
Coactive Learning for Large Language Models using Implicit User Feedback

Aaron D. Tucker 1 KiantÂe Brantley 1 Adam Cahall 1 Thorsten Joachims 1

Abstract

We propose coactive learning as a model and feed-

back mechanism for training large language mod-

els (LLMs). The key insight is that users provide

implicit feedback whenever they edit the text y
proposed by an LLM. While the edited text ȳ is

typically not a gold-standard example for super-

vised training, coactive learning merely requires

that the edited text ȳ is an improvement over the

proposed text y. Note that such weak implicit

preference feedback ȳ ≻ y is available in many

application settings on a per-user basis, thus en-

abling the personalization of LLMs. In this paper,

we develop the theoretical basis for coactive train-

ing of non-linear models, and we derive CoRLL

as the first coactive learning algorithm for LLMs.

Empirical results indicate that CoRLL is effective

even for weak and noisy coactive preference feed-

back, making it a promising algorithm for training

and personalization of LLMs from feedback that

is naturally collected in many use cases.

1. Introduction

Large language models (LLMs) are increasingly being used

as an interactive tool to assist humans in writing more effec-

tively. These models can quickly generate text that the hu-

man user can either accept or modify if desired, resulting in

significant improvements in the efficiency and effectiveness

of writing. For example, email editors are already beginning

to automatically generate text that users can edit, and there

are many applications where LLMs can write the first draft

(e.g., responses to customer complaints, insurance adjuster

reports). However, to produce writing that aligns with user

preferences and expertise, such writing assistants will re-

quire substantial personalization and contextual adaptation.

This personalization will ensure the writing style suits the

user and the system improves its task-specific knowledge.

1Department of Computer Science, Cornell University,
Ithaca, NY. Correspondence to: Aaron Tucker <aarond-
tucker@cs.cornell.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by

𝑦

Context 𝑥
ത𝑦

Draft 𝑦
Improve 𝑦 to ത𝑦Learn fromത𝑦 ≻ 𝑦

LLM Human

Figure 1. In coactive learning the policy generates a response y

given prompt x. The user’s actions then provide a (possibly noisy)

improved response ȳ, and the implied preference ȳ ≻ y is used to

improve the policy.

Motivated by this use-case of Human-AI writing collab-

oration, we propose coactive learning (Shivaswamy &

Joachims, 2012) as a new online-learning model for LLM

training through which users can instruct the system. Fig-

ure 1 illustrates the coactive learning process. For a given

context x (e.g., customer complaint), the LLM presents the

user (e.g., customer representative) with its current best re-

sponse y (e.g., response to customer complaint), and the

user either accepts y as is, or performs edits to improve

it to ȳ. It is clear that ȳ provides an interesting feedback

signal, but in many applications, it would be unjustified to

assume that ȳ is a gold-standard response as required by

standard supervised learning algorithms. A key strength

of coactive learning is its ability to learn even if ȳ is just

an incremental improvement over y, which it interprets as

pairwise preference feedback ȳ ≻ y.

In this paper, we derive CoRLL as the first coactive learning

algorithm for LLM training, and we provide a theoretical

justification that goes beyond the known results for linear

models (Shivaswamy & Joachims, 2012). CoRLL builds

on reinforcement learning from human feedback (RLHF)

which is commonly used to align LLMs with human prefer-

ences (Stiennon et al., 2022; Ouyang et al., 2022). However,

conventional RLHF can be viewed as dueling bandit feed-

back (Yue et al., 2009), where both y and ȳ are generated

from the LLM, and the user has to actively provides a pair-

the author(s).

1

Coactive Learning for Training Large Language Models using Implicit User Feedback

wise preference label between the two (Ouyang et al., 2022;

Ziegler et al., 2019). In coactive learning, the LLM provides

a response y and the user provides an improved response ȳ,

implying the preference ȳ ≻ y. This key difference makes

coactive learning with CoRLL an attractive alternative to

conventional RLHF, since users provide such preference

feedback as an implicit byproduct of their system interac-

tions without additional labeling effort.

We conducted experiments on various RLHF benchmarks

to compare CoRLL against conventional RLHF techniques.

These tasks include IMDB Positive Sentiment (Maas et al.,

2011), TL;DR summarization (VÈolske et al., 2017), and

Helpful and Harmless Assistant (HHA) (Bai et al., 2022a).

To ensure that coactive learning works across model sizes

and tasks, we trained a 124M parameter model for IMDB,

a 7B model for TL;DR, and a 13B model for HHA. We

found that coactive learning with CoRLL learns faster than

conventional RLHF (i.e., dueling) across all tasks, including

with noisy or weak feedback.

2. Related Work

Fine-tuning LLMs from Human Preferences. Training

language models (LLMs) to optimize human preferences

has led to significant breakthroughs in several LLMs (Ope-

nAI, 2023; Touvron et al., 2023a; Team et al., 2023). The

most popular method for fine-tuning models with human

preferences is reinforcement learning from human feedback

(RLHF) (Ouyang et al., 2022; Ziegler et al., 2019). Although

RLHF is a very effective paradigm for fine-tuning LLMs,

training models with RL can be difficult due to reinforce-

ment learning being sensitive to hyperparameter tuning and

reward hacking issues (Skalse et al., 2022; Ng et al., 1999).

Several ideas have been proposed to address the limitations

of generic RL algorithms when applied to preference feed-

back tasks (Chang et al., 2023; Wu et al., 2023a; Chang et al.,

2024; Gao et al., 2024; Wu et al., 2023b; Baheti et al., 2023).

There also have been ideas proposed that optimize human

feedback without RL (Zhao et al., 2023; Yuan et al., 2023;

Liu et al., 2023). Direct preference optimization (Rafailov

et al., 2023) is a popular approach, and many online variants

and modifications have been proposed to improve its per-

formance (Liu et al., 2024; Xiong et al., 2024; Pang et al.,

2024). Unlike these ideas, which focus primarily on how to

optimize policies based on preference feedback, we focus

on the feedback strategy itself. Moreover, while it has been

demonstrated that LLMs can improve their generation by

leveraging language feedback (Scheurer et al., 2023; Chen

et al., 2023; Campos & Shern, 2022), these works focus on

incorporating natural language instructive feedback (such as

ºthis is wrong because...º), rather than implicitly collected

improvements.

Online Learning from Preference Feedback. Comparison

feedback is often used to provide human feedback in set-

tings with complex objectives where deciding which of two

options is easy while providing real-number reward values

is hard, such as in assigning relevance scores to documents,

or specifying behaviors in simulated robotics (Christiano

et al., 2023). The most common feedback strategy is dueling

bandits (Yue et al., 2009), where the algorithm presents two

arms and the user provides a preference between the two.

