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Abstract

The momentum conservation equation for glacier flow can be described through minimization of
an action functional. Several software packages for glacier flow modeling use this action principle
in the design of numerical solution procedures. We derive here an equivalent dual action prin-
ciple for the shallow stream approximation and implement this model using the finite element
method. The key feature of the dual action is that the flow law and friction law are both inverted,
which changes the character of the non-linearities. This altered character makes it possible to
implement numerical solvers for the dual form that work even when the ice thickness or strain
rate are exactly equal to zero. Solvers for the primal form typically fail on such input data and
require regularization of the problem. This robustness makes it possible to implement iceberg
calving in a simple way: the modeler sets the ice thickness to zero in the desired area. We provide
several demonstrations and a reference implementation.

Introduction

On space and timescales >100 m and 1 d, glaciers flow like a viscous, incompressible fluid with
a power-law rheology (Greve and Blatter, 2009). Ice flow is slow enough that the fluid inertia is
negligible compared to viscous and gravitational forces, that is, the flow occurs at very low
Reynolds and Froude numbers. There are multiple equivalent ways of expressing the momen-
tum balance equations: a conservation law, a variational form, a partial differential equation
(PDE). Each of these forms is best suited to a different type of numerical method. The
momentum balance equation for low-Reynolds number viscous fluid flow can also be derived
as the optimality conditions for the velocity to be the critical point of a certain action func-
tional (Dukowicz and others, 2010). The action functional has units of energy per unit time
and can be interpreted as the rate of dissipation of thermodynamic free energy (Edelen,
1972). For many problems — low-Reynolds number flow, heat conduction, saturated ground-
water flow, steady elasticity — the action is a convex functional of the unknown field.

The existence of an action principle is a special property of a very restricted class of differ-
ential equations. Action principles are not just of theoretical interest — we can use them to
design faster, more robust numerical solvers. First, a convex action principle implies that
the second derivative is symmetric and positive-definite. These properties guarantee conver-
gence for Newton-type algorithms. They also mean that we can use specialized methods,
such as Cholesky factorization or the conjugate gradient method, to solve the linear systems
of equations for the search direction in each step (Nocedal and Wright, 2006). These methods
are not applicable to more general classes of linear systems. Second, the action principle offers
a way to measure how well an approximate solution matches the true solution and it is distinct
from, say, the square norm of the residual. The theory of convex optimization then provides us
with a way to measure how close we are to convergence using only the current solution guess
and search direction by evaluating the Newfon decrement. In Shapero and others (2021), we
showed how to use this theory to design physics-based convergence criteria.

This work follows in the footsteps of Dukowicz and others (2010) in studying action prin-
ciples for glacier flow. Our main contribution is the derivation of an alternative dual action
principle, distinct from that presented in Dukowicz and others (2010), from which the
momentum conservation equations can be derived. The most important feature is that the
dual action principle has favorable numerical properties for shear-thinning flows such as gla-
cier dynamics. Solving the primal form of the problem requires regularization around zero
strain rate, velocity, and thickness in order to smooth away infinite values. This regularization
makes the momentum balance problem solvable, but it remains poorly conditioned and intro-
duces other non-physical artifacts. The dual problem requires no regularization. We have
implemented solvers for this dual form that still converge even when the thickness and strain
rate are zero. As a consequence, we were able to simulate iceberg calving by setting the ice
thickness to zero in part of the glacier. We illustrate these advantages in the final section
with a numerical implementation and several demonstrations.

The main advantage of the approach we propose here is that it offers a new way to handle
ice-free regions. Several strategies already exist in the literature on numerical ice flow modeling
for handling ice-free regions. One can set a minimum ice thickness, which regularizes away the
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problem but introduces mass-balance errors. The BISICLES
model uses a finite volume discretization, special handling of
the terminus in assembling the stiffness matrix, a regularized
Picard-type linearization and an artificial friction in ice-free
areas (Cornford and others, 2013). The Ice Sheet and Sea-Level
System Model uses the level-set method (Osher and Sethian,
1988; Bondzio and others, 2016). This approach introduces an
additional scalar field which evolves according to a certain differ-
ential equation. The zero contour of this scalar field represents the
glacier terminus. One can then ‘turn off the physics in the ice-free
region where the momentum balance equation ceases to be well-
posed. Finally, the Elmer/Ice model has used both (1) direct
remeshing of the 3-D geometry (Todd and others, 2018), so ice-
free areas are not included in the computational domain at all,
and (2) coupling to a discrete-element model (Benn and others,
2017). These approaches are effective but come with their own
drawbacks and implementation challenges. For example, using
the level-set method requires solving a challenging, non-linear
hyperbolic problem, the eikonal equation. The remeshing
approach taken in Elmer/ice, on the other hand, requires project-
ing the solution between different computational meshes. The
dual form that we describe here has its own challenges but we
claim that these are easier to overcome than those of existing
approaches.

In the following, we will assume familiarity with (1) the PDEs
describing glacier flow, (2) variational calculus and the derivation
of the Euler-Lagrange equations of a generic functional and (3)
convex analysis and convex duality theory. For background read-
ing, we refer the reader to Greve and Blatter (2009) for glacier
dynamics, Weinstock (1974) for variational calculus and Boyd
and Vandenberghe (2004) for convex optimization.

Theory
The shallow stream equations

Here we review the differential equations that are commonly used
to describe glacier flow. In the next section, we will show how the
momentum balance equation has a minimization principle. We
will focus exclusively on the shallow stream approximation
(SSA), which is commonly applied to model fast-flowing outlet
glaciers and ice streams. The SSA model is derived by (1) expand-
ing the Stokes equations in the aspect ratio and taking only the
lowest-order terms, and (2) depth-averaging the equations,
which assumes that the horizontal velocity varies much more in
the longitudinal directions than with depth (Greve and Blatter,
2009). For a complete list of all symbols and units used in the fol-
lowing, see Table 1.

The equations of motion are solved in a 2-D domain Q. The
main unknown to be solved for in the SSA is the depth-averaged

Table 1. Variable, symbol, physical units and tensor rank - 1 for vectors, 2 for
matrices, etc.

Name Symbol Unit Rank
Velocity u mat 1
Strain rate & at 2
Viscosity tensor 4 4
Compliance tensor o 4
Membrane stress M MPa 2
Basal stress T MPa 1
Ice thickness h m

Surface elevation s m

Flow law exponent n

Sliding law exponent m

Fluidity coefficient A MPa~" a™!

