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Abstract

Each year, selective American colleges sort through tens of thou-
sands of applications to identify a first-year class that displays both
academic merit and diversity. In the 2023-2024 admissions cycle,
these colleges faced unprecedented challenges to doing so. First,
the number of applications has been steadily growing year-over-
year. Second, test-optional policies that have remained in place
since the COVID-19 pandemic limit access to key information that
has historically been predictive of academic success. Most recently,
longstanding debates over affirmative action culminated in the
Supreme Court banning race-conscious admissions. Colleges
have explored machine learning (ML) models to address the issues
of scale and missing test scores, often via ranking algorithms
intended to allow human reviewers to focus attention on ‘top’
applicants. However, the Court’s ruling will force changes to these
models, which were previously able to consider race as a factor
in ranking. There is currently a poor understanding of how these
mandated changes will shape applicant ranking algorithms, and, by
extension, admitted classes.We seek to address this by quantifying
the impact of different admission policies on the applications

prioritized for review. We show that removing race data from
a previously developed applicant ranking algorithm reduces the
diversity of the top-ranked pool of applicants without meaningfully
increasing the academic merit of that pool. We further measure the
impact of policy change on individuals by quantifying arbitrariness
in applicant rank. We find that any given policy has a high degree
of arbitrariness (i.e. at most 9% of applicants are consistently ranked
in the top 20%), and that removing race data from the ranking
algorithm increases arbitrariness in outcomes for most applicants.
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1 Introduction

At selective American colleges, admissions is a high-stakes decision-
making process in which reviewers sort through a large pool of
applicants to admit a class that displays both academic merit and
diversity [8, 18]. Many such institutions currently rely on holistic ad-
missions, which purport to evaluate the ‘whole’ student – not only
through metrics like test scores and GPA, but also through more
subjective factors like background and life experiences [22, 45, 65].
Holistic admissions is a labor-intensive process that requires human
review of a complex array of information (grades, activities, essays,
letters of recommendation, etc.) for a large volume of applications
in a small amount of time.1 Because the number of applications
has been steadily growing year-over-year, this process has become
increasingly challenging to scale [48]. A critical question for admis-
sions offices is therefore how to prioritize applications for review in
order to most effectively make use of their limited time. In the past,
standardized test scores (SAT, ACT) have been used to rank or at
least group applicants to organize the review process [36]. However,
test-optional policies enacted during the COVID-19 pandemic have
limited colleges’ access to those standardizedmetrics, forcing admis-
sions offices to again grapple with the question of how to best orga-
nize applicants [39]. Any one piece of information in an application
may be too coarse, inconsistently measured, or insufficiently indica-
tive of potential success to impose a ranking on the full applicant
1See Appendix B for details of application volumes and timelines at selective American
colleges.
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pool. Therefore, researchers are increasingly exploring machine
learning (ML) approaches to identify complex relationships between
historic applications and their corresponding admissions decisions
in order to prioritize applicants for review [36, 56, 63, 69, 70].

This raises an important question: what information should
these algorithms take into consideration? Prior research efforts
have taken inspiration from the ethos of holistic admissions and in-
cluded all data available in an application, including not only grades,
essays, and test scores, but also details of an applicant’s background
including their race and ethnicity [36]. Until recently, this approach
was justifiable under the policy of affirmative action, in which appli-
cants belonging to historically marginalized groups were given spe-
cial consideration in the admissions process. However, in June 2023,
affirmative action in college admissions was effectively abolished by
the U.S. Supreme Court, which ruled in Students for Fair Admissions
v. Harvard that it constituted a form of racial discrimination and
was thus unconstitutional [4]. As a result, elements of the admis-
sions process that previously considered race and ethnicity must be
updated to exclude those variables. There is currently a poor under-
standing of how these mandated changes will shape how applicants
are prioritized for review, and, by extension, who is admitted.

1.1 Research Questions and Contributions

In this work, we rely on four years of admissions data from a
selective American higher education institution to explore how the
end of affirmative action is likely to impact admission processes.
We address the following research questions:

• RQ1: How does a change in admission policy impact a col-
lege’s overall class?

• RQ2: How does a change in admission policy impact indi-
vidual applicants?

We cannot observe actual admissions outcomes under differ-
ent policies. As a proxy, we rely on applicant ranking algorithms,
which can be used to determine the order in which applicants are
reviewed. We argue that the rankings produced by these algorithms
are likely to meaningfully impact admissions. Even if we assume
that the order in which an applicant is reviewed does not impact
how they are rated – that is, an applicant has roughly the same
chance of being considered a ‘good’ candidate whether they are
reviewed first, last, or somewhere in the middle – review order can
still impact outcomes. There are constraints on the size of a college’s
first-year class: there are typically vastly more ‘good’ candidates
than admission slots, meaning that only a subset can be accepted.
Based on conversations with the admissions team at the case in-
stitution, we model the admissions officers as adding applicants to
the pool of accepted students as they review their applications and
deem them ‘good’ candidates. This means that the class may be
full before later-reviewed applicants can be added, even if they are
deemed equally ‘good’ by admissions officers. Therefore, we define
impact according to the order in which applicants are prioritized by
a ranking algorithm. Again based on conversations with the case
admissions office, we pay special attention to the set of applicants
that are designated as part of a ‘top’ pool of applicants. Finally,
incorporating recent scholarship on model multiplicity [16] and ar-
bitrariness of predictive model decisions [23], we examine the likely
impact of policy changes on the outcomes of individual applicants.

Together, this approach allows us to (1) predict the likely impact
of race-unaware admissions on the ability of colleges to admit a
first-year class that displays both academic merit and diversity;
and (2) provide a template for going beyond group fairness
assessments of college admissions to understand the relative
impact of policy changes on individual applicants. Ultimately,
we find that: (1) race-unaware policies do not meaningfully

improve the academic merit of the top-ranked pool even

as they significantly decrease diversity, countering narratives
about the costs of affirmative action. At the individual level, we find
that (2) any given policy has a high degree of arbitrariness (i.e.
at most 9% of applicants are consistently ranked in the top 20% by
any policy). Further, (3) arbitrariness in individual outcomes

increases under a race-unaware applicant ranking algorithm.

2 Background and Related Work

In this section, we outline the goals and challenges of modern-day
admissions at selective American colleges and howML has been ap-
plied in support of those goals (§2.1). We also provide an overview
of how researchers and activists have measured the impact of
admissions policies on applicants, highlighting gaps in prior
assessment methods that we seek to address with this work (§2.2).2

2.1 Selective College Admissions: Goals and

Challenges

Admitting applicants with academic merit. Perhaps the most
important goal of college admissions is identifying students with
academic merit, typically defined as those who are predicted
to succeed academically if admitted [7, 9, 68]. As the number
of college applications reaches historic highs,3 this process has
become increasingly labor-intensive. Selective colleges must
now review tens of thousands of applications in order to fill
just a few thousand slots. At the same time, the data available
to them to make these decisions is changing. The suspension of
standardized tests like the SATs during the COVID-19 pandemic
led many colleges to go ‘test optional.’ Among the approximately
one thousand colleges that rely on the Common App, a platform
through which millions of college applications in the U.S. are
submitted annually, 55% required standardized test scores in 2019,
but by 2023, this number plummeted to 4% [34]. Applicants are
embracing these test-optional policies: the Common App reports
that 76% of applicants submitted test scores in 2019, compared with
just 45% in 2023 [34]. As a result, colleges no longer have reliable
access to a key piece of nationally standardized information that
has been shown to be predictive of student success [21, 25].

