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ABSTRACT

Modern industrial processes are continuously monitored by a large number of sensors. Despite
having access to large volumes of historical and online sensor data, industrial practitioners still
face challenges in the era of Industry 4.0 in effectively utilizing them to perform online process
monitoring and fast fault detection and diagnosis. To target these challenges, in this work, we
present a novel framework named “FARM” for Fast, Accurate, and Robust online process Monitor-
ing. FARM is a holistic monitoring framework that integrates (a) advanced multivariate statistical
process control (SPC) for fast anomaly detection of nonparametric, heterogeneous data streams,
and (b) modified support vector machine (SVM) for accurate and robust fault classification. Unlike
existing general-purpose process monitoring frameworks, FARM’s unique hierarchical architecture
decomposes process monitoring into two fault detection and diagnosis, each of which is con-
ducted by targeted algorithms. Here, we test and validate the performance of our FARM monitor-
ing framework on Tennessee Eastman Process (TEP) benchmark dataset. We show that SPC
achieves faster fault detection speed at a lower false alarm rate compared to state-of-the-art
benchmark fault detection methods. In terms of fault classification diagnosis, we show that our
modified SVM algorithm successfully classifies 17 out of 20 of the fault scenarios present in the
TEP dataset. Compared with the results of standard SVM trained directly on the original dataset,
our modified SVM improves the fault classification accuracy significantly.

Keywords: Fault Detection and Diagnosis, Process Monitoring, Statistical Process Control, Riemannian Mani-

fold, Support Vector Machine

INTRODUCTION

Safe and efficient operation of an industrial plant
depends on effective, continuous process monitoring
(e.g., fault detection and diagnosis), which is enabled by
advanced sensory systems that continuously generate
streams of data to dictate the state of the plant. Despite
having access to large volumes of historical and online
sensor data, challenges remain in how these data could
be used for effective online process monitoring. Existing
techniques for process monitoring are inadequate be-
cause (a) fault scenarios in industrial systems and plants
are complex, (b) sensors continuously produce massive
arrays of big data streams that are often nonparametric
(i.e., data streams may not follow any specific distribu-
tion) and heterogeneous (i.e., data streams may not
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follow the same distribution), and (c) there is an intrinsic
trade-off between fault detection time and diagnostic
accuracy.

To address this need, several process monitoring
solutions have been developed over the past decades.
Among them, dimensionality reduction techniques, such
as principal component analysis (PCA), partial least
squares (PLS) regression, as well as their different varia-
tions, are the most popular ones in the literature [1-3].
Dimensionality reduction techniques assume that the
statistics characterizing the in-control profiles also span
the subspace where out-of-control states (faults) lie in
[4]. However, this assumption is generally invalid for in-
dustrial process monitoring as the process dynamics are
quite complex and out-of-control states cannot be fully
enumerated a priori. Also, plant operators often find it
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difficult to interpret the results from PCA/PLS-based
methods because the features are in the reduced space
and do not have one-to-one mapping to the original sen-
sor data sources. In addition, monitoring only the most
significant subset of features often causes significant er-
rors, as the fault may not be noticeable in the selected
features. Lastly, dimensionality reduction techniques
have no statistical guarantee on false alarm rate, making
them unreliable for actual plant monitoring which requires
false alarm to be low and controlled (e.g., =0.0027, the
classic three-sigma limit) due to the significant money
loss and safety issues of unplanned unit shutdown.

More recently, various machine learning (ML) tools
such as support vector machine, decision tree, and deep
neural network, have also been proposed and applied to
process monitoring [5-8]. Nevertheless, existing ML
methods still face problems such as overfitting and poor
predictive accuracy. For example, while most published
ML algorithms perform well during training and validation,
their fault detection accuracies deteriorate and rarely ex-
ceed 90-95% in test sets. Considering the severe conse-
quences in case of fault detection failure, such predictive
accuracy is unacceptable. Furthermore, ML methods do
not scale well with rare or new fault scenarios due to the
lack of sufficient training data.

To target these challenges, in this work, we present
a novel industrial process monitoring tool, which we
named it as “FARM”, for fast, accurate, and robust online
fault detection and diagnosis. FARM is a holistic monitor-
ing framework that integrates (a) advanced multivariate
statistical process control (SPC) for fast anomaly detec-
tion of nonparametric, heterogeneous data streams, and
(b) a modified support vector machine (SVM) for accu-
rate and robust fault classification. Unlike existing gen-
eral-purpose process monitoring frameworks, FARM’s
unique hierarchical architecture (see Figure 1) decom-
poses process monitoring into two fault detection and di-
agnosis, each of which is conducted by targeted algo-
rithms. Only if a process anomaly is detected will the
online data be sent to the fault classification/diagnosis
module for accurate fault classification. Such hierarchical
architecture successfully bypasses the intrinsic trade-off
between fault detection speed and accuracy that is pre-
sent in existing monitoring tools. Furthermore, using
FARM, plant operators can choose a user-specified false
alarm rate based on their expert knowledge of the pro-
cess.