Slipperiness coefficient K MPa™™ m a~*
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ice velocity u. Some important intermediate quantities are the
basal shear stress 7 and the membrane stress tensor M, a rank-2
tensor with units of stress that results from applying the low-
aspect ratio assumption to the full 3-D deviatoric stress tensor.
The inputs to the problem include the thickness h, surface eleva-
tion s and fluidity factor A in Glen’s flow law. The SSA momen-
tum conservation equation is

V-hM + 7— pighVs =0, (1)

where p; is the ice density, and g the gravitational acceleration. In
addition to Eqn (1), we need to know a constitutive relation
between the membrane stress tensor and the depth-averaged
strain rate tensor:

&=

(Vu + VuT). 2

N =

In order to simplify the notation later, we introduce the dimen-
sionless rank-4 tensor % defined by

e+ (@)
=

Ce (3

The tensor % plays a similar role to the elasticity tensor in linear
elasticity. Moreover, we define the norm of a rank-2 tensor with
respect to ¢ as

lels = &:Ge. 4)

Alternatively, in index notation, the square norm is
|é|2c = Gijuéijén. With these notational conveniences in hand,
the Glen flow law states that the membrane stress and strain
rate are related by a power law:

M =2A7"e /" g (5)

where A is the depth-averaged fluidity coefficient and n = 3 is the
Glen flow law exponent.

Next, we need to provide some kind of sliding relation. We will
assume a generalized power law with some exponent m, that is,

7= —Clul'/" 'u. (6)

Weertman sliding has m = n, while perfectly plastic sliding has
m = o0. Recent research suggests alternative forms that transition
between Weertman-type sliding at low speeds and perfectly plas-
tic sliding at higher speeds (Minchew and Joughin, 2020). For
illustrative purposes Eqn (6) is sufficient, and we will describe
how to incorporate alternatives in the discussion.

Finally, we need to supply a set of boundary conditions for the
problem to be well-posed. Along the part of the boundary where
ice is flowing into the domain, we assume that the ice velocity is
known from observations; this is a Dirichlet boundary condition.
At the glacier terminus, which we will denote by I', the membrane
stresses at the cliff face are balanced by pressures from any progla-
cial water body. This is a Neumann boundary condition:

—hM v == (pigh® — pwghsy )V, (7)

N | =

where hyy is the water depth and v is the unit outward-pointing
normal vector to the terminus.
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We can then combine Eqns (1)-(6) and the boundary condi-
tion (7) to arrive at a second-order, non-linear elliptic system of
differential equations for u.

For modeling a floating ice shelf, the friction term in Eqn (1) is
zero. Moreover, assuming the ice is in hydrostatic equilibrium
allows us to write the surface elevation in terms of the thickness:

s = (1— p/pw)h. €))

As a result, the momentum conservation equation reduces to
1 2
V-hM — igth =0, 9

where 0=(1—pi/pw)p: is the reduced density of ice over sea
water.

Marine ice sheets flow from the continent and into the ocean,
where they go afloat. If we are to model a marine ice sheet with
the SSA, we must distinguish between a grounded and a floating
region. This results in a free boundary problem where ice goes
afloat once condition (8) is satisfied. The boundary separating
grounded from floating ice is known as the grounding line x,.
The possibility of a marine ice-sheet instability that could dramat-
ically increase the rate of discharge of ice into the ocean has led to
a substantial amount of research into grounding line dynamics
(Schoof, 2007; Durand and others, 2009; Favier and others, 2012).

To complete our description of the dynamics, the thickness
evolves in time according to the following depth-averaged mass
conservation equation:

oh
—+V-hu=a—rm,

ot (10)

where 4 is the rate of ice accumulation and 1 of melting or abla-
tion. We assume that the ice thickness and velocity along the
inflow boundary are known.

Primal action principles

The main idea behind action or minimization principles is that
some PDEs really express the fact that their solutions are extrema
of a given action functional. The momentum balance equation of
glacier flow is one such PDE. Many publications in the glacier
flow modeling literature have explored the advantages of using
action principles to describe the momentum balance (Bassis,
2010; Dukowicz and others, 2010; Brinkerhoff and Johnson,
2013; Shapero and others, 2021). Here we briefly review these
concepts as they pertain to the SSA momentum balance.

Given a particular action functional, the PDE that expresses
the condition that a field is an extremum can be calculated
mechanically in terms of the integrand. This PDE is called
the Euler-Lagrange equation for the functional. We will not
repeat it here but see Weinstock (1974). On the other hand,
if we are given a PDE, it may or may not have an action func-
tional at all. In other words, being the Euler-Lagrange equa-
tions for some action functional is a special property of only
a restricted class of PDEs. There is no rote procedure to deter-
mine what the action functional might be, but in attempting to
construct one, the main mathematical hurdle to overcome is
computing the anti-derivatives of certain terms in the differen-
tial equation.

The constitutive relation (5) for M can be expressed as the
derivative of a certain scalar quantity. In index notation,

d 2n
My = — [ —— A"V g /M 11
i ae,-j<n+1 el (an
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if we think of the strain rate tensor as an independent variable and
briefly forget that it is the symmetrized velocity gradient. Likewise,
for the sliding relation (6), we can observe that

Ti:_i Lc|u|l/m+l .
ou; \m—+1

Using Eqns (11) and (12), one can show that the SSA momentum
balance are the Euler-Lagrange equations for the following action
functional (Dukowicz and others, 2010):

12)

2n m
= hAil/n ¢ (l,/n+l ——C 1/m+1
J@) L{nﬂ el ™+ Cl

1
+ pighVs - u} dx + Ej (pigh® — pwghiy)u - v dy
r
(13)

Note that the action has units of energy per unit time, or power.
The final summand of Eqn (13) enforces the Neumann boundary
condition at the ice terminus. The Dirichlet boundary condition
along the ice inflow, on the other hand, has to instead be enforced
by eliminating coefficients from the resulting non-linear system.

A mechanical computation of the second derivative of J shows
that this functional is convex. The theory of non-equilibrium
thermodynamics tells us that ] represents the rate of dissipation
of thermodynamic free energy (Edelen, 1972). Once again, the
essential point is that finding a minimizer u of the functional |
defined above is equivalent to finding a solution of the SSA differ-
ential equation.

