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Abstract

Ranking is a ubiquitous method for focusing the attention of hu-
man evaluators on a manageable subset of options. Its use as part
of human decision-making processes ranges from surfacing po-
tentially relevant products on an e-commerce site to prioritizing
college applications for human review. While ranking can make
human evaluation more effective by focusing attention on the most
promising options, we argue that it can introduce unfairness if
the uncertainty of the underlying relevance model differs between
groups of options. Unfortunately, such disparity in uncertainty ap-
pears widespread, often to the detriment of minority groups for
which relevance estimates can have higher uncertainty due to a
lack of data or appropriate features. To address this fairness issue,
we propose Equal-Opportunity Ranking (EOR) as a new fairness
criterion for ranking and show that it corresponds to a group-wise
fair lottery among the relevant options even in the presence of
disparate uncertainty. EOR optimizes for an even cost burden on
all groups, unlike the conventional Probability Ranking Principle,
and is fundamentally different from existing notions of fairness in
rankings, such as demographic parity and proportional Rooney rule
constraints that are motivated by proportional representation rela-
tive to group size. To make EOR ranking practical, we present an
efficient algorithm for computing it in time O(nlog(n)) and prove
its close approximation guarantee to the globally optimal solution.
In a comprehensive empirical evaluation on synthetic data, a US
Census dataset, and a real-world audit of Amazon search queries,
we find that the algorithm reliably guarantees EOR fairness while
providing effective rankings.
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1 Introduction

Human decision-processes are increasingly augmented with algo-
rithmic decision-support systems, which has created opportunities
and challenges for addressing group-based disparities in decision
outcomes [5, 15, 51, 56]. In this paper, we focus on selection pro-
cesses where humans evaluators use rankings to organize the order
of review under resource constraints. We argue that disparities in
uncertainty can be a major source of group-based discrimination in
this setting.

To illustrate the problem, consider the following example of col-
lege admissions at a highly selective institution. In this situation,
there are far more qualified candidates than available spots. Under
a fixed reviewing budget, the college could give all applications a
brief review (but risk high error rates in human decision making),
or use a ranking to focus reviewing efforts on the more promising
applications. The latter is likely to decrease error rates in human
review, but it risks that this prioritization unfairly favors some
groups over others. For example, consider 12,000 applicants com-
peting for 500 slots. In this example, 10,000 applicants are from a
majority group with plenty of available data, and the model can
quite accurately predict which students will be admitted by the
human reviewers. In particular, it accurately assigns a probability
of 0.9 to 1000 of the students, and 0.01 to the remaining 9,000. The
remaining 2000 applicants are from a minority group, where the
model is less informed about individual students and thus assigns
0.1 to everybody. When naively ranking students by this probability,
the students with 0.9 from the majority group would be ranked
ahead of all the students from the minority group - and the class
will fill up with the expected 900 (1000 X 0.9) qualified majority
students before the admission staff even gets to any of the minority
students. This is clearly unfair even if the predictions are perfectly
calibrated for each group, since not even a single student of the
expected 200 (2000 X 0.1) qualified students in the minority group
has a chance to be selected by the admissions staff.

We aim to define a new way of ranking that does not intro-
duce unfairness into a human decision-making process even if the
predictive model shows differential uncertainty between groups.
This goal recognizes that training models to have equal uncertainty
across groups may be difficult in practice, since a lack of data and
appropriate features for some groups may be difficult to overcome!.
Importantly, a key principle behind our work is to leave the fi-
nal decisions to human decision makers. We thus aim to design
new ranking algorithms to most effectively support a fair human
decision-making process, and not to replace the human decision
maker.

The main contributions of this paper are

! Arguably, the same applies to instructing human evaluators to provide such ranking
scores during a first phase of review.
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o A new fairness criterion that provides a meaningful guarantee
for rankings that are used to support human decision making
in selection processes even under disparities in uncertainty.
We motivate this fairness criterion with a fair lottery [22, 44],
ensuring group-wise outcomes that are equivalent to allocating
scarce resources based on a group-fair lottery among the relevant
candidates.

Based on this notion of fairness, we develop a new ranking pro-
cedure that is group-fair under disparate uncertainty. Motivated
by its relation to the equality of opportunity framework [23], we
name this ranking procedure Equal Opportunity Ranking
(EOR). We analyze EOR from the lens of the cost burden on each
entity involved - the principal decision maker and each of the
candidate groups — and formulate the cost to each entity as the
lost opportunity of access given that the candidate was truly
relevant. We show that this EOR procedure equalizes the cost
burden between groups and present an efficient and practical
algorithm for computing EOR rankings. This procedure always
produces a near optimal and approximately EOR-fair solution.
In particular, we prove an approximation guarantee showing
that the gap in total cost to the principal compared to an optimal
algorithm is bounded by a small amount.

In addition to these theoretical worst-case guarantees, we present
extensive experiments benchmarking the EOR algorithm with
various existing ranking algorithms under different settings of
disparate uncertainty. We show that Demographic Parity [58, 61],
normative procedures like Proportional Rooney-rule-like con-
straints [9], Exposure based fairness criteria [49], and Thomp-
son Sampling Policy [50] are not typically EOR-fair under dis-
parate uncertainty. We find that these results hold on both a
wide range of synthetic datasets, as well as on real-world US
census data. Finally, we explore the use of our fairness crite-
rion for auditing ranking systems, using a real-world dataset of
Amazon shopping search queries. Our code can be accessed at
https://github.com/RichRast/DisparateUncertainty.

These results have important societal implications. First, they pro-
vide evidence that naively applying existing fairness mechanisms in
rankings under disparate uncertainty leads to unfairness in terms of
one group bearing the majority of the cost of opportunity. Second,
even under high disparate uncertainty in the worst case, EOR guar-
antees an approximately equal cost burden among all groups with
bounded additional cost to the human decision maker. Finally, we
hope our results inform practitioners to collect data and appropriate
features for candidates in all groups to build predictive models that
reduce disparate uncertainty. As we will show, the EOR procedure
elevates the candidates with high uncertainty in the rankings for
human evaluation. This has the desirable effect of producing more
equitable training data for future use.

We now highlight some important considerations here. First, our
proposed method is grounded in the fairness of a lottery [45], which
is a common technique for allocating scarce resources (e.g., admis-
sion slots among a large number of qualified candidates). However
moral and philosophical arguments debating the use of lottery and
randomization for certain situations have also been made [26]. We
hope this work can spark discussions on alternative notions of
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fairness in rankings that satisfy equality of opportunity under dis-
parate uncertainty. Another important point is that our proposed
EOR procedure reduces unfairness due to disparate uncertainty,
which often but not necessarily coincides with the historically dis-
advantaged group. Since EOR doesn’t require the designation of the
disadvantaged group, the guarantees we provide are not making a
normative statement about any historically disadvantaged group.
To that end, we emphasize the careful consideration of historical
and social context that needs to be taken into account by the human
decision maker as well as the way groups are defined in the first
place.

2 Related Works

While the issue of fairness has been heavily studied in the classifi-
cation setting, its counterpart — the ranking setting has received
relatively less attention. Below we highlight key areas related to
our work and leave a more detailed discussion of these and other
related works to Appendix B.

Fairness in Rankings and Selection Processes: While there exist
several notions of fairness in rankings [64], predominantly, they
are variations of two fairness mechanisms in existing literature —
representation by size [10, 57, 61, 63] and equitable allocation of
exposure [4, 31, 35, 48, 49]. We propose a new criterion different
from either of the two and our central point is that under disparate
uncertainty between groups, it is more fair to take an equal pro-
portion of relevance in expectation rather than equality by size
or exposure. Proportional representation in the form of diversity
constraints like demographic parity [58] or affirmative action such
as the Rooney Rule [9] guarantee a minimum proportion by group
size in selection processes. Exposure based formulations in rank-
ings ensure that groups of candidates are allocated exposure in an
equitable way such as in proportion of amortized relevance over
the full ranking [4]. In this work, we demonstrate that fairness
of representation by size and exposure, are not sufficient under
disparate uncertainty.

Fairness in Rankings under Uncertainty: Our work builds on [50],
in which the authors establish that uncertainty in relevance proba-
bilities is a primary cause of unfairness for rankings. They propose
a Thompson sampling policy that randomizes relevances drawn
from the predictive posterior distribution. Separately, [19] studies
the role of affirmative action in the presence of differential variance
between groups in rankings. Differential variance implies that there
is more certainty about the true quality (scores) of candidates in
a group with less variance in the estimated quality and vice versa
for a group with higher variance. In contrast, we work with rel-
evance probabilities instead of scores and focus on the certainty
of relevance of a candidate, which is determined by how close
the predicted relevance probabilities are to 1 or 0. For instance,
a group is highly certain (if the probabilities are all close to 1.0)
or highly uncertain (if the probabilities are all close to 0.5) while
both groups could have similar variance in probabilities. Fairness
under uncertainty has also been studied with respect to calibra-
tion of probabilities [11, 20, 29, 38]. Classical literature in this area
studies whether group-wise calibration is a necessary condition
for fairness, or not [32]. Our work is orthogonal to the question of
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the necessity of calibration for fairness and we only require group-
wise calibration as a sufficient condition for the EOR criterion we
propose.

Our work complements and extends prior research on fairness
in rankings under uncertainty, contributing uniquely in several
ways. In particular, we provide a formal framework for analyzing
the unfairness that differential uncertainty induces in rankings.
Additionally, our approach involves accounting for the differen-
tial uncertainty directly at the ranking stage, unlike prior work
that involves learning the uncertainty [53] or correcting the noisy
relevance estimates [59]. Finally, our proposed EOR criterion is
non-amortized for every prefix k of the ranking, which is strictly
stronger than the probabilistic but amortized notions of fairness
[4, 48, 49] shown to be problematic [28].

3 Un-fairness due to Disparate Uncertainty in
Rankings

We want to design a ranking policy 7 that does not introduce un-
fairness into a human decision process due to disparate uncertainty.
More formally, the task of 7 is to compute a ranking o of n candi-
dates, where each candidate i has a binary? relevance r; € {0,1}
which is unknown to the ranking policy 7, and true relevance can
only be revealed through a human decision maker. When assess-
ing the relevance, we assume that the human decision maker goes
through the ranking o from the top to some a priori unknown
position k. The goal of the decision maker (a.k.a. principal) is to
find as many relevant candidates (e.g., relevant products, qualified
students) as possible.

While the true relevances r; are unknown, we assume that the
ranking policy 7 has access to a predictive model of relevance
P(ri|D), typically trained on prior human decisions 9 and features
of the candidates. Sorting the candidates in decreasing order of
pi = P(r; = 1|D) is called the Probability Ranking Principle (PRP)
[41], and it is by far the most common way of computing a ranking.
The justification for PRP ranking is that it maximizes the expected
number of relevant candidates in any top-k prefix of the ranking.
On the other hand, Demographic Parity (DP) is the dominant form
of fairness mechanism in rankings, where candidates are selected
from groups in proportion to the group size. While PRP ranking is
provably optimal according to the efficiency goal of the principal
and DP ranking ensures representation by group size, the following
elaborates how both PRP and DP can violate fairness.

3.1 Ilustrative Example

Consider a medical setting, where candidates need to be evalu-
ated for eligibility to participate in a controlled medical trial. While
group A consists of candidates with a rich set of diagnostic tests that
inform eligibility (e.g., candidates with health insurance), group
B consists of candidates without prior access to such tests (e.g.,
candidates without health insurance). As a result, according to
P(r; = 1|D) in Figure 1, the model can make very informed pre-
dictions for candidates in group A, while for group B the model
cannot reliably differentiate between eligible and not eligible can-
didates. This means the model knows exactly which candidates in

2We conjecture that our framework can be extended to categorical or real-valued
relevances.
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group A will be judged as eligible by the human decision maker,
but it will make undifferentiated (but well-calibrated) predictions
for candidates in group B.

Figure 2 shows that the PRP ranking is oblivious to this dis-
parity between groups. If the principal needs to find four eligible
candidates based on the PRP ranking, they are all selected from
group A. However, by summing the probabilities in group B, our
model tells us that we can also expect four eligible candidates in
group B. We argue that deterministically selecting only candidates
from group A is unfair since it is not consistent with the outcome
of a group-fair lottery for the four spots among the eight eligible
candidates. Now, consider the DP ranking in Figure 2. Since group
A has 17 candidates and group B has 8 candidates, DP will select
roughly one candidate from group B for every two candidates from
group A. We argue that in this setting, DP is also unfair, (though
less in comparison to PRP) as it selects three eligible candidates
from group A and only one from group B. In expectation, it selects
2.6 out of 4 relevant candidates from group A, but only 0.6 out
of 4 relevant candidates from group B. We show empirically later
that other fairness mechanisms motivated by representation of size
such as proportional Rooney Rule or threshold-based formulations
have the same failure mode. Importantly, note that it is not evident
whether group A or B should be the majority group.

We argue that a more principled and fair way would be to select
an equal fraction of relevant candidates from each group in expec-
tation. Consider the last ranking in Figure 2, which approximately
fulfills the EOR fairness we formally introduce later. In expectation,
this ranking selects a more equal number of relevant candidates
from both groups, making it similar to a fair lottery. In particular,
it selects 1.8 out of 4 relevant candidates from group A and 1.2 out
of 4 relevant candidates from group B. This EOR ranking, however,
comes at an increased evaluation cost to the principal as it selects
3.0 expected relevant candidates from both the groups, compared
to 3.2 with DP and 3.3 with PRP. As a result, the principal needs
to review more candidates to select the same number of relevant
candidates with EOR ranking. However, it is still far more effective
than a lottery, which selects the candidates in a uniform random
order.