STRUCTURE AND WORKFLOW OF FARM

As mentioned earlier, FARM consists of two distinct
yet interconnected modules. The first module performs
fault detection by adopting the state-of-the-art quantile-
based non-parametric SPC proposed by Ye and Liu [9].
Quantile-based nonparametric SPC can detect any
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process mean shift or anomaly from heterogeneous high-
dimensional sensor data streams as early as possible
while maintaining a pre-specified incontrol average run
length. Inspired by the work of Smith et al. [10], 2the
second module conducts fault classification through a
modified SVM model. Both modules are connected as
shown in Figure 1. FARM's workflow contains two steps:
(1) offline training with historical data, followed by (2)
online monitoring of real-time sensor data streams.
During offline training, the parameters of the SPC module
to be used for online monitoring are obtained using the
historical in-control data. Also, the modified SVM module
is trained by treating the faulty data's covariance
matrices as features and the corresponding faulty
scenario as labels.

Once offline training of FARM is complete, online
sensor measurements will continuously be sent to FARM
for simultaneous fault detection and diagnosis. First, they
are monitored by the SPC module to detect any process
anomaly in real time. Only if a process anomaly is
detected will the online data be sent to the fault diagnosis
module for accurate fault classification. Unlike general-
purpose process monitoring frameworks, FARM'’s
hierarchical architecture decomposes process
monitoring tasks into two subtasks (fault detection and
diagnosis), each of which is accomplished by specialized
techniques. This allows fast, accurate, and robust fault
detection and diagnosis to be simultaneously
accomplished by FARM.

Historical data

3

SPC Model
tunning training

1
H
1
i Offline Traiming

Classified fault
scenano

Online sensor SPC Fault Fault
data streams module diagnosis [

Online monitoring
Continue
monitoring Fault Raise

undetected alarm

Figure 1. FARM's hiearchical structure consisting of fault
detection and diagnosis modules.

Fault Detection

The backbone of FARM's fault detection module is
the quantile-based non-parametric SPC algorithm pro-
posed by Ye and Liu [9]. Jiang modified the original quan-
tile-based SPC formulation of Ye and Liu [9] to monitor
fully observable data streams [11]. Here, a brief descrip-
tion of the modified SPC formulation is presented. In of-
fline training, the sensor measurements in each of the M
historical in-control data streams X; (j =1,2,..,M) are
sorted in ascending order and partitioned into d number
of quantiles ; ,, ..., I; 4 defined as:
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For each gq;;, two intervals called positive and nega-
tive cumulative intervals are defined as:

i = g +0) and Clj; = (=o0,q;,], (2)

foreveryi=1,..,d—1andj=1,2,..,M. With these pos-
itive/negative cumulative intervals identified from histor-
ical in-control data, one can detect anomalies in real time
by detecting any upward/downward mean shift of online
sensor data streams. To do this, for an online sensor data
stream X;(t) where t stands for time, we define a binary
variable Af ey q-1)@nd A ey 4-1 to indicate which pos-
itive and negative cumulative interval X;(t) lies in at time
t, respectively:

1 ifX;(t) € CL;

Aj+,ie[1,2 ..... d-1] = { (3)

0 otherwise'
_ 1 ifX;(t) € CI;
A . { j i 4
j,i€[1,2,...,d—1] 0 otherwise ( )
With this, we obtain two vectors Aj-r (t) and Aj (¢) as:
AF(t) = [AfL Ay, o A gy, (5)
A; () = [A71, A7, o Afgq) (6)

One can show that E[Af(1)] = [1 —%,1 —2, o 1l=

%] and E[A7(0)] = [l - ..,%] for j=1,..,M and i=

1,..,d. Therefore, by defining Af (t) and A (t), the idea is
to convert the task of detecting any mean shift in the dis-
tribution of X;(t) with respect to the distribution of histor-
ical in-control data into an equivalent task of detecting
the upward (resp. downward) mean shift in the distribu-
tion of A/, (resp. 4j;) with respect to E[4];] (resp. E[4};]).
This transformation presents at least two major ad-
vantages. First, it has been shown that 4f; (resp. 4;,) is
more sensitive to upward (resp. downward) mean shifts
than the original data streams themselves [9], thus allow-
ing faster fault detection. And second, it allows nonpara-
metric, heterogeneous data streams to be successfully
monitored for the first time.