Dual action principles

Action principles have appeared in glaciology before, but dual
forms have not. The dual form of a problem is a distinct but
equivalent expression of the same underlying physics. We will
show in the following that, for the particular case of the SSA
momentum balance, the dual form has some better numerical
properties that make it worth investigating.

The dual form can be understood at two levels. First, we can
show what the dual action functional is without describing how
we came up with it. A reader who knows some variational calcu-
lus can derive the Euler-Lagrange equations for this functional
and verify that the resulting equation set is equivalent to the pri-
mal form of the SSA. We present an exposition at this level below.
On the other hand, this approach can feel like pulling a rabbit out
of a hat; it does not answer how we arrived at the dual form in the
first place or how we might derive the dual forms of other pro-
blems. This level requires some knowledge of general convex
duality theory. We assume that few glaciologists will be interested
in this level of detail and refer instead to sections 9.7 and 9.8 of
Attouch and others (2014).

Equations (1)-(7) can be combined into a second-order differ-
ential equation for the velocity u. Solving this differential equation
is equivalent to finding a minimizer of the functional J defined in
Eqn (13). In deriving the differential equation, we used the con-
stitutive relation and the sliding law (Eqns (5) and (6)) to elimin-
ate the membrane stress M and basal stress 7.

We could instead keep these additional equations and
unknowns. Instead of solving a second-order equation for u, we
would then have an equivalent first-order system of equations
for u, M and 7. One way to motivate the dual problem is to
ask: is there an optimization problem that is equivalent to this
first-order system? As we will show below, there is, but it has
some different characteristics from the primal problem. One of
the key features of dual forms in general is that they invert



constitutive relations. Conventionally, we write the membrane
stress tensor as a function of the strain rate tensor, and the
basal shear stress as a function of the sliding velocity. The dual
form inverts these relations: the strain rate tensor becomes a func-
tion of the membrane stress tensor, and the sliding velocity a
function of the basal shear stress.

In Eqn (3), we define the rank-4 tensor % as a convenience for
writing down how the membrane stress is a function of the strain
rate. We can show explicitly that the inverse .oZ of this tensor € is

M — ;t (MI
d+1 r

2

oAM= (14)

where d =2 is the space dimension. The tensor .2/ plays an analo-
gous role to the compliance tensor in linear elasticity. With this
definition in hand, we can invert Eqn (5) to get
& =2A|M|";'.o/M. The sliding law is much easier to invert:
u=—C 7" 'z. We can then define a slipperiness coefficient
K=C™.

With these preparations in place, the dual form is

2 1
L(u, M, 7) :j {—hA|M|;+1 +——K]|7"*!

n+1

— hM:&(u) + 'r-u—pIgth~u}dx

15)

1
- Ej (pigh® — pwghiy)u - v dy
T

We can then evaluate the variational derivatives of L with respect
to u, M and t, require that these derivatives are all zero, and show
that the resulting equations are equivalent to the primal form of
the problem. First, if we require that the variational derivative
of L with respect to M along any perturbation N is zero, we
find that

<3—L, N> = j {2hAIM|" /M — he(u)} :Ndx = 0.  (16)

This equation is the variational form of the inverse of the consti-
tutive relation (Eqn (5)). Next, taking the variational derivative of
L with respect to 7 along some perturbation o, we get

<%,g->=j {K|T|’”’17+u}-0'dx=0 17)
Q

T

which is the inverse of the sliding law of Eqn (6). Finally, let v be
any perturbation to the velocity field such that v=0 along the
inflow boundary. Taking the variational derivative of L with
respect to u along v gives

<6—L, v> = j {—hM:é(V) +7-v—pghVs- v}d.x
3u Q
(18)

1
- Ejr (Plghz - ngh\ZN)V -vdy

which is not exactly what we want. We can use integration by
parts to push the symmetric gradient of v over onto hM in the
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first term however:

..=j {V-hM+7—plgth}~vdx
! . (19)
+ L (hM V=3 (pigh® — prh%v)v> - v dx.

If we require that this is equal to 0 for all perturbation fields v, we
recover both conservation of membrane stress (Eqn (1)) and the
boundary condition (Eqn (7)). As with the primal form, we
have to enforce the inflow boundary condition by eliminating
degrees of freedom. In effect, finding a critical point of the dual
action functional is a constrained optimization problem; the vel-
ocity field acts like a Lagrange multiplier that enforces the con-
straint of stress conservation.

The important feature of the dual formulation is that the nature
of the non-linearity has changed. In the primal action shown in
Eqn (13), the non-linearity consists of the strain rate raised to
the power 1/n+1. Since n>1, the non-linearity in the primal
form has an infinite singularity in its second derivative around
any velocity field with zero strain rate. In the dual form, however,
the non-linearity consists of the stress tensor raised to the power n
+ 1. Around zero stress, the second derivative of the action with
respect to the stress is zero instead of infinity; see Figure 1.

Demonstrations

Here we will describe several computational experiments for
evaluating the dual form of SSA and our implementation of it.
First, we will conduct a verification exercise in order to make
sure that we correctly implemented the dual form of SSA. This
demonstration is to give some assurance that we are solving the
equations right. Next, we will conduct two numerical exercises
to compare how well the dual form works compared to the primal
form on problems in simple geometries. Finally, we will conduct
two more experiments to show off the use of the dual form on
realistic glacier geometries.

Verification on solvable test cases

The verification exercises we use are taken from those used to test
the implementation of the primal form of SSA in the icepack
package (Shapero and others, 2021). We compare numerical
results on a sequence of grids to exactly solvable instances of
SSA and check that the results converge with the expected
order of accuracy. Finite element theory predicts that the
L*-norm difference between the exact solution and the solutions
obtained using CG(k) finite elements is 0(8x*t1) where Sx is
the mesh spacing. If the slope in a log-log fit of error against
mesh spacing deviates significantly from k + 1, this would indicate
some mis-specification of the problem or bug in the solver.
The first test is to use the exact solution for the velocity of a
floating ice shelf with thickness
h=hy—6h-x/L, (20)
in a domain of length L, = 20 km. With a constant value of the
fluidity coefficient A, the velocity in the x direction is

n n+1
"y = u0+LxA(ggTh°> <1 _ (1 _:Oh.Lx> ) 1)

where o =pi(1 — pi/pw). We use a 2-D domain in order to make
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Primal form

Dual form

— P(&)
d?P(£)

— P(7)
d?P(T)

Strain rate €

Stress T

Figure 1. Viscous part P of the action is shown in blue and its second derivative in orange, in (a) for the primal problem as a function of the strain rate ¢ and in (b)
for the dual problem as a function of the stress z. The second derivative of the viscous dissipation goes to infinity near zero strain rate for the primal problem, but

to zero near zero stress for the dual problem.

sure that the numerical solution, like the exact solution, has no
variation in the y direction.