Dueling bandits algorithms have be extended to continuous,

contextual and non-linear problems (e.g., Yue & Joachims,

2009; Ailon et al., 2014; Saha et al., 2021). In contrast to

dueling bandits, coactive learning is trained by interpreting

the user responses as examples of improvements to the ac-

tion taken by the system (Shivaswamy & Joachims, 2015),

and has been found effective in applications ranging from

robotics to search engines (e.g., Jain et al., 2013; Raman

et al., 2013). A key theoretical advantage is that coactive

learning harvests guided exploration from the user, while

dueling bandits need to explore themselves. This provides

coactive learning with substantially better regret rates than

dueling bandits (Shivaswamy & Joachims, 2015), matching

the regret rates of learning algorithms that require the user

provided gold-standard labels y∗.

3. Coactive Learning

Coactive learning is a model of interaction between a learner

and a human user where both parties work towards the goal

of producing a policy that maximizes the user’s reward func-

tion. While prior work has developed algorithms for coac-

tive learning for linear models (Shivaswamy & Joachims,

2015), this paper develops a coactive learning approach for

training LLMs. In the context of LLMs, coactive learning

arises as a natural form of interaction in settings where the

LLM policy drafts a piece of text yt given a prompt xt, and

the user edits yt to create an improved text ȳt. In making

these edits, we assume that the user is (on average) improv-

ing the text with respect to some reward function R∗ known

only to the user. However, the user does not articulate cardi-

nal rewards R∗(xt, yt), and the only information we receive

from the user is the improved response ȳt:

R∗(xt, ȳt) > R∗(xt, yt).

Importantly, the improved response ȳt does not need to be

the optimal ªgold-standardº response y∗,

y∗t = argmax
y∈T

R∗(xt, y).

This models the process that users may fix some errors in the

text yt provided by the LLM, but that the users are unlikely

to completely rewrite the text to produce the optimal y∗.

Over a sequence of time steps t from 1 to T , the a coac-

tive learning algorithm aims to learn a policy that selects

2

Coactive Learning for Training Large Language Models using Implicit User Feedback

better and better actions yt based on the user feedback it

has received. In particular, at each timestep t the algorithm

can field an updated policy πt to select the action yt. The

goal of coactive learning is to produce a sequence of policy

updates π1, ..., πT that has low regret of the following form.

Regret(T) =
1

T

T
∑

t=1

R∗(xt, y
∗
t)−R∗(xt, yt) (1)

This regret compares the reward of the action yt chosen by

policy πt against the reward of the optimal action y∗t at every

timestep t. Note that this is a strong form of regret, where

we compare against the action y∗t with optimal reward even

though our policy class may not contain a policy that returns

this action, and we never observe any cardinal feedback on

the value of R∗(x, y). Nevertheless, we will see that we can

bound this regret.

While coactive learning generates a sequence of preference

examples (xt, ȳt ≻ yt), note that the process of generating

these preferences is different from typical RLHF training.

In particular, in typical RLHF training both items to be com-

pared are fixed or sampled online from the current policy,

which results in a Dueling Bandits setting (Yue et al., 2009;

Yue & Joachims, 2009). In coactive learning only yt is

chosen by the policy and ȳt is supplied by the user. This

implicitly allows the user to guide exploration, unlike in the

Dueling Bandits setting where exploration is random. We

will see in the following that the preferences produced by

coactive learning can be far more informative than prefer-

ences produced by dueling bandits. The first step is to define

a measure of feedback quality in coactive learning.

3.1. Quantifying Feedback Quality

We can quantify feedback quality by how much improve-

ment ȳ provides over y in terms of R∗, relative to the maxi-

mum y∗. In the simplest case, we say that human feedback

is strictly α-informative when the following inequality is

satisfied (Shivaswamy & Joachims, 2015):

R∗(xt, ȳt)−R∗(xt, yt) ≥ α (R∗(xt, y
∗
t)−R∗(xt, yt))

In the above inequality, α ∈ (0, 1] is an unknown parameter,

but we will see that knowledge of α is not needed to run

the learning algorithm. Feedback is such that the reward of

yt is higher than that of yt by a fraction α of the maximum

possible reward gain R (xt, y
∗
t)− R (xt, yt). The term on

the right hand side in the above inequality ensures that hu-

man feedback yt is not only better than yt, but also better

by a margin α (R∗(xt, y
∗
t)−R∗(xt, yt)). Shivaswamy &

Joachims (2015) provide regret bounds for the weaker con-

dition of α-informative feedback with slack variables ξt.

R∗(xt, ȳt)−R∗(xt, yt) ≥ α (R∗(xt, y
∗
t)−R∗(xt, yt))−ξt

This definition allows us to model feedback that is noisy,

where the ξt capture that some of the preferences may not

be α-informative or even point in the wrong direction.

3.2. Regret Bound for Coactive Learning

With this definition of noisy α-informative feedback, we

can now theoretically characterize how effectively coactive

learning can learn a good policy. The resulting bound on the

coactive learning regret from Equation 1 informs the design

of the CoRLL algorithm we develop in Section 4.

The coactive regret bound we derive is a reduc-

tion to a pairwise classification learner Apair(D) that

ingests a number of training preferences Dt =
((x1, y1, y

′
1, p1), ..., (xt, yt, y

′
t, pt) and outputs a scoring

function ht : X × Y −→ ℜ. xt is a context and yt and

y′t are two responses. pt ∈ {+1,−1} is the feedback of

whether or not y′t is preferred over yt. The loss used to

evaluate this learner is

∆(x, y, y′|h)=
{

R∗(x, y′)−R∗(x, y), if h(x, y) ≥ h(x, y′)

R∗(x, y)−R∗(x, y′), otherwise

(2)

Note that this loss is low when y and y′ have similar re-

ward, even if classifier h cannot accurately rank them. If

we have an algorithm Apair that for a given sequence of

(xt, yt, y
′
t, pt) produces a sequence of ht that has sublinear

cumulative loss

∆̄(T |Apair) =

T
∑

t=1

∆(xt, yt, y
′
t|ht), (3)

then this translates into the following bound on the regret of

coactive learning.

Theorem 3.1 (Coactive Learning Regret Bound). The coac-

tive learning algorithm that always plays the policy πt equal

to

yt = argmax
y

ht(xt, y)

and receives noisy α-informative feedback ȳt, has regret

bounded by

1

T

T
∑

t=1

R∗(xt, y
∗
t)−R∗(xt, yt) ≤

1

αT

T
∑

t=1

ξt+
∆̄(T |Apair)

αT
,

if h1, ..., hT is produced by a pairwise preference learner

Apair with cumulative loss ∆̄(T |Apair) on the sequence of

pairwise preferences (x1, ȳ1, y1, 1), ..., (xT , yT , ȳT , 1).

3

Coactive Learning for Training Large Language Models using Implicit User Feedback

Proof. We bound the coactive learning regret as follows:

1

T

T
∑

t=1

R∗(xt, y
∗
t)−R∗(xt, yt) (4)

≤ 1

αT

T
∑

t=1

(R∗(xt, ȳt)−R∗(xt, yt)) +
1

αT

T
∑

t=1

ξt (5)

=
1

αT

T
∑

t=1

∆(xt, yt, ȳt|ht) +
1

αT

T
∑

t=1

ξt (6)

=
1

αT
∆̄(T |Apair) +

1

αT

T
∑

t=1

ξt (7)

The first inequality holds due to the definition of noisy

α-informative feedback. The next equality holds since

ht(xt, yt) ≥ ht(xt, ȳt), because yt is chosen to maximize

ht. The final equality corresponds to the definition of

∆̄(T |Apair).

