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Abstract

The long-term monitoring of transportation infrastructure assets at a lower cost and with short mobilization time is of signifi-
cant interest to both state and federal transportation agencies in the U.S. Because of the significant improvement in spatial and
temporal resolution of synthetic aperture radar (SAR) remote sensing systems and a notable reduction in the cost of data acqui-
sition, SAR has now become a viable method to provide economic and rapid condition assessment of transportation assets. A
research study was developed and performed to comprehensively perform the inspection and characterization of a pavement
surface based on the amplitude of backscattering of an X-band radar. In situ characterization of the test site was first performed
using traditional inertial profilers and aerial photogrammetry with unmanned aerial vehicle (UAV) surveys. The results from
these in situ methods were compared with the corrected amplitude of the SAR data, which indicated that the distribution of
surface roughness values computed from the inertial profiler, UAYV, and SAR exhibited similar probability densities at various seg-
mental lengths considered in this study. This suggested that the problematic areas that are evident during in situ characterization
can be delineated and quantified based on the normalized radar cross section of the pavement surface. Overall, the outcome of
this research exhibits the potential of SAR for future transportation asset management undertakings, and the systematic frame-
work developed as a part of this research could be of significant interest to engineers and transportation practitioners.
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The transportation network in the U.S. has 4.2 million
miles of highway with 3,261 billion vehicle miles traveled
as of 2019 (/). The total expenses and revenues
accounted up to $235billion and $146 billion, respec-
tively, in the financial year 2018. However, more than
50% of interstate miles and 70% of major arterial miles
have been reported to have an International Roughness
Index (IRI) value greater than 60 (/). With an increase in
the serviceability age of transportation infrastructures, a
need for strategic planning and management to keep the
functioning of the transportation network in an accepta-
ble condition and at a reasonable cost is of paramount
importance (2). “Moving Ahead for Progress in the 21st
Century” (MAP-21) law and “Fixing America’s Surface
Transportation” (FAST) Act required each state to pre-
pare a risk-based assets management plan for pavement

and bridges which are part of the National Highway
System (NHS) to assess the conditions and performance
of the system. Transportation asset management (TAM)
is defined as a strategic and systematic process of operat-
ing, maintaining, and improving the condition of trans-
portation assets to a good or acceptable state at
minimum cost with a consideration of both engineering
and economic aspects in the development of mainte-
nance, preservation, repair, rehabilitation, and replace-
ment actions (3—7). Conditions of pavement and bridges
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within the NHS are assessed either annually or bien-
nially; however, assets outside NHS, as well as other
right-of-way (ROW) assets, do not have any mandatory
condition assessment requirement. Such a gap in data
has limited the scope of the TAM plan as these assets
have significant importance in the lifecycle of a transpor-
tation system as a whole system. A long-term consistent
monitoring program for assets such as pavements, high-
way embankments, and earth retaining systems at a rea-
sonable cost and with a quick mobilization can provide
the necessary data to expand the current mandated scope
of TAM.

Federal requirement (23 CFR Part 490) mandates
U.S. state DOTs to report the condition of pavement—as
IRI, rutting, faulting, and cracking percentage—of inter-
states and non-interstate NHS to the Federal Highway
Administration (FHWA). In standard practice, IRI is
reported based on American Association of State
Highway and Transportation Officials (AASHTO)
M328-14 and R56-14 using data from inertial profilers
which are required to be collected annually or biennially
(8—10). Such a large temporal gap between two acquisi-
tions may fail to identify deteriorating pavement sections;
however, increasing the frequency of such acquisitions
poses logistical and economic challenges. Therefore,
remote sensing platforms have established themselves as
data sources that can complement traditional measure-
ment techniques at a lower cost and a shorter turnaround
time. Remote sensing is a process of collecting and inter-
preting information about the environment from a dis-
tance (typically using sensors and instruments that are
located on aircrafts or satellites). Remote sensing can be
a useful tool for monitoring transportation and geotech-
nical assets network by providing valuable information
about its condition and spatial location (//-13). Digital
photogrammetry using structure-from-motion (SfM)
algorithms is a type of remote sensing technique that has
been used for creating high-resolution 3D models of the
real world using a set of overlapping 2D images which is
based on computer vision and visual perception princi-
ples (14-17). Use of unmanned aerial vehicles (UAVs)
has increased significantly in 3D mapping of civil infra-
structure that leverage the SfM algorithm to accurately
reconstruct the scene at very high resolution—up to sub-
centimeter (12, 16, 18, 19). SfM algorithms detect key
features in each overlapping 2D image and track these
2D feature between the images which are then recon-
structed into features with 3D positions.