Quantile-based SPC implements the multivariate
cumulative sum (CUSUM) procedure first proposed by
Qiu and Hawkins [12, 13] to monitor multivariate big data
streams of A;“(t) and A; (¢) forj = 1,.., M. This is achieved
by defining ¢;*(t) and ¢; (t) as:

Cite) = [(sF°" (- D+ aF @) - (5] P (e -

D+ [E(Ajfr(t))]T - (diag (s.i' Xy _

D+ E(AE (D) ) [(s7°%t - D)+ A7 (©) — (7 (e -
D+ E@®)) )
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In Equation (7), SJr °bs(¢) and S;—r'e"p(t) are four vec-
tors of size d — 1 that are the CUSUM statistics initiated

at §7°%%(t = 0) = §7P(t = 0) = 0:
SE(1) = 0,857 P() =0, if GE(t) <k
+, obs _ (Ci(t)fk) +,0bs . +
VR OR (s (e - D+ 4F(0) . 8)
if G () > k

.
sexp oy _ (GOK) (hexpr,
Sj = ci® (Sj (¢

D+ E(A}(t))

In Equation (8), k is an allowance parameter that re-
starts the CUSUM procedure if no evidence of significant
shift is detected after a while [14]. The value of k is ob-
tained during offline training using historical in-control
data. Then, one-sided local statistics I/I/;r and w;” for re-
spectively detecting upward and downward mean shifts
of data stream j can be defined as:

¢ k), (9)
max(O, C(t) — k). (10)

Wit (t) = max(0,
W (t) =

If one wants to detect either upward or downward
mean shifts, then a two-sided local statistic W;(t) can be
defined as the maximum of the two one-sided local sta-
tistics:

W;(t =0)=0,
W (e > 0) = max (W;* (6), W (1)) a1
J J 0 :

Finally, to determine the stopping time T for raising
the alarm by declaring the process is out-of-control, the
top-r approach proposed by Mei [15] is adopted. First, at
each time step t, the values of individual local statistics
w;(t) for all data streams are ranked from largest to
smallest: Wiy () > - > Wy (£) > - > Wy (), in which
Wi (t) corresponds to the k™ largest local statistic. Next,
the top r of the local statistics at time t is calculated, and
the stopping time T, also known as the out-of-control run
length, is defined as:

= inf {t > 0: X{jy=; Wi (t) = h}, (12)

where h is a threshold value that corresponds to the pre-
specified false alarm rate and can be obtained during of-
fline training using historical in-control data. A commonly
used h is obtained based on the false alarm rate of 0.27%
(the classic 3o limit).

Fault Classification and Diagnosis

)

Covariance A; Mapping to Standard
Sensor Data Streams —{ matrix ——{ thetangent ———| SupportVector — Fault label
calculation space Machine

Figure 2. Flowchart of the modified SVM algorithm for
improved facult classifcation.

In this section, we discuss how accurate fault
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diagnosis can be achieved using a modified SVM module
in FARM. Figure 2 illustrates how we modify standard
SVM for fault classification by adding a data pre-pro-
cessing step in the training step. To train the SVM model
using the historical sensor data corresponding to differ-
ent fault scenarios, we first compute the covariance ma-
trix of the historical faulty data streams, followed by
training the SVM model over the covariance matrix in-
stead of the original faulty data streams. This modifica-
tion is inspired by the fact that covariance matrices are
symmetric and positive definite, and thus always lie on a
Riemannian manifold. It has been recently shown that, by
respecting this important geometric insight, one can
greatly enhance the accuracy and interpretability of clas-
sification, regression, dimensionality reduction algo-
rithms by conducting these computations on the tangent
space of the manifold [10]. Inspired by this finding, we
map the generated covariance matrices to their tangent
space, which intersect the Riemannian manifold where
these covariance matrices reside at the geometric mean
of the covariance matrices (see Figure 3). This mapping
is done through the logarithm operation as:

A; =logz(A)), (13)

where A; is the covariance matrix of sensor data streams
for dataset i calculated as:

A; = 7 5XX], (14)

where X; is the original sensor data matrix containing M
number of data streams values over N time steps. Ais the
geometric mean of covariance matrices (A;), and A; is the
mapped matrix of matrix A; to the tangent space as
shown on Figure 3. The reader is encouraged to read the
main reference explaining this mathematical calculation if
interested [10].

Tangent Space A

Riemannian manifold

(a) (b)

Figure 3. lllustration of (a) a Riemannian manifold and (b)
the associated tangent space. The logarithmic map as
well as the geodesic between the geometric mean A and
each covariance matrix A; are also shown.