Our key insight is that EOR ranking is more fair not because
it takes an equal “number” of candidates from each group but it
is more fair because it takes an equal fraction of “relevant” candi-
dates in expectation from each group. This accounts for predictive
uncertainty in the relevance probabilities because even when one
group has sharp and the other group has non-sharp p;, it takes
approximately equal fraction of relevance from each of the groups.

This example illustrates the intuition behind the EOR principle
we formalize in the following, and we will show how to efficiently
compute rankings that fulfill EOR fairness.

3.2 Sources of Disparate Uncertainty

It remains to show that disparate uncertainty is a fundamental prob-
lem when estimating the relevance probabilities P(r; = 1|D) that is
not easily remedied by improved learning methods. The following
illustrates that even a Bayes-optimal procedure is vulnerable to
producing disparate uncertainty.

Consider the posterior distribution illustrated in Figure 3, which
shows the uncertainty [P(6;|D) that a Bayesian model has about
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Figure 1: The expected probability of relevance p; and their true relevance r; for all candidates in both groups.
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Figure 2: Top-4 ranking for Probability Ranking Principle (PRP),
Demographic Parity (DP), and our proposed EOR for the example
in Figure 1. Selected relevant number of candidates in expectation
and total relevant number of candidates in expectation are shown
corresponding to each ranking.
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Figure 3: An illustration of disparate uncertainty between groups
from a Bayesian perspective for all the candidates of Figure 1. The
candidates in group A have peaky posteriors, while those in group
B have relatively flat posteriors.

the relevance probability 0; of candidate i, where 0; is the parameter
of a Bernoulli distribution. For group A, the posterior P(8;|D) is
peaked, meaning that the model can accurately pinpoint the correct
relevance probabilities. For group B, the posterior is flat, which is
to be expected if group B is smaller and thus has less data. The
Bayes-optimal way of handling this uncertainty is to infer P(r;|D)
via the posterior predictive distribution

P(ri=1|D) = / P(ri = 1|6;) P(6:|D) do; = / 0; P(0:|D) db;

Figure 3 shows how even this Bayes-optimal procedure leads to dis-
parate uncertainty between groups, where the P(r; = 1|D) is closer

to zero or one for candidates in group A (i.e., highly informative),
and middling for group B (i.e., less informative).

Note that there is ample evidence that non-Bayesian methods
also produce such disparities (e.g., [5, 51, 56]). Furthermore, dis-
parate amounts of data are not the only cause for disparity. For
example, in college admissions, disparately more URM candidates
may miss AP grades because their school does not offer AP classes.
Their epistemic uncertainty [27] of qualification will thus be higher
since the model has less information about these students. This
higher uncertainty does not mean individual students are not qual-
ified, and elevating them in the ranking for human evaluation can
accurately reveal qualification through additional information (e.g.,
an interview, deep reading of the SOP, or recommendation letters).
But if they are never selected for human review, then they do not
have a chance for an admission spot.

4 Equality of Opportunity in Ranking

In this section, we first discuss the assumptions and modeling
choices and then formulate the cost that the uncertainty of the
predictive model imposes on the principal and the relevant candi-
dates from the different groups.

Our first assumption includes access to group-wise calibration
[3, 38] with the probability estimates calibrated within groups. To
simplify notation, we do not differentiate between P(r;|D) and a
group-wise calibrated score P(r;i|s, A, D) = s and we only require
this group-wise calibration as a sufficient condition for our frame-
work. Additionally, we assume that the true relevance r; is revealed
perfectly to the human decision-maker upon review, and we do
not model any bias in the human decision-making review process.
Finally, we assume that candidates have group membership to a
single protected attribute and do not consider intersectional group
membership, which is a practically important consideration in fair-
ness. Relaxing these three assumptions for future work could allow
modeling even more real-world complexities.

To formulate the cost of opportunity, we first recognize that any
group-wise calibrated model allows us to compute the expected
number of relevant candidates nRel(.) of a particular group
g — no matter how well the model can differentiate relevant and
non-relevant candidates in that group.

nRel(g) = ) Epp(ryim) [ril = ), P(ri = 11D)

ieg i€g

Extending this to rankings, the expected number of relevant candi-
dates from group g for any prefix k of ranking o that only depends
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on P(r; = 1|D) to ensure unconfoundedness is
nRel(gloy) = Y. Elnl= Y, P(ri=1|D)
i€gNoyk i€gNoy

Further extending this to a potentially stochastic ranking policy =
that represents a distribution over rankings for a particular query
leads to

nRel(glme) = ) Erop(r|D)op~nlrilico]
ieg
= > PGiel)P(ri =1|D) (1)
i€g

where P(i € 077) = Egy~r[lieq;] is the probability that policy
ranks candidate i into the top k. As a side note notation-wise, for a
specific policy, for example, 75O we denote the corresponding
ranking o) in the abbreviated form as oEOR,

The ability to compute these expected numbers of relevant can-
didates from each group allows us to reason about the cost resulting
from the uncertainty of the model that each ranking imposes on

the respective groups, which we detail in the following.

4.1 Cost Burden to Candidate Groups and the
Principal

We define the cost ¢(.) to candidate i as missing out on the op-
portunity to be selected if the candidate was truly relevant. For a
ranking policy 7 that produces rankings ¢ ~ 7 based on P(r;|D),
and a principal that reviews the top k candidates, the cost to a
relevant candidate i is the probability of not being included in the
top k.

c(ilm, ri) =ri(1=P(i € 7)) ()

Note that only relevant candidates can incur a cost, since non-
relevant candidates will be rejected by human review and thus
draw no utility independent of whether they are ranked into the
top k. Also, note that P(i € a]’; ) can be estimated by Monte-Carlo
sampling even for complicated ranking policies that have no closed-
form distribution.

While determining the cost to a specific individual i is diffi-
cult since it involves knowledge of the true relevance r;, getting
a measure of the aggregate cost to the group is more tractable. In
particular, we define the group cost as the expected cost to the rel-
evant candidates in the group, normalized by the expected number
of relevant candidates.

Yieg Brimp(ry o) [e(ilmy, 1i = 1)]

c(glme)

nRel(g)
_ Dieg(1=P(i e o))P(ri =1|D)
- nRel(g)
3 nRel(g|my)
= 1= nRel(g) ®)

The last equality in (3) follows directly from Eq. (1). We normalize
the expected group cost with the total expected number of relevant
candidates in the group so that the above approximates the frac-
tion of relevant candidates from that group that miss out on the
opportunity of being selected by the human reviewers.
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The principal incurs a cost whenever the ranking misses a
relevant candidate, independent of group membership. For a prin-
cipal that reviews the top k applications from two groups - A and
B, the total cost can thus be quantified via the expected number of
relevant candidates that are overlooked.

2i(1-P@ € 67)))P(ri = 1|D)
nRel(A) + nRel(B)

We again normalize this quantity to make it proportional to the
total expected number of relevant candidates. Note that Eq. (4) is
related to the conventional metric of Recall@k.

4

c(Principal| g )

4.2 Equality of Opportunity Ranking (EOR)
Criterion

We now formally define our EOR fairness criterion and argue that
a disparity in uncertainty should not lead to disparate costs for any
of the groups. We have already seen that 77RP and 7PP can violate
this goal. For a possible solution, we turn to the principle of random
lottery that has been historically used to justify fair allocation of
resources [22, 44]. Take, for example, the uniform ranking policy

7" which ignores P(r;|D) and picks a ranking uniformly at

random. Use of 7™ ensures that any relevant candidate has an
equal chance of being evaluated and selected since any top k of
the ranking contains a uniform random sample of the relevant
candidates - independent of group membership. While the ranking
effectiveness of 7™ is bad, it has the attractive property that the
fraction of relevant candidates that get selected from each group
is equal in expectation. For example, if both group A and group B
contain 100 relevant candidates in expectation and if 7if selects
I relevant candidate in expectation from group A, it also selects
I relevant candidates in expectation from group B. Similarly, if
group A contains 200 relevant candidates and group B contains 100,
the selection ratio will be 2 to 1 in expectation. We formalize this

property of the uniform lottery as our key fairness axiom.

Axiom 1 (EOR FAIR RANKING PoLicy). For two groups of candi-
dates A and B, a ranking policy n is Equality-of-Opportunity fair,
if for every k the top-k subsets . contain in expectation an equal
fraction of the relevant candidates from each group. More precisely:

nRel(A|m;) _ nRel(B|ry)

Vk
nRel(A) nRel(B)

®)
While this fairness property of 7 is desirable, its completely
uninformed rankings come at a cost to the principal and the relevant
candidates from both groups, since only a few relevant candidates
will be found. The uniform policy il g particularly inefficient
when the fraction of relevant candidates is small. The key question
is thus whether we can define an alternate ranking policy that
retains the group-wise fairness properties of 7", but retains as
much effectiveness in surfacing relevant candidates as possible.
To illustrate that such rankings exist, which are
both EOR fair and more effective, consider our
motivating example of Figure 1, where oFOR

B A B A B B A B A B A B A A A
[0.6,0.9,0.6,0.9,0.6,0.5,0.8,0.5,0.7,0.4, 0.1, 0.4, 0.05, 0.05, 0.05,

A A A A A B A A A A
0.05, 0.05, 0.05, 0.05, 0.05, 0.4, 0.05, 0.05, 0.05, 0.05] has the prop-
erty that the expected number of relevant candidates for each
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group in the top k never differs by more than 0.6 for any value of k.
In one way, this guarantee is even stronger than what is defined
in Axiom 1, since it holds for the specific ranking ¢FOR without
the need for stochasticity in the ranking policy. This provides a
non-amortized notion of fairness, which is particularly desirable
for high-stakes ranking tasks that do not repeat, and we thus
need to provide the strongest possible guarantees for the specific
ranking o we present. However, a guarantee for an individual
ranking makes the problem inherently discrete, which means that
we require some tolerance (i.e., 0.6 in the example above) in the
fairness criterion depending on the choice of k. This leads to the
following 5-EOR Fairness criterion for an individual ranking o.

DEFINITION 4.1 (§-EOR FAIR RANKING). For two groups of can-
didates A and B, a ranking o is §-EOR fair, if for every k the top-k
subset oy, differs in its fraction of expected relevant candidates from
each group by no more than §. More precisely:

nRel(Aloy) nRel(B|oy)
nRel(A) - nRel(B)

<6 (6)

Note that we can also define a specific “slack” §(o}.) for each
position k. For a fair ranking o, this slack should ideally oscillate
close to zero as we increase k, and so minimizing its deviation from
zero would translate to ensuring §-EOR fairness. Formally, we can
define 5(oy) as

vk 8(op) = Yicana P(ri1D)  Ziepng, P(rilD) )

Yiea P(ri|D) 2ie P(rilD)

J-EOR fairness balances the selection of candidates from the two
groups, accounting for predictive uncertainty in their estimation
of relevances. If for instance, the ML model is less certain in its
predictions for group B, but both groups have the same total ex-
pected relevance, the §-EOR criterion will rank candidates from
group B higher to ensure fairness. Importantly, note how this pro-
duces more human relevance labels of candidates from groups with
high uncertainty, which has the desirable side-effect of producing
new training data that allows training of more equitable relevance
models for future use.

Finally, note how the §-EOR fair ranking provides a means for
ensuring procedural fairness and avoiding disparate treatment. Im-
portantly, we leave the decision of which candidates to select to
the human decision maker, and EOR fairness does not require the
designation of a disadvantaged group. Instead, the EOR fair condi-
tion in Eq. (6) is symmetrical w.r.t. both groups and by definition
treats both groups similarly, and its intervention in the ranking
process is entirely driven by the predictive model P(r;|D). Even
though it uses group membership, EOR-fairness is thus fundamen-
tally different from demographic parity [17, 58] and affirmative
action rules like Rooney rule [9, 12], %th rule (selection rate for a
protected group must be at least 80% of the rate for the group with
the highest rate)* or y-based notions of fairness [18] and threshold
based formulations such as FA*IR [61].

To illustrate the difference with existing fairness notions, we
return to our running example from Figure 1. For top-4 ranking in
Figure 2, the EOR criterion can be computed as |5(o-fOR)| =0.15,
|5(Ufp)| = 0.5 and |5(0'fRP)| = 0.83, quantifying the unfairness

3Uniform Guidelines on Employment Selection Procedures, 29 C.F.R.§1607.4(D) (2015)
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of DP and PRP as compared to EOR. While DP selects one can-
didate from group B for every two candidates from group A, ap-

l . L_} . . . _
plying zth rule with group B as the disadvantaged group will se
lect roughly 4/5 number of candidates from group B for every
two candidates from group A. For top-4 ranking, the %th rule is

gFourFifth — [8.9,8.6,8.9, 8.8] with |§(oFouFifth)| = 0.5, If instead,
group A is selected as the disadvantaged group, %th rule will select
all four candidates from group A resulting in |§ (ofourFifthﬂ =0.83,
same as that of PRP. The FA*IR criterion (") is similarly anchored
on the principle that a top-k ranking is fair when the proportion of
disadvantaged candidates selected doesn’t fall far below a required
minimum proportion and also requires the designation of a disad-
vantaged group. In this example, 77 gives the exact same top-4
ranking and EOR criterion as shown for ‘—éth rule. In summary, the
predominant fairness criteria in rankings motivated by the repre-
sentation of size perform very differently than the 759K, As an
example, consider the well-documented issue of female candidates
not being selected for leadership positions primarily due to their
small applicant pool size [25]. If the female applicants have high
disparate uncertainty (due to lack of historical data), affirmative
action may still select far fewer (based on group size) of them than
deserved (based on the number of relevant female candidates).