Although data from UAVs provide very detailed
information on the site, issues such as weather con-
straints, flight permission, and flight duration present
significant challenges in its application (/8, 20). Use of
radar remote sensing satellites for monitoring can over-
come these challenges faced by UAVs. Orbital synthetic

aperture radar (SAR) is a type of remote sensing system
that can collect high-resolution, day-and-night, and
weather-independent images of the earth’s surface. The
radar transmits electromagnetic pulses that interact with
the earths’ surface and receives backscattered signals as
amplitude and phase. The amplitude of the backscat-
tered signal represents the strength of the radar echo
received by the antenna. It is dependent on the physical
properties, such as geometry and roughness, and electri-
cal properties, such as the permittivity of the incident
surface (21, 22). Before implementing these platforms for
pavement condition assessment, it is imperative to under-
stand the background on the working mechanism and
protocols for data collection and analysis as discussed in
the following section.

Background

The inertial profiler system includes instruments designed
to measure the surface profile of a pavement while moving
at a given highway speed. The profiler utilizes the data
from an accelerometer, which provides an inertial refer-
ence or instantaneous height using a non-contact laser
that measures the distance between the accelerometer and
the ground, and a speedometer to gauge the longitudinal
distance traveled (23). The profile elevation is calculated
using double integration of accelerometer data and height
from the non-contact sensor, as shown in Equation 1. IRI
is a numerical approach to compute the roughness/
smoothness of a road from this single longitudinal surface
profile data which is smoothed with moving average of
base length 250 mm and filtered using a quarter-car simu-
lation with golden car parameters at 80 km/h. (24):

Profile elevation = (JJA) —-H (1)

where

A = inertial reference accelerometer, and

H = height relative to inertial reference using non-
contact continuous measurement.

Advances in digital sensors for taking images and stor-
age technology made it possible to capture numerous
high-resolution images in an affordable way in the mid-
to-late 2000s. SfM is a photogrammetric method used in
UAVs to generate high-resolution 3D structures for a
series of overlapping images that are typically derived
from moving sensors (/5). Scale-and-rotation-invariant
key features are identified in each of these overlapping
images which are then used to estimate camera pose and
scene geometry to extract point clouds in image-space
(15, 25). The 3D point clouds are transformed into a real-
world co-ordinate system using ground control points
(GCPs) during the post-processing step. A redundant
network of these evenly distributed GCPs, which are
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high-contrast targets both in the field and point cloud, is
established to account for any potential issues with sparse
data or errors in SfM reconstruction (17, 25).

SfM is used in cases where the subject is closer to the
sensor, such as UAV platforms, thus limiting itself to
monitoring from relatively close distances. Orbital
remote sensing platforms, such as SAR, have seen a sig-
nificant boom in the last two decades that has the
potential to provide consistent long-term monitoring of
civil engineering assets at competitive cost from space
(26, 27). The radar in the orbital platform transmits
electromagnetic pulses that interact with the earth’s sur-
face and receives backscattered signals which are then
processed to generate an image with each pixel corre-
sponding to the reflectivity of that point on the ground.
Radar cross section (RCS or o) is the inferred target
area based on the ratio of the received response signal
intensity and transmitted signal intensity (Equation 2).
For a given wavelength and observation angle, RCS is
dependent on the physical properties, such as geometry
and roughness, and electrical properties, such as permit-
tivity of the incident surface. Depending on the type or
orientation of the area used to normalize RCS several
measures are calculated. Radar brightness (B°) is the
quantity measured by a SAR sensor which is equal to
RCS normalized with a solid rectangle defined in the
slant range plane representing the ground surface. The
normalized radar cross section (NRCS), also known as
sigma nought (¢°) is calculated by normalizing RCS
with the actual geometrical area on the ground surface
(Equation 3). ¢* is the primary value of interest to the
stakeholder as it quantifies the ground surface response
and minimizes the radiometric difference caused by
changes in incidence angles, acquisition geometry, and
look direction (22, 28).

o= Ir£4'rrR2 (2)
0
o_ B
o sin®; (3)
where
o = RCS (m?),

R = distance between the sensor and the object (m),
I,.. = received signal intensity,

I, = transmitted signal intensity,

BY = radar brightness,

¢® = NRCS (m?/m?), and

0, = local incidence angle between the incoming wave
and the normal to the local surface.