Admitting a diverse class. Another goal of college admissions is
diversity. For most of American history, access to higher education
was largely restricted to those who were white, male, and Protes-
tant. Slavery, coupled with anti-literacy legislation in the South and
2We note at the outset that we focus here on selective, American colleges and univer-
sities, as these are the institutions whose admissions processes are most likely to be
impacted by the Supreme Court’s recent ban on affirmative action. Colleges outside of
the U.S. are not subject to the ruling; non-selective colleges by definition admit the
majority of their applicants and as such typically do not consider race in admissions
[13, 58].
3According to the National Center for Education Statistics, college applications in-
creased by 36% between 2014 and 2022, from 9.6 to 13.1 million [48].
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laws barring Black students from public schools in many Northern
states, restricted access to education for most Black Americans
before the Civil War [50, 51]. Following the abolition of slavery, this
discrimination persisted in the form of legally codified segregation
that provided Black Americans with lower-quality education.
Racial minorities, religious minorities, and women who did apply
for higher education were often rejected due to outright bans or
quotas restricting their admission; those who were admitted faced
segregation and other forms of discrimination [52]. In the 1960s,
spurred by nationwide civil rights protests, selective colleges began
adopting affirmative action policies to admit Black and other minor-
ity students who, as a direct result of this systemic discrimination,
did not have comparable grades and test scores to their white peers
[66]. Colleges argued that affirmative action was beneficial not only
to historically disadvantaged students, but to the institution as a
whole due to the “educational benefit that flows from student body
diversity” [3]. Although affirmative action has its roots in racial
justice movements, many have argued that socioeconomic diversity
should be an important consideration as well, pointing out that
even selective colleges that have increased enrollment among
students of color admit disproportionately few students from
low-income families [21, 38]. This view became even more salient
in 2023, after decades of legal challenges limiting affirmative action
[1, 2] culminated in the Supreme Court ruling that race-conscious
admissions “violate the Equal Protection Clause of the 14th
Amendment” [4], effectively banning the use of race data in college
admissions. We refer to this as the SFFA4 policy change throughout.

Machine learning in admissions processes. In the face of these
challenges, colleges are increasingly turning to ML to aid their
admissions processes [43]. One common, and potentially fraught,
use case is to rank applicants using ML (typically by generating
scores corresponding to applicants’ predicted chance of admission)
in order to speed up or scale human review [60, 64, 70]. For
example, GRADE, a tool used for graduate admissions at the
University of Texas at Austin, was developed because “the number
of applications [had] become too large to manage with a traditional
review process” [70]. At UT Austin, reviewers were asked to
‘validate’ applicants to whom GRADE had given very high or
low scores and focus most of their time and energy on reviewing
applicants about whom GRADE was unsure [70]. GRADE was
used for years before it was abandoned in 2020 due to widespread
concerns that it was reinforcing historical biases in admissions [19].

However, the use of non-ML based applicant ranking and selec-
tion approaches can also be controversial. Even deciding whether
to rely on standardized test scores, for example, entails a complex
tradeoff [26]: although research has shown that test scores display
racial and socioeconomic gaps that may not be reflective of merit
[57], there is also evidence that those same scores improve the abil-
ity of colleges to identify qualified under-represented applicants
[5, 47], and that they may encode less bias than other, more subjec-
tive, application materials [24]. In this context, multiple researchers
have explored the possibility of using fairness-awareML to improve
diversity in admissions. Alvero et al. [10], for example, found that
even simple natural language processing (NLP) models were able to
4After Students for Fair Admission Inc., (SFFA), who brought the suit leading to the
Supreme Court ruling.

distinguish between college application essays written by students
of different income levels and genders. Lee et al. [37] subsequently
quantified the impact of using this information in an admissions
decision support algorithm, finding that essay data helped improve
gender diversity, but did not have a significant impact on racial
diversity. In a similar study, Lee et al. [36] took a fairness-aware ap-
proach to build an applicant ranking algorithm to replace standard-
ized test scores, explicitly considering demographics like race along
with other holistic variables in order to increase an institution’s abil-
ity to identify a diverse set of students with high academic merit. We
contribute to this prior work by taking a fairness-aware approach
to explore how applicant ranking algorithms based on a broad set
of features are likely to change under the SFFA policy change.

Finally, we note that there is a large and growing body of work on
domain-agnostic fair ranking algorithms [15, 20, 54, 61, 62, 72–74].
However, the applicant ranking algorithms of which we are aware
do not tend to incorporate these approaches [36, 70]; moreover, to
the extent that fair ranking mechanisms require access to demo-
graphic data, they will not be feasible in college admissions in the
future due to the SFFA policy change. As a result, we do not explore
fair ranking algorithms in this work, which is intended not to rec-
ommend approaches for building applicant ranking algorithms, but
rather to predict how the SFFA policy change will impact already-
existing processes. We leave the development of such approaches,
that are compatible with the legal environment, for future work.

2.2 Measuring the Impact of Admission

Processes and Policies on College Applicants

Impact on groups of applicants. Given the importance of
education and the fraught nature of admissions, many researchers
have sought to measure the impact of admissions processes on
applicants. These assessments often focus on demographic fairness,
which is typically measured by comparing admission rates across
demographic groups like race, gender, and socioeconomic status.
In two notable and recent studies, both Grossman et al. [28] and
Chetty et al. [21] conducted large-scale analyses on application
data to quantify admissions disparities across demographic groups
and identify features driving those disparities. Grossman et al. [28]
focused on race, finding that Asian students were significantly less
likely to be admitted to selective American colleges than white
students with comparable test scores, grades, and extracurriculars,
and that this disparity was partially (but not entirely) driven by
legacy admissions and geographic considerations. Chetty et al.
[21] focused on socioeconomic status, finding that students from
families with incomes in the top 1% of the U.S. are more likely to
be admitted to Ivy-Plus colleges, and that this disparity is mostly
driven by factors like recruited athlete status, legacy status, and
‘non-academic’ (e.g. extracurricular) ratings. Both papers also
explore admissions policies that could alleviate these disparities by
reconsidering how achievement indicators and sociodemographic
attributes are considered in the process [21, 28].

Other researchers have taken more qualitative approaches to
examine fairness as well as transparency and trust in admissions
processes. For example, through field observation and a series of
interviews at the University of Oxford, Zimdars [75] found evidence
that unconscious bias by reviewers led to disproportionately high
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admission rates for applicants who were white, male, and members
of the professional class. Marian [42] crowdsourced data on school
assignments in New York City to identify the factors that impacted
students’ outcomes in order to increase transparency in the
process. Similarly, Robertson et al. [59] explored school assignment
algorithms in San Francisco through the lens of value-sensitive
design in order to understand why changes intended to increase
diversity had in practice exacerbated school segregation.

