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SUMMARY

Transistor is broadly used to address memristor networks, but its three-terminal structure can
impose limitations on fully exploiting the potential of efficient integration a two-terminal
memristor can offer. While a two-terminal selector is desirable for unlocking this potential, no
existing device has attained a similar level of functional maturity. Diode, despite the technological
maturity, is still limited by its unipolarity in addressing mainstream bipolar memristors. Here, we
demonstrate that a diode can be implemented as a bidirectional selector for constructing two-
terminal memristor architecture by exploiting its reverse recovery dynamics. This is demonstrated
by the construction of one-diode-one-memristor (1D1R) programmable arrays, which are
implemented for in situ neural training and classification. Furthermore, a crossbar array made from
stacking 1D1R cells is fabricated to demonstrate scalable integration. This dynamic paradigm
combines the advantages of functional maturity and structural simplicity of diode selectors to
improve the development of memristor integration.
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INTRODUCTION

Neuromorphic computing based on memristors has the potential to improve information
processing by circumventing the data shuttle in traditional Von-Neumann architectures ',
Memristors built from emergent new materials (e.g., 2D materials) have further expanded the
potential in functions and integration °'*. The enabled vector-matrix multiplication (VMM) in the
integrated memristor array can parallel previous computationally expensive sequences for efficient
throughput %415, However, the precision in the network programming and subsequent VMM
operation heavily depends on the effectiveness in suppressing the sneak-path conduction, which
otherwise can yield programming and reading errors to impair computing accuracy'®!’. One
common solution is to pair a transistor with each memristor to control the local current passage.
This one-transistor-one-memristor (1T1R) strategy has been successfully implemented in many
systems for various functional demonstrations >!3!418-23 However, the three-terminal transistor
adds structural and addressing complexity to the architecture. A two-terminal selector is highly
desirable to fully exploit the benefit of simplicity and compactness from a crossbar architecture
162425 Nevertheless, no existing two-terminal selector has achieved a functional maturity close to
that of a transistor for practical implementation ’. For example, many demonstrated selectors based
on filamentary switching devices lack the stability for high endurance and uniformity required in
a programmable network '®?°. Although the diode features a technology maturity similar to the
transistor, its unipolarity only allows for addressing unipolar memristors '®?’ but prevents
compatibility with the mainstream networks built from bipolar memristors %!%!8-23 Bidirectional
tunneling devices are limited in current density and introduce large nonlinearity that can prevent
the direct use of VMM !¢, During programing, the rest unselected cells are often applied with a
voltage to the half or third value of the programming voltage V applied to the selected cell, in order
to offset the voltage drop across these cells for avoiding unintended state change; this 1/2V or 1/3V
programming theme can substantially increase power consumption in array applications !¢,

Despite the limited success, the potential benefits of a two-terminal selector have continued to
stimulate the exploration of new concepts for better solutions. One general strategy is to explore
the transient dynamics in some devices for timed addressing >**%. For example, the delay time in
a volatile bipolar memristor, which is inversely related to the applied voltage, is employed for the
construction of a timing selector 2%. The selectors along the sneak path, due to the voltage-divider
effect, are activated slower than the one in the selected path. This time difference provides a
transient window for selective programming. In another strategy, the retention time in a volatile
unipolar memristor with the ultralow threshold ? is exploited to enable bidirectional addressing 2*.
On the one hand, the forward selective addressing is readily enabled by the unidirectional
conduction in the switch. On the other hand, the retention time also creates a transient window for
the reverse addressing. These strategies, however, still suffer from instability and nonuniformity
resulted from the inherent stochasticity in the filamentary selectors for practical implementations
3% Nonetheless, they do offer an insightful perspective: if the transient dynamics of a mature device
technology are harnessed, it may lead to the practical solution of a reliable two-terminal selector.