The radar response of surfaces such as pavement,
low-vegetation fields, and vegetation-free soils is domi-
nated by surface scattering, which is the main contribu-
tor to the NRCS. Surface scattering is primarily the

function of the roughness of the surface, the wave-
length of the SAR sensor used, and the incidence angle.
Therefore, for a given wavelength and incidence angle
of the SAR sensor, the roughness of the surface
becomes the principal contributing factor for the radar
response of pavement and alike surfaces.

The majority of U.S. and Canadian transportation
agencies at the network level collect surface distresses
and smoothness/roughness data to monitor pavement
condition which is used to prioritize maintenance or
rehabilitation efforts and funding (29, 30). Pavement
inspection procedures to collect in situ pavement condi-
tion data are expensive (average of $50/mile and up to
$170/mile in 2004 dollars) and surveys are time-
consuming (29, 31). Surface distress (i.c., rutting, crack-
ing, raveling, faulting, spalling, punch outs, pumping)
and smoothness/roughness (vertical deviation of pave-
ment along the longitudinal pavement profile) change
the RCS of the pavement’s surface. Therefore, the RCS
of the pavement achieved from high-resolution SAR
data can be used an alternative measure of pavement
infrastructure condition. The findings of this study
demonstrate the potential of using SAR for future TAM
endeavors and may be of great interest to engineers and
transportation practitioners. The next section discusses
the research scope and the framework used in this study
to show the utility of SAR in TAM.

Research Scope and Framework

This paper summarizes an investigation into the use of
state-of-practice data acquisition method—profiler, sub-
orbital remote sensing platform or UAVs, and orbital
remote sensing platform—high-resolution SAR on the
inspection and characterization of a pavement surface. A
summary of the research framework is shown in Figure
1. The site for this case study was the Proving Grounds
Research Facilities located at the 2,000-acre RELLIS
Campus of Texas A&M University System in Bryan,
Texas. This facility contains multiple runways, aprons,
and transportation-related pavements. This study
includes RTA Zone 2 35C Sect 3 as shown in Figure 2.
The pavement test section was characterized in situ using
inertial profilers, aerial photogrammetry (using UAVs or
drone platform), and NRCS from SAR data. The next
section discusses in detail the systematic steps followed
to collect and process the data from ground truth points,
as well as UAV and satellite-based remote sensing.

Data Collection and Pre-Processing

Based on the framework shown in Figure 1, data collec-
tion and pre-processing were performed for all three data
sources at the site shown in Figure 2. Data from inertial
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Figure |. Research flow in this study.
Note: NRCS = normalized radar cross section; SAR = synthetic aperture radar; UAV = unmanned aerial vehicle.

profilers were used to obtain profile information along  Inertial Profiler Data
two sections which are shown in Figure 3a. Similarly, the
surface elevation raster that was created by processing
data from UAV, and NRCS raster that was created by
processing SAR data are shown in Figure 3, b and ¢,
respectively.

The smoothness/roughness of pavement over a highway
network was quantified using data from inertial profilers
that measure the relative elevation along the longitudinal
profile. The profiler consisted of an instrument sub-
system that was mounted on a vehicle with distance
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Figure 2. Location of the study site at RELLIS Campus in Texas A&M University.

measuring, inertial referencing, and non-contact height
measurement systems. The instrument system pro-
duced and stored profile or elevation data at 3in.
intervals or less by combining data from all sub-sys-
tems. Profiler data was obtained from Texas A&M
Transportation Institute (TTI)’s Pavement Profiler
Evaluation Facility along the section shown in Figure
3a—a dense-graded asphalt test track. The profile data
is reported at every 1in. on dual wheel paths. The data
from the profiler was ingested into the FHWA Long-
Term Pavement Performance (LTTP) pavement analy-
sis software to generate a simulated profile along the
wheel paths. The profile data extracted from this soft-
ware is shown in Figure 4a.