Our contribution: impact on applicants as individuals. Missing
from prior assessments is an examination of arbitrariness in college
admissions. Prior work on model multiplicity has shown that pre-
dictive tasks can be satisfied by multiple models that are equally
accurate (e.g., at identifying applicants with academic merit) but dif-
fer in terms of their individual predictions (e.g., whether a specific
applicant is ranked at the top) [16, 71]. This means that any number
of seemingly minor decisions made by a college admissions office
– down to something as simple as how to sample training data –
could impact an individual applicant’s outcome even if it does not
majorly affect the ability of the college to identify students with aca-
demic merit. In fact, Cooper et al. [23] show that training otherwise
identical models on bootstrapped samples of the same dataset can
result in predictions for individuals that are essentially arbitrary:
half the time, individuals are predicted to belong to one binary class,
and half the time to the other. Similar, seemingly arbitrary, choices,
such as how to pre-process variables, have also been shown to cause
major changes in model outputs [31]. There is evidence that there
are more applicants with high academic merit in a typical pool
than there are open seats in a college’s first-year class. In particular,
a large proportion of applicants with perfect or near-perfect test
scores are rejected by selective colleges [28]; additionally selective
colleges offer positions on their waitlists to hundreds if not thou-
sands of “[s]tudents who met admission requirements but whose
final admission was contingent on space availability” [32].5 It is
likely that if arbitrariness resulting from minor modeling choices
impacts how an applicant is prioritized for review by an ML model,
then it could also have a downstream impact on their final admis-
sions outcome.6 We propose that in order to fully understand the
impact of admission processes and policies on college applicants,
researchers must consider not only fairness and diversity in group
outcomes, but also fairness and arbitrariness in individual outcomes.

3 Data and Methods

We seek to quantify and contextualize the impact that the SFFA
policy change will likely have on which applicants are prioritized
for review (i.e., ranked in the top category by an ML algorithm). In
this section, we describe the data available to us and provide a brief
overview of the first-year undergraduate admissions process at our
case institution (§3.1); we also describe our baseline ranking models
(§3.2) and simulated policy changes (§3.3). Finally, we outline our
approach to measuring and contextualizing expected changes in
the predictive power and diversity of overall rankings (§3.4) and
individual applicant outcomes (§3.5) due to the SFFA policy change.
5See Appendix B for details of waitlist sizes for selective American colleges.
6This follows from the assumption we describe in §1.1: that admissions officers add
applicants to the pool of accepted students as they review their applications and deem
them ‘good’ candidates.

3.1 Background and Ranking Algorithm

Case institution. Our case institution is a highly selective,
engineering-focused American university. Through the Common
App, the case institution collects first-year applicants’ standardized
test scores, high school grades and coursework, extracurricular
activities, family and demographic background (including race and
ethnicity, citizenship, and parental education), essays, and letters of
recommendation. The case institution has been test-optional since
the 2020-2021 admissions cycle. The data we use for this analysis
spans all Regular Decision applicants from the 2019-2020 admis-
sions cycle to the 2022-2023 admissions cycle (four years of applica-
tions, 59,833 in total). During the 2019-2020 admissions cycle (before
the test-optional policy), 92% of applicants submitted either SAT
or ACT scores;7 in the years since, an average of 67% of applicants
have submitted either SAT or ACT scores. At the case institution,
each application is reviewed twice: first by a seasonal reader, and
then by a member of the staff of the admissions office. Applications
were historically prioritized for review based on standardized test
scores; following the establishment of the test-optional policy, the
admissions office implemented ML-generated scores instead.

Preprocessing. To understand how the SFFA policy change is
likely to impact already existing applicant ranking algorithms,
we followed similar data preprocessing steps to those already
implemented by the case institution, described in more detail in
Appendix C. We included all data that was common across all
years, except for personally identifiable information (name, date of
birth, contact information, etc.) and data that is not entered directly
into the Common App form but is instead provided as a file upload
(transcript, letters of recommendation, etc.). We split our data into
train and test sets based on year, using the 2019-2020, 2020-2021,
and 2021-2022 admissions cycles as training data and the 2022-2023
cycle as test data. This mimics the real-world scenario of training
a model on all available historical data, and also allows us to
use results for a complete applicant pool as test data. Summary
statistics describing our data are presented in Table 1.

Modeling. Finally, we used a Gradient-Boosted Decision Tree to
predict applicants’ probability of admission.8 We then segmented
applicants into deciles based on that predicted probability: Decile 1
contains the 10% with the lowest predicted probability of admission
and Decile 10 contains the 10% with the highest. We then further
segment these deciles so that Deciles 9 and 10 (the 20% of applicants
with the highest predicted probability of admission) are grouped
together as the ‘top’ pool: this is the set of applicants that the
admissions office wants to review first. This follows the approach
outlined in Lee et al. [36] and also aligns with how admissions
offices are likely to use applicant ranking algorithms in practice:
7We assume that the remaining 8% of students submitted their scores late, meaning
we do not have access to that data.
8We note that the selection of the target variable is a non-trivial decision [53]. We chose
to classify applicants who were ‘admitted’ or ‘conditionally admitted’ as our positive
cases, but provide an analysis of the robustness of our approach with alternative target
variable selection in Appendix F, including students who were waitlisted alongside
those admitted or conditionally admitted.
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Table 1: Summary statistics for our training and test data. The training set includes three years of data from 2019-2020, 2020-2021,

and 2021-2022 admissions cycles, and the test set includes the 2022-2023 cycle.

Sample # applicants % accepted % waitlist % URM % female % FG % LI

Train 44,293 5.7 14.4 17.3 31.1 15.9 25.7
Test 15,540 5.0 16.1 16.3 32.1 19.5 32.3

as a way of prioritizing applications for review, and not as a way
of directly admitting applicants.9

3.2 Defining Baselines

To measure the impact of the SFFA policy change, we must first
establish a baseline. We do this in two ways. First, we train an
ML baseline model that uses every variable available from the
processed Common App data (as described above) to predict
an applicant’s likelihood of being accepted. Following Lee et al.
[36], we believe that this model is a reasonable representation of
how college admissions offices might incorporate ML into their
processes. We also define a naive baseline that ranks applicants
based first on their highest level of prior math instruction and then
on their standardized test scores.10

3.3 Simulating Policy Changes

To analyze the impact of the SFFA policy change and contextualize
its impact compared to other hypothetical policy changes, we omit-
ted various variables of interest from the ML baseline. We modeled
three different policy changes:

• No race: We removed 12 features describing applicants’ race,
ethnicity, and URM status. These represent the variables that
must be excluded from the admissions process due to the
SFFA policy change.

• No major: We removed 1 feature describing applicants’
intended major. This model contextualizes the impact of
excluding race by allowing us to compare it to the impact
of excluding another important11 feature that groups
applicants but does not directly indicate membership in a
historically disadvantaged group.

• No uncontrollable features: We removed 29 features
representing uncontrollable elements of an application (com-
pared to controllable elements like major or test scores that
an applicant can choose or change). Uncontrollable features
include all race-related features, sex, socioeconomic status,
citizenship, family education, and type of school attended.
This model contextualizes the impact of excluding race from
applicant ranking algorithms by allowing us to compare it
to the impact of excluding all uncontrollable features.

9In order to ensure that our results are not brittle to our specific choice of cutoff for
assigning the top pool, we verify via a robustness assessment that our findings are
consistent across decile cutoffs. The results of that analysis are shown in Appendix E.
10We describe the naive baseline in more detail in Appendix D.
11Intended major is theoretically important because a smaller percentage of applicants
indicating a popular intended major, such as Computer Science, can be admitted given
institutional constraints on major size.