The second test case uses the same geometry but adds basal
friction and assumes the ice thickness is above flotation. Solving
the resulting boundary value problem analytically in the presence
of friction is now much more difficult. Instead, we used the
method of manufactured solutions — we picked the ice velocity,
thickness and surface elevation, and generated a friction coeffi-
cient that would make this velocity an exact solution. To generate
this friction coefficient we used the computer algebra system
sympy (Meurer and others, 2017).

Comparison with primal form on slab glacier

As a more challenging test in a flowline setting, we consider a slab
of ice of constant thickness flowing down an inclined slope into
the ocean, where it goes afloat at the grounding line (Fig. 2).
We compute steady states under this configuration using the pri-
mal and dual forms described above. We set the ice thickness at
x=0 to h=500 m and the bedrock angle to & = 1°. The bed is
given by the expression

b(x) = 1500 m — x tan c. (22)

For the material parameters, we set n =3, A=10">*Pa—>s™', C=
107° Pam™""” 5! Instead of setting inflow boundary conditions
at x = 0, we enforce a zero extensional stress condition M = 0. This

Depth (m)

500 1

0 25 50 75 100 125 150 175 200
Length (km)

Figure 2. Setup for modeling a slab of ice on an inclined bed flowing into the ocean.
At x =0 we enforce a thickness h=500 m in order to approach a parallel slab of ice far
upstream of the grounding line. The dotted line is sea level.
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condition allows the ice sheet to tend to the uniform thickness
slab solution for upstream of the grounding line. For the uniform
slab, the extensional stresses are equal to zero and the frictional
stresses at the base of the ice sheet balance the gravitational forces.
As a result, the horizontal velocity for the uniform thickness slab

is given by
_ (pghtana\”
u= (M)

A consequence of enforcing the slab solution at the left boundary
is that, as we move upstream away from the grounding line,
the strain rate tends to zero and one must regularize the primal
formulation of the momentum balance equation.

For this problem, we not only solve for the velocity u or the velo-
city-stress pair (4, M), but also for the thickness / and the grounding
line position x, We therefore complement the momentum balance
equations with the mass balance Eqn (10) and the flotation condition
(8), effectively yielding a free boundary problem.

(23)

Comparison against primal form on gibbous ice shelf

The next comparison exercise uses the synthetic ‘gibbous’ ice shelf
test case from §5.3 of Shapero and others (2021). The domain
consists of the intersection of two circles of different radii chosen
to roughly mimic the overall size of Larsen C.

We first run a spin-up of the system to steady state using the
coupled mass and momentum balance equations with both the pri-
mal and dual forms. We check that the velocity obtained by solving
the dual form is within discretization error of the velocity obtained
with the primal form, which offers an additional degree of verifica-
tion that we are solving the equations right. We additionally evalu-
ate the total wall clock time to run this experiment using both the
primal and dual forms. The primal problem using CG(1) elements
for the velocity has two unknowns for each vertex of the mesh. The
dual problem using CG(1) x DG(0) elements for the velocity and
stress has an additional three unknowns per triangle. The Euler for-
mula (#vertices — #edges + #triangles ~2) implies that there are
approximately twice as many triangles as there are vertices.
Consequently there are ~4x as many degrees of freedom when
solving the dual problem as there are for the primal problem.
Assuming naively that the time to solution scales linearly with
the number of unknowns, we would then expect that solving the
dual problem is 4x as expensive as solving the primal problem.



As a third and final phase of this experiment, we run the same
simulation, but every 24 years we set the ice thickness to 0 in a
prescribed region near the terminus. This forcing mimics the
effect of a large iceberg calving event. Our prescribed evolution
of the terminus is not a realistic representation of how calving
works. Instead, we aim only to stress test the solver in order to
see if it can handle regions of zero thickness.

Demonstration on calving of the Larsen C Ice Shelf

To test the dual form of SSA on a realistic problem, we will simu-
late the evolution of the Larsen C Ice Shelf from a nominal start
date of 2015 for 40 years, including the calving of Iceberg A-68 in
2017 (Larour and others, 2021). This experiment uses the
observed calving front positions from satellite imagery to set the
terminus positions at the start of the simulating and after the calv-
ing event. The goal is not to implement a calving law as such. In
all, the experiment proceeds in several steps:

(1) Estimate the fluidity field A from remote-sensing measure-
ments of the thickness and velocity. This step uses the primal
form of the momentum balance equation from icepack.

(2) Extrapolate the ice thickness and velocity onto a larger spatial
domain, making the ice thickness 0 in ice-free areas.

(3) Run the simulation using the mass and dual momentum bal-
ance from the start date of 2015 until the calving event in
2017.

(4) Digitize the terminus position immediately after the calving
event by hand and use the digitized terminus position to
define an ice mask.

(5) Using this mask, set the ice thickness to zero over the spatial
extent of the calved area.

(6) Run the simulation for 40 years after the calving event to see
how the terminus advances again.

Demonstration on Kangerlussuaq Glacier

Our final test case is simulating Kangerlussuaq Glacier, a
grounded outlet glacier on the east coast of Greenland.
Kangerlussuaq is one of the top three contributors to the total dis-
charge from Greenland (Enderlin and others, 2014; Mouginot and
others, 2019). The purpose of this exercise is to demonstrate that
we can simulate the evolution of a marine-terminating glacier,
including the seasonal advance and retreat of the terminus in
response to ocean-induced frontal ablation in summer, using
the dual form. We do not aim to reproduce the exact calving
history.

The exercise proceeds in several steps, similar to our approach
for Larsen C:

(1) Estimate the slipperiness (the coefficient K in the sliding law
U ,—p = —K|7p|""'7) from remote-sensing measurements of the
ice thickness, surface elevation and velocity. This step uses the
primal form of the momentum balance equation from
icepack.