We now briefly consider two other notions of fairness in rank-
ings for the running example. First, we look at the exposure-based
formulations[4, 49]. The principle of exposure is motivated by po-
sition bias in rankings and ensures the allocation of position in
rankings in proportion to the expected total relevance. While the
position of a selected candidate is certainly important, it does not
take disparate uncertainty into consideration. 7EX? is a stochastic
policy that allocates equal exposure between the two groups (in this
example, both groups have an equal expected total relevance) over
the full 25 positions of the ranking. 7EXP allocates most of the prob-
ability mass to candidates in group B for all of the top-4 positions
(not because they have high uncertainty but because their group
size is smaller than group A). This results in a high cost burden for
group A and the EOR criterion is computed as |5(afxp)| =0.58
higher than both 7FOR and PP . Later in Section 7, we demonstrate
how 7EXP places a higher cost burden on the uninformative group
instead when both groups have relatively the same size.

Finally, we discuss the Thompson Sampling based fairness in
rankings [50]. For 775, binary relevances are drawn according to
ri ~ P(r;|D), and candidates are sorted in decreasing order of
relevance r; with their ranking randomized for the same value of
relevance. The EOR criterion for a top-4 ranking produced by z15
can be computed as |5(0'ZS)| = 0.29 for the running example. While
715 takes the predictive uncertainty of relevance into account by
randomization of rankings, it is group oblivious and so does not
account for the difference in the predictive uncertainty of relevance
between groups. This explains the high EOR criterion of a specific
019 with median 22:1 |6 (UkTS)l as compared to that of the oEOR,
While we discussed how EOR differs from existing fairness notions
above, we will further demonstrate this comparison via extensive
empirical evaluations in Section 7.

One of our key contributions includes formalizing the connection
between §-EOR Fair Ranking described in Definition 4.1 and the
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Algorithm 1: EOR Algorithm

Input: Groups g € {A, B}; Rankings c"RP9 per group in the
sorted (decreasing) order of relevance probabilities P(r;|D).
Initialize: j «— 0; empty ranking c£OR
while j < k do

ly — oPRPI[1] Vg e {A B}

g* « arg min |(5(0EOR U {lg})‘,

g<{A,B}
where §(.) is computed using (7)

ly — oPRPI 1], oPRPY"  PRPGT\(],
oEOR  gEOR Y (10} je— j+1
Return gOR

cost of opportunity in rankings described in Section 4.1. Both -
EOR Fair Ranking and cost of opportunity in rankings are derived
separately — the former from the axiom of fairness of a uniform
lottery, the latter from the cost of errors that any realistic prediction
model is bound to make. In the next section, we show that these
two are elegantly related via theoretical results on cost optimality.

5 Computing EOR-Fair Rankings

We now turn to the question of how to compute a §-EOR fair rank-
ing oFOR for any given relevance model P(r;|D). This ranking
procedure needs to account for two potentially opposing goals.
First, it needs to ensure that 5-EOR fairness is not violated, ide-
ally for a § that is not larger than required by the discreteness
of the ranking. Second, it should maximize the number of rele-
vant candidates contained in the top k, for any a-priori unknown
k. While solving this optimization problem in the exponentially
sized space of rankings is computationally inefficient, we show
that Algorithm 1 is an efficient ranking method that provides a
close-to-optimal solution.

Algorithm 1 uses as input the PRP rankings ¢"%P4 and &
for each of the groups A and B respectively. We denote o”RP9[i] as
the i* element in the PRP ranking of group g. The basic idea is to
compare the highest relevance candidate from each group and select
the candidate that would minimize the § for the resultant ranking
(breaking ties arbitrarily when selecting an element from either
group results in the same § for the resultant ranking). Consider our
running example from Figure 1. At k = 1, selecting the first element
from group A, oPRPA[1], would result in a §(o1) = 0.9/4 while
selecting the first element from group B, " ®P>B[1], would result
in a §(01) = —0.6/4. To minimize |§(oy)|, the algorithm selects the

PRP,B

B
first element from group B with O'{EOR =1[0.6],|6(o1)| = 0.6/4. For
k = 2, the first element from group A, and the second element from
group B are considered. It proceeds to select the first element from

B A
group A with O—ZEOR = [0.6,0.9],|6(o2)| = 0.3/4 and so on. The
Algorithm does not change the relative ordering between candidates
within a group and its runtime complexity is O(nlog n), since the
elements from the two groups each need to be sorted once by
P(r;|D). Composing the final EOR ranking 6FOR by merging the
two group-based rankings o”RP4 and o"RP-B takes only linear time
since each computation per iteration is constant time per prefix k.
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While Algorithm 1 is inspired by existing algorithms such as
[61] in that both select the top element from the PRP ranking of
each group, they are fundamentally different. Existing methods
including [61] ensure a form of demographic parity which we have
already shown to be fundamentally different than the EOR criterion
we propose. Additionally, while [61] requires a threshold input and
the designation of a disadvantaged group, the EOR Algorithm does
not require this normative designation and guarantees EOR fairness
without requiring any tolerance § as an input. We show this both
theoretically and in empirical evaluations and provide a detailed
description of baseline algorithms in Appendix E.1.

It remains to be shown that Algorithm 1 always produces a rank-
ing oOR with small § while surfacing as many relevant candidates
as possible in any top k prefix. We break the proof of this guarantee
into the following steps. First, we show that for any particular k
and its associated & (olfOR), the number of relevant candidates in
the top-k is close to optimal. Second, we provide an upper bound on
1 (O'If OR) that is entirely determined a priori by the specific P(r;|D).
To address the first step, the following Theorem 5.1, shows that the
rankings produced by Algorithm 1 have a cost to the principal that
is close to optimal.

THEOREM 5.1 (CosT APPROXIMATION GUARANTEE AT k).
The EOR fair ranking o®OR produced by Algorithm 1 is at
least ¢5(0£OR) cost optimal for any prefix k, where ¢ =

nRel(A)inRel(B) ‘§2+§§ »qA = an—zA(A)’ and gp = #ﬂB)’ Fur-
ther, pg = oPRPA[L L, pB = oFRP:B[[p], where kj is the last
element from group A that was selected by EOR Algorithm for
prefix k and similarly for kp.

Proof Sketch: We use linear duality to prove this theorem. To find
a lower bound on the cost optimal ranking that satisfies the EOR
fairness constraint, we formulate the corresponding Linear Integer
Problem (ILP) for selecting the optimal top-k subset under the §-
EOR constraint. This leads to the following optimization problem,
where X € {0, 1}" is the variable for whether the i* candidate was
chosen or not, P is the relevance probability for all candidates.

Minimize total cost as defined in Eq. (4)

in 1 P X (ILP)
min -
xe{0,1} nRel(A) + nRel(B)
st. XT1=k (select up to k candidates)
T
Pl Pl
~8(afOR) < | —4 B_) X <8(cf9%)

nRel(A) - nRel(B)
(EOR fairness from Eq. (6) must be satisfied Vk)

We relax this ILP to a Linear Program (LP) by turning any integer
constraints x € {0, 1} in the primal into 0 < x < 1. For the relaxed
LP, we formulate its dual and construct a set of dual variables A
corresponding to the solution from the EOR Algorithm. Using the
dual value of the EOR solution and the relaxed LP solution, we
obtain an upper bound of the duality gap. Since the upper bound on
this duality gap is w.r.t. the relaxed LP solution, it is also an upper
bound for the optimal ILP solution. We provide a complete proof
of the theorem and associated lemmas in Appendix C.1. O

Note that ¢ depends only on the relevance probabilities of the
last elements selected from each group by the EOR Algorithm in the
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kth position. Furthermore, note that the solution of Algorithm 1 is
the exact optimum for any k where the unfairness §(a£9R) is zero,
indicating that any suboptimality of the EOR algorithm is merely
due to some (presumably unavoidable) discretization effects.

While the previous theorem characterized cost optimality, the
following Theorem 5.2 shows that the magnitude of unfairness
5(0‘EOR) is bounded by some &4, providing an a priori approxi-
mation guarantee for both the amount of unfairness and the cost
optimality of Algorithm 1.

THEOREM 5.2 (GLOBAL CosT AND FAIRNESS GUARANTEE). Algo-

rithm 1 always produces a ranking 6O that is at least ¢Smax cost

) ) PRP.A[q PRP.B[
optimal for any k, with dpax = % (UnRel(f[})] + anRel(lg)] )

Proof Sketch: We show via an inductive argument that accord-

ing to the EOR algorithm, minimizing ‘5(0‘5012) at every k en-

sures that the resultant EOR ranking always satisfies § (O'IfOR) <
1 (UPRP‘AM + il el ) that is bounded by the average of the
2 \ nRel(A) nRel(B) )’

relevance proportions from the first two elements considered in
the selection from group A and B. We denote this global fairness
guarantee by 84x. Using ¢ from Theorem 5.1 the cost guarantee

is given by
'RP,A PRP,B

$Omax = nRel(A)}—nRel(B) Zﬁﬁgg (O;szel(f[d] o-nRel(IE;] ) - Fur-
ther, we show that if the EOR algorithm selects all the elements
from one group at some position k, then selecting the remaining
elements from the other group satisfies the §;qx constraint. We
provide a complete proof of this theorem in Appendix C.2. O

We now compare EOR with the Uniform ranking policy and
analyze positions k with § = 0 to avoid discretization effects.

ProrosITION 5.1 (CosTs FROM EOR vs. UN1FOrM PoLicy). The
EOR ranking never has higher costs to the groups and total cost to
the principal as compared to the Uniform Policy, for those k where
&(ox) = 0.

We provide the proof of Proposition 5.1 in Appendix C.3. In
summary, we have shown that Algorithm 1 is an efficient algorithm
that computes rankings close to the optimal solution, making it a
promising candidate for practical use.

6 Extension to G Groups

In this section, we discuss the extension of the EOR algorithm
beyond two groups. In particular, we consider the general case
where a candidate belongs to one of G groups g € [1---G]. From
Section 4, we can generalize the cost burden to the principal similar
to Eq. (4), taking all the groups into account for the normalization
factor as follows

2i(1-P(i € o7)))P(r; = 1|D)

Z;il nRel(g)

To generalize Algorithm 1 for selecting top k candidates from mul-
tiple groups, we define §(o) as the EOR criterion that captures the
gap between the group with the maximum accumulated relevance
proportion and the group with the minimum accumulated relevance
proportion,

c(Principal|my) =

5(0) = mgax { nRel(glo) } _ mgin { nRel(g|o) } @®

nRel(g) nRel(g)

Rastogi and Joachims.

The following selection rule then provides the selected group g*
and candidate lg+ to append to the EOR ranking.

l, = o®P9[1] vge{1-G}
9" = argminS(cFORU{}); I =oPRPI (1] (9)
ge[1..G]

Note that the above selection rule is a strict generalization of Al-
gorithm 1 and it reflects the intuition of minimizing the gap in
relevance proportions for all the groups. It can be verified that the
runtime complexity with selection rule according to Egs. (8), (9) for
a constant number of groups G is O(nlog n+ Gn). Furthermore, we
can extend the cost-approximation guarantee to the multi-group
case.

THEOREM 6.1 (GLOBAL CosT AND FAIRNESS GUARANTEE FOR
MULTIPLE GROUPS). The EOR rankings are cost optimal up to a gap
of ¢5(0'£OR) for G groups, with 5(0'£OR) bounded by 84x, such
that,

6 = 2 PA -~ PB
(G-1) ch:1 nRel(g) \ (47,194 + 95
s _ oPRP.9[1]
max.— mgax nRel(g)

where {A, B} are all G choose 2 possible pairs of groups.

Proof Sketch: We extend the LP formed in Theorem 5.1 to include
G(G — 1) 6 constraints and construct feasible dual variables from
the EOR solution for each pair of groups. We then show that the
duality gap is bounded by ¢d (O'IEOR) for a particular prefix k. Note
that the ¢ bound for multi-group reduces to the one presented in
Theorem 5.1 for two groups. Finally, we present the global a priori
bound on § (alfOR) as Omax, which is a strict generalization of the
two groups case. We provide complete proof of this theorem in
Appendix D.1. O

7 Experimental Evaluation

We now evaluate the EOR framework and algorithm empirically
and compare against several baselines — namely Demographic (Sta-
tistical) Parity (wPF) [58], FA*IR Ranking Principle (x"5) [61], Prob-
ability Ranking Principle (7"RP) [41], Thompson Sampling Policy
(xT5) [50], Uniform Policy (nunif), Disparate Treatment of Exposure
(wEXPY [49], and Fair Rank Aggregation (7®4) [7] with proportional
representation of exposure. We discuss implementation details of
these baselines in Appendix E.1.

7.1 Synthetic Data

We first present results on synthetic data where we can control
the level of disparate uncertainty. We report a) unfairness and b)
effectiveness of rankings for each scenario. The unfairness metric is
defined as the area under the curve for the EOR criterion, given by
ZZ:] |6(o)|. To measure the effectiveness of rankings, we report

the improvement in total cost over the expected total cost of 7Mif,

computed as ZZ:1 c(Prinicpal|7r]L<‘nif) - c(Prinicpalln,E')).