UAV data

After obtaining the profiler data, a UAV was used to col-
lect high-resolution aerial images of the site. A reconnais-
sance survey of the site was used to finalize the flight plan
and locations of the GCPs. Data acquisition was per-
formed using the drone platform equipped with an optical
sensor, real time kinematics (RTK) navigation system,
and post processing kinematics (PPK) geotagging system.
The GPS information of each image from the drone plat-
form was corrected using the data from the PPK system
after flight. Similar processes have been used by several
researchers in correcting the GPS coordinates post-flight
(18, 32, 33). The images with corrected GPS information
and GCPs were ingested into SfM photogrammetry soft-
ware to generate dense point cloud, digital surface model
(DSM), and ortho-mosaic. DSMs and ortho-mosaics were
exported to GIS environments for creating 3D models

and extracting elevation data. DSM overlain by the ortho-
mosaic facilitated the creation of a digital twin model of
the site with a spatial resolution of 0.49cm. The profile
information along the same wheel-paths were extract from
the digital twin model, and are shown in Figure 4b.

SAR data

Finally, SAR amplitude data along the same wheel-paths
were extracted from the vendor-provided data. Spotlight
geocoded terrain corrected (GEO) SAR data product for
this site is a one-dimensional raster, where each pixel has
been calibrated for radar internal subsystems and corrected
for location (34). The GEO SAR product’s radiometrically
calibrated intensities were generated using nine multi-looks
of single-look-complex images. The multi-look enhanced
the radiometric resolution—the image’s ability to capture
reflection differences among pixels without compromising
the resolution (35—37). Scale factor provided in the meta-
data was used to convert the pixel values to RCS using
Equation 4 (37). The raster used in this study was taken by
a right-looking Capella-3 satellite with a central frequency
of 9.65GHz (X-band) and a horizontal-horizontal polari-
zation on a descending pass at 33.5° incidence angle (0)
and 30.6° look angle. The noise equivalent sigma zero
(NESZ) at peak power for this acquisition was —16.979
decibels (dB). These parameters are typical for an X-band
high-resolution SAR satellite as shown in several available
publications (21, 34, 38, 39). The GEO product high-
resolution SAR imagery from Capella Space was imported
into a GIS environment and calibrated using the equation
provided in the metadata that resulted in a raster with
NRCS in dB scale. SAR data exhibited geo-referring errors
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Figure 3. Left and right wheel path for: (a) profiler height data extraction underlain by orthomosaic, (b) digital twin model height data
extraction underlain by elevation raster, and (c) normalized radar cross section data extraction underlain by synthetic aperture radar

raster.

when overlain with two reference ortho-mosaics—the
first one was from the drone platform and the second
one was taken from “Brazos County Imagery” collected
as a part of Department of Information Resource
Strategic Mapping (40). Geo-referencing of the SAR
data was performed using 1%'-order affine transforma-
tion to correctly align the SAR data. The NRCS along
the same wheel paths were extracted from the SAR
data, and are shown in Figure 4c.

One of the criteria to classify the smoothness/rough-
ness of a surface with respect to the incident electromag-
netic wave is the Fraunhofer roughness criterion given
by Equation 5 (11, 22, 41). This criterion is useful in
modeling the scattering and emission behavior of natural
surfaces in the microwave region where the wavelength
(N) is of the same order as that of the root mean square
(RMS) height of the surface. It is calculated based on the
formula shown in Equation 6. In this study, the SAR
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Figure 4. Profile along wheel-paths from: (a) inertial profiler, (b) digital twin model, and (c) synthetic aperture radar data.