This theorem generalizes the results of Shivaswamy &

Joachims (2015) to general pairwise preference learners.

We recover the results of Shivaswamy & Joachims (2015)

for linear learners by recognizing that ∆̄(T |Apair) ≤
2R||w∗||

√
T for a linear perceptron learner Apair, where

R∗(x, y) = w∗ · ϕ(x, y) is the true reward function. This

bound for linear learners illustrates that coactive learning

can be much faster than dueling bandit learning. Note that

the coactive regret bound does not depend on the number

of actions or the number of parameters, while it is easy to

construct examples where linear dueling bandits need exces-

sive amounts of exploration in settings where both are large

± as is the case in LLMs. While we cannot expect a similar

closed-form bound for complex deep-learning models, The-

orem 3.1 tells us what matters in the design of a pairwise

classification learner, and we will use it as the theoretical

basis of our coactive learning algorithm for LLMs.

4. CoRLL Algorithm for Coactive RLHF

The theoretical analysis and discussion from the previous

sections motivates a coactive learning algorithm for general

policy learning that is outlined in Algorithm 1. At each

time step t, the algorithm receives a prompt xt, generates

a response yt = argmaxy ht(xt, y), observes improved

feedback ȳt, then adds the triple (xt, yt, ȳt, 1) to dataset

Dt+1. Finally, the algorithm uses a pairwise preference

learner Apair(Dt+1) to update the scoring function to ht+1.

However, naively implementing this algorithm for LLMs

faces a number of challenges which require careful design

decisions. First, we need to connect the observed prefer-

ences to the underlying reward in a way that is sensible for

LLMs. Second, we need to design a pairwise preference

learner Apair that can be used for updating the LLM. And,

Algorithm 1 Generic Coactive Learning Algorithm

1: Input: initial policy π1, number of rounds T
2: D1 = ∅
3: for t ∈ [1..T] do

4: Receive prompt xt

5: Generate response yt = argmaxy ht(xt, y)
6: Observe improved feedback ȳt
7: Add preference Dt+1 = Dt ∪ {(xt, yt, ȳ1, 1)}
8: Update model ht+1 ← Apair(Dt+1)
9: end for

return πT+1(x) ≡ argmaxy hT+1(x, y)

Algorithm 2 CoRLL Algorithm for Coactive RLHF

1: Input: initial policy π1, reference policy π0,

number of rounds T
2: D1 = ∅
3: for t ∈ [1..T] do

4: Receive prompt xt

5: Sample y1...yk ∼ πt(·|xt) and generate response

yt = argmaxy∈{y1,...,yk} Rπt
(xt, y)

6: Observe improved feedback ȳt
7: Add preference Dt+1 = Dt ∪ {(xt, yt, ȳt, 1)}
8: Update policy πt+1 = DPO(Dt, πt, π0)
9: end for

return πT+1

third, computing yt = argmaxy ht(xt, y) is intractable in

LLMs given the exponentially-sized space of y, and we

need to have an efficient approximation. We elaborate on

our design choices in the following, which leads to our pro-

posed Coactive RL algorithm for LLM ± named CoRLL ±

as specified in Algorithm 2.

4.1. Pairwise Preference Model

Theorem 3.1 shows how the cumulative loss in Equation 2

can be used to bound the coactive learning regret. Note that

this loss contains the unknown cardinal rewards R∗(x, y′)
and R∗(x, y), and that the value of the loss depends on their

difference. We thus need to connect the difference in reward

to the preference label p we observe as part of our training

data (x, y, y′, p). We propose to make this connection via

the Bradley-Terry model (Bradley & Terry, 1952), where

the probability of P (p = 1|x) (i.e., y′ ≻ y) given prompt x
is given by

P (p = 1|x) = σ
(

R∗(x, y′)−R∗(x, y)
)

. (8)

σ is the sigmoid function σ(x) = 1/(1 + exp(−x)). A key

feature of this model is its connection to how we typically

represent probabilistic policies π(y|x) in a contextual bandit

algorithm. In particular, the standard choice of model is to

use a softmax at the output layer to transform the scores

4

Coactive Learning for Training Large Language Models using Implicit User Feedback

h(x, y) of the network into probabilities.

P (y|x) = exp(h(x, y))
∑

y′ exp(h(x, y′))
(9)

Note that this model is identical to the Bradley-Terry model

in Equation 8, if we restrict the policy to any pair of actions

y and y′. In particular, the relative probability of policy π
selecting y over y′ is equal to the sigmoid of their differences

in h.

P (p = 1|x) = P (y|x)
P (y|x)+P (y′|x) = σ

(

h(x, y′)− h(x, y)
)

This means that we can train h(x, y) to approximate the

true reward R∗(x, y) up to an additive constant by fitting h
to the pairwise preferences under the Bradley-Terry model.

Note that this is sufficient, since our loss in Equation 2 only

considers differences in reward, which are invariant under

additive translation.

4.2. Pairwise Preference Learner Apair

The model developed in the previous section links the pref-

erence feedback to the underlying score function h(x, y)
and the policy π(y|x) it implies. This connection suggests

an obvious choice for the pairwise preference learner. In the

simplest case, we can use maximum likelihood estimation

to learn h and the corresponding softmax policy π via

L(h;D) =
∑

(xt,yt,y
′

t
,pt)∈D

log σ
(

pt(h(xt, y
′
t)− h(x, yt))

)

. (10)

If there is no model misspecification and the data is suffi-

cient for h(x, y) to identify R∗(x, y), the resulting policy

π(y|x) over all actions y will reflect the true differences in

reward. But even if the learned h(x, y) is imperfect and

the differences h(x, y′)− h(x, y) are only accurate up to a

precision ϵ,

|h(x, y′)− h(x, y)− (R∗(x, y′)−R∗(x, y))| ≤ ϵ, (11)

the increase in the loss from Equation 2 is bounded by

∆(x, y, y′|h)−∆(x, y, y′|R∗) ≤ ϵ (12)

for this h. This verifies that the pairwise classification ap-

proach is a promising strategy for minimizing the cumu-

lative loss ∆̄(T |Apair), which we in turn identified as a

sufficient condition for effective coactive learning.

However, optimizing the likelihood in Equation 10 directly

is known to lead to language models π that are degenerate

in the fluency and quality of language they produce. To

counteract this degeneration, the standard procedure is to

regularize against a base LLM π0.

max
π

Ex∼D,y∼π [R
∗(x, y)]− βDKL(π||π0)

Direct Preference Optimization (DPO) (Rafailov et al.,

2023), which we will employ in CoRLL, exploits that the

optimal solution of this optimization problem is

π(y|x) = 1

Z(x)
π0(y|x) exp

(

1

β
R∗(x, y)

)

,

where Z(x) is the function such that
∑

y∈T π(y|x) = 1.