7.1.1  How does mFOR compare against the baselines under varying
amounts of disparate uncertainty? Table 1 (left) reports unfairness
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. - % | P(ri=1|D) group B
Un-fairness | Effectiveness T T e groupA
— 0 . n
7 \Disp. Unc. High Medium Low High Medium Low % High Disparate Uncertainty
7EOR 1.07 001 1.02£0.00 1.02 £0.00 10.44 £0.15 11.89 £0.04 14.58 +0.10 & A= =i s vwww e
=PP 11.09 £0.38  6.02 £0.07 2.42 +0.20 10.07 £0.20 11.33 £0.04 14.49 +0.11
nPRP 15.41 £0.69 7.68 +0.13  2.63 £0.17 12.11+0.20 12.00 £0.02 14.62 +0.09 , _ ,
TS 1177 057  4.96 £0.07 4.49 045  7.66 £0.04  9.62 £0.06  12.81 +0.69 i Medium Disparate Uncertamty/;.,4
srumif 5.96 £0.13  5.80 £0.00 6.49 £0.09  0.00 £0.00  0.00 £0.00  0.00 +0.00 /“ap“,-‘,]‘, T ,T/,,Iﬁ{mm
xEXP 9.23 +0.77  5.62 £0.01 3.26 £0.62 11.59 +0.23 11.97 +0.03 14.62 +0.09 l
RA 13.97 £0.71  6.57 £0.16 2.40 £0.00 12.02 £0.19 12.00 £0.02 14.60 +0.00 C I
7ts 13.33 £0.70  7.04 £0.16  2.95 £0.17 11.98 £0.20  12.00 +£0.02  14.62 +0.09 \\  Low Disparate Uncertainty
I 7
/|}\ 11 /M,\/ 1

Table 1: Left: Effect of varying disparate uncertainty on Synthetic Dataset, Right: Posterior
distribution and expected probabilities of relevance shown for a sample from each of high,

medium, and low uncertainty setting.

and effectiveness for 729R and the baselines in terms of mean and

standard error over 100 simulations, while Table 1 (right) demon-
strates the posterior distribution formed by sampling an instance
of each of high, medium and low disparate uncertainty settings.
These posterior distributions similar to Figure 3 are for illustra-
tive purposes since only the expected probability of relevance p; is
used for rankings (refer to Section 3.2). The different disparate un-
certainty settings are generated synthetically to demonstrate how
ranking policies behave if, for example, the Principal collects more
data for group B thus reducing the disparate uncertainty among
groups. Note, how in the low disparate uncertainty setting, the
sharp p; (close to 0 or 1), would make the identification of relevant
candidates easy for both groups. The synthetic generation involves
sampling p; from sharp and flat distributions for group A and B
respectively and gradually increasing the sharpness of p; for group
B (implementation details in Appendix E.2).

As predicted by theory, 79% maintains low unfairness at all lev-
els of disparate uncertainty, outperforming all the baselines nPRP,
PP 7TS gEXP 2RA and nFS. Note that 7EOR even outperforms
the uniform policy 7", since any individual ranking drawn from
wrunif jg likely to be unfair. In terms of effectiveness, the theoreti-
cally optimal skyline is given by 77RP. Across all levels of disparate
uncertainty, 7EOR s at least competitive with the other baselines,
indicating that the EOR fairness does not impose a disproportionate
cost of fairness for the Principal.

Note how the gap in the unfairness between 77K and all other
ranking policies is largest when disparate uncertainty is highest.
At low levels of disparate uncertainty, 7EOR ig still more fair as
compared to other ranking policies (though the gap in unfairness
is smaller) and the effectiveness of 7FOR is almost the same as that

of 7FRP,

7.1.2 At which positions in the rankings do the policies incur un-
fairness? While the previous table summarized unfairness across
the whole ranking, Figure 4 (left) provides more detailed insights
into how unfairness accumulates across positions in the ranking.
The only method that is systematically fair across all positions k
is 7EOR keeping the unfairness 5(oy) from Definition 4.1 close

0.0 0.2 0.4 0.6 0.8 1.0
0;

to zero everywhere in the ranking. The baselines generally start
accumulating unfairness towards one group right from the top of
the ranking. Their unfairness only decreases once they run out of
viable candidates from the group they prefer. The only exception
is 7' here for a specific ranking with median Yp_ 16 (U;Cmif)|.
However, rankings from 7™ tend to stray much further from zero
than the 7EOR ranking. Additional results for the medium and low
disparate uncertainty settings in Figure 11 of Appendix E.2 further
support these findings.

7.1.3  How do the ranking policies distribute the costs between the
stakeholders? In Figure 4 (middle) we investigate how the ranking
policies distribute the cost c(g|ry) from Eq. (3) between group A and
group B. It shows that only 7EOR has an equal cost to both groups
across the whole ranking, which can be seen from the overlapping
cost curves for both groups. Furthermore, the cost is substantially
lower for both groups than their expected cost under the uniform
policy (diagonal line).Figure 4 (right) shows the total cost to the
principal, and again 7EOR is competitive with the baselines.

All other baselines incur substantial disparate costs to the groups,
some even worse than the uniform lottery. In particular, 7°F selects
the candidates alternately between the two groups since group sizes
are relatively similar, but this results in selecting a higher proportion
of relevance from group A because the relevance probabilities are
sharper for group A than for B. As a result, the cost burden is higher
for group B. z7S is fairer than 7"RP, since it randomizes relevant
candidates before sorting them in decreasing order of relevance,
however being group oblivious, it still places an uneven cost burden.

The exposure based policies 7EXP | 7RA motivated by position
bias in rankings also do not distribute the costs evenly. 7EXF
stochastically allocate most of the top positions to candidates with
sharp and high probabilities, close to 1.0 from group A, then to
candidates of group B with flat and middle relevance probabilities,
and finally the rest of the candidates from group A with sharp
but low probabilities, close to 0.0 in the last positions. While this
perfectly allocates exposure between group A and B over the full
ranking of 61 candidates, group B (the uninformative group) suffers
from a high cost burden. Note how the direction of cost burden

will
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Figure 4: Left: EOR criterion §(oy ), Middle: group costs according to (3), Right: the principal’s total cost according to (4) of the ranking
policies for the synthetic dataset with high disparate uncertainty shown in top right of Table 1. Group A consists of 30 candidates with sharp
probabilities with p; ~ Beta(1/20, 1/20). This provides nRel(A) = 14.96 expected number of relevant candidates. Group B also has similar
candidates, in particular, it has 31 candidates, with relatively flat probabilities p; ~ Beta(5, 5), providing nRel(B) = 14.94 expected number of

relevant candidates.

is opposite to the one 7EXP induced in the example of Figure 1,

where group B was smaller in size to group A.

7.2 US Census Survey Data

While the synthetic experiments provide insights into the behavior
of ranking policies under varying conditions, we now investigate
how far 7POR can mitigate unfairness as it arises in real-world
datasets where the relevance probabilities P(r;|D) are learned
from data. In particular, we consider the US Census Survey dataset
[14] for the year 2018 and the state of Alabama and New York,
consisting of 22,268 and 103,021 records respectively. The task is
to predict whether the income for an individual > $50K based
on features such as educational attainment, occupation, class of
worker etc. We use this task as a stand-in for some task where
individuals receive a benefit from being evaluated positively. To get
group-calibrated estimates of P(r;|D), we train a gradient boosting
classifier followed by Platt Scaling on the validation subset of the
data. We evaluate the EOR criterion and costs on the test subset of
these records. Full details for dataset pre-processing and training
can be found in Appendix E.3. Because these rankings are large (up
to ~ 20K size), 7EXP and #FS are not computationally tractable.
7RA performs similarly to 77RP and we include it in Appendix E.3
for completeness.

7.2.1 How do the ranking policies compare when using learned prob-
ability estimates? To evaluate the two-group EOR algorithm, we
first only rank individuals labeled as White and Black or African
American. Figure 5 (top) shows that EOR ranking is effective even
with estimated probabilities. In particular, while the ranking al-
gorithms only use estimated probabilities, the EOR criterion, and
costs are evaluated on the true relevance labels from the test set.
Nevertheless, 7EOR still evaluates & close to zero and distributes
costs among the stakeholders more evenly than the other base-

PRP 7DP and even 7 775 for a specific ranking

line policies &
with median 37! _ |0(0x)|. Additional experiments in Appendix E.3

further confirm these findings.

7.2.2  How does EOR Ranking perform for more than two groups?
Figure 5 (bottom) shows results on the US Census Dataset for four
groups, again using estimated relevances for ranking but evaluating
against the true relevance labels from the test dataset. Note that for
more than two groups, the EOR constraint defined according to (8)
will always be non-negative as it measures the absolute difference
in relevance proportions between the groups that are furthest apart.
We observe that similar to the results with two groups, the EOR
ranking keeps the unfairness 6 lower (close to zero) as compared to
other policies in Figure 5 (left). Additionally, 7FOR also distributes
the costs evenly among all stakeholders for the generalized case of
more than two groups, as noted by the overlapping of dashed lines
for the four group costs (middle). Finally, 7EOR is competitive with

the optimal 7”RP in terms of total cost for the principal.

7.3 Amazon Shopping Audit

In the final experiment, we investigate how the EOR framework
can be used for auditing. To illustrate this point, we use a dataset of
Amazon shopping queries [39], which includes a baseline model for
predicting the relevance of products given a search query. We fur-
ther augment this dataset with logged rankings from the Amazon
website as collected for the Markup report [60], which investigated
Amazon’s placement of its own brand products as compared to
other brands based on star ratings, reviews etc. The Markup data
consists of popular search query-product pairs along with logged
rankings of these products on Amazon’s platform, but it does not
contain human-annotated relevance labels. We focus the audit on
bias between the group of Amazon-owned brands (group A) or any
other brand (group B). As the first step of the audit, we calibrate p;
by fitting a Platt-scaling calibrator using validation data for both
groups. Figure 6a shows that the calibrated p; on the test dataset
binned across 20 equal-sized bins, lies close to the perfectly cali-
brated line. As the second step of the audit, we use the Markup
dataset with logged rankings* and compute p; using the calibrated

*https://github.com/the-markup/investigation-amazon-brands
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Figure 5: US Census Dataset: EOR criterion §(oy) and cost of the ranking policies computed with true relevance labels from the test subset
for the US Census dataset. Top: Two groups setting using the White and Black/African American racial groups for the state of Alabama.
Bottom: Multiple (four groups) setting using White, Black/African American, Asian, and Other for the state of NY.
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Figure 6: Left: Group-wise calibration of P(r;|D) for Amazon
shopping queries on the test set according to the baseline model
after Platt Scaling. Right: Fairness of logged Amazon rankings
compared to EOR rankings in terms of §(oy.) averaged over queries.

baseline relevance prediction model. The EOR criterion (7) is aver-
aged over queries for the logged rankings, and the EOR rankings
are produced by Algorithm 1. Figure 6b shows that there exists
a ranking oFOR that has 5(0£OR) closer to zero for most prefix
k. The logged rankings from Amazon’s platform show estimated
(o) that are farther away from zero for at least some prefixes
of k, reflecting a potential favoring of Amazon brand products. A

limitation of this analysis is that unlike in a real audit where the
auditor has access to the production model of p;, our baseline model
may be subject to hidden confounding, and thus does not provide
conclusive evidence of unfairness. In particular, the production
rankings may depend on other features beyond product titles (e.g,
product descriptions, bullet points, star ratings, etc.). However, the
analysis does demonstrate how the EOR criterion can be used for
auditing, if the auditor is given access to the production ranking
model to avoid confounding. We provide further details in Figure E.4
and our source code with experiment implementation can be found
here.®

8 Conclusion

This paper studies the problem of disparate uncertainty across
groups as a source of unfairness in ranking when these rankings
are used as part of a human decision-making process. In particular,
this paper introduces a framework that formalizes this unfairness
by relating it both to a fair lottery and to the costs that an imperfect
model imposes on the various stakeholders. Recognizing that it
may be difficult to avoid disparate uncertainty in real-world mod-
els, the paper develops the EOR procedure to produce rankings
that provably mitigate the effects of disparate uncertainty between
groups. Beyond its strong theoretical guarantees, we find that the

Shttps://github.com/RichRast/DisparateUncertainty
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EOR method outperforms existing methods for fair ranking across
a wide range of settings. Furthermore, we illustrate that the EOR
criterion can also be used as a tool to audit a real-world system.
We conjecture that this combination of theoretical grounding, com-
putational efficiency, and strong empirical performance provides
viable conditions for making the proposed framework and algo-
rithm accessible for thoughtful use in practice.

9 Ethical Considerations

This work explicitly addresses the potentially negative societal
impact of machine learning predictions that include disparities
between groups in the context of ranking interfaces. However, as
pointed out by previous research [34, 46], we do not prescribe
distilling down the fairness of a system into a single metric - the
fairness criterion we propose. We emphasize that it is important to
carefully consider the domain specifics and the particular situation
where our method may be deployed.