Note: NESZ = noise equivalent sigma zero.

system is an X-band (A = 3.1 cm) radar with incidence
angle (0) of 30.6°. Substituting these values in Equation
5 shows that, for s < 0.11 cm, the surface can be consid-
ered smooth.

olp = 20l0g,((SC X DNg,) (4)

where

oY, = NRCS (m*/m?) in dB scale,

SC = scale factor provided in the metadata for each
scene, and

DN,,, = 16-bit unsigned integer (U Int16) raster value
of the image.
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Figure 5. Root mean square (RMS) value of height at segment lengths of: (a) 0.5m, 1.0 m, and 2.0 m and (b) 5.0m, 10.0 m, and 20.0 m.
Note: dotted line = the RMS value 0.1 | cm threshold (calculated using Equation 5).

A
= 32cos(0) ®)
1 N 2
s = ﬁzztz - Nz} | (6)

where

s = RMS height,

N = wavelength of electromagnetic wave,

6 = incidence angle, and

N = number of samples.

z; = height profile of the surface in consideration.
where,

__1y¢
Zi:]T[l_:ZIZi

The RMS heights (roughness) from both the profiler
and drone platform, as well as mean NRCS data (radar

response) from the SAR satellite, along the two-wheel
paths, were processed to compute mean values and prob-
ability distribution. This analysis was performed for vari-
ous segment lengths. Details are discussed in the
following sections. The differences in the mean and the
probability distributions of each of the methods at vari-
ous segment lengths can be used as an indicator for the
amounts of details perceived and the relationship
between the data sources.

Results and Discussion

Characterization Using RMS Heights, NRCS, and
Kernel Density Function

The profile height, or the measurement of surface undu-
lations using inertial profiler, were exported from the
pavement analysis software for both left and right wheel
paths and used for the subsequent roughness analysis.
The RMS height of the profile is one of the key metrics
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Figure 6. Probability distribution of profiler data root mean square (RMS) for segment lengths of: (a) 0.5m, (b) 1.0m, (c) 2.0 m, (d)

5.0m, (e) 10.0m, and (f) 20.0m.
Note: PDF = Probability Density Function.

that is used to measure surface roughness. Using the
RMS, the kernel density estimates were calculated for
segments of 0.5m, 1m, 2m, 5m, 10m, and 20 m along
both wheel paths. The RMS height of the profile was cal-
culated using Equation 6. These intervals were selected as
a part of this novel approach to characterize the rough-
ness at different segment lengths. The mean RMS height
from the profiler’s data calculated for each segment is
shown in Figure 5. The RMS value 0.11cm threshold,
calculated using Equation 5, was delineated using a
dotted line (Figure 5). The density histogram of the RMS
value and probability density kernel for each segment are
shown in Figure 6. The probability density kernel shown
is a log-normal kernel which is calculated using maxi-
mum likelihood estimation of the RMS data.

Similar to the inertial profiler, transects along the left
and right wheel paths were extracted from the digital
twin model. A smoothing moving average filter, with a
base length of 250 mm, was applied to the raw data from
these transects to smoothen out sharp fluctuation
between 1 + 10m and 1 + 40m (as seen in Figure 4b).
In addition to that, the value of height of starting points

for each wheel path from the digital twin model is con-
sidered the same as the data from the profiler for consis-
tent visualization and comparison of the two results. The
smoothed profile was used to compute the surface
roughness and kernel density for each of the segments.
The RMS height of the smoothed profile is shown in
Figure 7. Similar to the inertial profiler, the RMS value
0.11cm threshold, calculated using Equation 5, is deli-
neated using a dotted line and shown in Figure 7. The
density histogram of the RMS value and probability
density kernel for each segment is shown in Figure 8.
The probability density kernel shown is a log-normal
kernel which is calculated using maximum likelihood
estimation of the RMS data.

Unlike the RMS heights from the inertial profilers’
and digital twin model, the mean value of NRCS along
the transects of the two-wheel paths were calculated for
segments of 0.5m, 1m, 2m, 5m, 10m, and 20 m using
the SAR data, as shown in Figure 9. The dotted line in
Figure 9 represent the NESZ in dB at peak power. The
density histogram of the NRCS and probability density
kernel for each segment are shown Figure 10. The
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probability density kernel shown is a normal kernel
which is calculated using maximum likelihood estimation
of the NRCS data for each segment.