(2) Extrapolate the thickness, surface elevation, velocity and fric-
tion coefficient onto a large spatial domain that extends fur-
ther down Kangerlussuaq Fjord.

(3) Run the simulation using the mass and dual momentum bal-
ance equations for 1 year in order to propagate out any initial
transients. This stage uses only surface mass balance (SMB)
and thus permits the glacier to advance down the fjord.

(4) Turn on a time-periodic ablation field near the terminus in
order to represent the effects of summer melt and calving
and run the simulation for a further 4 years. This ablation
field forces the terminus to advance and retreat.
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To initialize the simulation, we use version 3 of the
BedMachine Greenland dataset for ice thickness and surface ele-
vation (Morlighem and others, 2017) and the MEaSUREs annual
velocity mosaic from 2015 to 2016 (Joughin and others, 2010) to
infer the basal friction. To force the mass conservation Eqn (10),
we need to provide a SMB field 4 and a melt rate 7.

We use an SMB field that varies linearly with elevation:

a
aray+—-s (24)
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where a, is the SMB at sea level and da/ds is the SMB lapse rate.
To fit the parameters a, and da/8s, we used output from 2006 to
2021 of version 3.12 of the Modele Atmosphérique Régional
(Fettweis and others, 2020). This regional climate model has
been tested extensively for the polar regions and for Greenland.
The fit had r*=0.91, so a substantial fraction of the variance is
explainable by surface elevation alone.

To set the melt rate 1, we first create a smoothed ice mask u.
The smoothed mask is required to be equal to 1 on the inflow
boundary 0 on the outflow boundary, and have 0 normal deriva-
tive along the side walls. We then compute u as the minimizer of
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where o is some smoothing length, and 1,.0(x) is equal to 1 if
h(x) >0 and 0 if h(x) =0. Here we choose o to be 1km, so the
mask field rapidly approaches 1 within roughly one ice thickness
of the terminus. The mask field u is recalculated in every time
step. Finally, we set the melt rate at time ¢ as
m = my(l — w) min {0, cos (27t)} (26)
where m, is a maximum melt rate that we have to choose.
Although we do not employ the level-set method here directly,
the approach outlined above is similar to using a level-set method.
The purpose of this exercise is to demonstrate that our solver
for the dual form can simulate advance and retreat of a grounded
tidewater glacier in response to melt forcing at the terminus.
Again, our goal is not to validate a particular calving law.

Results

We implemented a solver for the dual form of the SSA using the
Firedrake package (Ham and others, 2023). For more information
on discretizing the dual form using finite elements and for strat-
egies to solve the resulting finite-dimensional optimization prob-
lem, see the Appendix.

Verification on solvable test cases

We tested meshes with between 16 and 256 cells to a side and we
used both CG(1) x DG(0) and CG(2) x DG(1) finite element pairs
for the velocity and membrane stress, where CG and DG denote
respectively continuous and discontinuous Galerkin elements.
The relative errors in the L> norm have the expected asymptotic
convergence rates of (((8x?) for linear velocity elements and
(0(8x) for quadratic in both the ice shelf and ice stream test
cases; see Figure 3.

While finite element theory can predict the asymptotic conver-
gence rates, it does not immediately give estimates of what the
constant prefactor should be except in the most trivial of linear
problems. The constants can only be evaluated empirically. In
particular, the theory predicts that quadratic elements converge
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Figure 3. Relative L2-norm errors for approximate solutions to the analytical ice shelf
(a) and ice stream (b) test cases using our newly-developed solver for the dual form
of SSA. The points show the error values from each experiment, the lines show a
log-log fit of the errors against mesh size. The convergence rates were obtained
from this log-log fit.

faster asymptotically than linear elements, but it cannot tell us
how many cells per side are necessary for each to achieve the
same accuracy. Figure 3 shows that a numerical solution obtained
with only 16 cells per side and quadratic elements is roughly as
accurate as a solution with 256 cells per side and linear elements.

Comparison with primal form on slab glacier

We solved the free boundary problem with a primal method that
seeks the velocity and thickness in CG(2) x CG(2), and with a dual
method that computes the velocity, membrane stress and thick-
ness in the space CG(2) x DG(1) x CG(2). For the primal method,
we need to include a regularization parameter € in order to pre-
vent singularities in the constitutive relation. For this exercise
we solve a 1-D form of the equation, so the relevant term in
the variational form of the momentum balance equation is

(F(w), v) = j [2hA "3 + €128 By + - - - Jdx
Q
@7)

We consider a sequence of regularization parameters € between 1
and 107'*a". The results for the grounding line position are dis-
played in Table 2. The discrete problem is solved with Newton’s
method, and the initial guess for the values of the ice velocity,
the ice thickness and the extensional stress are set equal to the

Table 2. Results for the slab of ice flowing into the ocean

Solver € Xg h{xg) Iterations
a’! km m
Primal 1 90.98 95.99 6
1072 95.69 185.70 5
107* 103.37 331.86 4
1076 110.07 459.40 4
1078 111.34 483.59 6
107 111.35 483.80 7
10712 111.35 483.80 9
Dual - 111.35 483.80 4

Values of the steady state grounding line position xg and thickness at the grounding line for
computations with the primal formulation with varying regularization parameters e and
with the dual formulation. We also present the number of Newton iterations required to
converge.
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slab solution, such that & =500 m, u is equal to Eqn (23), and
M =0. The initial guess for the grounding line position is set to
the point where the flotation condition (8) holds for the constant
thickness slab. We plot the values of the relative Newton residual
in Figure 4. The solution obtained with the dual form is as accur-
ate as the primal solution using the lowest value of regularization.
Moreover, the rate of convergence of the Newton solver for the
primal formulation quickly decreases for low values of e. For
values of € equal to or lower than 107'*a™, the relative
Newton residual no longer reaches the minimum tolerance of
107® that we set for this problem.

Figure 4 shows that using a larger value of the regularization
parameter reduces the number of iterations needed to achieve
convergence. However, using more regularization also increases
the misfit between the computed velocity and the true velocity.
The dual form makes no such compromise in accuracy but the
solver still retains a high degree of efficiency.