We also note that while our EOR algorithm does not worsen
the fairness within each group (i.e., within group ordering is main-
tained), it doesn’t improve within-group fairness either. Exploring
this dichotomy of satisfying within and between group fairness
simultaneously in the presence of differential uncertainty is an
important open question.
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A Notation Summary

Rastogi and Joachims.

n number of candidates

ie{l,---,n} candidate

G number of groups

ge{L2---G} group

k ranking prefix

S(9) size of group g

nRel(g) € R expected number of relevant candidates for group g
ri € {0,1} binary relevance of candidate i

0; € [0,1] probability of relevance of candidate i
D historical data

P(6;|D) posterior distribution

pi =P(ri|D) € [0,1]
P=(piie(1, n}

expected probability of relevance of candidate i

relevance probability vector

X vector indicating whether candidate i was selected
Ig € {0,1}" indicator if candidate i belongs to group g

7 policy

a]’f top k ranking o ~ 7

oPRP9[4] i*" candidate in the PRP ranking of group g

é(o) EOR measure for ranking o

B Extended Related Work

Our work complements and extends prior research on fairness in rankings [64]. The classical fairness desiderata considered are variations of
proportional representation [17, 58]. Broadly, proportional representation ensures representation by group size in top k selection or at every
prefix k of the ranking. Other popular notions include diversity based constraints [10, 16, 57] like Rooney Rule and affirmative action that
ensure representation of the designated disadvantaged group, and threshold based formulations [54, 61, 63] that ensure a minimum number
of candidates to be selected from the disadvantaged group.

Another prominent class of fairness notions in rankings corresponds to exposure based formulations. Exposure [43, 49, 62] quantifies
the amount of attention allocated to candidates individually or from a particular group. These formulations include equity of exposure,
disparate treatment of exposure that allocates exposure proportional to amortized relevance, and disparate impact of exposure that allocates
exposure proportional to impact (e.g. economic impact of ranking) among other variations. See [4] for a similar concept of equity of attention.
Proportional representation, diversity constraints, and exposure are motivated by representation by group size, normative designation of
disadvantaged group, and allocation of attention respectively. Our work, on the other hand, is motivated by unfairness due to differential
uncertainty between groups and is grounded in the axiomatic fairness of a lottery system.

Our problem setup involves aggregating candidates from groups and while research on fair rank aggregation appears related, the goal
there is much different. In particular, fair rank aggregation achieves maximum consensus accuracy when multiple voters rank all candidates
subject to fairness constraints of group exposure [7] or p-fairness [55]. Work on multi sided fairness [6, 52] similarly considers diversity
constraints or exposure-based formulations. Finally, while [4, 31, 42, 50] propose an amortized notion of fairness, our work proposes a
non-amortized fairness criterion at every position k of the ranking.

Recently, there has been a growing interest in the study of fairness in rankings under uncertainty. The classical desideratum in this
literature studies the relation of group-wise calibration for fairness [11, 20, 29, 32, 38]. Our work is orthogonal to this discussion. In particular,
we only assume that calibrated probability of relevance is given and instead focus on how differential sharpness of probabilities can cause
unfairness. [50] introduced an approximate notion of fairness that is violated if the principal ranks candidates that appear more than a
certain proportion of their estimated relevance distribution. One way to achieve this in expectation is through randomization of relevances
drawn from the predictive posterior distribution. Other works have introduced methods that quantify uncertainty in rankings [53] to update
and learn better estimates of relevances iteratively [59]. These works do not consider the unfairness caused due to differential uncertainty
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between groups. While methods that reduce uncertainty for all groups are needed, we also need to account for unfairness due to the existing
disparate uncertainty that is unfortunately widespread in practical settings.

Another line of research focuses on statistical discrimination and the study of noisy estimates of relevances for selection problems [1, 36].
This literature establishes that the differential accuracy of models causes unfairness [5, 15, 24, 51, 56] for individuals based on their group
membership. Recently, [19, 21] studied the role of affirmative action in the presence of differential variance between groups in rankings.
Their method [19] corrects the bias in noisy relevance estimates given the variance of the true relevance distribution. Fairness in selection
processes has also been extensively studied in the presence of group-based implicit bias [8, 9, 18, 30], uncertainty in preferences [47] and in
the presence of noisy sensitive attributes [33]. This line of research analyzes the effect of affirmative actions like the Rooney rule on the
utility to the principal or how implicit bias affects the diversity of the selection set.

Our work is also motivated by Equality of opportunity framework, first introduced by [23] in the classification setting. It has provided a
compelling notion of balancing the cost burden among stakeholders [2, 11, 13]. For rankings, there has been some work in transferring the
idea of equalized odds with learning a ranking function during training [62] to reduce disparate exposure or augmenting the training loss
with regularizers that minimize costs for both groups [31, 35]. Our work extends this literature to introduce a framework connecting the
unfairness in rankings due to the disparate uncertainty to the distribution of cost burden among stakeholders by anchoring on the fairness
of random lottery.

C Proofs
C.1 Proof of Theorem 5.1

Proor. We use linear duality for proving this theorem. In order to find a lower bound on the cost optimal ranking that satisfies the EOR
fairness constraint, we relax the corresponding Integer Linear Problem (ILP) to a Linear Program (LP) by turning any integer constraints
X € {0,1} in the primal into 0 < X < 1. For the relaxed LP, we formulate its dual and construct a set of dual variables A corresponding to the
solution from the EOR Algorithm. With the dual solution of EOR and the relaxed LP solution, we obtain an upper bound of the duality gap.
Since the upper bound on this duality gap is w.r.t. the relaxed LP, it will also be an upper bound for the optimal ILP.

We define the primal of the LP for finding a solution X as follows

max  f(X) = ___Px (Primal)
X0 ~ nRel(A) + nRel(B) rima

st. X<1 (10)

xT1 <k (select up to k elements)

Q4 pX < 8(ax°%) (11)

QpaX < 8(aF%%) (12)

We define Q4 g € R" where each element of Q4 g is gi (14 — IB)i, gieg = #;(g) and Q4 B = —Qp 4. Note that the Primal objective is
PTX
nRel(A)+nRel(B) "
The first constraint (10) ensures valid values for X (with corresponding dual variables Alf )- The second constraint is for selecting k
candidates (dual variable Ay ) and the last two constraints (11) and (12) ensure that the ranking solution is EOR-fair optimal (dual variables
Aa,B, AB,A). The Dual LP is formed as follows

equivalent to minimizing the total cost = 1 —

n
: _ OR ’
min g(4) = 8(oEOR) (A + Ap.a) + KAy + ; A (Dual)
P

nRel(A) + nRel(B) (13)

s.t. QA,B(AA,B — AB,A) + /1]< + >

We construct a feasible point of the dual from the EOR solution as follows. The key insight here is to reason w.r.t the last elements selected

(or the first elements available if no element from the group has been selected) by the EOR Algorithm at prefix k from each of the groups A
and B, namely k4, kg respectively.

_ 1 PA—PB

Aap = nRel(A) + nRel(B) | ga+qB |, s
_ 1 _[pPA—DPB

B = nRel(A) + nRel(B) [ (qA +qB ) + (13)

Using (14) and (15) we know that only ever one of A4 g or Ap 4 is non zero. If p4 > pp, then A4 g > 0 and Ag 4 = 0. Similarly, if pg > pa,
then Ap 4 > 0and A4 g = 0.
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We construct Ay and 4] as follows

Pa

PB

_ A _ =|—PB L (pa-A 16
A | nRel(A) + nRel(B) 94(Aap = Ap.4) [nRel(A) T nrel(B) _ 18(BA~A4B) (16)

’ [ Pi
= | — P A —gi(Aap-A 17
Aiea | nRel(A) + nRel(B) ¥ 9i(Aa = 48.4) . (17)

’ [ pi
_ ——ai _ 18
Aies | nRel(A) + nRel(B) M~ qi(AB.A = A4B) + (18)

We prove that the constructed dual variables A are non-negative in Lemma 5.2 and that I’ = 0 for any element not selected in the EOR
ranking. In Lemma 5.3, we prove that the constructed dual variables A are feasible. Given the feasibility of dual variables, we analyze the
duality gap given by

PTx
nRel(A) + nRel(B)

From Lemma 5.2, ] = 0 for i > ka, A} = 0 for j > kp , where k4 elements are selected from group A, kg from group B by the EOR
Algorithm and k = k4 + kp. Substituting the values for A’ from (17), (18), the duality gap is

g(*) = £(X) = 8(afOR) (Aas + Ap.a) + KN+ 3 2 =
i=1

ka
OR pi

= 5(cF N | E— N Y|

S(of )(AA’B+AB’A)+kAk+;(nRel(A)+nRel(B) & — qi(AaB — AB.A)

kg T

P'X

§ S < R g ) S

* j_l(nRel(A)+nRel(B) 9;(AB.A A’B)) nRel(A) + nRel(B)

We know that Z G Ak + Z 1 Mk = kA and PTX = Zl L pi+ 21;51 pj. Further, only one of A4 g or Ap 4 is non-negative according to (14),
(15).

If A4 B > 0, then the duality gap can be written as

kp
= 8(cr R Aap - Z qidaB + Z 9jAAB = AAB (5("EOR) - (Z L Z q]))

i=1 i=1

Since we have 5(0‘EOR) < Zl 19i — ZFBl qj < 5(O‘EOR) from Lemma 5.1,

ka kg
Duality Gap = 4,5 (5<050R) - (Z = qj)) < 224,88(afOR) (19)
i=1 Jj=1

If Ag.4 > 0, then the duality gap can be written as
ks
= 8(afOR)Apa + Z qiAB.A — Z qjAB.A = ABA (5(U£OR) + (Z qi — Z qj )
i=1

and again, since (5(0EOR) < Zl 1 qi — Z] 195 < 5(0EOR) from Lemma 5.1,

ka kg
Duality Gap = Ap 4 (5(JEOR) + (Z qi — Z qj ) < 21p.A8(cfOF) (20)
i=1 j=1

From Eqgs. (14), (15), (19), (20) , the duality gap between EOR solution and the optimal solution is bounded by
26(apOF)
nRel(A) + nRel(B)

PA—PB
9A + 4B
This proves that the EOR solution can only be ever as worse as ¢5(0'£OR) when compared with the optimal solution, where ¢ =

PA—PB
nRel(A)+nRel(B) qga+qB

O

LemMaA 5.1. EOR rankmg is 5(o-EOR) fairness optimal, implying that 5(O‘EOR) < Zl 1 qi — Z?ﬁl qj < S(JEOR).

Since Z i=1 9i ~ Z =197 = nl:;;le(ﬁf)k) - "iﬁe(ﬁlg)") , the lemma follows directly from the definition of §(oy) in Eq. (7) and the EOR ranking

principle of choosing the candidate that minimizes §(oy).
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O

LEmMMA 5.2. The constructed dual variables A > 0. In particular, for any i > k4 in group A and j > kg in group B, it holds that A} = 0 and
A} =0 and for any i < k4 and j < kg, it holds that A > 0 and /1}. > 0.

Proor. In this Lemma, we show that A’ = 0 for the elements not selected by the EOR Algorithm and A’ > 0 for the elements that were
selected. Without loss of generality, we consider the element at index i that belongs to group A.

AU I S DR ~
fea = | nRel(A) + nRel(B) M = qi(Aap — Ap.A) .

7 pi A

= _ 1 ) G .

nRel(A) + nRel(B)  nRel(A) + nRel(B) +94(AaB — 2BA) — qi(AaB — ABA) .

» Pi —pA
) nRel(4) + nRel(B) . ) 21

| nRel(A) + nRel(B) +(qi —94)(ABA — AAB) X -

The second equality above is obtained by substituting A;. from Eq. (16) and the last equality by rearranging. We now consider two cases —
for elements not selected and selected by the EOR Algorithm respectively.

Case I: Elements not selected by the EOR Algorithm.

We have i) p; < pa and g; < ga as EOR selects in decreasing order of probabilities, and ii) either A4 g > 0 or Ag 4 > 0 as only one of them
can be nonzero from (14), (15).

In Eq. (21),if Ag4 2 0, then Ay g = 0 and with p; < pa, gi < ga the resultant quantity would be negative, which would result in A;
clipped to 0.

A= [ Pi”PA +(gi —qa)ABA

nRel(A) + nRel(B)
< 0

+

In Eq. (21), if A4 B > 0, then Ag 4 = 0. We can then substitute A4 g = ba _‘DB) in Eq. (21),

1
nRel(A)+nRel(B) ( qa+qB

ro_ | piThA
o= [nRel(A) TnRel(B) (9 T 9aMAaB|
_ Pi—PA B (9i —qa) PA —PB
nRel(A) + nRel(B)  nRel(A)+nRel(B) \qa+qB /],
_ ! pB(qi —q94) + gB(pi — pa)
nRel(A) + nRel(B) qa + 9B +

= 0

The second last term evaluates to < 0 and so the last equality holds because A; is clipped to 0.

Thus, for any element not been selected by the EOR Algorithm i.e. i > ka, the corresponding dual variable A] = 0. Analogously, for
any element j > kp in group B it can be shown that /1;. = 0. We have shown that for any element not selected by the EOR Algorithm the
corresponding dual variable A’ = 0.

Case II: Elements selected by the EOR Algorithm.

We have i) p; > pa and g; > q4 as EOR selects in decreasing order of probabilities, and ii) A4 g > 0 or Ag 4 > 0 as only one of them can
be non zero.