Pavement Quality Assessments

As previously discussed and seen Figures 6 and 8, the dis-
tribution of the RMS value of the surface from the profi-
ler and digital twin with segment length up to 5.0m
shows a good fit with log-normal kernel Probability
Density Function (PDF) but not for 10.0m and 20.0 m.
This suggests that, at longer segment lengths, the low fre-
quency/longer wavelength variation (gradual undula-
tions) in profile becomes significant in the RMS of the
surface. The distribution of RMS value for the 5.0 m seg-
ments behaves like a cut-off point where the low fre-
quency wavelengths start to become significant. A similar
trend in NRCS value from the SAR amplitude data
shows a good fit with normal kernel PDF until the 2.0 m
segment, as seen in Figure 10. This suggests that both

RMS and NRCS values of the transects follow a similar
distribution. It is to be noted that NRCS value is in log-
scale, therefore the normal kernel PDF was used instead
of log-normal. The fit of the normal kernel using right
wheel path transect data was better than using mean
transect data in the case of NRCS. This can be attributed
to the influence of vegetation as well as left-over georefer-
encing error in spatially geolocating the recorded radar
signature. This occurred at the transect near the edge of
the pavement, as shown in Figure 3¢, and the influence is
pronounced after 1 + 46 ft.

The RMS value of height from the profiler, particu-
larly at a segment length of 5.0m from 0 + 00 to 1 + 00
as shown in Figure 5b, exceeded or was close to the
threshold limit for the majority of the stretch (85%) of
the total length, as summarized in Table 1. A similar
response of NRCS above the NESZ is seen in Figure 9«
and b between the same stations for segment length of
2.0m and 5.0 m, respectively. The RMS value for the seg-
ment length of 5.0m in Figure 5b approaches the
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Figure 8. Probability distribution of digital twin model data root mean square (RMS) for segment lengths of: (a) 0.5m, (b) 1.0m, (c)

2.0m, (d) 5.0m, (e) 10.0m, and (f) 20.0 m.
Note: PDF = Probability Density Function.

threshold value between 0 + 20 and 0 + 40. A similar
response can be seen in Figure 9, @ and b, with the major-
ity of NRCS dropping below or close to NESZ.
Significantly higher RMS values for a segment length of
5.0m dominate the region between 0 + 90 and 1 + 50
and the corresponding response in NRCS value can be in
Figure 9, a and b.

In the case of the RMS value of height from the digi-
tal twin model for the 5.0m segment length, 95.0% of
the 0+ 00m to 1+ 00m section and 100.0% of the
1 +00 to 2+ 00m section have an RMS value greater
than the threshold value, as seen in Figure 7¢ and sum-
marized in Table 1. This RMS value shows a consistent
variation with NRCS value for 0 + 00 to 1 + 00 m sec-
tion for segment length of 2.0m and 5.0m, as seen
Figure 9, a and b, respectively. The majority of the sec-
tion with RMS value above or close to threshold shows
that the NRCS response above the NESZ. 0 + 60 to
0 + 70m section shows some anomalous behavior. A
possible reason could be that the RMS value represents

the response along the wheel path (capturing small foot-
print information), whereas the NRCS response is from
the area represented by the pixel (capturing the response
of a large footprint). The change in RMS value and the
corresponding response seen in NRCS is more prevalent
in the data from the digital twin model as it tries to rep-
resent the actual physical surface and NRCS is the func-
tion of its roughness. This suggests that, for an X-band
radar of 0.5m resolution, the NRCS values for 2.0m
and 5.0m segments show a relationship with the RMS
value of the surface at 5.0 m.

NRCS is sensitive to the surface roughness, that is,
the RMS value of the surface, and it is evident from this
study that the segment length in consideration plays an
important role in computing the value of surface rough-
ness in pavements. For instance, segment length of 2.0 m
showed consistency in value and probability distribution
among all the data sources. Once such scale of sensitivity
is established between the NRCS value and segment
length, corresponding surface roughness can be
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20.0m.