After this data preprocessing step, the mapped covari-
ance matrices are used as input features, whereas the
corresponding fault scenarios are used as labels to train
a standard SVM model using a radial basis function (RBF)
kernel.

During online monitoring stage, real-time sensor
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data streams are processed in the fault/anomaly detec-
tion module first. Only when a process anomaly is de-
tected will the data streams be sent to the fault classifi-
cation/diagnosis module. Such an arrangement will fur-
ther enhance the accuracy and reliability of fault diagno-
sis module, as the data streams are certain to be faulty.
Next, the covariance matrix for the sensor data streams
is calculated, mapped to the tangent space of the Rie-
mannian manifold, and used as the input to the trained
SVM model to classify its fault label.

CASE STUDY: TENNESSEE EASTMAN
PROCESS

Abstracted from a real chemical process, the Ten-
nessee Eastman Process (TEP) is a nonlinear open-loop
unstable process that has been widely used in various
computational studies as benchmark case for plant-wide
control, process monitoring, and data-driven optimiza-
tion [16]. As shown in the schematic of Figure 4, the TEP
consists of 4 major unit operations: a reactor, a stripping
column, a separator, and a product condenser. The pro-
cess involves the production of two liquid product com-
ponents G and H from four gaseous reactants A, C, D and
E with an additional inert B and a by-product F. The pro-
cess is continuously monitored by a total of 52 process
variables, including 11 manipulated and 41 measured var-
iables.

Figure 4. Schematic of TEP (figure extracted from [17]).

Fault Detection Module Performance

Table 1 lists the comparison results of our SPC mod-
ule with respect to two benchmark fault detection algo-
rithms, which are PCA-T? and SVM [11]. The data used for
this study is obtained by the MATLAB graphical user in-
terface (GUI) originally developed by Andersen et al. [18].
Overall, a total of 50 hours (simulation) of normal opera-
tion data were generated using this GUI to determine the
threshold value h in Equation (12) and to construct the
quantiles 4, ...,I; 4 as well as the cumulative intervals

CI;—’L.. In addition to normal operation (in-control) data, the
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GUI can generate process data for 28 different fault sce-
narios. Here, we select three faults, namely IDV 2, 3, and
13 (see Table 1 for description), to compare the perfor-
mance of the SPC algorithm with other benchmarks.

Table 1. Description of faults for comparison study of
multiple fault detection benchmarks.

Fault# Description Fault Type
IDV 2 B composition in stream 4 with Step
A/C ratio constant
IDV 3 D feed temperature in stream 2 Step
IDV 13 Reaction kinetics Slow drift

Table 2 summarizes the comparison results of fault
detection speed and the corresponding false alarm rate
of all three monitoring frameworks, quantified by out-of-
control run length (i.e., how many additional observations
are needed to declare out-of-control status and raise
alarm after the actual fault is introduced) for each algo-
rithm. As we can see, among the three monitoring frame-
works, quantile-based SPC framework yields the fastest
fault detection speed in all three fault scenarios, while
maintaining the lowest false alarm rate. Given that a lower
false alarm rate generally sacrifices fault detection speed
due to more conservative monitoring behavior, the quan-
tile-based SPC framework achieves a win-win situation
compared to other benchmark algorithms.

Table 2. Fault detection results in terms of out-of-control
run length (false alarm rate) for SPC , PCA-T? and SVM
for TEP dataset [11].

Fault# SPC PCA-T? SVM

IDV 2 125 (0.27%) 216 (0.5%) 180 (0.8%)
IDV 3 95 (0.27%) 366 (0.5%) 16815 (83%)
IDV 13 128 (0.27%) 1131 (0.5%) 675 (12.7%)

Fault Diagnosis Module Performance

For fault diagnosis, we experimented various classi-
fication algorithms using the TEP dataset developed by
Rieth et al. [19], which consists of 500 simulation cases
of normal (in-control) operation as well as 20 fault sce-
narios. To illustrate, we present three representative
models here.

First, we highlight the “best model” obtained by fol-
lowing training procedure illustrated in Figure 2. Figure 5
shows the confusion matrix obtained through 10-fold
cross-validation of these 20 faults. Clearly, the modified
SVM model demonstrated outstanding classification per-
formance for all faults except for faults IDV 3, 9, and 15.
This result outperforms a number of fault diagnosis algo-
rithms in the literature. It is worth noting that faults IDV 3,
9, and 15 correspond to “step change in temperature of
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reactor feed D”, “random variation in temperature of re-
actor feed D”, and “sticking value failure for condenser
cooling water valve”, respectively. And these three faults
are well-known to be particularly challenging to differen-
tiate due to the close similarity of their dynamic behaviors
to the overall process. To tackle this longstanding chal-
lenge of successful differentiation of these faults, new,
creative methodologies need to be developed.

