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Fig. 1. Probabilistic solutions to the Burgers’ equation show-
ing the mean ± twice the standard deviation. The top and
bottom rows are for sparse and fine grids respectively. The
reference solution is computed according to [8, Sec. 4.4.1].

problem in a reproducing kernel Hilbert space (RKHS) [9]
and the resulting solver relies on a batch Gauss–Newton al-
gorithm [10, Sec. 10.3]. Their algorithm provides guaranteed
convergence for a wide class of PDEs, with the disadvan-
tage of cubic computational complexity in the number of
collocation points. An alternative approach introduced in [6],
called the probabilistic numerical method of lines, first ap-
proximates time-dependent PDEs by ordinary differential
equations (ODEs). Then, by assuming a Gauss-Markov
temporal prior, the approximate ODEs are solved using a
Kalman filtering-based ODE solver [11]. The advantage
of this method is that it scales linearly with the number of
temporal discretization points. However, by using a filtering-
based solver, it forgoes the maximum a posteriori solution
and well-calibrated posterior uncertainty estimates.

Our contribution in this work is a novel smoothing-based
probabilistic numerical solver for time-dependent nonlin-
ear PDEs. It retrieves the maximum a posteriori solution
of an approximate ODE formulation while achieving loga-

ABSTRACT

We present an efficient probabilistic solver for time-dependent 
nonlinear partial differential equations. We formulate our 
method as the maximum a posteriori solver for a constrained 
risk problem on a reproducing kernel Hilbert space induced 
by a spatio-temporal Gaussian process prior. We show that for 
a suitable choice of temporal kernels, the risk objective can 
be minimized efficiently via a Gauss–Newton algorithm cor-
responding to an iterated extended Kalman smoother (IEKS). 
Furthermore, by leveraging a parallel-in-time implementa-
tion of IEKS, our algorithm can take advantage of massively 
parallel graphical processing units to achieve logarithmic 
instead of linear scaling with time. We validate our method 
numerically on popular benchmark problems.

Index Terms— partial differential equations, kernel 
methods, sparse optimization, parallel computation.

1. INTRODUCTION

Partial differential equations (PDEs) are ubiquitous in physics 
and engineering as a way to model phenomena that corre-
late over space and time. Apart from a few special cases, 
PDEs do not admit analytical solutions, and this has led to 
the development of a vast literature on numerical solutions to 
PDEs [1]. Recently, a new class of probabilistic numerical 
PDE solvers has garnered attention in the machine learning 
community [2, 3, 4, 5, 6]. These methods place Gaussian pro-
cess (GP) priors [7] on the function space of PDE solutions 
and compute an a posteriori solution given a set of colloca-
tion points that resemble observed data in Gaussian process 
regression. In addition to returning numerical solutions of 
PDEs, such methods confer the unique benefit of providing 
uncertainty bounds on the solutions, which can often be use-
ful for downstream tasks.

In [5], the authors introduced a method for solving non-
linear PDEs that targets the maximum a posteriori (MAP) 
estimate of a Gaussian process conditioned on a grid of collo-
cation points. The approach is framed as an optimal recovery

This work was supported by the National Science Foundation through 
NSF award CCF-2225507 and by the Research Council of Finland through 
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rithmic complexity in time. Our method differs from [6] in
two respects. Firstly, we use the iterated extended Kalman
smoother (IEKS) [12] to solve the approximate ODE problem
obtained using the method of lines [13]. The IEKS retrieves
the MAP estimate and was shown to have favorable theoreti-
cal properties for probabilistic ODE solvers in [14]. Secondly,
we employ a state-of-the-art, parallel-in-time implementation
of the IEKS [15, 16] which can leverage massively parallel
graphical processing units (GPUs) to achieve logarithmic
span-complexity in the time dimension. The resulting algo-
rithm delivers better-calibrated posterior distributions on PDE
solutions while being computationally efficient, both facets
which we demonstrate on representative nonlinear PDEs.