Gibbous ice shelf

For the spin-up phase of the experiment, we did an initial run for
400 years on a mesh with a 5km resolution, at which point the
system is close to steady state. We then projected these fields to
a finer mesh with a resolution of 2 km and use them as the initial
state for a further 400 years of spin-up. The results are shown in
Figures 5a-c and are identical to those obtained from the primal
form of the problem up to discretization error.

When we used the spin-up phase of the experiment as a
benchmark to measure the performance of the dual and primal
solvers, we found that the dual problem required between 2.5 x
and 2.7 x as much time. These results were consistent across dif-
ferent mesh resolutions and when run several times on multiple
machines. Since the dual problem has 4 x as many unknowns,
the added cost that we found experimentally is less than what
we would expect if we naively assumed that cost is proportional
to the number of degrees of freedom.

In the calving phase of the experiment, our solver for the dual
problem still worked in ice-free areas. This feature offers the pos-
sibility of implementing physically-based calving models in a sim-
ple way. Figure 6 shows the evolution of the volume of ice in the
shelf over the two spin-up phases and the calving phase. The 24
year recurrence interval is not enough time for the ice to advance
back to the original edge of the computational domain. Using a
longer interval would allow the calving terminus to advance
back to its original position. Figures 5d-f show the thickness of
the ice shelf immediately after the calving event, the magnitude
of the change in speed, and the magnitude of the change in stress.
In particular, the stress field shows a discontinuity at the new
calving front as expected.

We repeated this phase of the experiment using a comparable
solver for the primal problem. When we use no minimum thick-
ness at all, the solver for the primal form diverges as soon as there
are any ice-free areas. To remedy this problem, we clamped the
thickness from below at 1 mm. Figure 7 shows the number of
Newton iterations necessary to obtain the desired level of conver-
gence through two calving events using both the primal and dual
forms. In each case, the number of iterations goes up after a calv-
ing event. As the system relaxes back, the number of iterations
decreases again. The number of iterations required for the dual
form is in general slightly greater.

Larsen C Ice Shelf

Our solver for the dual form of SSA was successfully able to com-
pute velocity and stress fields on this realistic test case even in ice-
free areas, enabling effective simulation of calving events. The
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Figure 4. Results for the slab of ice flowing into the
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tations with the primal formulation with varying regular-
ization parameters € and with the dual formulation.

simulated terminus positions of Larsen C at the start of the simu-
lation, immediately after the calving event and at the end are
shown in Figure 8. The model can effectively handle the shock
of a calving event and the subsequent readvance of the terminus.
We find that after 40 years, the terminus has readvanced beyond
its original position at some points and only half-way at others.

We used the CG(1)/DG(0) pair for the velocity and stress as in
the previous examples. To simulate the evolution of the glacier
thickness, we used DG(1) elements together with the upwind
numerical flux. We found that using a DG discretization was
necessary to get a reasonable-looking thickness. When using con-
tinuous elements for the thickness, we found that the thickness
field would develop spurious oscillations generated at the calving
terminus. This finding is to be expected because continuous ele-
ments usually fare poorly at advecting sharp features like an
advancing ice cliff.

Kangerlussuaq Glacier

Our solver for the dual form was able to simulate the advance and
retreat and of the terminus of a real grounded glacier. We ran sev-
eral instances of the experiment outlined above with different
values of the maximum melt rate m,. In general, the total volume
of ice in the simulated domain oscillates from summer lows to
winter highs over a wide range of m, values. With too low or
too high a maximum melt rate, there is an additional secular
trend in the volume time series as the glacier advances or retreats

Thickness

Iterations

down the fjord. We found that taking 71, on the order of 30 km a™"
makes the yearly-averaged volume roughly constant; see Figure 9.
Spread over an inland distance of ~1km in a 5km-wide fjord
for only the summer season, this gives a total discharge roughly
of the same order as the observed value of 24 km® a™" (King and
others, 2018).

Figure 10 shows the evolution of the calving terminus from a
minimum to the following maximum extent. The simulated ter-
minus position oscillates by ~2.5-4km seasonally, which is
close to the observed variation (Schild and Hamilton, 2013).
The true calving terminus of the glacier is upstream of the simu-
lated calving terminus, which is likely a consequence of our ini-
tialization =~ or  other  under-parameterized  quantities.
Additionally, the center line of the true calving terminus is
slightly more retreated than the margins. The center line of the
simulated terminus, on the other hand, is more advanced than
the margins. This discrepancy shows that the ad hoc rule we
used to remove ice mass near the terminus is imperfect. Several
processes govern the terminus dynamics of Greenland outlet gla-
ciers, including frontal ablation from ocean melt, stress-induced
crevassing and calving and back-pressure from sea ice or ice
melange in the fjord. We did not attempt to include a real calving
law in this exercise. We are nonetheless able to simulate ice-free
areas and the advance and retreat of the glacier terminus using
the dual form of the momentum balance equations. Closing the
gap between the simple demonstrative parameterizations used
here and reality is the subject of future work. For example, one

Velocity Membrane stress

DR
) \\\\\\\\\\\\\\

] ] —

Calved thickness

400 600 50 100 150
myr-1 kPa

200

Speed change Stress change

Figure 5. Thickness (a), velocity (b) and magni-
tude of the membrane stress tensor (c) in steady
state, and the thickness (d), magnitude of the
velocity change (e) and magnitude of the stress

change (f) immediately after the calving event.
We remove a semi-circular segment from the
end of the shelf with a prescribed center and
radius.
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Figure 6. Total volume of ice in the shelf over time. The different spin-up and experi-
mental phases are labeled. Note how the finer spin-up equilibrates to a smaller ice
volume than the coarser spin-up.

could add calving by setting the ice thickness to zero in areas near
the glacier terminus where surface crevasses would penetrate to
the water line according to the Nye criterion.

Discussion

The momentum balance equation for glacier flow has an alterna-
tive, dual expression of the same underlying physics but with dif-
ferent properties and several advantages. The most significant
advantage is that the dual form remains solvable in the limit of
zero ice thickness. Existing strategies for handling ice-free areas
include alteration of the equations or solvers, level-set methods
and re-meshing. The dual form accomplishes the same goal and
we claim that the challenges of implementing it, while not trivial,
are favorable compared to other strategies.