Conversely, any policy π is implicitly optimal for the reward

Rπ(x, y) = β log
π(y|x)
π0(y|x)

+ β logZ(x).

Following DPO, we substitute Rπ(x, y) into the maximi-

mum likelihood objective from Equation 10 to arrive at the

objective we optimize in CoRLL.

L(π;D) =
∑

(xt,yt,y
′

t
,pt)∈D

log σ

(

βpt

(

log
π(xt, y

′
t)

π0(xt, y′t)
−log π(xt, yt)

π0(xt, yt)

))

To optimize this objective in Algorithm 2, we perform one

gradient step on a batch1 of N (typically 64) preferences

using Adam (Kingma & Ba, 2017).

4.3. Approximating the Argmax

LLMs have an response space that is exponential in the

length of generation, making the computation of yt =
argmaxy ht(xt, y) in the generic coactive learning algo-

rithm 1 intractable. To handle this intractability in CoRLL,

we approximate the argmax by sampling k times from the

current policy πt and then picking the action that has the

highest Rπ under the current policy. This can be seen in

line 5 of Algorithm 2.

We argue that this is a reasonable substitute, since we are

training the policy via DPO to select y with large reward.

In particular, if any two actions y and y′ differ in in their

reward Rπ by some δ = Rπ(x, y)− Rπ(x, y
′), the policy

π is exponentially in δ more likely to sample y (relative to

the reference policy π0)

log
π(y|x)/π0(y|x)
π(y′|x)/π0(y′|x)

= δ/β. (13)

This means that even just sampling from π is likely to pro-

duce actions that are close to argmaxy Rπ(x, y).

Furthermore, even if the response yt is not equal to the

argmax, Theorem 3.1 still holds for the sampled yt as long

as ht(xt, yt) > ht(xt, ȳt). And even if that is violated,

it merely means the we do not get informative feedback,

1For efficiency reasons, we sample responses for as many
prompts as our GPUs will allow, add them to a buffer, and then
whenever the buffer has N preferences we do the gradient step for
DPO. This means that the preferences used in a given gradient step
may be collected from slightly different policies.

5

Coactive Learning for Training Large Language Models using Implicit User Feedback

since the feedback ȳ ≻ y already aligns with the current

ht(xt, ȳt) > ht(xt, yt) and thus does not uncover inaccura-

cies in ht. We will evaluate this empirically in Section 5.3.

This completely specifies CoRLL as summarized in Algo-

rithm 2, and we now evaluate CoRLL empirically.

5. Experiments

We evaluate the performance of CoRLL on a variety of

text generation tasks. First, we present experiments on the

Reddit TL;DR Summarization task (VÈolske et al., 2017) and

the Antropic Helpful & Harmless Assistant task (Bai et al.,

2022a). These tasks validate whether CoRLL is effective for

large and complex tasks. We then used the smaller IMDB

Sentiment Generation task for detailed ablation experiments

to explore the behavior of CoRLL in more detail.

5.1. Generating Coactive Feedback

Interactively generating coactive feedback from hu-

mans would be too expensive for our experiments.

We thus simulate coactive feedback, and our simula-

tor is available at https://github.com/atucker/

coactive_learning. In particular, we generate coac-

tive feedback from an LLM that we call the expert policy

π∗ for the respective task. This expert policy π∗ is trained

using DPO with β = 0.1 using the training data provided

for the respective task.

Reward R∗. Training the expert via DPO implies that the

expert policy π∗ optimizes the DPO reward R∗
π(x, y) =

β log π∗(y|x) − β log π0(y|x) + β logZ(x). We thus use

R∗(x, y) = β log π∗(y|x) − β log π0(y|x) as our reward

function, since Z(x) is constant when making comparisons

between different responses to the same prompt x. We use

this R∗(x, y) for both producing coactive feedback ȳt and

the reward-based evaluation of CoRLL. Note, however, that

CoRLL never observes any cardinal values of R∗(x, y).

Producing Coactive Feedback ȳ. We produce coactive

feedback ȳ in response to a given y using two strategies.

For our minimally informative strategy (Coactive-MinInf),

we first sample J candidate responses ȳ1...ȳJ ∼ π∗(y|x)
from the expert. Then we sort these candidate ȳj by their

true reward R∗(x, ȳj) and select ȳ to be the first ȳj with

reward greater than the reward R∗(x, y) of y. In Section 5.3

we also vary the strength of the feedback by selecting ȳj

higher up the list.

For our edit-based strategy (Coactive-Edit), we generate ȳ
by resampling the last n tokens of the policy’s response y
using the expert once.

Feedback Noise. In some cases, none of the yi has a

reward larger than that of y. We typically interpret this

as the user not being able to improve on y, and we thus

make no coactive update to the model. In other experiments,

however, we use this to generate noisy feedback by returning

the yi with the largest R∗(x, yi) as coactive feedback ȳ,

even though we have that R∗(x, ȳ) < R∗(x, y) and the

preference ȳ ≻ y points into the wrong direction.

Generation. We always randomly generate from policies

with temperature T = 1, and only sample from amongst the

most probable 50 tokens at each timestep (Fan et al., 2018).

5.2. 7B+ Parameter Experiments

We first present results on two larger models to evaluate

whether CoRLL is effective at learning from coactive feed-

back. We evaluate minimally informative and edit-based

coactive feedback using a 7B parameter model for the Red-

dit TL;DR Summarization task (VÈolske et al. (2017), full

details in A.1.1) and using a 13B parameter model for the

Helpfulness split of the Anthropic Helpful and Harmless

task (Bai et al. (2022a), full details in A.1.2).

Experiment Setup. In the 7B+ experiments, wherever

DPO is used we follow Rafailov et al. (2023) and set the

learning rate to 5e-7, use Adam for optimization (Kingma &

Ba, 2017), and warm up the learning rate from 0 to its full

value over the first 10% of the data. All learned policies are

LoRA adapters (Hu et al., 2022) with r = 8, α = 64, and

dropout 0.1 in order to fit the reference, expert, and learned

policies on a single GPU. We sample l = 5 from the expert

policy to generated coactive feedback, and we sample k = 1
from the learned policy πt to approximate the argmax in

CoRLL.

Evaluation Metrics. Our reward evaluations are based

on the implicit reward of R∗ of the expert policy π∗, com-

puted on the learning policy πt’s samples generated during

training. To validate that improve expert reward R∗ indeed

indicates improved performance, we also provide model-

based evaluations on the Reddit TL;DR: task as a secondary

metric. In particular, we ask GPT-4 to evaluate winrate be-

tween thelearned model and the base model. Furthermore,

we ask GPT-4 to evaluate whether, for a given prompt and

expert response, the learned model or base model gener-

ates text more similar to the expert. The exact prompts and

methods are available in Appendix A.2.

Is CoRLL able to learn from coactive feedback? Figure

2, shows the learning curves of CoRLL for the respective

tasks for various forms of minimally-informative and edit-

based coactive feedback. In all cases, CoRLL produces

actions yt with increasing reward R∗(xt, yt) as training pro-

6

Coactive Learning for Training Large Language Models using Implicit User Feedback

20000 40000 60000 80000
of Observed Preference Comparisons

0.8

0.7

0.6

0.5

0.4

0.3

0.2

CoRLL (MinInf)
CoRLL (Edits n=10)
CoRLL (Edits n=5)

(a) Summarization task.