2. PROBLEM FORMULATION

Let t ∈ [0, T ] and x ∈ [a, b] for T, a, b ∈ R. Our goal is to
find a function u : [0, T ] × [a, b] → Rd, d ∈ N that satisfies
the following nonlinear PDE

∂u

∂t
(t, x) = f

(
t, x, u(t, x),Du(t, x)

)
, (1)

subject to initial and boundary conditions

u(0, x) = h(x), ∀x ∈ [a, b],

u(t, x) = g(x), ∀(t, x) ∈ [0, T ]× {a, b}.

f , g and h are known nonlinear functions and D is a differen-
tial operator. We assume that the initial and boundary condi-
tions are chosen appropriately such that the PDE has a unique
solution in the domain.

In addition to finding a solution u, we wish to quantify
the uncertainty in the solution arising from the discretization
in the numerical solver. For that purpose, we define a Gaus-
sian process prior over PDE solutions, u ∼ GP(0, k), where
k : Ω× Ω → R is a symmetric, positive-definite kernel func-
tion with Ω := [0, T ]× [a, b]. Associated with the kernel k is
a unique reproducing kernel Hilbert space H, equipped with
the norm ∥·∥H [9]. Furthermore, for a finite-dimensional rep-
resentation of the PDE solution, we assume a symmetric set
of collocation points on which the solution is enforced and
define the time and space grids T := {t0, t1, . . . , tN} and
X := {x0, x1, . . . , xM} with 0 = t0 < t1 < · · · < tN = T
and a = x0 < x1 < · · · < xM = b, for some N,M ∈ N.

We follow the setting proposed in [5] and formulate the
MAP estimate of the GP constrained by a PDE and its initial
and boundary conditions in the discretized domain T × X as
a constrained optimization problem in the Hilbert space

min
u∈H

∥u∥H (2)

subject to
∂u

∂t
(t, x) = f

(
t, x, u,Du

)
, ∀(t, x) ∈ T× X,

u(t, x) = g(x), ∀(t, x) ∈ T× {a, b},
u(0, x) = h(x), ∀x ∈ X.

In [5], the authors used a batch Gauss–Newton algorithm to
solve (2), which involves inverting an (M ×N)-dimensional
Gram matrix constructed by evaluating the kernel function at
the grid points. Exact computation of the inverse of dense
matrices has cubic cost in the dimension, resulting in a com-
putational cost of O

(
M3N3

)
for their algorithm [5, Section

3.4.3]. This approach was extended in [17], bringing the com-
putational complexity to near-linear using approximations of
the Cholesky decomposition of the Gram matrix inverse.

While such an approach is generally applicable for both
time-dependent and time-independent PDEs, it needlessly en-
forces a dense structure in both the time and space dimensions
for time-dependent PDEs. In the following sections, we show
that by relying on a method-of-lines approximation ansatz,
and by leveraging a class of Gauss–Markov temporal priors
that promote a sparse optimization structure, we can form an
approximate optimal recovery problem to (2) whose MAP es-
timate can be recovered at a linear computational cost in the
time dimension. The MAP estimate is computed using an
efficient Gauss–Newton algorithm in the form of an iterated
extended Kalman smoother (IEKS), with overall complexity
of O(M3N). Moreover, by using a parallel implementation
of the IEKS for GPUs [15, 16], we reduce complexity further
down to O(M3 logN). While similar spatio-temporal GP
priors are used in [6] for solving PDEs, the proposed solver
does not target a well-defined optimization objective.

3. BACKGROUND

In this section, we describe how to convert a PDE to a system
of ODEs using the method of lines, followed by a description
of the equivalence between certain Gaussian process priors
and stochastic differential equations (SDEs). We then elab-
orate on our choice of the spatio-temporal prior and the data
model, which are similar to [6].