3.4 Group Impact: Measuring Changes in

Academic Merit and Diversity of the

Top-Ranked Applicant Pool

Measuring academic merit of the top pool. An important
consideration for any applicant ranking algorithm is whether it
can successfully identify applicants with high academic merit who
should be prioritized for review by the admissions office. While the
‘academic merit’ of an applicant is not directly measurable [33],
we define two proxies. First, we rely on labels provided by the case
institution. We say that the academic merit of a top pool increases
as the proportion of applicants who were actually admitted or
waitlisted increases. We consider applicants who were not only
admitted but also waitlisted because those applicants represent
students with high academic merit who would be admitted if there
was space for them [32].12 Second, to isolate a measure of academic
merit not dependent on historical decisions, we also use the average
percentile ranking of test scores submitted by applicants in the
top pool. To measure whether policy changes result in statistically
significant differences in the ability of ranking algorithms to
identify applicants who were actually admitted or waitlisted, we
conduct a binomial test comparing the share of those applicants
identified in the top pool by the ML baseline model to the share
identified by all other models. Similarly, to measure whether policy
changes result in statistically significant differences in the ability of
ranking algorithms to identify applicants with high test scores, we
used the Mann-Whitney𝑈 test to compare across the ML baseline
and all other models. For statistical significance, we apply the
Benjamini-Hochberg procedure with a false discovery rate of 0.05.13

Measuring diversity of the top pool. We define the diversity of our
top-ranked pool according to several factors. First, we look at the
breakdown of applicants according to their self-identified race and
ethnicity (based on the categories available in the Common App).
We also consider the share of applicants who are under-represented
minorities (URM).14 Finally, we consider socioeconomic factors, in-
cluding the share of applicants who identify as being the first in their
family to attend college (first-geneneration or FG), and the share of
12In fact, in our case institution, the pool of applicants who were admitted or wait-
listed have equally high test scores as only the pool of applicants who were admitted
(Fig. 3). Further, the demographic breakdown of the full pool of applicants is extremely
similar to the demographic breakdown of the pool of applicants who were admitted
or waitlisted, while the URM share is higher among only the pool of applicants who
were admitted (Fig. 1). This implies that using an applicant’s inclusion in the pool of
admitted or waitlisted students is likely to be a good indicator of the admissions of-
fice’s evaluation of that applicant’s merit, potentially independent of the demographic
considerations that historically could factor into admissions decisions.
13We report adjusted p-values throughout.
14We define URM in the same way as the Common App, which classifies “Black or
African American, Latinx, American Indian or Alaska Native, or Native Hawaiian or
Other Pacific Islander” applicants as URM applicants [34].
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applicants with low family incomes (low-income or LI).15 We used
binomial tests as described above to determine whether any policy
changes result in statistically significant changes to the diversity of
the top-ranked pool of applicants as compared to the ML baseline.

It is important to note that the above is a narrow definition
of diversity. URM status – and for that matter, racial categoriza-
tion as defined by the Common App – is controversial and cannot
fully represent an applicant’s racial identity [11]; further, an appli-
cant’s contribution to a diverse campus cannot be reduced to their
race/ethnicity and socioeconomic status. However, we choose to
focus on these factors as we believe that URM and FGLI status are
salient in the context of the SFFA policy change: opponents of the
change worry that it will result in a decline in URM enrollment in
selective American colleges specifically, and some have suggested
mitigating this impact through an increased focus on socioeconomic
diversity (i.e. FGLI status) in admissions instead [30, 44].

3.5 Individual Impact: Measuring Changes in

Applicant Outcomes

Measuring arbitrariness across models. For an individual appli-
cant, arbitrariness across different ranking algorithms can be mea-
sured based on how consistently the applicant is placed in the top
pool, or not placed in the top pool. To quantify arbitrariness, we
adopted the metric of self-consistency, defined by Cooper et al. [23]
as “the probability that two models produced by the same learn-
ing process on different n-sized training datasets agree on their
predictions for the same test instance” [23]. For a given applicant,
self-consistency is defined as:

sc = 1 − 2𝑀0𝑀1
𝑀 (𝑀 − 1) (1)

where 𝑀 is the total number of models we examine, 𝑀1 is the
number of models in which an applicant is placed in the top pool
and𝑀0 is the number of models in which an applicant is not placed
in the top pool. While self-consistency as defined by Cooper et al.
[23] measures the consistency of decisions regardless of what those
decisions are, we further distinguish between consistently being
placed in the top pool and being not placed in that pool throughout.

Predicting how arbitrariness will change as a result of the SFFA
policy change. Finally, we consider the fact that arbitrariness is not
a fixed quantity: it can increase or decrease across ranking policies
(as an intuitive example, the naive baseline has zero arbitrariness
across repeated applications; a random ranking policy would
be completely arbitrary). We therefore explore how individual
arbitrariness resulting from random modeling choices changes
if the ML baseline ranking algorithm is minimally modified to
comply with the SFFA policy change (i.e. the ‘no race’ model). We
do this by conducting Wilcoxon signed-rank tests that compare
the overall arbitrariness and arbitrariness of specific demographic
groups between the ML baseline and ‘no race’ models. As above,
we apply the Benjamini-Hochberg procedure with a false discovery
rate of 0.05 to account for multiple comparisons.
15We do not have direct access to applicants’ family incomes status, so we
use whether an applicant received an application fee waiver as a proxy;
see: https://appsupport.commonapp.org/applicantsupport/s/article/What-do-I-need-
to-know-about-the-Common-App-fee-waiver

4 Results

4.1 Group Impact: Academic Merit and

Diversity

Compliance with the SFFA policy change significantly reduces the
diversity of top-ranked applicants. The ML baseline model, which
uses all available Common App data to predict past admissions
decisions, represents a reasonable assumption of how admissions
offices might previously have implemented applicant ranking
algorithms and selects a top-ranked pool that is 53% URM, as
shown in Fig. 1. This over-represents URM applicants compared
to the full applicant pool (16% URM) and the admitted/waitlisted
group (21% URM), but is close to the actual share of URM applicants
in the admitted group (51% URM). When we remove data on
applicant race and ethnicity from the ML baseline, the URM share
in the top-ranked pool drops to 20%—a 62% reduction, which is
statistically significant (𝑝 < 0.001). If we additionally exclude data
on other uncontrollable factors like gender and socioeconomic
status, the URM share falls even further to 15% (𝑝 < 0.001). By
contrast, excluding major preference from the applicant ranking
algorithm results in a URM share of 52%, which is not statistically
significantly different from the ML baseline (𝑝 = 0.48).

Similar trends hold for socioeconomic diversity metrics, as
shown in Fig. 2. Excluding data related to race reduces the share
of LI applicants in the top pool by a practically and statistically
significant amount as compared to the ML baseline (from 31% to
26%, 𝑝 < 0.001), and statistically significantly reduces the share
of FG applicants (from 27% to 26%, 𝑝 = 0.0496). Excluding all
uncontrollable features further exacerbates the reduction in LI (to
16%, 𝑝 < 0.001) and FG (to 11%, 𝑝 < 0.001) applicants in the top
pool. Excluding applicants’ intended major has mixed effects on
socioeconomic diversity: the share of LI applicants increases to
32%, but this is not statistically significant (p = 0.16); the share of
FG applicants increases statistically significantly to 29% (𝑝 = 0.02).

The reduction in diversity is not associated with a corresponding
increase in academic merit of top-ranked applicants. Across all
models, the academic merit of the top-ranked pool of applicants
remains largely unchanged, as shown in Fig. 3. The average
standardized test percentile (among applicants who submitted
standardized test scores) of admitted applicants was 98.3, compared
to the ML baseline average of 97.0. Excluding race from the ML
baseline model results in a statistically significant (𝑝 < 0.001)
increase in the average standardized test percentile of the
top-ranked students, to 97.8. In absolute terms, however, this is a
small change: it is approximately the difference between a 1480 and
a 1490 on the SAT. Excluding data on applicant major preference
does not meaningfully change standardized test percentiles of the
top-ranked pool (𝑝 = 0.74); excluding all uncontrollable features
has a similar impact to excluding race alone (𝑝 < 0.001).