10000 20000 30000 40000
of Observed Preference Comparisons

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

CoRLL (MinInf)
CoRLL (Edits n=20)
CoRLL (Edits n=10)

(b) Helpful Assistant task.

Figure 2. Reward on 7B+ experiments using noise-free feedback.

Reward is a rolling average over 100. Number of observations

vary, since the # of filtered lower-reward expert generations vary.

0.0 0.5 1.0 1.5
KL distance

0.7

0.6

0.5

0.4

0.3

0.2

0.1 CoRLL (MinInf)
CoRLL (MinInf, noisy)
Dueling

(a) Summarization task.

0 1 2 3 4 5
KL distance

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

CoRLL (MinInf)
CoRLL (MinInf, noisy)
Dueling

(b) Helpful Assistant task.

Figure 3. Reward vs. KL Divergence on 7B+ experiments, rolling

average over 100.

gresses, even though the coactive feedback is intentionally

far from gold-standard feedback. Even just editing the last 5
tokens is already sufficient for CoRLL to learn. In practice,

a user is more likely to edit the few most offending tokens

instead of the last ones, and we can thus expect stronger feed-

back. Figure 7 shows the winrate and similarity judgment of

GPT-4 for the minimally informative coactive feedback at

the end of the learning process, which confirms that CoRLL

has successfully learned to produce responses similar to the

expert.

Is CoRLL robust to labeling noise? Figures 4 and 5 show

the performance of CoRLL when the coactive preferences

are noisy as described in Section 5.1. The percentage of

noisy preferences ± where the feedback ȳ is actually worse

than y according to R∗ ± is plotted in Figures 4b and 5b.

As expected, noise rises as it gets harder to improve on y
in later iterations, reaching a mislabeling rate of over 35%

on summarization and over 45% on the helpful assistant

task. Even with high noise rates, CoRLL can still learn and

improve performance. Note that in Figure 7 the winrate

and similarity of CoRLL with noisy minimally informative

feedback is comparable to training with noise-free feedback.

20000 40000 60000 80000
of Observed Preference Comparisons

0.7

0.6

0.5

0.4

0.3

0.2

0.1 CoRLL (MinInf)
CoRLL (MinInf, noisy)
CoRLL (Edits n=10, noisy)
CoRLL (Edits n=5, noisy)

(a) Reward.

20000 40000 60000 80000
of Observed Preference Comparisons

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(b) Error rate.

Figure 4. Summarization task with noisy feedback. Reward and

error rates are a rolling average over 100.

10000 20000 30000 40000 50000
of Observed Preference Comparisons

2.0

1.5

1.0

0.5

0.0

0.5

1.0

CoRLL (MinInf)
CoRLL (MinInf, noisy)
CoRLL (Edits n=20, noisy)
CoRLL (Edits n=10, noisy)

(a) Reward.

10000 20000 30000 40000 50000
of Observed Preference Comparisons

0.1

0.2

0.3

0.4

0.5

(b) Error rate.

Figure 5. Helpful Assistant task with noisy feedback. Reward

and error rates are a rolling average over 100.

How effective is Coactive Feedback compared to Dueling

Feedback? Whether to use coactive or dueling feedback

is typically not a pertinent choice in real-world applications,

since coactive feedback is most appropriate for applications

where edits or other interactions provide implicit feedback,

while dueling feedback requires a labeler to choose between

two generations. Nonetheless, the following compares how

informative the two feedback strategies are.

To generate dueling feedback, we randomly generate two

responses y and y′ for each prompt x from the current pol-

icy πt, then simulate a human labeler by using the expert

rewards R∗(x, y) and R∗(x, y′) to choose the preference

order. Note that this feedback is noise free. We use the same

DPO pairwise preference learner for dueling as for CoRLL

to avoid confounding due to different RLHF algorithms.

Figure 3 shows that CoRLL with minimally-informative

coactive feedback has a much better tradeoff profile between

reward and KL divergence from the reference policy π0.

This is particularly remarkable, since coactive feedback is

available for free in many application settings. Figure 7

confirms that the models trained with coactive feedback

produce better responses that are more similar to the expert

than the models trained with dueling feedback.

7

Coactive Learning for Training Large Language Models using Implicit User Feedback

50000 200000 350000
of Observed Preference Comparisons

0.7

0.6

0.5

0.4

0.3

0.2

0.1 CoRLL DPO
CoRLL IPO

(a) Reward.

Figure 6. Summarization task with Coactive Noisy MinInf Feed-

back using DPO and IPO.

Coactive Dueling

MinInf Noisy MinInf Noise-free

Winrate 0.6735 0.6730 0.5595

Similarity 0.8530 0.8340 0.7505

(a) Reddit TL;DR: Summarization task.

Coactive Dueling

MinInf Noisy MinInf Noise-free

Winrate 0.5875 0.5894 0.5440

Similarity 0.9240 0.8745 0.8280

(b) Helpful Assistant task.

Figure 7. Model-based evaluations for 7B+ experiments (GPT-4).

Alternate Algorithms for CoRLL. While this paper fo-

cuses on an implementation of CoRLL that uses DPO

(Rafailov et al., 2023), CoRLL is in fact agnostic to the

policy updating procedure used on line 8 of Algorithm 2.

To demonstrate, we also ran an experiment which uses IPO

(Azar et al., 2024) instead of DPO. As shown in Figure 6

both variants learn successfully, though DPO gets slightly

better performance than IPO on the Reddit TL;DR: task.

5.3. Ablation Experiments

Our previous experiments demonstrated that CoRLL can

learn effectively on practical problems of substantial scale

with weak and noisy coactive feedback. Our next exper-

iments move to a smaller setting in order to explore how

CoRLL performs with various levels of feedback strength,

feedback noise, and computational efficiency trade-offs.

We perform these ablation experiments on the IMDB Sen-

timent Generation task (Maas et al., 2011), which consists

of generating a positive sentiment movie review y given a

prompt x that is a partial movie review. We train the ex-

pert on the standard dataset using DPO following the setup

in (Rafailov et al., 2023) and generated comparisons be-

tween generations a 774M parameter gpt2-large model

0 2000 4000 6000 8000 10000 12000
of Observed Preference Comparisons

0.6

0.5

0.4

0.3

0.2

0.1 CoRLL k=9
CoRLL k=3
CoRLL k=1

Figure 8. Reward for different values of k when approximating the

argmax in Line 5 of CoRLL. (α = 0.6).