3.1. The Method of Lines

The method of lines (MOL) [13] is a technique to solve PDEs
by converting them to a system of ODEs. This is achieved by
discretizing all but one dimension of the PDE, typically the
time dimension. In our case, we use a finite difference scheme
to approximate the differential operator D on the spatial grid
X as a matrix-vector product

(Du)(t,X) ≈ Du(t,X), D ∈ Rd(M+1)×d(M+1),

where we have defined

u⊤(t,X) := [u⊤(t, x0), u
⊤(t, x1), . . . , u

⊤(t, xM )].

After removing the differential operator, we approximate the
function f from (1) by

f(t, x, u,Du) ≈ f̂(t, x, u).
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Since the grid X is fixed, let us define u(t) := u(t,X) and
f̂(t,u) := f̂(t,X,u), which transforms (1) to an ODE

∂u

∂t
(t) ≈ f̂(t,u), (3)

with initial condition u(t0) =
[
h⊤(x0), . . . , h⊤(xM )

]⊤
. We

can now use probabilistic ODE solvers to solve (3), which
will yield approximate solutions to the PDE from (1).

3.2. Gaussian Process Priors as Stochastic Differential
Equations

A kernel function k is said to be stationary if k(t, t′) = k(t−
t′). Certain classes of stationary kernel functions admit equiv-
alent representations as linear time-invariant stochastic differ-
ential equations [18]. Let f : R → Rd and

ψ⊤(t) =
[
(f(t))⊤, (f (1)(t))⊤, · · · , (f (ν)(t))⊤

]
be a state vector consisting of f(t) and its derivatives up to or-
der ν ∈ N. Let us also define matrices Em := em ⊗ Id(M+1),
where {em}νm=0 is the standard basis in Rν+1, Id(M+1) is
the identity matrix in Rd(M+1) and ⊗ denotes the Kronecker
product. The matrix Em picks out the m-th order derivative
of f from the state vector ψ,

f (m)(t) = E⊤
mψ(t), ∀m ∈ {0, 1, . . . , ν},

with f (0) := f . Then there exists kernel functions k such that
f ∼ GP(0, k) implies the state ψ(t) solves an SDE

dψ(t) = F ψ(t) dt+ Eν dβ(t), ψ(t0) ∼ N (0,Σ0), (4)

where β(t) is a vector of Wiener processes with diffusion ma-
trix Γ and N denotes the Gaussian distribution. The ν-times
integrated Wiener process and the (ν + 1/2)-order Matérn
functions are examples of kernels that admit this form [19,
Sec. 12.3]. F , Γ, and Σ0 are all specified by the choice of the
kernel k and are thus dependent on these hyperparameters of
the kernel.

Time Discretization. On the time grid T, we can discretize
the SDE from (4) to obtain linear-Gaussian transitions [19,
Section 6.2]

ψ(tk+1) | ψ(tk) ∼ N (A(hk)ψ(tk), Q(hk)),

where hk = tk+1 − tk and

A(hk) = exp (Fhk),

Q(hk) =

∫ hk

0

A(hk − τ)Eν ΓE
⊤
ν A

⊤(hk − τ) dτ.

Coupled with a suitable observation model, this forms a state-
space model for which inference can be done at O(N) com-
putational complexity, which is favorable compared to the
O(N3) required for traditional GP regression [7, Ch. 2].

3.3. Spatio-Temporal Priors on the Solution

We place a separable spatio-temporal GP prior on the solution
of the PDE [20],

u(t, x) ∼ GP(0, kt ⊗ kx),

where kt ⊗ kx is the product kernel (kt ⊗ kx)(t, t
′, x, x′) =

kt(t, t
′)kx(x, x′). This induces the following prior on the so-

lution on the grid u(t),

u(t) ∼ GP(0, kt ⊗K), Kij = kx(xi, xj).