In addition, other than the naive baseline (37%, 𝑝 < 0.001), no
model was practically different than the ML baseline at identifying
students who were actually admitted or waitlisted by the case
institution. About half of the students included in the top pool are
actually admitted or waitlisted across the ML baseline (47%), no race
(49%, 𝑝 = 0.003), no major (46%, 𝑝 = 0.43), and no uncontrollable
features (46%, 𝑝 = 0.90) models. Overall, we predict that, if
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Figure 1: Impact of policy changes on the racial and ethnic diversity of the top-rated group of applicants. Graph (a) shows

the racial demographics of the applicant pool: the first three rows show demographics for the full, admitted or waitlisted,

and admitted pools of applicants; the subsequent rows show the demographics of the top group of applicants under different

ranking algorithms. Graph (b) shows the proportion of URM applicants in the top group under different ranking algorithms.

In Graph (b), statistically significant differences in the proportion of URM applicants in the top-ranked group compared to the

ML baseline are denoted with an asterisk. 95% confidence intervals for the ML models are shown based on results over 1,000

bootstraps.
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Admitted/Waitlisted (*)
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Figure 2: Impact of policy changes on the socioeconomic diversity of the top-rated group of applicants. Graphs (a) and (b)

show the proportion of LI and FG applicants, respectively, in the top group under different ranking algorithms. Statistically

significant differences in proportion of LI and FG applicants in the top-ranked group compared to the ML baseline are denoted

with an asterisk. 95% confidence intervals for the ML models are shown based on results over 1,000 bootstraps.

admissions ranking algorithms are minimally modified to

comply with the SFFA policy change, they will prioritize a

less diverse, but not more academically meritorious, pool

of applicants for review.
16

4.2 Individual Impact

Inherent randomness in the modeling process leads to arbitrary
outcomes, especially for top-ranked applicants. We calculated self-
consistency for each applicant across 1,000 bootstraps of the ML
baseline model, the cumulative distribution function of which is
shown in Fig. 4(a). A self-consistency of 1 means that all (or none)
16In Appendix E, we show that this prediction is robust to the specific definition of
‘top’ applicants.

of the bootstrapped models rank an applicant in the top pool, while
a self-consistency of 0.5 means that exactly half of the models
rank an applicant in the top pool. Most applicants have a relatively
high self-consistency: across all applicants (blue curve), 31% of
applicants have the highest possible self-consistency, and 69% of
applicants have sc ≥ 0.95.17 However, the ML baseline model more
consistently identifies applicants who are not included in the top
pool (green curve) than applicants who are included (orange curve).

Fig. 4(b) provides deeper insight into the consistency of
individual applicant outcomes at sc ≥ 0.95. It shows that over
two-thirds of applicants (69%) have consistent (or non-arbitrary)
17sc = 0.95 corresponds to agreement between 97.5% of models, a very high level of
agreement.
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Figure 3: Impact of policy changes on the academic merit of the top-rated group of applicants. Graphs (a) and (b) show the

proportion of actually admitted or waitlisted applicants and the distribution of standardized test score percentiles, respectively,

in the top group under different ranking algorithms. Statistically significant differences in share of applicants actually admitted

or waitlisted and standardized test percentile of the top group of applicants compared with the ML baseline are denoted with

an asterisk. In Graph (a), 95% confidence intervals for the ML models are shown based on results over 1,000 bootstraps. In

Graph (b), the darker blue line represents themean standardized test percentile within the specified applicant pool.
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Figure 4: Graph (a) shows the cumulative distribution (CDF) of self-consistency within 1,000 bootstraps of the ML baseline

model for the applicant pool (blue line), only applicants who are usually top-ranked (ranked in the top by >50% of bootstrapped

models, orange line), and only applicants who are usually not top-ranked (ranked in the top by <=50% of bootstrapped models,

green line). The dashed black line corresponds to sc = 0.95. Graph (b) shows the level of arbitrariness if we define an applicant’s

outcomes to be consistent if their sc ≥ 0.95 (and their outcomes to be arbitrary if their sc < 0.95): only 9% of applicants are

consistently ranked in the top, 60% of applicants are consistently not ranked in the top, and 31% of applicants have arbitrary

outcomes. Graph (c) compares arbitrariness between the ML baseline and ‘No race‘ (compliant with SFFA policy change) models.

outcomes. However, just 9% of these applicants are consistently
ranked in the top pool, with the remaining 60% consistently ranked
not in the top. Recall that the top pool consists of 20% of the
applicant pool: this means that in any given bootstrapped model,
more than half of the top pool consists of applicants who have
been added to that pool somewhat arbitrarily. While Fig. 4(b)
shows that this is the case for sc ≥ 0.95, Fig. 4(a) shows that
this effect holds across all self-consistency thresholds. Across
the entire distribution, a larger proportion of usually-top-ranked
applicants (applicants who are ranked in the top pool by >50%
of bootstrapped models) have lower self-consistencies than the

usually-not-top-ranked applicants. Overall, we find that even
within a single policy, randomness inherent to the modeling
process has a major impact on who is included in the top pool.

Within-policy arbitrariness increases under the SFFA policy
change. The ML baseline model is prohibited under the SFFA
policy change because it explicitly considers applicants’ race and
ethnicity. A reasonable alternative is the ‘no race’ model, which is
identical but does not consider race. Fig. 4(c) shows self-consistency
within the ML baseline model (blue) and within the ‘no race’ policy
(orange). Compared to the ML baseline model, the ‘no race’ model
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has lower self-consistency – meaning that inherent randomness,

introduced through choices such as how to split training

and test data, will play an even larger role in determining

application review order following the SFFA policy change.

We provide a fuller analysis, including results that suggest that
the SFFA policy change will increase arbitrariness for non-URM
applicants in particular, in Appendix G.

5 Discussion

In this study, we investigated how changes in admission policies
brought about by the end of affirmative action are likely to im-
pact applicant ranking algorithms, which we argue can have a
downstream impact on admissions decisions. We explored how
hypothetical changes in admissions policies impact not only a col-
lege’s overall class but also the outcomes of individual applicants.
To do this, we predicted and contextualized the likely impact of race-
unaware admissions on the ability of colleges to admit a first-year
class that displays both academic merit and diversity, building on
impactful prior work conducting demographic fairness assessments
in college admissions [21, 28, 42, 59, 75]. We also provided a tem-
plate for going beyond group fairness to understand the impact of
policy changes on individuals by incorporating recent scholarship
on model multiplicty and arbitrariness [16, 23].

We present three key findings. First, consistent with prior
work [36], we find that race-unaware policies decrease the

proportion of URM applicants represented in the top-ranked

pool by 62%. Crucially, this change occurs without a corre-

sponding increase in academic merit of that top-ranked pool

(§4.1). Second, even in the absence of policy change, inherent
randomness in the modeling process will lead to somewhat

arbitrary outcomes, especially for top-ranked applicants:
we find that across repeated bootstraps of the ML baseline model,
just 9% of applicants are consistently ranked in the top 20% (§4.2).
Third, under a race-unaware applicant ranking algorithm,

arbitrariness in individual outcomes increases relative to

the baseline for most applicants (§4.2).
In summary, our results imply that despite the impact of the

SFFA policy change on college admissions processes, complaints
long attributed to affirmative action will persist at highly selective
institutions; for example, many students with high test scores may
not be ranked highly or ultimately admitted. We propose that this is
because those complaints stem not from the specifics of any policy,
including affirmative action, but from the fundamental issues of (1)
limited space at selective American colleges and (2) inherent ran-
domness in the admissions process. Because these constraints are
intrinsic to the admissions system, we argue that ending affirmative
action will not resolve these issues.