SVM Classification for Tangent Space
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Figure 5. Confusion matrix (after 10-fold cross validation)
of fault diagnosis results for our proposed modified SVM
model.

As a direct comparison, Figure 6 shows the
confusion matrix for the case where standard SVM
without any data pre-processing is used for training and
validation. It is clear that fault classification accuracy
deteriorates significantly in this case.
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SVM Classification for Original Space
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Figure 6. Confusion matrix (after 10-fold cross validation)
of fault diagnosis results for standard SVM model without
the introduced data pre-processing step.

Finally, we present the results for another fault
diagnosis algorithm based on principal geodesic analysis
(PGA) discussed by Smith et al. [10]. PGA is a counterpart
of principal component analysis (PCA) applied on the
tangent space of the Riemannian manifold, as it identifies
the geodesics that capture the most variance in the data.
In other words, in PGA, we simply apply PCA technique to
the mapped covariance matrices of faulty data streams
for dimensionality reduction. To determine the number of
principal geodesics (which are the “principal
components” in PGA) needed, we perform sensitivity
analysis and identify that 29 principal geodesics are
required to capture 99% of the variance in the original
dataset containing covariance matrices on the
Riemannian manifold. Furthermore, four distance
measures, namely Euclidean, Mahalanobis, Manhattan,
and Cosine are tested and compared. Clustering is done
by assigning a point to its closest cluster based on the
distance mesure used. We identify that, among these
four measures, the cosine distance offers the best fault
classification performance. Figure 7 shows the confusion
matrix of PGA-cosine approach with the 10-fold cross
validation. As we can see, in general, 12 out of the 20
faults can be fully classified, whereas faults IDV 3, 5, 9,
10, 12,13, 15, and 18 cannot. Although its accuracy is yet
to match with the best model, the PGA-Cosine algorithm
performs much better than standard SVM without data
pre-processing.

Since the modified SVM model showed superior
performance over PGA-Cosine method, the confusion
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matrix of this method is compared with 10-fold confusion
matrix of the ridge classifier model presented by Smith et
al. [10], which trained on the mapped covariances. Figure
8 depicts the difference of confusion matrices between
the modified SVM (A) and Ridge (B) classifiers. Positive
numbers show that the prediction probability values of
modified SVM model were higher than Ridge classifier.
Conversely, the negative values indicate that the Ridge
model’'s prediction probabilies were more than the
modified SVM. Lastly, zero means that both models had
the same prediction probability. As can be seen, both
models have the same accuracy for all faults excepts
faults 9 and 15, which the ridge classifier had a better
accuracy than the modified SVM model by looking at the
diagnoal values of the difference matrix.

Cosine Distance - 29 principal components
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Figure 7. Confusion matrix (after 10-fold cross validation)
of fault diagnosis results for PGA-Cosine classification
algorithm with 29 principal components being selected.
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The Difference Confusion Malrix (A-B) Between Modificd SVM (A) and Ridge (B) Models
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Figure 8. The difference confusion matrix between 10-

fold cross validation matrices of the modified SVM

classifier presented in this study (A) and the ridge
classifier presented by Smith et al. (B) [10].

CONCLUSION

In this work, we present a fast, accurate, and robust
algorithmic framework named FARM for industrial pro-
cess monitoring. FARM is a holistic framework that syn-
ergistically performs fault detection and diagnosis tasks
to improve monitoring performance. The fault detection
module inside FARM adopts an advanced quantile-based
SPC approach that can detect any mean shift of non-par-
ametric and heterogenous multivariate data streams as
soon as possible while maintaining a pre-specified false
alarm rate. Meanwhile, the fault diagnosis module inside
FARM implements a modified SVM algorithm for fault
classification. Compared to standard SVM approach, our
modified SVM algorithm includes an important data pre-
processing step that makes use of the manifold insight of
covariance matrix to greatly enhance classification accu-
racy. By validating and evaluating the performance of our
FARM framework using the TEP dataset, we observe that
1) our fault detection module can achieve fast anomaly
detection speed at a low false alarm rate, and 2) our fault
diagnosis module successfully classifies 17 out of 20 fault
scenarios at 100% accuracy. Unfortunately, faults IDV 3,
IDV 9, and IDV 15 of the TEP dataset, which are known to
be hard to classify, still face challenges in differentiating
among one another with high accuracy. Our future work
involves revamping the FARM framework to improve the
classification accuracy of these hard-to-differentiate
faults.
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