Note: dotted line = the NESZ in dB at peak power; NESZ = noise equivalent sigma zero.

computed from the NRCS value. The surface roughness
then can be related to established state-of-practice
metrics for summarizing the condition of pavement.
Timely and economic assessment of the condition of
pavement assets has always been a priority of state and
federal agencies to maintain them in acceptable condi-
tions with minimal maintenance cost. Use of orbital
remote sensing platforms, such as high-resolution SAR
data, are currently available to infer the condition of
assets without any field mobilization—which opens a
path toward expanding the current mandatory scope of
TAM assets. In addition, the short turnaround time
from tasking a satellite to generating results makes it
possible to rapidly assess the condition of pavements
during extreme events. The remotely sensed data can be
directly ingested into an existing GIS platform for assets
condition computation and visualization. In the case of
pavements, ability to summarize the condition of the
whole pavement area (2D), rather than just wheel paths

(1D) will indeed aid in providing a better picture of the
overall pavement condition.

Summary and Conclusions

This study utilized data from multiple sources to com-
pute the pavement characteristics at various spatial scales
(i.e., segment lengths) to compare the results of industry
standard methods and state-of-art methods and study
their potential relationship with satellite remote sensing
data. The study presented a novel approach to compre-
hending the relationship between SAR backscatter data,
road surface quality derived from an inertial profiler, and
a digital twin model. The results indicated that both the
inertial profiler and digital twin model could successfully
capture and represent surface roughness characteristics,
with their results varying based on the segment length
under consideration. With regard to segment length,
RMS values from the inertial profiler were lower than
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Table I. Percentage of Root Mean Square Value from Profiler and Digital Twin Model above Threshold and Percentage of Mean Synthetic
Aperture Radar (SAR) Value above Noise Equivalent Sigma Zero

Profiler Digital twin model SAR

Segment length/ 0+ 00m to | + 00m to 0+ 00m to | +00m to 0+ 00m to | + 00m to
data source (m) | +00m 2+ 00m I +00m 2+ 00m | +00m 2+ 00m
0.5 1.5 85 2.5 19.5 785 985

1.0 8.0 30.0 15.0 48.0 84.0 99.0
2.0 32.0 56.0 44.0 92.0 84.0 100.0
5.0 85.0 95.0 95.0 100.0 85.0. 100.0
10.0 100.0 100.0 100.0 100.0 90.0 100.0
20.0 100.0 100.0 100.0 100.0 100.0 100.0

those from the digital twin model. This is potentially
because of inertial profilers not providing a true represen-
tation of the surface. Conversely, the digital twin model
generated using SfM photogrammetry data provided a
more precise depiction of surface roughness, capturing
smaller wavelength variations more accurately.

It was observed that both data sources showcased
similar roughness distribution characteristics at certain
segment lengths—0.5m, 1.0m, 2.0m, and 5.0 m. At lon-
ger segment lengths, both the profiler and digital twin
model effectively captured low frequency or longer wave-
length variations in profile, demonstrating that the data
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source and segment length are critical factors when com-
paring results with SAR data. The analysis also revealed
that the NRCS value of the transects, for segments up to
2.0m, and the RMS value of the surface from both the
profiler and digital twin, for segments up to 5.0 m, follow
similar distributions. It was observed that the increase in
RMS value did not result in a corresponding increase in
the NRCS value, suggesting a potential non-linear rela-
tionship. Additionally, it was found that, for X-band
radar with 0.5m resolution, the NRCS value for a 2.0m
segment showed a potential relationship with the RMS
value of the surface. This could provide a pathway for
the development of refined models to understand the
interaction between radar backscatter signals and the
condition of road surfaces.

Overall, this research contributes valuable insights to
understanding how different remote sensing methodolo-
gies can be leveraged to assess road surface conditions.
The cost of each SAR scan typically starts at $500 (for
4 X 4km footprint at 1 m spatial resolution) from com-
mercial vendors. The scanned area not only consists of
the data on the pavements but also other assets within the
ROW which will help asset managers infer information
about the condition of pavement and other ROW assets.
However, the cost of processing and handling these SAR
data in regard to pavement inspection and management
has not been established in this study and should be con-
sidered in the future scope. Further studies should aim to
perform such analysis on a wide range of sections with
varying pavement conditions, refine these methodologies,
and develop models that can predict the relationship
between SAR backscatter data and road surface quality,
offering enhanced tools for monitoring infrastructure and
incorporating it as a data source for TAM.
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