Our comparison of the primal and dual forms shows that
using the dual form is more computationally expensive than the
primal form because of the greater number of unknowns. On
an experiment including calving, the dual form required only
slightly more Newton iterations than the primal form with the
thickness clamped from below. Whether using the dual form is
preferable in general depends on what the simulation aims to
achieve. If speed is the main concern then the primal form with
clamping is faster. But it introduces a mass-balance error, even
more so if the velocity computed in the fictitious ice layer devel-
ops a non-zero divergence. If this mass-balance error is not
acceptable then the additional cost of using the dual form may
be worth it.

Another key feature is that the dual form reverses the behavior
of all the non-linearities around the zero-disturbance state. The
primal formulation of the problem has a singularity (i.e. terms
in the momentum balance equation go to oo) in the limit as
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Figure 7. Number of Newton iterations to compute the ice velocity at each step of the
calving phase of the experiment using the primal form with the thickness clamped
from below and using the dual form. Calving occurs every 24 years.
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Figure 8. Calving terminus locations for Larsen C Ice Shelf prognostic simulation. The
contours shown are at the start of the run, immediately after the simulated calving
event, and several decades later when the ice shelf has readvanced closer to its ori-
ginal position.

the strain rate goes to zero. Infinite singularities can only be
dealt with by fudging the problem itself. In the dual form, how-
ever, this singularity becomes instead a degeneracy (terms that
go to zero where the usual theory requires positivity). These
degeneracies are still a challenge. But the problem, with no mod-
ifications, is amenable to solution by approximate Newton meth-
ods, as described in the Appendix. Trust region methods (Nocedal
and Wright, 2006) might work as well and this remains to be
explored.

The story becomes more complicated when we consider the
interaction between the dependence on thickness and membrane
stress or strain rate. The dual form possesses only degeneracies in
the limit as the thickness or membrane stress go to zero. The pri-
mal form has a singularity when the strain rate goes to zero, but a
degeneracy in the limit as the thickness goes to zero. Moreover,
when the thickness goes to zero, the strain rate tends to also go
to zero. We hypothesize that this mixture of singularity and
degeneracy makes the primal form of the problem impossible to
solve in the limit as the thickness goes to zero. We additionally
hypothesize that the dual form remains solvable as the thickness
goes to zero because it contains only degeneracies. But we have no
proof either way and at this stage these hypotheses are at best edu-
cated guesses.
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Figure 9. Total volume in km® of ice in the computational domain, exhibiting sum-
mer troughs and winter peaks. The summer maximum melt rate m, is tuned to
give a roughly constant yearly average volume, although this simulation shows a
small secular trend.
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Figure 10. Simulated terminus position of Kangerlussuaq Glacier over one half-
period, from approximately August at its most retreated to April at its most advanced.
The colors of the contours show the time.

The dual formulation does come with several disadvantages.
The number of unknowns in the dual formulation is greater
than in the primal form, thus putting more pressure on computer
memory. The resulting linear systems are indefinite rather than
positive-definite. Finally, since the dual form is a mixed problem,
it is possible to make bad choices of finite element basis, whereas
almost any basis will work for the primal form. We did find, how-
ever, that the increased cost of solving the dual problem was not
as high as one might expect just based on counting the number of
degrees of freedom. We used a fairly naive solution approach (dir-
ect factorization) for the linear system in each step of Newton’s
method in the benchmark for both the primal and dual forms.
There may be significant room for improvement on these bench-
marks through the use of more sophisticated techniques such as
Schur complement preconditioners that use static condensation
of the stress degrees of freedom (Bofti and others, 2013).

There are several promising avenues of future work on this
problem. Including the stress tensor as an unknown and the con-
stitutive relation as an equation to be solved opens up several pos-
sibilities for modifying the physics. Since we do not need to
explicitly solve for the stress tensor in terms of the strain rate ten-
sor, we can easily implement composite flow laws like the
Goldsby-Kohlstedt law (Goldsby and Kohlstedt, 2001). We
could also add a term containing the time derivative of the stress
tensor to the constitutive relation to implement Maxwell visco-
elasticity. Both of these extensions have historically been difficult
to achieve with conventional approaches to glacier flow modeling.
Second, the solvability of the dual problem in the limit of zero ice
thickness can expand the scope of glaciological data assimilation.
For example, it may become possible to assimilate the entire time
series of altimetry measurements from ICESat-2 into flow models
in a way that constraints not just the elevation of grounded ice,
but what areas are free of ice. Finally, more work remains to be
done from the applied math side on optimal solution algorithms
for these types of problems.

Conclusion

In this paper, we derived the dual form of the glacier momentum
balance equation, implemented a numerical solver for it, and
demonstrated its use on synthetic and real problems. The key
advantage of the dual form is that the problem does not need
to be regularized when the strain rate or thickness are equal to
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0. The disadvantages are that (1) the dual form has more
unknowns and (2) solvers for the resulting non-linear optimiza-
tion problem require special tuning. Despite these additional
costs, we argue that the dual form is worth considering as an
alternative to the conventional primal form because of how easy
it is to simulate terminus advance and retreat. We did not aim
to study directly the holy grail problem of calving laws here.
But making it easier to simulate terminus evolution is a virtual
requirement for testing these calving laws with computer models.

Data. The complete source code used for the simulations described in this
paper is available at: https:/github.com/icepack/dual-problems.git.
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APPENDIX A

We have largely focused on the dual form of the SSA momentum balance as an
alternative to the primal form with certain favorable numerical properties,
such as solvability at zero thickness. We do not have conclusive answers
about the best way to discretize and solve the dual form of SSA. In the follow-
ing, we detail some of the techniques that we used. A further publication will
explore these issues in greater detail.

Discretization by finite elements

Roughly any conforming finite element basis is stable for the primal form of
symmetric, positive-definite elliptic equations, such as the diffusion and elas-
ticity equations, as long as the mesh is regular. The most common choice is to
use piecewise-continuous polynomials of a given degree k on triangles, or the
tensor product of polynomials on quads. We will refer to this basis as CG(k).
While dual formulations have many advantages, the main challenge to over-
come is that most choices of basis are unstable - the resulting linear systems
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are either singular or their inverses have unbounded norm in the limit as
the mesh is refined. For example, using CG(k) elements for the temperature
and the product CG(k)? for the flux is an unstable discretization of the dual
form of the diffusion equation. Making matters even harder, the SSA and
other problems for a pair of vector and tensor fields have an additional invari-
ant to enforce — the symmetry of the stress tensor — which can be difficult to
achieve in practice.