If we choose a kernel kt that admits an equivalent SDE rep-
resentation as given in (4), we obtain Gaussian transitions on
the time grid

ψ(tk+1) | ψ(tk) ∼ N (Ã(hk)ψ(tk), Q̃(hk)),

Ã(hk) = A(hk)⊗ Id(M+1),

Q̃(hk) = Q(hk)⊗K,

where ψ⊤(t) := [(u(t))⊤, (u(1)(t))⊤, . . . , (u(ν)(t))⊤] and
u(ν) = ∂νu/∂tν .

3.4. Data Model

Similar to probabilistic ODE solvers [21, 11], our data model
enforces the PDE at the time grid points. We construct the
observation function

z(t) := E⊤
1 ψ(t)− f̂(t, E⊤

0 ψ(t)) (5)

= u(1)(t)− f̂(t,u(t)),

and approximately enforce the PDE by conditioning on fixed
observations z(tn) = 0 for all n = 0, . . . , N , which corre-
sponds to enforcing the ODE from (3).

4. MAXIMUM A POSTERIORI ESTIMATION

In this section, we detail our algorithm to compute the MAP
estimate of the PDE solution under the method-of-lines ap-
proximation formulated in Sec. 3.1.

The Markovian prior process and the data model together
yield a state-space model (SSM) formulation with linear-
Gaussian transition dynamics and a Dirac delta observation
model centered at the collocation points

ψ(tk) | ψ(tk−1) ∼ N (Ã(hk−1)ψ(tk−1), Q̃(hk−1)),

z(tk) = 0 | ψ(tk) ∼ δ
(
E⊤

1 ψ(tk)− f̂(t, E⊤
0 ψ(tk))

)
.

The MAP estimate for the full state trajectory of the SSM is

Authorized licensed use limited to: Texas A M University. Downloaded on December 02,2024 at 01:40:27 UTC from IEEE Xplore.  Restrictions apply. 



defined by the following optimization problem [14]

min
ψ(t0:N )

J (ψ(t0:N ))

subject to E⊤
0 ψ(t0) = h(X),

E⊤
1 ψ(t0) = f̂(t0, h(X)),

u(tn, x) = g(x) for x ∈ {a, b},
z(tn, ψ(tn)) = 0, n = 1, . . . , N,

where the objective J is the negative prior log density

J (·) =
N−1∑
n=0

∥ψ(tn+1)−A(hn)ψ(tn)∥2Q(hn)
+ ∥ψ(t0)∥2Σ0

.

Here ∥·∥2Σ denotes the squared Mahalanobis distance with re-
spect to a covariance matrix Σ. This optimal recovery prob-
lem approximates (2), with the difference being that here we
enforce the approximate ODE rather than the true PDE.

When the function f̂ in (3) is affine, the observation
model (5) is affine and the full posterior p

(
ψ(t0:N ) | z(t0:N )

)
,

centered at the true MAP, can be obtained through Gaussian
smoothing [22]. However, for general nonlinear functions
f̂ , the posterior cannot be computed exactly and we have to
resort to approximations. In such cases, iterative algorithms
can be used to target the MAP estimate. A prominent exam-
ple is the iterated extended Kalman smoother (IEKS) [12],
which is a Gauss–Newton algorithm with linear complexity
in time. Despite primarily targeting the MAP, the IEKS also
delivers an approximation of the posterior uncertainty in the
neighborhood of the posterior mode.

