 |
Biosignals Wear
HI.OO
10.75
—
10.50
sPreference HO.ZS
Yes ? SBiosignals 50%
j SPreference 50%
h
No IWear
Human 1.00
factors 075
0.50
HO.ZS
SBiosignals 75%

25%

SPreference

Figure 5: Desired wear locations for a stress management sensor. Higher magnitudes are represented in red, and lower ones
in blue. Dots represent places where data was obtained for human factors and biosignal probes (9 locations for SC and HRV
= 6 original collections plus 3 replicated measurements in the opposite arm, and 5 cortisol locations). (a-c) Distribution of
skin conductance (SC), heart rate variability (HRV), and cortisol. (d) Biosignals (Spjosignais) - SC, HRV, and cortisol signal
magnitudes are equally weighted to generate the contour map. (e) User preference data (Sp,¢ference) - Positive preference (red),
negative preference (blue). (f-h) Combined wear index (lyycqr) - high Iyyeqr (red), and low Iyycq, (blue) with three different
weight combinations.(f) heavily weighted user preference Sp,. ference = 75% and Sgiosignals = 25% - it is evident that using user
preferences, the wear locations are mostly hidden under the clothing on the upper body. (g) both Sp, ference and Spiosignais are
weighted at 50%, which yields forearms and upper arms as desired wear locations. (h) Heavily weighted biosignals Sg;osignas
=75% and Spyeference = 25% - in this case, desired wear locations move to the extremities, where the biosignal strengths are

stronger.

Ssc and SgRy on [yeqr is discussed in Supplementary Figure 14. We
used various weight combinations as exemplars (i.e., versus a more
systematic approach) to examine the evolution of the wear location
based on Spyeference @nd SBiosignals- When the preference data is
weighted highly at Spyeference = 75% and Spiosignats = 25%, the
Iwear is high at locations that are generally hidden under clothing
(Fig. 5f). In the opposite case, when the biosignals are weighted

heavily at Spiosignals = 75% and Spreference = 25%, the Iiyeqr is
high at the extremities of the body such as the forehead or the wrist
(Fig. 5h). When both user preference and biosignals are balanced at
Spreference = 50% and Spjosignals = 50%, a compromise is reached,
and Iyyeqr is high on the upper arm and the forearm. Hence, the
upper arm or the forearm is the optimal sensing location for our



e-skin wearable, where the biosignals are of adequate strength and
the location provides privacy to the users.

5 DISCUSSION

Stress impacts our productivity, job satisfaction, and overall well-
being [45]. Thus, understanding, measuring, and reducing stress is
critical to human health. Our work joins a growing body of HCI
literature that covers stress measurement and monitoring using
biosignals (e.g., [39]), the impacts of stress on task performance (e.g.,
[54]), and various intervention technologies (e.g., [4, 60]). The main
contribution of our work, and one that can be applied broadly to
numerous use cases, is a design process that unifies human factors
and biosignal design data to inform sensor placement and other
engineering design parameters. Our work corroborates some as-
pects of prior work on wearable design factors while highlighting
specific needs for stress management applications. For example,
Zeagler et al. developed body contour maps that can be used to
inform wearable design and placement, highlighting issues like
motion impedance as a limiting factor for PPG sensing [71]. How-
ever, these factors were analyzed separately they were focused on
general wearable applications mostly for fitness. Factors such as the
risk of stigmatization that affect stress management or other mental
health applications [21, 52] were not considered. In our study, half
of the participants considered perceived judgment by others to be
a downside of using a stress sensor. A third were worried that the
wearable would distract them from their daily conversations or
that would prompt questions from others. Whereas most common
health and fitness wearables are worn on the wrists, we observed
that our participants particularly cared about the discreetness of the
wear location. For instance, exposed body locations such as the face,
hands, and wrists were among the locations most disliked by partic-
ipants because they were perceived as distracting, uncomfortable,
and public.

However, when it comes to building wearables, engineers focus
their attention mostly on biosignal reliability on different body lo-
cations, and less on human preferences. We combine these "parallel
tracks" of design by measuring signal levels at human-preferred
locations rather than just designing for optimal signal strength.
Our findings show a quasi-opposition between human factors and
engineering placement options; while the wrist and the forehead
are rich for sensing, users tend not to like these locations and prefer
more discrete wear locations for privacy, such as the upper arm
and torso. Thus, we proposed a visual and simple mathematical
weighting mechanism to combine human factors and biosignals
in a non-exhaustive manner to inform designs for different use
cases. For example, a public health or wellness application, where
healthy individuals may prefer not to reveal their stress or men-
tal health needs, may focus more on human factors, choosing for
example the upper arm, despite sacrificing some measurement pre-
cision. For a medical application, such as relapse prevention for
recovering substance-abuse addicts, where control of their stress is
paramount, perhaps the ideal location may be closer to the wrist to
maximize measurement precision. Thus, this presents interesting
challenges and opportunities for communicating this data to users.
For example, in applications where discreetness is preferred, taking
advantage of alternative devices users may carry (e.g., smartphones,
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smartwatches, tablets) as displays and intervention sources would
be critical to explore.