The question of how to choose basis functions that give a stable discret-
ization of dual problems is the subject of mixed finite element methods.
This subject is covered in great detail in Boffi and others (2013). There is, how-
ever, a wide chasm between the motivation for using dual formulations in
most of the finite element literature and our reasons for applying them to gla-
cier momentum balance. The big motivating problem for dual formulations in
the finite element literature is linear elasticity. In that setting, the goal is to
compute the stress tensor with high accuracy in order to make sure that it
does not exceed some failure threshold for the material. Using the dual
form of the elasticity equations offers the promise of approximating the stress
tensor with a higher order of accuracy than the primal form. Finding stable
finite element bases for the dual form of the elasticity equations is a holy
grail problem because of its potential impact on engineering practice.

It might seem at first blush as if the heavy focus on finding stable discre-
tizations of the dual form of the elasticity equations is beneficial to us because
the SSA is formally similar to 2-D elasticity, even though these equations have
different provenance. Our purpose for using the dual form, however, is not to
obtain a more accurate resolution of the membrane stress tensor — we are only
interested in the dual form because of how it changes the character of the non-
linearities in the SSA. With this goal in mind, there are several choices that we
make differently from how they are done in the finite element literature. These
are of a technical nature and not of special interest to most glaciologists, but we
include them here for the sake of completeness. A typical dual formulation of
elasticity would assume that:

(1) the displacements live in the function space L*({, R%), that is, the space of
square-integrable vector fields, and

(2) the stresses live in the space HI((), Rfyf) of square-integrable symmet-
ric tensor fields whose divergences are also square-integrable.

This L? x H™ formulation offers the best possible asymptotic accuracy for the
stress tensor. The dual form of the problem with these assumptions is different
from what we wrote down in Eqn (15) - the gradient of u is instead pushed
over as a stress divergence. Moreover, with the L?>x HY form, Dirichlet
boundary conditions become natural and Neumann conditions become essen-
tial. Finding stable bases for the L?x H*™ form requires very sophisticated
finite element bases. At the simplest end of the spectrum, one can enrich
the stress space by cubic bubbles (Brezzi and others, 1993). A host of more
complex approaches are possible (Arnold and others, 1984; Arnold and
Winther, 2002).

Although it is almost completely unheard of in the literature on mixed
finite elements, we make a different but equally valid set of assumptions.
We instead assume that

(1) the velocities live in the function space H'(), Rd) of vector fields that are
square-integrable and have square-integrable derivatives, and

(2) the membrane stress tensor lives in the space L?(Q), Rfyﬁf ) of
square-integrable symmetric tensor fields.

With this H' xL> dual form, Dirichlet conditions remain essential and
Neumann conditions natural. Finding a stable finite element basis is much
more straightforward for the H'x L? form of the problem. We use the
space CG(k)* of continuous piecewise-polynomial vector fields for the veloci-
ties, and DG(k)fyff of discontinuous piecewise-polynomial symmetric tensor
fields for the membrane stress.

Solution by Newton-type methods

The finite element method reduces the infinite-dimensional optimization pro-
blems that we have described into finite-dimensional ones. All that remains is
to decide how to solve the resulting finite-dimensional optimization problems.

We can approximate a minimizer for the primal form of the action func-
tional using standard Newton line search algorithms (Shapero and others,
2021). But the primal form of the momentum balance equation has singular-
ities in the limit as the strain rate tensor approaches 0. When we calculate the
derivative of the action, these singularities are multiplied by 0 in such a way
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that they become removable, that is, they have a finite limit. In floating-point
arithmetic, however, evaluating an expression with a removable singularity
does not always produce the right limit. Moreover, the second derivative of
the action does have genuine infinite singularities, and we need to be able
to calculate the second derivative or some approximation to it in order to
use Newton-type methods. The usual remedy is to introduce a smoothing fac-
tor ¢ into the action that rounds off the behavior around & = 0. Regularizing
the action functional makes the minimization problem solvable but very ill-
conditioned. Additionally, for some simulations the ice thickness can go to
zero, which makes the minimization problem difficult or impossible to solve
numerically. The usual remedy for this is to clamp the thickness from below
at some fixed value, say 1 or 10 m. Where the ice thickness approaches zero,
usually the strain rate does as well. In these scenarios, we are certain to
encounter the worst behavior possible associated with the singularity at zero
strain rate.

The dual form, on the other hand, does not have infinite singularities
around zero strain rate. Instead, the action functional has degeneracies -
terms that go to zero where, in a nicer problem, they would stay strictly posi-
tive. (See again Fig. 1.) Degeneracies are not good news either. In order to use a
Newton-type algorithm to find a critical point of the dual action L, we com-
pute a search direction by solving the linear system:

v
&L | N
g

= —dL. (A1)

We know that the second derivative of L has the structure of a saddle-point
matrix. Usually one assumes that certain blocks of this matrix are symmetric
and strictly positive-definite in order to guarantee the existence of a solution
(Boffi and others, 2013). When the problem is degenerate, we no longer
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have these guarantees. We still know that L has a unique saddle point because
it is strictly convex with respect to M and 7, the problem is that it fails to be
strongly or uniformly convex. There are workable remedies for this issue that
do not degrade the conditioning of the problem to the same extent as regular-
ization does for the primal problem.

Newton’s method with line search guarantees second-order convergence
for nice problems. In the event that the second derivative has degeneracies,
we can instead try to compute a search direction b solving the perturbed
system:

v
(PL+Ar-dG) N
(o8

=—dL (A2)

where G is some strongly convex function of M and 7 and A is a small param-
eter. For example, one reasonable choice is to take

1
G= EJ (max {h, hmin}A'IMI%, + K'|7)dx (A3)
Q

for some constants A’, K’ having the right units and for some minimum thick-
ness hy;, on the order of 1-10 m. The addition of d°G regularizes the search
directions. It does not regularize or perturb what solution we are looking for,
only how we look for it.

Regularizing the search directions sacrifices the second-order convergence
rate of Newton’s method. It does, however, achieve faster convergence than
typical first-order quasi-Newton methods like BFGS (Nocedal and Wright,
2006).