(Radford et al., 2019) from Huggingface using the first 64

tokens as a prompt x and generating 64 more as the re-

sponse y. We use the lvwerra/distilbert-imdb

sentiment classifier from Huggingface to compute senti-

ment Pr(+ve sentiment|x, y). However, we found that com-

paring using only a sentiment classifier resulted in an ex-

pert which would append the same text to all prompts, so

we added a preference for fluency by scoring according to

R∗(x, y) = log Pr(+ve sentiment|x, y) + 3 log πref(y|x).
We typically train for one epoch, except for the noise-

injection experiments where we train for three epochs in

order for the learned policy π to generate good enough

samples to achieve the desired noise rates. All reward eval-

uations in the IMDB ablation experiments are based on a

held out test set, so the rewards are comparable even when

training for multiple epochs.

In order to manage the computational requirements of the

experiment to enable multiple trials and ablations, this ex-

periment uses the 124M parameter gpt2 model (Radford

et al., 2019) retrieved from Huggingface as the reference

policy π0, and trained another copy for coactive learning.

Expert and policy training used a learning rate of 1e-5, and

a batch size of 32. If not mentioned otherwise, we approxi-

mate the argmax with k = 9 samples, draw l = 100 samples

to generate coactive feedback with α = 0.6 as described

below, train for one epoch, and use noisy feedback.

How important is it to approximate the argmax in

CoRLL well? In line 5 of CoRLL in Algorithm 2 the

parameter k controls how accurately we approximate the

argmax yt = argmaxy πt(y|xt) that is specified in Theo-

rem 3.1. In particular, increasing k ensures that the value

πt(yt|xt) of the coactive prediction yt increases and thus

gets closer to the desired argmax.

Figure 8 shows the performance of CoRLL for different

values of k. We see a clear benefit from increasing k, but

not much is gained from increasing k beyond 3. It is not sur-

prising that improving the argmax helps. First, even though

the current πt is not perfect, a yt with a larger πt(yt|xt) will

8

Coactive Learning for Training Large Language Models using Implicit User Feedback

0 2000 4000 6000 8000 10000 12000
of Observed Preference Comparisons

0.6

0.5

0.4

0.3

0.2

0.1

CoRLL (=1.0)
CoRLL (=0.8)
CoRLL (=0.6)
CoRLL (=0.4)
CoRLL (=0.2)
CoRLL (=0.1)
Dueling

(a) Reward

4000 6000 8000 10000 12000
of Observed Preference Comparisons

0.3

0.4

0.5

0.6

0.7

0.8

(b) Empirical α

Figure 9. Experimental results for varying feedback quality on

IMDB. Coactive (CoRLL MinInf) in purple-orange, dueling in

blue.

0 10000 20000 30000
of Observed Preference Comparisons

0.5

0.4

0.3

0.2

0.1

0.0

0.1

CoRLL (=0.4)
CoRLL (=0.2)
CoRLL (=0.1)
CoRLL (=0.0)

(a) Reward

10000 20000 30000
of Observed Preference Comparisons

0.0

0.1

0.2

0.3

0.4

(b) Fraction Mislabeled

Figure 10. Experimental results for different levels of feedback

noise on IMDB. Coactive (CoRLL MinInf) in purple-orange, duel-

ing in blue. Feedback quality is α = 0.6.

often have a larger reward R∗(xt, yt) as well, and thus we

make better predictions if we approximate the argmax better.

Second, predicting a yt with a larger πt(yt|xt) ensures that

the coactive feedback ȳt is more informative for updating

πt. In particular, it avoids cases where πt already correctly

orders yt and ȳt, i.e. πt(yt|xt) < πt(ȳt|xt), such that ȳ
does not provide strong information for improving πt.

Note that the large-scale experiments in the previous sec-

tion used k = 1 for reasons of tractability on our compute

hardware, but we conjecture that larger values of k would

lead to further improvements in performance there as well.

How does CoRLL perform for different levels of feed-

back quality? Figure 9b plots the resulting feedback qual-

ity of the selected ȳ in terms of their estimated α. Note

that this estimate inflates the value of α, since even the best

candidate is likely to have lower reward than the true y∗

with maximum R∗.

As the plots in Figure 9a show, better feedback does lead to

faster learning, but CoRLL is able to learn effectively at all

levels of feedback quality. Note that CoRLL is competitive

with dueling feedback DPO even for the lowest quality of

coactive feedback, though the two are not directly compara-

ble since coactive data can be collected passively in contrast

to dueling comparison feedback.

How sensitive is CoRLL to noise in the preference feed-

back? Our final experiment further investigates the im-

pact of feedback noise on performance. In addition to the

incidental noise described in the previous section, we now

explicitly control noise by injecting mislabeled preferences.

In particular, with probability ϵ we check whether any of

the l = 100 candidates for ȳ generated by the expert policy

has worse reward R∗ than the current y. If this is the case,

then we select the best response which is below the policy’s

reward R∗(x, y), thus generating a mislabeled preference

for CoRLL. If no candidate was below the threshold, we

return the worst response.

Figure 10a shows the learning performance of CoRLL for

different levels of noise, and Figure 10b shows how the

fraction of mislabeled preferences increases as learning pro-

gresses. CoRLL is clearly effective at learning for all noise

levels even after error rates stabilize to values as high as

∼40% mislabeled preferences. This robustness to label

noise makes CoRLL a promising candidate for real-world

applications, where feedback quality is hard to control.

6. Conclusion and Future Work

This paper introduced coactive learning as new mechanism

for training LLMs. Coactive learning takes advantage of

implicit feedback that users provide through their system

interactions without the need for additional human label-

ing, which provides a viable path for personalizing LLMs.

We derive the first algorithm for coactive training of LLM,

called CoRLL, and provide the theoretical basis for the

design choices it makes. Beyond this theoretical charac-

terization, we also provide empirical evidence across three

benchmarks that CoRLL can be effective at training LLM

even with week preference feedback, and often learns faster

than conventional RLHF training with explicitly labeled

preference feedback.

This work opens up a wide range of new research directions

for training LLMs from implicit feedback. These include

many other design choices for better approximating the

argmax and for designing the pairwise preference learner,

which may lead to further performance improvements. Coac-

tive feedback is a very general feedback mechanism, and

our experiments indicate that it appears to be fairly noise-

tolerant. As such, frameworks such as Constitutional AI

(Bai et al., 2022b) where an instruction-following LLM

is used to improve the response y of a learning LLM can

fit cleanly into the coactive learning framework. Further-

more, it is interesting to incorporate other forms of feedback

into the coactive learning framework, like a combination of

coactive and dueling feedback.

9

Coactive Learning for Training Large Language Models using Implicit User Feedback

Impact Statement

Aligning LLMs to human preferences has been at the core

of many of the practices which make LLMs more usable,

such as instruction following and RLHF. This paper makes

progress in LLM personalization in two main ways. Firstly,

it shows that human edit data can be a valuable source of

feedback that does not incur the additional labeling effort

of dueling feedback. Secondly, it shows how passively

collected edit data can improve performance in writing as-

sistance tasks.

Increasing the value of data and data labeling can have

a variety of impacts (Tucker et al., 2020). For example,

increasing the value of passively collected data makes it

more valuable for model developers to have users, and likely

provides an advantage for large companies with more users

and AI systems. Additionally, increased data collection

can have negative privacy impacts, and if coactive feedback

were to be collected it is important to make sure that users

understand that their data may be used for personalization.