4.1. Exact Inference for Affine Vector Fields

For affine vector fields f̂
(
t,u(t)

)
= Λ(t)u(t) + ζ(t), the

MAP estimate and the full posterior can be retrieved using
the Rauch-Tung-Striebel (RTS) smoother [23]. In the follow-
ing, the mean and covariance of the state ψ(t) conditioned on
the observations until time t are denoted by µF (t) and ΣF (t)
respectively, while those conditioned on the observations un-
til time T are denoted by µS(t) and ΣS(t). The smoother
consists of a forward and a backward pass. The forward pass
computes the filtered marginal distributions by alternating be-
tween a prediction step,

µ−
F (tn) = Ã(hn−1)µF (tn−1),

Σ−
F (tn) = Ã(hn−1)ΣF (tn−1)Ã

⊤(hn−1) + Q̃(tn−1),

and an update step

H(tn) = E⊤
1 − Λ(tn)E

⊤
0 ,

S(tn) = H(tn)Σ
−
F (tn)H

⊤(tn),

K(tn) = Σ−
F (tn)H

⊤(tn)S
−1(tn),

µF (tn) = µ−
F (tn) +K(tn)

(
ζ(tn)−H(tn)µ

−
F (tn)

)
,

ΣF (tn) = Σ−
F (tn)−K(tn)S(tn)K

⊤(tn).

The initial conditions are enforced by an update step at t0.
The backward pass computes the smoothed marginals via

G(tn) = ΣF (tn)Ã
⊤(hn)[Σ

−
F (tn+1)]

−1,

µS(tn) = µF (tn) +G(tn)
(
µS(tn+1)− µ−

F (tn+1)
)
,

ΣS(tn) = ΣF (tn)+G(tn)
(
ΣS(tn+1)− Σ−

F (tn+1)
)
G⊤(tn),

starting with µS(tN ) = µF (tN ) and ΣS(tN ) = ΣF (tN ).

4.2. The Iterated Extended Kalman Smoother

The smoothing algorithm presented in Sec. 4.1 applies only
to affine vector fields. To tackle nonlinear PDEs, we use the
iterated extended Kalman smoother. The IEKS iteratively lin-
earizes the measurement model around the current smoother
estimate, then applies the Gaussian smoothing equations de-
scribed in the previous section. This process is repeated until
convergence [22, Sec. 13.3].

The function f̂ is approximated with an affine function
f̂
(
t,u(t)

)
≈ Λ(t)u(t) + ζ(t) and this approximation is used

in the update step of the forward pass. At iteration (l + 1) of
the IEKS, Λ and ζ are obtained using a first-order Taylor se-
ries expansion around the smoothing mean from the previous
iteration, µlS(tn), as follows

Λl(tn) = Jf (tn, E
⊤
0 µ

l
S(tn)),

ζl(tn) = f̂(tn, E
⊤
1 µ

l
S(tn))− Jf (tn, E

⊤
0 µ

l
S(tn))E

⊤
0 µ

l
S(tn).

Here, Jf is the Jacobian of f̂ with respect to u. The mean
and covariance at iteration (l + 1) are then computed using
the above linearization. We initialize the algorithm with an
extended RTS smoother that uses the same first-order Taylor
linearization for the measurement model [11].

4.3. Temporal Parallelization of Bayesian Smoothers

The Gaussian filter and smoother presented in Section 4.1
have O(N) computational complexity in the number of time
grid points N . This linear complexity can be a bottleneck
for stiff PDEs, for which dense grids are often necessary to
achieve satisfactory levels of accuracy. Fortunately, the span-
complexity of the algorithm, which is the number of compu-
tational steps as measured by a wall clock, can be reduced to
O(logN) using the parallel-in-time Bayesian smoothers in-
troduced in [15, 16].

The parallel implementation of [15] makes use of the par-
allel scan algorithm [24]. Given a set of elements {ak}Nk=0

and a binary associative operator ⊗, the parallel scan algo-
rithm computes the prefix sums

⊗k
i=0 ai := a0⊗a1⊗· · ·⊗ak

for all k = 1, . . . , N at O(logN) span-complexity. This is
conditional on having at least (N + 1) computational threads
for parallel operations. In [15], the authors identified the el-
ements ak and operators ⊗ such that the prefix sums would
correspond to the filtering and smoothing distributions, and
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Fig. 2. Solution to the Allen-Cahn equation. We plot the
mean ± twice the standard deviation.

we direct the reader to [15, Sec. 4] for details. The parallel-
in-time IEKS algorithm was recently utilized for probabilistic
solutions to ODEs [25].