5.1 Limitations

We acknowledge several limitations of our work. Chief among them
is the narrow scope of our analysis. We focus on applicant ranking
algorithms as one component of a larger admissions process and
make an assumption that the order in which applicants are reviewed
can impact admissions outcomes. While we believe that this is a rea-
sonable assumption based on how admissions ranking algorithms
have previously been implemented in practice [70], we are not able

to precisely quantify this assumed impact. Further, by examining
the impact of the SFFA policy change on ranking algorithms only,
we tacitly accept much of the status quo of college admissions. For
example, we choose to follow prior work [36] and train our appli-
cant ranking algorithms on past decisions, effectively co-signing
those as correctly identifying students with high academic merit
(even though rejected students also may have had merit). In order
to mitigate this, we conducted a robustness assessment of an al-
ternative target variable specification (Appendix F), but we could
have taken a more value-sensitive approach to applicant ranking
algorithms instead (e.g. by exploring affirmative action based on
socioeconomic status, as suggested by Chetty et al. [21]).

We also chose to accept the Common App’s definition of
‘under-represented minority candidate’ and to assess diversity
primarily according to that variable. Although URM status is
an important element to consider in the admissions process,
essential questions about the significance of race and ethnicity
relative to other uncontrollable applicant features (e.g. legacy,
FGLI status) remain. This focus is not merely specific to the
institution in question but reflects broader societal and educational
dynamics. Race often intersects with numerous other factors
such as socioeconomic status, influencing higher educational
opportunities and outcomes. Our study underscores the need to
consider these intersections critically, recognizing race as a pivotal
element in the complex matrix of college admissions.

More broadly, with this work, we focus on computational
solutions to the sociotechnical problem of bias and inequity in
college admissions and thus forgo an examination of more transfor-
mational changes that the SFFA policy change could inspire [6, 27].
However, we emphasize that our work is not prescriptive; instead,
we have sought to measure and contextualize likely changes to the
applicant review process resulting from the SFFA policy change.
We hope that our findings—that the SFFA policy change is likely
to decrease the share of URM candidates who are given priority
reviewing without meaningfully increasing the predictive power
of ranking algorithms to identify applicants with high academic
merit—will inspire future work to substantively improve racial,
socioeconomic, and other forms of diversity in higher education.

5.2 Opportunities for Future Work

By the time this work is published, data on the 2023-2024 college
admissions cycle will be available, and researchers will be able to ex-
plore the extent to which our predictions on the impact of the SFFA
policy change have come to pass, both in terms of how applicant
ranking algorithms are modified and how the actually admitted
class changes (and does not change). Early results are mixed – while
many selective colleges have reported a decrease in URMenrollment
following the SFFA policy change (and some have reported very
large decreases) this is not universal [46]. We believe that it will be
important to conduct an empirical validation of our results, includ-
ing an analysis into where and why deviations from our predictions
may occur (perhaps due to behavior changes from colleges and/or
applicants in response to the SFFA policy change [29, 35, 40, 55]
– for example, applicants could choose to disclose aspects of their
identities in their essays, and colleges could choose to place more
emphasis on elements of applicants’ identities that they still have
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access to under the SFFA policy change, such as socioeconomic
status). In addition, our work suggests several avenues for future
research. We show that, if previously built applicant ranking algo-
rithms are minimally modified to be in compliance with the SFFA
policy change, the share of top-ranked applicants who are URM is
likely to fall by 62%. It will therefore be important to identify alter-
native ranking approaches that can mitigate this impact, or that can
increase other forms of diversity, like the share of top-ranked appli-
cants that are FGLI students. Prior work related to equity and access
in algorithms, including Thomas et al. [67]’s framework for positive
action, Arif Khan et al. [12]’s decision procedures for substantive
equality of opportunity, and Borgs et al. [17]’s approach to algo-
rithmic greenlining, will be instructive here; as will prior work on
measuring and improving fairness without access to demographic
data [14]. We also show that arbitrariness can have a major impact
on how applicants are ranked byMLmodels. In addition to consider-
ing arbitrariness in individual outcomes as a component of fairness
assessments going forward, future work could explore how to re-
duce this arbitrariness, perhaps through bagging as suggested by
Cooper et al. [23] or through other variance reduction techniques.

6 Conclusion

In this work, we quantify how changes in the admissions process
for selective American colleges – driven by a growing number
of applications, test-optional policies, and the recent ban on race-
conscious admissions – will impact the order in which applicants
are prioritized for review, and, by extension, who is admitted. We
find that the SFFA policy change is likely to reduce the share of top-
ranked applicants who are URM without meaningfully increasing
academic merit. Additionally, we find that inherent randomness
in the modeling process will lead to somewhat arbitrary outcomes
for individuals, especially for top-ranked applicants, and that arbi-
trariness is likely to increase as a result of the SFFA policy change.
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A Ethical Considerations

Adverse Impact. Our aimwith this work is tomeasure and contex-
tualize challenges to admitting a diverse first-year class with high
academic merit resulting from the SFFA policy change. However, we
acknowledge that, by highlighting the modeling changes that most
reduce the share of top-ranked URM, FG, and LI candidates, our
work has the potential to be misused by those who wish to reduce
diversity in college admissions. However, because the changes we
highlight are relatively simple (i.e. removal of sensitive variables),
we argue that they are not likely to reveal previously unknown
methods of discrimination, and therefore we believe the value in
understanding the impact of the SFFA policy change outweighs the
risk.

Privacy and Human Subjects Research. As part of this study, we
had access to personal and sensitive information from college ap-
plicants. We took care to protect these data throughout the process
of this study. All data was stored securely on dedicated servers
that could only be accessed by approved individuals. All personally
identifying information, including applicant names and contact
information, were removed before we accessed and analyzed the
data. This study was determined to be exempt by our institution’s
IRB.

B Admissions at Selective American Colleges

C Preprocessing: Additional Details

To understand how the SFFA policy change is likely to impact al-
ready existing applicant ranking algorithms, we followed similar
data acquisition and preprocessing steps to those already imple-
mented by the case institution. We included all data that was com-
mon across all four years of applications, except for personally iden-
tifiable information (name, date of birth, contact information, etc.)
and data that is not entered directly into the Common App form but
is instead provided as a file upload (transcript, letters of recommen-
dation, etc.). Ultimately, this left us with 302 raw features; as part of
preprocessing (following a similar approach to that outlined in [36]),
we also applied a one-hot encoding to categorical features, recoded
categories that occur in fewer than 1% of observations as ‘RARE’,
imputed missing values and added indicator variables indicating
that a numeric feature was missing (categorical variables were di-
rectly imputed as ‘MISSING’), and constructed TF-IDF unigrams
and bigrams for text features. We split our data into train and test
sets based on year: we used the 2019-2020, 2020-2021, and 2021-2022
admissions cycles as training data and the 2022-2023 admissions
cycle as test data. This mimics the real-world scenario of training
a model on all available historical data, and also allows us to use
results for a complete applicant pool as test data. Summary statistics
describing our training and test data sets are presented in Table 1.

D Defining Baselines: Additional Details

To measure the impact of the SFFA policy change, we first need to
establish a baseline. Here we rely on two baselines. First, we train
an ML baseline model that uses every variable available from the
processed Common App data (as described above) to predict an ap-
plicant’s likelihood of being accepted. Following Lee et al. [36], we
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Table 2: Details of the admissions process at Ivy-Plus institutions (which we define following Chetty et al. [21]). All data comes

from the most recently released version of the Common Data Set for each institution.