Large language models trained using the standard negative

log likelihood objective can memorize and leak training

data (Carlini et al., 2021), and interesting future work could

analyze whether or not this also occurs with DPO and other

RLHF algorithms.

More data-efficient personalization on the other hand can

make it easier for developers of AI systems to customize AI

systems to increase their value for specific users, making

it easier to improve the performance of a system for that

particular user in a way which is unlikely to be particularly

helpful for the censorship-enhancing properties of better

alignment (see section 7.3 of (Bai et al., 2022a)). Of course,

if such personalization is used to remove safety features

(Jain et al., 2023) then it can increase the risks of broadly de-

ployed LLMs. We encourage companies using this method

to implement procedures protecting against misuse.

Acknowledgments

This research was supported in part by NSF Awards IIS-

1901168, IIS-2312865 and OAC-2311521. KiantÂe Brant-

ley is supported by NSF under grant No. 2127309 to the

Computing Research Association for the CIFellows Project.

Aaron Tucker is supported by scholarship funding from

Open Philanthropy. All content represents the opinion of

the authors, which is not necessarily shared or endorsed

by their respective employers and/or sponsors. We thank

Jonathan Chang for helpful discussions in setting up the

RLHF pipeline.

References

Ailon, N., Joachims, T., and Karnin, Z. Reducing dueling

bandits to cardinal bandits. In International Conference

on Machine Learning (ICML), pp. 856±864, 2014.

Azar, M. G., Guo, Z. D., Piot, B., Munos, R., Rowland, M.,

Valko, M., and Calandriello, D. A general theoretical

paradigm to understand learning from human preferences.

In International Conference on Artificial Intelligence and

Statistics, pp. 4447±4455. PMLR, 2024.

Baheti, A., Lu, X., Brahman, F., Bras, R. L., Sap,

M., and Riedl, M. Improving language models with

advantage-based offline policy gradients. arXiv preprint

arXiv:2305.14718, 2023.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-

Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan,

T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T.,

El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernan-

dez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L.,

Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J.,

McCandlish, S., Olah, C., Mann, B., and Kaplan, J. Train-

ing a helpful and harmless assistant with reinforcement

learning from human feedback, 2022a.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,

Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-

non, C., et al. Constitutional ai: Harmlessness from ai

feedback. arXiv preprint arXiv:2212.08073, 2022b.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-

plete block designs: I. the method of paired comparisons.

Biometrika, 39(3/4):324±345, 1952.

Campos, J. A. and Shern, J. Training language models with

language feedback. In ACL Workshop on Learning with

Natural Language Supervision. 2022., 2022.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-

Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,

Erlingsson, U., et al. Extracting training data from large

language models. In 30th USENIX Security Symposium

(USENIX Security 21), pp. 2633±2650, 2021.

Chang, J. D., Brantley, K., Ramamurthy, R., Misra, D., and

Sun, W. Learning to generate better than your llm. arXiv

preprint arXiv:2306.11816, 2023.

Chang, J. D., Shan, W., Oertell, O., Brantley, K., Misra, D.,

Lee, J. D., and Sun, W. Dataset reset policy optimization

for rlhf. arXiv preprint arXiv:2404.08495, 2024.

Chen, A., Scheurer, J., Korbak, T., Campos, J. A., Chan,

J. S., Bowman, S. R., Cho, K., and Perez, E. Improv-

ing code generation by training with natural language

feedback. arXiv preprint arXiv:2303.16749, 2023.

10

Coactive Learning for Training Large Language Models using Implicit User Feedback

Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg,

S., and Amodei, D. Deep reinforcement learning from

human preferences, 2023.

Fan, A., Lewis, M., and Dauphin, Y. Hierarchical neural

story generation. arXiv preprint arXiv:1805.04833, 2018.

Gao, Z., Chang, J. D., Zhan, W., Oertell, O., Swamy, G.,

Brantley, K., Joachims, T., Bagnell, J. A., Lee, J. D., and

Sun, W. Rebel: Reinforcement learning via regressing

relative rewards. arXiv preprint arXiv:2404.16767, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,

S., Wang, L., and Chen, W. Lora: Low-rank adaptation

of large language models, 2022.

Jain, A., Wojcik, B., Joachims, T., and Saxena, A. Learn-

ing trajectory preferences for manipulators via iterative

improvement. In Neural Information Processing Systems

(NeurIPS), pp. 575±583, 2013.

Jain, S., Kirk, R., Lubana, E. S., Dick, R. P., Tanaka, H.,

Grefenstette, E., RocktÈaschel, T., and Krueger, D. S.

Mechanistically analyzing the effects of fine-tuning on

procedurally defined tasks, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization, 2017.

Liu, T., Zhao, Y., Joshi, R., Khalman, M., Saleh, M.,

Liu, P. J., and Liu, J. Statistical rejection sam-

pling improves preference optimization. arXiv preprint

arXiv:2309.06657, 2023.

Liu, T., Zhao, Y., Joshi, R., Khalman, M., Saleh, M., Liu,

P. J., and Liu, J. Statistical rejection sampling improves

preference optimization, 2024.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng,

A. Y., and Potts, C. Learning word vectors for sen-

timent analysis. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguis-

tics: Human Language Technologies, pp. 142±150, Port-

land, Oregon, USA, June 2011. Association for Com-

putational Linguistics. URL http://www.aclweb.

org/anthology/P11-1015.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance

under reward transformations: Theory and application

to reward shaping. In Icml, volume 99, pp. 278±287.

Citeseer, 1999.

OpenAI. Gpt-4 technical report, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,

Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,

et al. Training language models to follow instructions

with human feedback. Advances in Neural Information

Processing Systems, 35:27730±27744, 2022.

Pang, R. Y., Yuan, W., Cho, K., He, H., Sukhbaatar, S., and

Weston, J. Iterative reasoning preference optimization,

2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and

Sutskever, I. Language models are unsupervised multitask

learners. 2019.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,

C. D., and Finn, C. Direct preference optimization: Your

language model is secretly a reward model. arXiv preprint

arXiv:2305.18290, 2023.

Raman, K., Joachims, T., Shivaswamy, P., and Schnabel, T.

Stable coactive learning via perturbation. In International

Conference on Machine Learning (ICML), pp. 837±845,

2013.

Saha, A., Koren, T., and Mansour, Y. Dueling convex

optimization. In Meila, M. and Zhang, T. (eds.), Pro-

ceedings of the 38th International Conference on Ma-

chine Learning, volume 139 of Proceedings of Machine

Learning Research, pp. 9245±9254. PMLR, 18±24 Jul

2021. URL https://proceedings.mlr.press/

v139/saha21b.html.

Scheurer, J., Campos, J. A., Korbak, T., Chan, J. S., Chen,

A., Cho, K., and Perez, E. Training language mod-

els with language feedback at scale. arXiv preprint

arXiv:2303.16755, 2023.

Shivaswamy, P. and Joachims, T. Online structured predic-

tion via coactive learning. In International Conference

on Machine Learning (ICML), pp. 1431±1438, 2012.