In Eq. (21),if Ag 4 > 0, then A4 g = 0 and with p; > pa, gi > g4 the resultant quantity in (21) would be > 0, so that A; > 0.

r Pi —pA
A= [nRel(A) +nRel(B)
0

(9i —qa)ABA

+

\

In Eq. (21), if A4 B > 0, then Ag 4 = 0. We can then substitute A4 g =

1 PA—PB
nRel(A)+nRel(B) ( qA+qB ) in (21),

ro_ Pi —pA o
o= [nRel(A) TnRel(B) (4T AAAB]
_ pi—pa __ (gi—qa) PA—PB
nRel(A) + nRel(B)  nRel(A)+nRel(B) \qa+qB /],
_ 1 PB(qi —q4) + qB(pi — pa)
nRel(A) + nRel(B) qa + 9B +

0

v
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The second last term evaluates to > 0, so the last equality holds. Thus, for any element selected by the EOR Algorithm in group A i.e. i < kg,
the corresponding dual variable A’ > 0. Analogously, for any element j < kg in group B, A] > 0. We have shown that for any element
selected by the EOR Algorithm the corresponding dual variable A’ > 0.

We now show that A > 0. From Eq. (16),

PA
= | e 9aan =) )
If Aa > 0, then Ag 4 = 0. Substituting A4 g = nRel(A)inRel(B) (Zﬁ:gg ) in Eq. (22),
N 7 S
M = [nRel(A) + nRel(B) 4A%AB

= pa B qa b4 - B

nRel(A) + nRel(B) nRel(A) +nRel(B) \ qa +gB
= ! PAYB + qAPB

nRel(A) +nRel(B) \  qa+qs

> 0

The last inequality follows since each of the terms pa,qa,pB,qp are > 0. If A4 > 0, then A4 g = 0. By substituting Ag4 =
1 _pbAa—PB
nRel(A)+nRel(B) qgA+qB
The two duals A4 g, Ap 4 are > 0 by their construction in Egs. (14), (15). Thus, we have shown that all the constructed dual variables
A>0. O

) in Eq. (22), we similarly get A > 0.

Lemma 5.3. The dual variables A = [A] - - - A}, Ak, A4 B, A 4] are always feasible.

ProoF. In Lemma 5.2, we proved that the constructed A > 0. We now show that they satisfy the duality constraint.
For some element i, the duality constraint implies that
pi
nRel(A) + nRel(B)
Without loss of generality, we consider element at index i that belongs to group A. Similar to Lemma 5.2, we consider two cases.
Case I: Elements not selected by the EOR Algorithm.
Using the fact that A} = 0 for i > k4 from Lemma 5.2, and substituting A; from Eq. (16), we get

qi(AaB —Aa) + A +A] >

qi(AaB = ABa) + A+ 247 = qi(Aap —ABA) + Ak
PA
nRel(A) + nRel(B)

qi(AaB — Apa) + —qa(AaB — 4BA)

Pl an(ias-
B nRel(A)+nRel(B)+(ql qa)(Aa,B — AB,A)

We have i) p; < ps and q; < g4 as EOR selects in decreasing order of probabilities, and ii) either A4 g > 0 or Ag 4 > 0 as only one of them
can be nonzero. If 14 g > 0, then substituting A4 5 ,

qi(AaB—ABa) + A+ 1] = m +(qi —qa)AaB
_ PA L @i—aqa) PA—PB
nRel(A) + nRel(B)  nRel(A) +nRel(B) " qa+4B
_ 1 . PB(qa — qi) +qB(pa — pi)
= pl —+
nRel(A) + nRel(B) qA + 9B
> b
~  nRel(A) + nRel(B)

Similarly, we can show that the dual constraint is satisfied if Ap 4 > 0. Thus, for any element not selected by the EOR Algorithm i.e. i > kg,
the corresponding dual constraint is satisfied. Analogously, for any element j > kp in group B it can be shown that the corresponding dual
constraint is satisfied. We have shown that for any element not selected by EOR Algorithm the corresponding dual constraint is satisfied.

Case II: Elements selected by the EOR Algorithm.

Using the fact that Alf > 0 for i < k4 from Lemma 5.2, and substituting A; from (16), A; for i < k4 in (23), we get

pi _ pi

nRel(A) + nRel(B) nRel(A) + nRel(B)
Thus, for any element selected by the EOR Algorithm i.e. i < kg4, j < kp, the corresponding dual constraint is satisfied. O

qi(AaB = ABA) + Ak + A} = qi(AaB — ABA) + Ak + A —qi(AaB — AA) =
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s —— EOR
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nRel(A) +nRel(B)
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nRel(A|oy) + nRel(B|oy)
nRel(A) +nRel(B

0.41

Total Cost =1 — (

0.2

0.0
0

lb 26 36 40 50
Length of Ranking (k)

Figure 7: Cost Optimality Gap of a synthetic example with p;eq = [1,0.6,0.5,0.5,0.4,0.1,---0.1],nRel(A) = 4,S(A) = 15, and pjep =
[1,0.1---0.1], nRel(B) = 4, S(B) = 31. The cost from EOR ranking is nearly optimal to the ILP or even the relaxed LP solution. Further the
bound obtain in Theorem 5.1 (in grey) is tight for many k prefixes.

We demonstrate the cost optimality bound proved in Theorem 5.1 in Figure 7 that shows an example with a ranking produced by
Linear Program (LP), Integer Linear Program (ILP), and the EOR algorithm along with the upper bound on the cost computed from the
duality gap proved in Theorem 5.1. The example is constructed such that P(r;|D);ea = [1,0.6,0.5,0.5,0.4,0.1,---0.1], nRel(A) = 4, and
P(ri|D)iep = [1,0.1---0.1], nRel(B) = 4. Figure 7 shows that at most prefixes k, the EOR cost (in red) is optimal coinciding with the cost
from ILP solution (in green) as well as with the LP solution (in blue). Further, when the EOR ranking does not coincide with the LP solution,

28 UEOR _
the upper bound nRel(zi)fnRe)l(B) e
We now present the proof for the global a priori bound on § (O'IEOR) for two groups A,B.

is relatively small as is shown by the LP + duality gap (in grey).

C.2 Proof for Theorem 5.2
Proor. Let oPRPA GPRP.B he the PRP rankings for elements in group A and B respectively. We show by induction that for any given
prefix k, EOR algorithm selects the element such that )(5 (O'IEOR)‘ < Smax and as a consequence of Theorem 5.1, we get a global cost guarantee
of ¢Smax-
OR

In the remaining proof, we drop the superscript of EOR for simplicity and o; refers to o£OR.

. . : . [gPRPA[1] GPRPB[q] R oPRPA[1]
Consider the base case of k = 1. Algorithm 1 will select arg min {TI(A)’ WI(B)} resulting in the lower 8(oy-1). If “HRel(A) S

%, then d(o1) = ”:;:l'?f[‘;] < % (O;EP;?:IB?B] + a:;:ifé;] ) Similarly, if a:;zl(sg] < 0:;;?51, then §(oj-;) denoted in short by
8(oy) = Tl o (AL o 2L g agk = 1, by selecting the element with lower 8, EOR constraint is satisfied, i
(o1) = TRelB) S 2 \ nRel(A) + nRel(B) ) us, at k = 1, by selecting the element with lower §, constraint is satisfied, i.e.

6(01) < Smax-

We assume that for a given k — 1, |8(0x_1)| < Omax- Further, without loss of generality, we assume that §(oj_1) > 0. We now show that
at k, |6(ox)| < Smax by considering the following cases. First, we show that if adding the element from one of the groups violates the d;qx
constraint, then adding the element from the other group guarantees the satisfaction of §,4x constraint because EOR Algorithm selects
the element that minimizes §. Secondly, in the case where adding an element from either group does not violate the §;,4x constraint, EOR
algorithm will select the element that minimizes |§(o )| resulting in |6(0x)| < Smax- Finally, we show that when all the elements have run
out from one of the groups at k — 1, adding remaining elements from the other group will always satisfy the §;,4x constraint.

We assume that adding the element from group A with relevance probability p; at k, exceeds the §;nqx constraint.

Ppi
O(ok—1) + nRel(A) > Omax (24)
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Adding the element p; from B at this prefix,

8(01) = (o-1) = i < 6(0-1) < Smax 5

The last inequality holds by the induction assumption at k — 1.

. . PRP,B 1 O_PRP,A 1 PRP,B 1
Further, since #{(3) < UnTl(LEI)]’ and dmax = % ( nRel(f[x)] + JnRel(Ig)] ) the above can be reduced to

pj UPRP,B [l]
8oK) = 8(0k1) = spes 2 8(0k1) = S
O.PRP,A 1
So) > Slor)+ it~ 2o (2o
Now using —2i—— < 211 21q B, (26) ab
OW USINg s peTray S Rel(A) ¢ AN q. (26) above,
PREAL) 2
6(ox) = 5(Uk—1) + m — 20max 2 5(Uk—1) + m - 20max (27)
Using Eqgs. (27) and (24),
d(ox) 2 6(ok—1) + nRZl(A) — 20max > —Omax (28)

We have shown that, if |§(o)| exceeds dpmqax by adding the element from group A (from (24)), then the element in group B will satisfy
[6(0x)| £ Smax (from (25) and (28)). Since the EOR algorithm minimizes |§(oy )|, it will select the element from group B at prefix k rather
than the element from group A. Thus, |§(0x)| < Smax in this case.

Similarly, we can show that if |§(oy )| exceeds Smax by adding the element from group B, then adding the element from group A would
result in [6(og)| < Smax and would be selected by the EOR algorithm at prefix k.

Finally, we consider the case where all the elements in a particular group have already been selected. Without loss of generality, let’s
assume that this is true with all the elements in group B added by prefix k — 1. We need to show that adding from the remaining elements in
group A would still satisfy |§| < dmax for the remaining prefixes.

From our assumption, %}(E‘)’l) = 1 since all elements from group B were selected at prefix k — 1. From the inductive hypothesis

16(0%-1)| < Imax,

nRel(Alop_1) B nRel(B|og_1)

S(ok_1)| = <é 29
[6(o%—1)I nRel(A) nRel(B) max (29)
Since %ll&k)’l) < 1 as some elements remain in group A,
nRel(Alog_1)
S(op_1) = ————=—-12>2 -6 30
(ok-1) nRel(A) Z —Omax (30)
After adding the element p; from group A at prefix k and from (30),
pi nRel(Alog-1) pi pi
é = S(ok_ = -1 > =4, —_
(%) (k1) + Rl nRel(A) T Rel(A) = T T I Rel(A)
d(ok) = —Omax (31)
Additionally, since %ﬁ%") = 1 implying %ﬁf)") <1,
nRel(Aloy)
1 =——F7—F-1<0 32
(o%) nRel(A) < (32)

From Egs. (31) and (32), —Smax < 6(ox) < 0 and thus EOR algorithm will add all the remaining elements from group A resulting in
[6(0%)| < Smax. Analogously, it can be shown that if all the elements from group A had been added by prefix k, adding the next element
from group B would satisfy |5(ox)| < Smax-

Thus, we have shown that Algorithm 1 provides rankings such that for any prefix k, |0(ox)| < OJmax, Where Smax =
1 O_PRP,A [ 1] O.PRP,B [1]
2 \ "nRel(A) + nRel(B)

). As a consequence of this and Theorem 5.1, EOR rankings have total cost bounded by ¢dmax for any prefix

PA—PB
qa+qB

k of the ranking, where ¢ = nRel(A)inRel(B)

Next, we present the proof comparing costs from 7EOR, 7u0if ot prefix k, where & (UEOR) =0.
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C.3 Proof for Proposition 5.1

Rel(A EOR Rel(B EOR
Proor. When 5(O'£OR) = 0, by the definition of EOR fairness, we have that nRel(Alo, 77) _ nRel(Blo, 7)

. As a result, the total cost

Rel(Al6EOR ) +nRel (B|oEOR nRel(A) - nRel(B)
(1- nRel( nllggl(A;:ZRZlEB‘) ke )) as well as subgroup cost would be equal to
nRel(AIU,fOR) nRel(B|0'fOR)
- =T 33
nRel(A) nRel(B) (33)

Rel (A|cEOR Rel(B|cEOR
We also know that - ( kLak ) > n?&?) and —— ( k}‘g i) > nl;ilB(f ), since the EOR algorithm selects top k4, kg elements from each

of the groups (with kg + kg = k, S(A) + S(B) = n), having a higher mean relevance than that of the group itself.

nRel(A|o£OR)S(A)

nRel(A) 2 fa (34)
nRel(B|oEOR)S(B)
nRel(B) = ks (35)

Adding Egs. (34), (35) and using (33), we get that

nRel(A|0'£OR) (S(A) +S(B))

> k
nRel(A)
nRel(AlorOR) k nRel(A|oEOR) k
—_ > —el-———— <1 =
nRel(A) n nRel(A)

This and Eq. (33) are sufficient to claim that the total cost and subgroup costs of uniform policy given by 1 — % will always be higher than

the total cost and subgroup costs given by EOR ranking when §(a£OR) = 0.

r O

D Extension to Multiple Groups G

In the following, we prove the global cost and fairness guarantee for multiple groups G.