5. NUMERICAL EVALUATION

For the empirical evaluation of our method, we first consider
the viscous Burger’s equation, given by

∂u

∂t
+ u

∂u

∂x
− η

∂2u

∂x2
= 0, (t, x) ∈ [0, 1.5]× [−1, 1],

with η = 1×10−2, initial condition u(0, x) = − sin(πx) and
boundary condition u(t,−1) = u(t, 1) = 0. In addition, we
consider the reaction-diffusion Allen-Cahn equation,

∂u

∂t
− γ

∂2u

∂x2
+ 5u3 − 5u = 0, (t, x) ∈ [0, 1]× [−1, 1],

with γ = 5 × 10−3, initial condition u(0, x) = x2 cos(πx)
and boundary condition u(t,−1) = u(t, 1) = −1.0.

In Fig. 1 and Fig. 2, we visualize the MAP estimate and
the approximate posterior distribution of the solution com-
puted by the IEKS for both equations and compare to numer-
ical solutions obtained using finite-difference schemes. Fig. 1
plots the solution for two different discretizations. For the
finer discretization, the MAP estimate is closer to the refer-
ence solution and the approximate posterior has lower vari-
ance, as is expected of a well-calibrated uncertainty estimate.

Next, we demonstrate the computational efficiency of our
solver in Fig. 3. Depicted is the runtime in seconds as a func-
tion of the number of time discretization points N of the se-
quential and parallel versions of the IEKS, along with that of
a batch solution to the smoothing problem. The batch solver
has O(N3) computational complexity, similar to the method
of [5]. As evident from the figure, at fine discretizations, and
consequently higher number of grid points, the parallel IEKS
implementation holds a clear advantage over alternatives. 1

1Our code: https://github.com/hanyas/parallel-pde.
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Fig. 3. GPU runtime of the sequential and parallel implemen-
tations of the IEKS algorithm, along with that of the batch
solution, for the Burgers’ and Allen-Cahn equations.

Table 1. Log likelihoods of the reference trajectories under
the posteriors and average L2 norms of the posterior means
for the EKF and the IEKS.

Burgers’ Allen-Cahn
Algorithm LLH L2 LLH L2

EKF 96743 0.038 -137642 0.077
IEKS 113366 0.038 -130540 0.081

Finally, Tab. 1 reports two metrics that compare the solu-
tion quality of the IEKS and the extended Kalman filter (EKF)
approaches. The first is the log likelihood of the reference so-
lution under the posteriors returned by the algorithms. The
IEKS solutions achieve higher log likelihoods for both PDEs,
indicating better-calibrated posterior uncertainty. The second
metric, at which both the EKF and IEKS demonstrate com-
parable results, is the average L2 norm of the posterior mean
with respect to the reference solution.

6. CONCLUSION

We have introduced a novel probabilistic numerical solver for
time-dependent, nonlinear PDEs that scales logarithmically
in time. We use the method of lines to approximate nonlin-
ear PDEs by coupled ODEs and compute the MAP estimate
of the solution using a massively parallelizable realization of
the iterated extended Kalman smoothing algorithm. Numeri-
cal experiments demonstrate the accuracy and computational
efficiency of our method.

Our method is not without limitations. Firstly, unlike the
method of [5], ours does not enforce the true PDE at the collo-
cation points, but rather the approximate ODE from (3). Sec-
ondly, our method does not account for the error induced by
discretizing the spatial coordinate. One way to achieve this
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would be to model the error similar to [6], which uses a prob-
abilistic discretization to track the error from using a spatial
grid. Finally, while logarithmic in time, our algorithm has
cubic cost in space, which could prove prohibitive for large
domains or fine discretizations. Addressing these limitations
is identified as future work.
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