Institution # Applicants # Admitted # Waitlist Application Due Date Notification Date

Brown University 50,649 2,562 - January 5 Late March
Columbia University 60,374 2,255 - January 1 April 1
Cornell University 71,164 5,168 7,729 January 2 Early April
Dartmouth College 28,336 1,808 2,098 January 3 Early April
Duke University 49,523 2,911 - January 3 April 1
Harvard University 61,221 1,984 - January 1 April 1
MIT 33,767 1,337 763 January 1 March 20
Princeton University 38,019 2,167 1,710 January 1 April 1
Stanford University 56,378 2,075 553 January 5 April 1
University of Chicago 37,974 2,460 - - -
University of Pennsylvania 54,588 3,549 3,351 January 5 April 1
Yale University 50,060 2,289 1,000 January 2 April 1

Sources: https://oir.brown.edu/sites/default/files/2020-04/CDS_2022_2023.pdf,
https://opir.columbia.edu/sites/default/files/content/Common%20Data%20Set/CDS%20College%20Engineering%202022-2023.pdf,
https://irp.dpb.cornell.edu/wp-content/uploads/2023/09/CDS_2022-2023_Cornell-University-v7.pdf, https://www.dartmouth.edu/oir/pdfs/cds_2022-2023.pdf,
https://provost-files.cloud.duke.edu/sites/default/files/CDS%202021-22%20FINAL_2.pdf,
https://bpb-us-e1.wpmucdn.com/sites.harvard.edu/dist/6/210/files/2023/06/harvard_cds_2022-2023.pdf, https://ir.mit.edu/cds-2023,
https://registrar.princeton.edu/sites/g/files/toruqf136/files/documents/CDS_2022-2023.pdf,
https://ucomm.stanford.edu/wp-content/uploads/sites/15/2023/03/CDS_2022-2023_v3.pdf,
https://bpb-us-w2.wpmucdn.com/voices.uchicago.edu/dist/8/2077/files/2022/10/UChicago_CDS_2021-22.pdf, https://upenn.app.box.com/s/75jr7yip7279rcsfic0946o1pkr8okrt,
https://oir.yale.edu/sites/default/files/cds_yale_2022-2023_vf_10062023.pdf

believe that this model is a reasonable representation of how college
admissions offices might incorporate ML into their processes.

We also define a naive baselinemodel that ranks applicants based
first on their highest level of prior math instruction and then on
their standardized test scores. Lee et al. [36] suggest that relying on
standardized test scores represents an applicant ranking method
that was commonly used pre-COVID. Because our test set contains
data from the 2022-2023 admissions cycle (i.e. after test-optional
policies were put in place at our case institution), we are missing
standardized test scores for 32% of the applicant pool. Therefore, we
supplement our baseline ranking with data on applicants’ highest
level of math taken, which is both salient to our (engineering-
focused) case institution and available for the entire pool of ap-
plicants. We first rank applicants according to their highest math
course taken.18 Next, we convert applicants’ reported SAT19 and
ACT20 scores to percentiles to make them directly comparable with
one another. Then, within the band of ‘highest math taken,’ we
rank applicants according to the higher of their two percentiles
(applicants who did not report either score are ranked last within
their band21). Finally, we again select the top pool of applicants
where we assume an admissions office would focus the majority
18We note that, by ranking students according to their highest math class taken, the
baseline model likely penalizes URM students for factors beyond their control. The U.S.
Department of Education’s Office for Civil Rights reports that just 38% of public high
schools with high (≥75%) Black and Hispanic enrollment offer calculus, compared
with 50% of public high schools nationally [49]. We do not suggest this model be used
to rank applicants in practice and only put it forward as a baseline.
19https://research.collegeboard.org/reports/sat-suite/understanding-scores/sat
20https://www.act.org/content/act/en/products-and-services/the-act/scores/
national-ranks.html
21How to rank students who do not report a test is a non-trivial choice due to informa-
tional differences, fairness concerns to both those who report and do not report scores,
and concerns about strategic reporting behavior [41]. However, because we consider
test scores only within a math course band, the effect of this choice is relatively small.

of their attention. Mirroring the ML approach described above, we
define this as the set of applicants with the top 20% of baseline
scores.22

E Robustness to Different ‘Top Pool’ Cutoffs

To ensure that our results are not brittle with respect to our specific
choice of how to define the ‘top’ pool of applicants, we conducted
a robustness assessment, examining to what extent our findings
about diversity and academic merit of the top-ranked pool change
as the top pool itself changes. To do this, we vary the ‘cutoff’ for the
top pool: the minimum decile considered part of the top. As Fig. 5
shows, the relative ordering of attributes across models remains
constant at almost all cutoff choices. For example, the simulated
policy changes that result in a decreased URM share within the
top pool of applicants relative to the ML baseline model (the ‘no
race’ and ‘no uncontrollable features’ models) do so whether the
cutoff is set at Decile 10, Decile 9, Decile 8, Decile 7, and so on. The
only exception to this is that the share of FG applicants included
in the top pool by the ‘no race’ model increases relative to the ML
baseline if the cutoff is set at Decile 10, but decreases relative to the
ML baseline if the cutoff is set at any other decile. The results we
discuss in §4 use Decile 9 as the cutoff, which is consistent withmost
other cutoffs. Additionally, the magnitude of differences between
models decreases as the cutoff decile decreases. This makes intuitive
sense, as it indicates that a higher proportion of the overall applicant
pool is included in the ‘top’ pool. When the cutoff is Decile 1, all
applicants are included in the top pool, and the demographic and
22However, we note that because this metric is coarser than our predictive model,
there are a large number of ties among top-scoring applicants. Taking ties into account,
21% of applicants share the top 20% of scores.
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academic features of the top applicants converge to the averages of
the test set.

F Robustness to Target Variable Selection

The choice of target variable can have amajor impact on the outputs
of applicant ranking algorithms. To ensure that our results are not
brittle with respect to our specific choice of target variable, we ex-
amined our group impact findings for both diversity and academic
merit to determine whether our results still hold when ML ranking
algorithms are trained to predict applicants’ likelihood of being
admitted or waitlisted instead of simply being admitted. This is an
important choice, with potentially significant implications. The
decision to admit an applicant in a holistic admissions process is
based on a variety of qualitative and quantitative factors, including
that applicant’s background. To the extent that prior admissions
decisions are based on affirmative action, it could arguably be a
violation of the SFFA policy change to train admissions algorithms
on prior admissions decisions, because such a practice would ef-
fectively encode and carry forward affirmative action. However,
affirmative action may have less of an impact on who is placed on
the waitlist. We see empirical evidence for this in Fig. 6(a), which
shows that the racial demographics of applicants who are admit-
ted or waitlisted are more similar to the demographics of the full
applicant pool than the racial demographics of applicants who are
admitted. Therefore, training ranking algorithms on waitlist deci-
sions may represent a reasonable course of action for admissions
offices, and we explore its impacts.

As expected the ML baseline that is trained to identify admitted
or waitlisted applicants includes a lower share of URM, LI, and FG
students in the top pool. It also includes in the top pool applicants
with slightly higher standardized test scores. However, the trends
discussed in §4 still hold. Excluding race variables decreases the
share of URM applicants in the top pool relative to the ML baseline
Fig. 6(b); it also reduces the share of LI applicants Fig. 6(c) but does
not meaningfully change the share of FG applicants Fig. 6(d). At
the same time, all ML models identify similar shares of applicants
who were actually admitted or waitlisted in their top pools Fig. 6(e),
and they also identify applicants with similarly high standardized
test scores Fig. 6(f).