D.1 Proof for Theorem 6.1
G(G-1)

Proor. The overall strategy for this proof is to consider each pair of groups among the =—=— pairs and reduce each term of the duality
gap to the two group case in Theorem 5.1. Fortunately, we can achieve such a reduction by careful construction of the dual variables.
The LP to find a solution X for this problem is formulated as follows

PTx
max f(x)= < (Primal)
x20 Zg:1 nRel(g)
xT1<k (select up to k elements)
Qé)BX < 5(5;522)
G(G — 1) constraints OpaX < 5(515 )

The above LP is analogous to the two group case in Theorem 5.1, with the addition of G(G — 1) pairwise constraints ensuring EOR-fairness
for all pairs of groups.
We can construct the dual problem as follows

G(G-1)/2
n
: OR
min  g(2) =8OR 3’ (AA,B+AB,A)+kAk+ZA; (Dual)
{A,B} i=1
P
_ ’
s.t. {1;3} QA,B(AA,B AB,A) +).k +A" > —Zg nRel(g) (37)
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We have pairs of dual variables that are constructed from the EOR solution as following

1 1 PA—PB
A = (38)
AT (G-1) ZynRel(g) [ qa+qs .
1 1 PA—PB
AB,A - ( ) (39)
’ (G —1) XgnRel(g) g4 +48
G(G-1) MNs
We construct A} corresponding to constraint (36) and A corresponding to constraint (select up to k elements) below.
(G-1)terms (G-1)terms
A = Z nRel(g) —qA Z(AAg Aga)| = Z nRel(g) -qB Z(lBg Ag,B)| = - - - for each of G groups (40)
(G—-1)terms
/ i
A = ~ =i ) (Agg—A4g) )
"
For instance, if i € A then,
Nea = # - —qi Z(AA,g = Ag,A)
2gnRel(g) ey .

We show that the constructed dual variables are non-negative in Lemma 6.2 and always feasible in Lemma 6.3. Additionally, we have
A = 0 for any element not selected in the EOR ranking from Lemma 6.2.
The duality gap can now be formulated as follows

T
» = 8(ap OR Aap+ A kA P S
o) =100 =0 3, (has+ 2.0+ k+Z %, nRel(g)

Substituting the values for A’ from (41) and breaking the k elements selected into k4 from group A, kg from group B, and so on from
every group, we have the above duality gap as

G terms, one for each group

ka pT
P P'X
= 8% ), Qap+apa) +kh+ =i ) (Aag=Aga) |+ ) O+ |- o

{AZJ;} ; 2g nRel(g) ;1 Z nRel(g)

k k o k pi k Pj ). Px .

In the above G terms, we can collect 3,4 A + > "B Ap +- - - = kAg and (Z A 5, nRel(g) + B 5, nRel(g) + ) = ¥, nRel(g)” This reduces
the duality gap to
G terms
kA kB

= 8(afOR)( ). Aap+aBA) = D 4 D (hag—2ga) = > q; > (ABg—Agp) -

{A,B} =l g#A j=1  g#B

ks

> 5<a£OR>(AAB+ABA>—(qu PR DLCIVEVED

{A,B} i=1 j=1
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For each pair of groups A, B, the term inside the summation reduces to the two group case in Theorem 5.1. We also have that —5(0'£OR) <
ykag - ykeg; < 5(G£OR) from Lemma 6.1.
Duality gap < ) 244 5(of%)
{A.B}
25(ar k)
(G~ 1) 3, nRel(g)

PA—PB
qAa tqB

{A.B}
This proves that the EOR solution can only be ever as worse as ¢dmqx When compared with the optimal solution, where

RP,
G;Tg;]} from Lemma 6.4. ]

- 2 PA—PB _
¢ - (G-1) ZgG:I nRel(g) (Z{A,B} |QA+qB ) and dpmax = maxg {

LEmMA 6.1. EOR ranking is § (UIEOR) fairness optimal, implying that for all G choose 2 possible pairs of groups A, B € {1, - - - G}, we have
k
_S(O—EOR) < Zl i9qi — ngl qj < 5(0—]§OR)~

This lemma follows directly from the EOR ranking principle of choosing the candidate that minimizes § (U£OR) defined according to

Eq. (8).
m]

LemMA 6.2. The constructed dual variables A > 0. In particular, for any i > k4 in group g, where g € {1,--- G}, it holds that A = 0 and for
any i < kg it holds that A} > 0.

ProoF. In this Lemma, we show that A’ = 0 for the elements not selected and A” > 0 for the selected elements by the EOR Algorithm.
Without loss of generality, we consider the element at index i that belongs to group A.

- _Zgnfl)?iel(g) ZgnRez(g) qA;(AAg g,A)—qi%(AA,g—Ag,A) )
= _;T% cm)g%(agfx AA9)+
= g; %uqi—%)(@rmg) + (42)

For every pair of 14 4 and Ay 4, where g € {1,---G} and g # A, only one of A4 4, 45 4 is > 0. Each of the G — 1 terms inside the summation
in Eq. (42) reduces to the two group case as follows. For i > k4 and each {4, g}, the term evaluates to < 0 using Lemma 5.2 and thus A/ is
clipped to 0. Similarly, for i < k4 and each {4, g} the term evaluates to > 0 and thus A] > 0.

We have shown that for any element not selected by EOR Algorithm the corresponding dual variable A’ = 0, and for any element selected
by the EOR Algorithm the corresponding dual variable A’ > 0.

We now show that A > 0. From Eq. (40),

M = Z nRel(g) —4qA Z (AAg g,A)
= 3 A 4 qu g~ Aag) (43)
A (G-1) XgnRel(g)

Each of the G — 1 terms inside the summation in Eq. (43) reduces to the two group case. For each {4, g}, the term evaluates to > 0 using
Lemma 5.2 and thus A > 0.
The G(G — 1) duals A4 p are > 0 by their construction in (38). Thus, we have shown that all the constructed dual variables 1 > 0. o

Lemma 6.3. The dual variables A = [A] - - - A}, Ak, Aa B, AB.a, - - - | are always feasible.
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Proor. For some element i € A, the duality constraint implies that

G—1 terms

g ;w,g Yo |+ de ] 2 s (44)

Without loss of generality, we consider element i € A.
Case I: Elements not selected by the EOR Algorithm.
Using the fact that A} = 0 for i > k4 from Lemma 6.2, and substituting A; from Eq. (40), we get

qz’Z(lA,g—ﬂg,A)*'lkJrAf qu(AAg gA)+m CIAZ(AAg Ag.A)

g#A g#A g#A
PA
= S (qi—qa) ), (hag —Aga)
g nRel (g) &h
PA
= —_— Apg — 45
Z G, wRel(g) T @ W g~ Ig) (45)
> Z > 2 (46)
(G - 1) Zg nRel(g) Zg nRel(g)
Each of the G — 1 terms inside the summation in Eq. (45) reduces to the two group case. For each {4, g}, the term evaluates to (G—l)zpm
9
using Lemma 5.3 and thus the corresponding duality constraint is satisfied.
Case II: Elements selected by the EOR Algorithm.
Using the fact that A] > 0 for i < ka from Lemma 6.2, and substituting A; from Eq. (40), A} for i < kg in (41), we get
: _ ' g - D 7 S -
G ), Qg = dg) ¥ M A = @i ), (ag = Aga) + A+ s =M= ai ), (hag ~g.0)
g£A g£A 9 g£A
_ pA pi

g nRel(g) 2.g Rel(g)

Thus, for elements selected by the EOR Algorithm i.e. i < k4, the corresponding dual constraint is satisfied. O

We now present the proof for the global a priori bound on § (UI]CSOR) for G groups.

RP,
LEmMMA 6.4. The global a priori bound on 5(0‘50R) for G groups is given by §nax = maxy {O;;T!Z;;J}
prefix min group (min+1) group other groups max group
k-1 1 2 . g
k min group other groups other groups max group
2 . g 1

Figure 8: Illustration for the case of Multiple groups

Proor. We will show that for G groups, the value of §;,4x such that a feasible ranking will be provided and that always satisfies
5(U’fOR) < Smax for every given k is given by
UPRP,I [1] O_PRP,Z [1] O.PRP,g [1] O_PRP,G [1]
nRel(1) ° nRel(2) ° ’ nRel(g) nRel(G)

Smax = mMax (47)
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In the remaining, we drop the superscript of EOR for simplicity and o; refers to O'JEOR .

We argue by an inductive argument similar to the proof of Theorem 5.2. Consider the base case of k = 1, when the first element is to be
selected. The EOR algorithm will select according to Eq. (8) resulting in the lower §(og—1). Thus, §(ox=1) is clearly < &ax-

We assume that for a given k — 1, §(0_1) < Smax and show that at k, 6(ox) < Smax-

Consider the general case as depicted in Figure 8, where a group 1 has the lowest accumulated proportion and group g has the highest at
prefix k — 1. Since §(0k_1) < Smax from inductive assumption, we have

nRel(gloi,) _ nRel(1lop_,)
nRel(g) nRel(1)

< 5max

nRel(.log) _ nRel(glok-1)
nRel(.) —  nRel(g)

At the next prefix k, if the group that is selected has ,then 6(0y) < Smax. Note that §(oy) is always non-negative
by definition from Eq. (8).

We now consider the case when a group ¢’ is selected at the next prefix k such that

is group 1. We have nRel(l]ok) o, nRel(glo) Selecting group 1 at k means that the rest of the groups have the same accumulated relevance

nRel(1) nRel(g)
proportion %il(?)k) at prefix k as k — 1. We analyze the difference of %ﬂ&k) between the group that was most behind- group 1 and the

nRel(q'|ox) _ nRel(glog_.)
nRel(g") nRel(g)

. Let us first consider that g’

group that was second most behind - group 2 and whether that remains within §,;,4x. If the added element from group 1 is denoted by p;,
the EOR constraint value at k is

nRel(1|ox_1) pi nRel(2|oy)

0k) = —Ra) trRel() T nRel(2) (48)
B pi nRel(2|oy) B nRel(1llox_1)\ _ pi B nRel(2|og_1) B nRel(1|og_1)
" nRel(1) nRel(2) nRel(1) ) " nRel(1) ( nRel(2) nRel(1)

Eq. (48) holds since group 1 is now the group with maximum relevance proportion after adding p; - the top most current element from
group 1. Group 2 becomes the group with minimum relevance proportion.
nRel(2|oj_1) nRel(1|ox_1)

) PRP,1
Since #ll(l) < O-HT[([ll)] < Smax and because group 1 was behind group 2 at prefix k — 1, we have nRel(2) 2 nRel(1) since . As

a result,

pi o]
0(0k) < SRerry S TaRer() S Omax

We have shown above that if the group with lowest relevance proportion at prefix k — 1 (group 1 in this case) is selected and its relevance
proportion now exceeds the group with the highest relevance proportion at prefix k — 1 (group ¢ in the case above), then §(o}) < Smax- Thus,

we can say that at least one group exists that satisfies ;,4x EOR constraint at prefix k. This completes the proof that the EOR algorithm
oPRP9[1]

WI(Q)} for G groups. O

always provides a feasible ranking that satisfies dpmax = maxge(1...G} {

E Experiment Details

E.1 Baselines

We compare rankings from Algorithm 1 with the following baselines
Probability Ranking Principle (mPRP ). Candidates are selected in decreasing order of relevance independent of their group membership.
Uniform Policy (r*"f). Candidates are selected randomly independent of their group membership or relevance.

Thompson Sampling Ranking Policy (m7S) [50]. For 775, binary relevances are drawn according to r; ~ °(r;|D), and candidates are sorted
in decreasing order of relevance r; with their ranking randomized for the same value of relevance r;.

s~ argsort;[r;] st ri ~P(r;|D)

7T ranks each candidate i in position k with probability that i has kth highest relevance.
unif o unif TS _ T

For both 7775 and 7 we compute expectation over 100 rankings o 719 respectively and compute §(oy.) used in

Table 1 as

or o

8(ox) = Eg~rn [max
g9

{nRel(g|0'k) } _ min { nRel(gloy) }]
nRel(g) g nRel(g)
unif

In order to plot a single ranking o oS for all experiments, we select the ranking with median ZZ:1 [6(or)]
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Figure 9: EOR criterion §(oy), costs of the ranking policies, and DCG Utility for Synthetic dataset with proportional Rooney-Rule like
constraint, 78R, For group A we draw S(A) = 30 relevance probabilities from Powerlaw(y = 5), and then draw for group B from
Powerlaw(n = 0.5) until nRel(A) ~ nRel(B).

Demographic Parity (mPF). Candidates in each group are sorted in decreasing order of P(r;|D) and selected such that the following
constraint is minimized. This constraint is similar to the statistical parity variations introduced in [58].

S(Alog)  S(Bloy)

5(4) S(B)
EOR

Vk

(49)

where S(.) represents the size of the group. For a fair comparison with ¢“~*, we use Algorithm 1 and instead of minimizing Eq. (6), we
minimize the above demographic parity constraint (49). We now discuss other variations of proportional representation constraints that have
been introduced in prior literature [8—10]. Generally, these constraints require that the disadvantaged group selected is at least a specific
proportion « of top k.