This combined approach of considering human factors and biosig-
nals is not traditionally used among engineering or psychophysiol-
ogy researchers. Colleagues from those teams found that designing
for human-preferred locations was not a simple task due to many
limitations in building the sensors or obtaining data, even with
intensive methods, such as the one used to obtain sufficient sweat
Cortisol. They, however, found this human-centric design challenge
stimulating, forcing them to think harder about how to engineer
these sensors. Ultimately, the flexibility to manipulate the weights
of our combined index and their visualizations would be useful
tools to improve communication across dissimilar teams. Further,
there are opportunities to explore adaptive learning of appropriate
weights given a use case and a few examples (i.e., similar to [3]).
Further, similarities between use cases may allow them to serve
as training data for others further lowering barriers to using our
method to inform future design.

6 LIMITATIONS AND FUTURE WORK

A systemic limitation was derived from the combination of research
practices from three groups of researchers, HCI looking at human
factors, chemical engineering looking at on-body physiology biosig-
nals, and psychophysiology looking at efficient cortisol elicitation
and measurement from sweat. The main differences lie in cohort
sizes. Although the human-centered design cohort (n=24) could be
considered small and exploratory, it is customary in engineering
and psychophysiology research to use even smaller sample sizes to
collect biosignal data, increasing measurement reliability using re-
producibility approaches of multiple measurements per participant.
That said, future work should aim to further validate our findings
by collecting data from larger, diverse samples.

Human factor data may have been affected by novelty effects,
acquiescence bias, and participant’s prior experience with wearable
technologies. A larger sample may help bring more perspectives
from participants familiar with wearable devices. While we did
not observe any negative reactions to the use of e-skin sensors in
public the potential has been noted in other contexts, e.g., e-skins
devices for interactions with other electronic devices [48]. Moreover,
we derived our questionnaires from specific sections taken from
the WEAR Scale [29, 30] to understand elements applicable to a
lo-fi prototype; future work could use the complete scale when
evaluating higher fidelity prototypes.

Cortisol data was not collected by our wearable prototype, as it
did not have a microfluidic solution to extract sufficient sweat. This
limitation is not a trivial pursuit to measure cortisol from sweat
in the future, and perhaps other methods such as microneedles
must be assessed before settling on a viable solution. Furthermore,
cortisol was extracted using an intensive method of raising body
temperature, to guarantee a sufficient amount of sweat to extract
reliable cortisol readings. This limited the places where sweat could
be collected, which generated the need for interpolated data to be
used for the join Index. Although, for our application, we believe
this was a fair approximation, acquiring data from more locations
(e.g., similar to [64]) would improve the quality of the body maps
shown in this work.
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In terms of visualization and index resolution, weighting may
need to be adapted based on preferences from specific populations
and additional ratios explored to obtain an exhaustive search of
all combined possibilities. Furthermore, our preliminary data may
not be applicable to non-healthy populations. For example, pa-
tients undergoing treatment for health conditions where chronic
stress management is relevant, such as recovering substance-abuse
addicts, people suffering from chronic mental disorders, or those
recovering from cancer, may have different preferences, and differ-
ent biosignal intensities across the body. Nevertheless, given the
analogies between stress management and other mental or chronic
health conditions that tend to be stigmatized in society, we believe
that our combined method could be applied directly to any wellness,
wellbeing, or public health application.

7 CONCLUSION

There is a clear need for new wearable devices that continuously
monitor stress in everyday life. With recent advances in electronic-
skin manufacturing methods, it is increasingly possible to design
skin-like devices that are imperceptible, seamless to use, and con-
cealable under clothing, making it easier to continuously measure
biosignals in a private and precise manner. While the design of
such wearables is mostly based on engineering needs, and less so
on human factors, it is important to guide designers and engineers
to consider both of these constraints in parallel early in their de-
sign processes. We combine human factors with biosignal stress
measurements (HRV, SC, and cortisol) into a simple visualization
and weighted index method to suggest wear locations. Our system
easily adapts to different use cases that may require more or less
emphasis on user or system needs. We envision our tool as an aid
to bridge the gap between human factors and engineering needs to
design e-skin wearables that may require a compromise between
signal precision and user factors for a variety of wellness or medical
applications.
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