G Comparing Arbitrariness Across Policies

Comparing sources of arbitrariness. To understand how much
a policy change impacts an individual applicant’s outcomes as
compared to inherent randomness for a given policy, we compare
self-consistency in applicants’ outcomes across different policies
to their self-consistency within bootstrapped instances of a single
policy. To create a set of within-policy models 𝑀𝑤𝑖𝑡ℎ𝑖𝑛 , we train
one model on 1,000 bootstrapped samples of the training data.
To create a set of across-policy models 𝑀𝑎𝑐𝑟𝑜𝑠𝑠 , we sample 500
instances from the𝑀𝑤𝑖𝑡ℎ𝑖𝑛 set of one model and 500 instances from
the𝑀𝑤𝑖𝑡ℎ𝑖𝑛 set of another model, creating a set of 1,000 modeling
outcomes that represents two different policies. To compare the
overall level of arbitrariness (the complement of self-consistency)
across vs. within policies, we calculate the arbitrariness ratio ar:

ar =
1 − s̄c𝑎𝑐𝑟𝑜𝑠𝑠
1 − s̄c𝑤𝑖𝑡ℎ𝑖𝑛

(2)

Intuitively, this is the ratio of the average level of arbitrariness
across policies to the average level of arbitrariness within the ML
baseline policy. The idea is that arbitrariness resulting from boot-
strapping will be captured by both the𝑀𝑤𝑖𝑡ℎ𝑖𝑛 and𝑀𝑎𝑐𝑟𝑜𝑠𝑠 models,
and any additional arbitrariness in the𝑀𝑎𝑐𝑟𝑜𝑠𝑠 models will be at-
tributable to policy change. We also test whether the overall level
of arbitrariness across all applicants is statistically significantly
different across vs. within policies with a Wilcoxon signed-rank
test, again with the standard 𝑝 = 0.05 threshold.

Within-policy arbitrariness increases under the SFFA policy change.
The ML baseline model is prohibited under the SFFA policy change
because it explicitly considers applicants’ race and ethnicity as a
feature in prioritizing them for review. A reasonable alternative to
the ML baseline model is the ‘no race’ model, which is identical
but for the fact that it does not consider race as a feature. Fig. 7(a)
shows self-consistency within the ML baseline model (blue curve)
and within the ‘no race’ policy (orange curve). Compared to the
ML baseline model, the ‘no race’ model has lower self-consistency
– meaning that applicants may be even more susceptible to experi-
encing arbitrary outcomes as a result of inherent randomness after
the SFFA policy change takes effect. Inherent randomness in the ‘no
race’ modeling process creates arbitrariness that is 39% larger than
the arbitrariness created by inherent randomness in theML baseline
modeling process (ar = 1.39; Wilcoxon signed-rank test: 𝑝 < 0.001).

To provide a concrete example, we again compare consistency in
outcomes at sc ≥ 0.95 in Fig. 7(c). Under the ‘no race’ model, 58% of
applicants have consistent outcomes (compared to 69% under the
ML baseline model), and 5% of applicants are consistently ranked
in the top pool (compared to 9% under the ML baseline model). As
Fig. 7(a) shows, this reduced consistency within the ‘no race’ model
holds across all self-consistency thresholds. Again recalling that the
top-ranked pool consists of 20% of the full applicant pool, this means
that under the ‘no race’ model, three-quarters of the top pool will
consist of applicants who have been added to that pool somewhat
arbitrarily. Overall, these results imply that inherent randomness,

introduced through choices such as how to split training and

test data, will play an even larger role in determining appli-

cation review order following the SFFA policy change.

Arbitrariness across policies is larger than arbitrariness within a
single policy. Fig. 7(a) further shows self-consistency across both
the ML baseline model and the ‘no race’ policy (green curve). We
observe that while the ‘no race’ policy exhibits more arbitrariness
than the ML baseline, the arbitrariness across these two policies is
even larger. Intuitively, this means that changing a policy (in this
case, to comply with the SFFA ruling), changes the outcomes that
an applicant has, even though their overall merit as an applicant does
not change. To quantify this more precisely, the overall arbitrariness
ratio ar of the across-policy outcomes to outcomes within the
ML baseline model is 1.66. This means that the policy change
creates a level of arbitrariness that is 66% higher than the inherent
randomness present in the ML baseline modeling process alone
(Wilcoxon signed-rank test: 𝑝 < 0.001). The ar of the across-policy
outcomes to outcomes within the ‘no race’ model is 1.19 – the
policy change increases arbitrariness (𝑝 < 0.001), beyond the ‘no
race’ model. The observed pattern is even more pronounced for
usually-top-ranked applicants, as shown in Fig. 7(b). For these
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Figure 5: Graphs (a), (b), (c), and (d) show the share of applicants in the top pool who belong to each of the specified groups

as the ‘cutoff’ (the minimum decile considered part of the top group) changes. Graph (e) shows the average standardized test

percentile submitted by applicants who belong to the top group as the cutoff changes. Note that a cutoff value of 9 corresponds

to the top group as defined in §4.

applicants, the arbitrariness ratios of across-policy outcomes to
outcomes within the ML baseline and ‘no race’ models are 1.86 and
1.26, respectively (both 𝑝 < 0.001). This means that the increase
in arbitrariness created by policy change is even higher among
applicants who are usually top-ranked.

Within-policy arbitrariness increases for specific groups of ap-
plicants under the SFFA policy change. Finally, we examine if the
within-policy pattern of arbitrariness holds across racial and ethnic

groups: as shown in Fig. 8, arbitrariness in outcomes statistically
significantly increases for Hispanic, Native Hawaiian/Other Pacific
Islander, multiracial, Asian, and White applicants, as well as appli-
cants who did not report their race. Arbitrariness slightly decreases
for Black applicants;23 due to the under-representation of American
Indian/Alaska Native applicants in the pool, we are not able to ob-
serve statistically significant changes in arbitrariness for that group.
23As implied by Fig. 1(a), this is due to the fact that Black applicants are more consis-
tently not ranked in the top under the ‘no race’ model.
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Figure 6: Group outcomes when the ML ranking algorithms are trained to predict applicants’ likelihood of being accepted or
waitlisted instead of only being accepted.
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Figure 7: Graph (a) shows the CDF of self-consistency for all applicants within 1,000 bootstraps of the ML baseline model for

the applicant pool (blue line), within 1,000 bootstraps of the ‘no race’ model (orange line), and across 500 bootstraps of each

models (green line). Graph (b) shows CDFs only for those applicants who are usually top-ranked (ranked in the top by >50% of

bootstrapped models). Graph (c) shows the level of arbitrariness in the ML baseline model compared to the ‘no race’ model, if

we define an applicant’s outcomes to be consistent if and only if their sc ≥ 0.95: 9% of applicants are consistently ranked in the

top under the ML baseline model, and 5% are consistently ranked in the top under the ‘no race’ policy.
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Figure 8: The arbitrariness ratios between the ‘no race’ and the ML baseline policies for applicants of different races and

ethnicities. A ‘+’ denotes that arbitrariness for the group statistically significantly increases, while a ‘-’ denotes that arbitrariness

for the group statistically significantly decreases, per a Wilcoxon signed-rank test with the Benjamini-Hochberg procedure

applied (𝑝 < 0.001 in all cases, for except Native Hawaiian/Other Pacific Islander applicants, for whom 𝑝 = 0.04).