S(Bloy) > ak (50)

where a = % and Eq. (50) is used as the fairness constraint while maximizing the utility to the principal. This type of representational
constraint by definition requires the designation of a disadvantaged group. By designating B as the disadvantaged group, the constraint for
proportional Rooney-Rule policy [47], which we denote by 7"RR s as follows

SBlo) __ S(B)

e 2 Ss@+s)

We empirically compare 77RR baseline with other ranking policies in Figure 9 and as expected, find that it is similar to the baseline of 7°F,
where 7PRR and 7PP almost overlap. Thus for a fair and analogous comparison with 7EOR e use (49) as the 7PF baseline for all empirical
evaluations. For more than two groups, we extend the DP baseline with the selection rule based on group size as follows. In particular,

DpPy  _ S(glox)| . [S(glog)
(6 = g TGO | min (350
Iy, = oRPI[1] vge{1-G}
g = argmin&(o*DPU{lg}); lg*=chRP’-q*[l] (51)
g€[1..G]

FA* IR Ranking Principle (zF'S). This criterion is anchored on the principle that a top-k ranking is fair when the proportion of disadvantaged
candidates selected doesn’t fall far below a required minimum proportion p. This is formalized with a Binomial distribution, and a confidence
level (1 — a). A function of the binomial cdf is computed apriori and is used as an input in the FA*IR Algorithm. Since Binomial(p=0.5,n)
corresponds to a ranking where at each position, a candidate from either group is selected randomly, FA*IR is a "softened" version of
demographic parity (DP). As a result, FA*IR is fundamentally different from Axiom 1 and Definition 4.1 derived from the uniform lottery
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fairness because, unlike DP, the uniform lottery is anchored on selecting an equal fraction of relevance from each group. Unlike 7FOR,

7S is oblivious to the relevance distribution and thus cannot take disparate uncertainty into account. FA*IR also requires the normative
designation of a disadvantaged group.

Consider the following example for top k=4 selection, with the probability of relevance for group A = [0.7, 0.7, 0.7, 0.7, 0.1, 0.1], group size
= 6, relevant candidates = 3.0. Similarly, the probability of relevance for group B = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5], group size = 6, relevant candidates
= 3.0. The EOR Ranking for top-4 is [0.5, 0.7, 0.5, 0.7] with 2 candidates from group A, and 2 from group B, resulting in S(UEOR) =0.13.
The 7S Algorithm with Binomial(p=0.5, n=12), k=4 and & = 0.1 requires that at least 1 candidate be selected from the disadvantaged
group while maximizing the utility to the principal. FA*IR ranking with group B as the disadvantaged group is crf $=10.7,0.7,0.7,0.5]. It
selects 3 candidates from group A, and 1 from group B, resulting in §(oy4) = 0.53. If instead group A is designated as the disadvantaged
group, o5 = [0.7,0.7,0.7,0.7] with all candidates selected from group A, and none from group B, resulting in & (of ) = 0.93. Note that for
both FA*IR rankings, far fewer relevant candidates are chosen from group B, even though both groups have an equal number of relevant
candidates in expectation.

In all the empirical evaluations in this paper, we assign group B as the minority group for 7S and use the fairsearch core library ¢ with
default parameters of « = 0.1.

Next, we discuss two exposure-based formulations 7£X

P and 7R4.

Exposure-based Disparate Treatment (mEXP ). This policy enforces that the allocation of exposure to each group is proportional to their
average utility. Specifically for two groups A and B,
Exposure(A|X)  Exposure(B|X)
u@ U

where ¥ is the doubly stochastic ranking matrix obtained from solving the Linear Program in [49]. For multiple groups, the above constraint

) . _ Sy 1 AR _ ZiegPi _ nRel(g) .
is added for each pair of groups. Exposure(g|%) = S(Jg)j 0] = g (D) for the j*" position, and U(g) = S(;) =50 In particular for
two groups A, B, we solve the following LP [49]

Maximize PTsw utility to the principal (52)

subject to 1T =17 (sum of probabilities for each position)

X1 =1 (sum of probabilities for each candidate)
0<3;;<1 (valid probability)
(%I?A) - %) S0=0 (exposure constraint)

. 1,P¥ P I 1,PE . 1,PE
The group cost is computed as 7Rel(g)’ total cost as T, nRel(g) and EOR criterion as max, 7Rel(q) | ~ ™iNg | nRel(g)

A we modify the baseline for fair rank aggregation in [7] as follows. In fair

Rank Aggregation w. proportional allocation of Exposure. For mR
rank aggregation, all n candidates are ranked by m voters to achieve a ranking with maximum consensus accuracy, where consensus may
be according to different aggregation methods while achieving fairness of exposure w.r.t groups. [7] proposes an algorithm that finds the
consensus maximizing ranking and then swaps the candidates such that the equality of exposure is satisfied in that ranking. To adapt this
baseline, we use the ranking from utility maximizing 7"RP as the consensus ranking and use the algorithm from [7] to swap elements in
PRP ranking until the exposure constraint below is satisfied,

w > threshold

maxgy Exposure(g)
A threshold of 0.95 is used in experiments and on average over 100 runs, an exposure of 0.96 + 0.01,0.96 + 0.00, 0.97 + 0.00 is achieved for
high, medium, and low levels of disparate uncertainty respectively in Table 1.

E.2 Synthetic Dataset
To simulate disparate uncertainty between groups, we draw P(r;|D) directly from specific probability distributions as follows. For Group
A, we obtain p; ~ Beta(%, %) and keep them fixed. We simulate 100 runs and in each run, p; for group B are sampled as follows until
nRel(B) ~ nRel(A) (total expected relevance for groups can only differ by 1.0).

e High Disparate Uncertainty: Beta(5, 5)

e Medium Disparate Uncertainty: Beta( %, %

e Low Disparate Uncertainty: Beta(%, 21—0). Note that even when both groups are drawn from the same distribution, any sampled

instance still contains some amount of disparate uncertainty.

Shttps://github.com/fair-search/fairsearch-fair-python
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Results for unfairness and effectiveness of rankings are reported with standard error in Table 1 (left). The posterior distributions in Table 1
(right) uses 50 samples for each candidate in group A, while for group B, the number of samples increases from 10 to 30 to 50 as the setting
changes from high to medium to low disparate uncertainty respectively.

To estimate P(i € oF) for stochastic policies— 7"™f and 775, we draw d = 10> Monte Carlo samples and compute Monte Carlo estimate
according to (53).

1
1- P(i € 0'17;) = 3 Z ﬂieo-k (53)
d

We compute the costs using P(r;|D),P(i € al’cr) according to Egs. (3), and (4).
In Figure 11, we plot a random sample from Table 1 according to the generation process described above. We also qualitatively analyze a
commonly used measure of utility to the principal, namely, the expected Normalized Discounted Cumulative Gain (nDCG), which according
to our model is,
DCG(oy)  ieoy ViTi
iDCG Yje gldeal Viri’

nDCG(oy) = oldeal = arg sort;r;
where v; = logs ﬁ for the " position. When true relevance labels are known, for instance in US Census experiments in Figure 14,
ri € {0,1} consists of the true relevance labels, otherwise in synthetic experiments in Figure 11, r; € [0, 1] consists of the calibrated
P(ri = 1|D).

As shown in Figure 10, the nDCG for EOR ranking is only slightly lower than the nDCG optimal PRP ranking and competitive with all

other ranking policies. In all of these experiments, we confirm our findings that 7EOK, 7 distribute the subgroup and total costs evenly

1.0 fe———
O.Q-W
0.8 1 — FS
@) —— RA
8 0.71 —— EXP
0.6 = Uniform
A TS
0.54) —— PRP
0.4 — DP
—— EOR

20 40 60
Length of Ranking (k)

Figure 10: nDCG for High disparate uncertainty setting shown in Figure 4

PRP 7DP "and #7S place a high cost burden on one of the groups. Further, for 7EOR, the total cost to the

PRP indicated by overlapping lines in subplots (c) of

while other ranking policies 7
principal and nDCG utility is close to the optimal (but unfair) total cost and utility of &
Figure 11.

E.3 US Census Survey Dataset

We use the ACSIncome task with default settings [14] for the state of New York and Alabama for 2018, with 1-year horizon. The dataset
consists of 10 features, out of which 8 are categorical. Race is among the features that we include in the prediction task following [14]. There
are 103,021 records for New York and 22,268 records for Alabama. For pre-processing, the categorical features are one-hot encoded, while
the other two numerical features (‘AGE’ and “WKHP’) are standardized to have mean 0 and standard deviation 1. We divide this dataset
into 60/20/20 for train/val/test split and fit a Gradient Boosting Classifier 7 with the parameters loss as ‘exponential’ and max_depth as 5
following hyperparameter configuration of [14]. This gives a DP violation P(Y = 1|White) — P(Y = 1|Black) of 0.19 and an EO violation
P(Y = 1|Y = 1, White) — P(Y = 1|Y = 1, Black) of 0.18 for New York and a a DP violation of 0.22, EO violation of 0.29 for Alabama, which is
roughly similar to Figure 2 and 6 of [14] before any fairness interventions are applied in the classification setting.

We subset the dataset to contain records with White or Black/African American racial membership (Alabama and New York) and subset
records with White, Black, Asian, and Others racial membership (New York only) for two and four groups respectively. To calibrate relevance
probabilities, we fit a Platt Scaling [37] calibrator on the validation data split group-wise and apply Platt Scaling to the test set probability
estimates. Figure 12a, 12b and 12c show that calibrated P°(r;|D) on the test set, binned across 20 equal sized bins, lie close to the perfectly
calibrated line.

7scikit-learn Gradient Boosting Classifier
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Figure 11: Top: Medium disparate uncertainty Bottom Low disparate uncertainty for a randomly sampled instance.
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Figure 12: Calibration plot for P(r;|D) for the state of New York and Alabama

In Figure 5, estimates nRel(A|oy), nRel(A), nRel(B|oy), and nRel(B) are computed with the true relevance labels from the test set for
computing EOR criterion, costs, and nDCG. Figure 13, shows EOR criterion and costs with nRel(A|oy ), nRel(A), nRel(B|oy.), nRel(B) estimated
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Figure 13: Top: EOR criterion §(oy) and Costs computed using calibrated P(r;|D) for two groups for the state of Alabama. Bottom: EOR
criterion §(oy) and Costs computed using calibrated P(r;|D) for four groups for the state of New York.

from the calibrated P(r;|D). Note that the evaluation on true relevance labels in Figure 5, though noisier is qualitatively similar to the
evaluation using the calibrated P(r;|D) in Figure 13. Additional experiment for two groups with true relevance labels for New York in
Figure 14 (top) and with calibrated P(r;|D) in Figure 14 (bottom) further confirm our findings, that 7EOR is the only ranking policy that
consistently achieves §(oy) close to zero at every prefix k with near optimal total cost to the principal.

Note the overlapping of R4 and #PRP in Figure 13 and 14. This is expected because R4 swaps the candidates in PRP ranking to satisfy
proportional exposure as described in Appendix E.1. Since the amortized exposure between groups is already satisfied with the PRP ranking
for this dataset, 784 and 7PRP compute similar rankings.

E.4 Amazon shopping queries dataset

Amazon’s shopping queries [39] consists of a large scale query-product pair dataset with baseline models for tasks related to predicting
the relevance of items given a search query. Each query-product pair has an associated human annotated label of an exact, substitute,
complement, or irrelevant label.

For our analysis, we focus on their task 1 of query-product ranking & to sort the list of products in the decreasing order of relevance for
every query. We use the publicly available baseline model for this task, consisting of Cross Encoders for the MS Marco dataset [40]. This
pretrained model encodes the query and product titles and is fine-tuned on the US part of the small version of training dataset. We use the
default hyperparameters for the Cross Encoder as maximum length=512, activation function=identity, and number of labels=1 (binary task).
Similarly, for training following the default configuration, all exact labels are mapped to 1.0, while the rest (substitute, complement, and
irrelevant) are mapped to 0.0. Default hyperparameter configuration includes MSE loss function, evaluation steps=5000, warm-up steps=5000,
learning rate=7e-6, training epochs=1, and number of development queries=400. Inference from the trained model provides relevance scores
and we apply a sigmoid function to transform these scores to probabilities of relevance P(r;|D).

8https://github.com/amazon-science/esci-data
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Figure 14: Top: EOR criterion §(oy) and Costs computed using true relevance labels from the test subset. Bottom: EOR criterion §(oy) and
Costs computed using calibrated P(r;|D) for the state of New York.

To evaluate the calibration of predicted P(r;|D), we use the test split of the dataset [39] for the large version containing 22,458. We
filtered these queries so that they contain at least three products owned by one of the 158 brands owned by Amazon (we discuss in the next
paragraph the source of identifying these Amazon-owned brands) and at least three products owned by brands other than Amazon. These
result in 395 queries, out of which half are used for calibration with a Platt-scaling calibrator while the remaining half is used to evaluate the
calibration curve for the test dataset. P(r;|D) of the query-product pairs for the remainder half of the test dataset after calibration is binned
across 20 equal sized bins as shown in Figure 6a and lies close to the perfectly calibrated line.

We further augmented this with another dataset ° collected from the Markup report [60], which investigated Amazon’s placement of
its own brand products as compared to other brands based on star ratings, reviews etc. The authors for the Markup report identified 158
brand products that are trademarked by Amazon. We use these 158 brands to form the Amazon owned group. Products belonging to any
other brand form the non-Amazon group. Importantly, this dataset contains logged rankings from Amazon’s website with 4566 queries for
popularly searched query terms. We filtered these such that each query contains exactly 60 products and at least three of them are owned by
Amazon, resulting in 1485 search queries.

Next, we obtain relevance probabilities P(r;|D) from Amazon’s pretrained baseline model described above and evaluate §(o) both for
the logged ranking as well as our computed EOR ranking. Figure 6b shows that our EOR ranking is closer to d(oy) = 0 as compared to
logged rankings on Amazon’s platform. We note that this analysis is subject to confounding due to the use of features other than product
titles that may be used in practice for logged rankings. However, the analysis does demonstrate how the EOR criterion can be used for
auditing, if the auditor is given access to the production ranking model to avoid confounding.

“https://github.com/the-markup/investigation-amazon-brands