Shivaswamy, P. and Joachims, T. Coactive learning. Journal

of Artificial Intelligence Research, 53:1±40, 2015.

Skalse, J., Howe, N., Krasheninnikov, D., and Krueger, D.

Defining and characterizing reward gaming. Advances in

Neural Information Processing Systems, 35:9460±9471,

2022.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M., Lowe,

R., Voss, C., Radford, A., Amodei, D., and Christiano, P.

Learning to summarize from human feedback, 2022.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,

J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.

Gemini: a family of highly capable multimodal models.

arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,

M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,

Azhar, F., et al. Llama: Open and efficient foundation lan-

guage models. arXiv preprint arXiv:2302.13971, 2023a.

11

Coactive Learning for Training Large Language Models using Implicit User Feedback

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,

A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,

Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,

M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,

Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,

A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,

V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,

Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,

Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,

I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,

K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,

Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,

Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,

M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,

and Scialom, T. Llama 2: Open foundation and fine-tuned

chat models, 2023b.

Tucker, A. D., Anderljung, M., and Dafoe, A. So-

cial and governance implications of improved data ef-

ficiency. In Proceedings of the AAAI/ACM Conference

on AI, Ethics, and Society, AIES ’20, pp. 378±384,

New York, NY, USA, 2020. Association for Comput-

ing Machinery. ISBN 9781450371100. doi: 10.1145/

3375627.3375863. URL https://doi.org/10.

1145/3375627.3375863.

VÈolske, M., Potthast, M., Syed, S., and Stein, B. TL;DR:

Mining Reddit to learn automatic summarization. In

Wang, L., Cheung, J. C. K., Carenini, G., and Liu, F.

(eds.), Proceedings of the Workshop on New Frontiers

in Summarization, pp. 59±63, Copenhagen, Denmark,

September 2017. Association for Computational Lin-

guistics. doi: 10.18653/v1/W17-4508. URL https:

//aclanthology.org/W17-4508.

Wu, T., Zhu, B., Zhang, R., Wen, Z., Ramchandran,

K., and Jiao, J. Pairwise proximal policy optimiza-

tion: Harnessing relative feedback for llm alignment.

2023a. URL https://api.semanticscholar.

org/CorpusID:263334045.

Wu, T., Zhu, B., Zhang, R., Wen, Z., Ramchandran, K., and

Jiao, J. Pairwise proximal policy optimization: Harness-

ing relative feedback for llm alignment. arXiv preprint

arXiv:2310.00212, 2023b.

Xiong, W., Dong, H., Ye, C., Wang, Z., Zhong, H., Ji, H.,

Jiang, N., and Zhang, T. Iterative preference learning

from human feedback: Bridging theory and practice for

rlhf under kl-constraint, 2024.

Yuan, Z., Yuan, H., Tan, C., Wang, W., Huang, S., and

Huang, F. Rrhf: Rank responses to align language mod-

els with human feedback without tears. arXiv preprint

arXiv:2304.05302, 2023.

Yue, Y. and Joachims, T. Interactively optimizing informa-

tion retrieval systems as a dueling bandits problem. In

International Conference on Machine Learning (ICML),

pp. 151±159, 2009.

Yue, Y., Broder, J., Kleinberg, R., and Joachims, T. The k-

armed dueling bandits problem. In Conference on Learn-

ing Theory (COLT), pp. 53±62, 2009.

Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., and

Liu, P. J. Slic-hf: Sequence likelihood calibration with

human feedback. arXiv preprint arXiv:2305.10425, 2023.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,

A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning

language models from human preferences. arXiv preprint

arXiv:1909.08593, 2019.

12

Coactive Learning for Training Large Language Models using Implicit User Feedback

A. Experimental Appendix

A.1. Tasks

A.1.1. SUMMARIZATION TASK

The first task is the Reddit TL;DR summarization task (VÈolske et al., 2017). In this task a forum post from Reddit is given

as a prompt x, and a summary y of the post is provided as the response. We trained the expert using DPO on an altered

dataset which created a preference dataset by sampling summaries from multiple models (Stiennon et al., 2022), resulting

in an average reward of R∗ ≈ 0.444. The final dataset consists of 123k high-quality posts and preferences after filtering,

retrieved from Huggingface as openai/summarize_from_feedback’s comparisons dataset. We truncated all

prompts (including ª TL;DR: º) to 462 tokens, and responses to 50 tokens. We used the 7B Llama 2 (Touvron et al., 2023b)

model meta/llama-2-7b-hf as the initial policy and reference policy for this task.

A.1.2. HELPFULNESS TASK

The second task is the Helpful and Harmless Assistant (Bai et al., 2022a), which consists of dialogues between a human and

an automated assistant. We again trained the expert using DPO, resulting in an average reward of R∗ ≈ 0.158. We retrieved

the dataset from Huggingface as anthropic/hh-rlhf) by focusing only on the dialogues which were evaluated for

helpfulness, then filtering the dataset so that all prompts (the shared portion between the chosen and rejected dialogues) had

300 or fewer tokens and all responses had 100 or fewer tokens, resulting in roughly 55k dialogues. We used the 13B Llama

2 (Touvron et al., 2023b) model meta/llama-2-13b-hf as the initial policy and reference policy for this task.

A.1.3. IMDB SENTIMENT TASK

A.2. Model-based Evaluation Prompts

The winrates are computed as follows. First, we take the first 100 posts in the test set. Then, we generate a summary using

the expert, learned, and reference policies. Then, we create 2 prompts for each comparison which present the relevant

options in both orders to ensure that there is no bias from the presentation order. Then, we sample 10 comparison judgments

from ChatGPT, and report the average over all 2000 samples.

A.2.1. SUMMARIZATION TASK

For both prompts, the system prompt to ChatGPT was ªYou are a skilled copywriter.º.

Winrate Prompt Our winrate prompt format was as follows, with <> being replaced by text from the prompt x or

generations y.

Which of the two options is a better summary of the following post? Answer with

only A or B.

Post: <post>

Option A: <one policy’s generation>

Option B: <the other policy’s generation>

Similarity Prompt Our similarity prompt format was as follows:

Which of the two options is more similar to the example summary of the following

post? Answer with only A or B.

Post: <post>

Example: <the expert’s generation>

Option A: <one policy’s generation>

Option B: <the other policy’s generation>

A.2.2. HELPFUL ASSISTANT TASK

For both prompts, the system prompt to ChatGPT was ªYou are a helpful assistant.º.

13

Coactive Learning for Training Large Language Models using Implicit User Feedback

Winrate Prompt Our winrate prompt format was as follows, with <> being replaced by text from the prompt x or

generations y.

In which of the two options is the assistant more helpful?

Option A:

<one policy’s conversation>

Option B:

<the other policy’s conversation>

All conversations were inserted with tabs at every new line, so that the options are formatted as follows:

Option A:

User: ...

Assistant: ...

...

Similarity Prompt Our similarity prompt format was as follows:

Which of the two options is more similar to the example conversation?

Example:

<expert conversation>

Option A:

<one policy’s conversation>

Option B:

<the other policy’s conversation>

14