Here, we demonstrate that the transient reverse recovery time (7T%) in a diode’'*? can be

exploited to enable bidirectional addressing for constructing reliable one-diode-one-memristor
(1DIR) programmable memristor networks. This strategy can work with all memristors (e.g., both



unipolar and bipolar types), thus greatly expanding the capacity in previous 1D1R architecture that
only works with unipolar memristors '®*’. Meanwhile, the number of addressing lines (2N) in a
IDIR architecture (e.g., with a NxN array size) is reduced from that (3N) in the 1T1R architecture.
As a result, this strategy has the combined advantages of both functional maturity and structural
simplicity for practical applications. We validate the strategy by connecting commercial diodes
with the mainstream Ta-HfO, nonvolatile memristors %!%?233 to construct an 8x8 array for
programmable network. The programmability is analyzed and demonstrated by in situ training of
the network for digit classifications. The functional validation is followed by the fabrication and
integration of 1D IR stacking cells in a crossbar network to demonstrate the potential for integrated
neuromorphic computing. This 1D1R integration can also be readily used for constructing two-
terminal crossbar memory array.

RESULTS
1. General concept

A 2x2 array that is the constituent unit in larger arrays is used to illustrate the working concept.
The 1DIR array shares the same structural configuration as previously used for addressing
unipolar memristor networks 6273438 with the rectifying effect in the diode readily exploited to
suppresses the sneak-path conduction in a forward operation (Fig. 1A). Here, the fundamental
difference is that the reverse recovery time 7;; of the diode is harnessed to enable reverse selective
addressing (Fig. 1B). Specifically, Ti describes the finite time needed for the diode to discharge
before it switches from the forward-biased (On) state to the reverse-biased (Off) state (Fig. 1B (ii))
3132 This transient window allows the reverse current flow (Fig. 1B (iii)) for the reverse
programming of the connected memristor. Note that in the sneak path, this transient window does
not exist since the two forward-biased diodes are initially in the Off state (Fig. 1B (i)). Together,
this enables the selected reverse programming in the network. The blockage of the sneak-path
conduction during both the forward and reverse programming suggests that concurrent
programming of multiple cells (e.g., along the same column) is feasible. In addition, this selective
programming theme does not need the 1/2V or 1/3V method !¢, benefiting the power reduction in
array applications.

We first employed commercial diodes for the characterization and demonstration. The
measured 7rr was positively related to the driving voltage and time (Fig. S1), consistent with the
general expectation that the internally stored charge in the junction region increases with the input
voltage and charging time. The measured 7 of several us can provide a sufficient time window
for the mainstream (e.g., Ta-HfO,-based) nonvolatile memristors *° (Fig. S2 and Experimental
Procedures). The fabricated Ta-HfO, memristors showed a high yield and relatively uniform
performance (Fig. S3) for integrated demonstration.

We then constructed a 1D IR cell by connecting the two devices and tested the programmability
(Fig. 1C). A 0.7 V reading pulse (¢ = 50-150 ps) was applied to the Word Line (WL) with the Bit
Line (BL) grounded, showing an initial reading current of ~21 pA (Fig. 1C (i)). For the SET
programming, a pulse of 1.2 V, 3 us was then applied (z ~ 200 ps). Note that although the reverse
recovery process yielded a reverse current right after the SET pulse (gray region), the absence of
applied reverse voltage did not yield any RESET effect. The subsequent reading (# = 250-350 ps)



showed an increased current of ~80 pA, showing the successful SET process. For the RESET
programming (Fig. 1C (ii)), a pulse of 0.7 V, 5 us (¢ = 200 us) was first applied to forwardly
activate the diode. The pulse was immediately followed by a RESET pulse of -1.2'V, 3 us (= 200-
203 ps). This reverse pulse was within the 7rr window, so it could apply to the cell. The successful
RESET programming was confirmed by that the cell changed from an initial reading current of
~98 HA (=50-150 ps) to ~34 pA (t =250-350 us)) after the RESET pulse.

2. 8x8 1D1R array

We then connected 64 commercial diodes with 64 Ta-HfO> memristors to form an 8x8 1D1R
programmable array (Figs. S4-6). Without loss of generality, we used a 2x2 array, which is the
constituent unit for an arbitrary-sized array®*, to examine the selective reading (Fig. 2A,
Experimental Procedures). We considered the worst case when the memristors in the sneak path
(black cells) were set to a Low Resistance State (LRS) and the memristor in the selected path
(orange cell) was set to a High Resistance State (HRS). A 0.7 V reading voltage was applied
between WL1 and BL1 for current readout. The sneak-path current (blue curve) showed negligible
value compared to the reading current of ~8 pA (red curve) from the selected cell, showing
successful suppression of the sneak-path current by rectification from the diode. Analysis showed
that the read margin could maintain a value >60 % with the array size (N*N) increasing to N> 10°
(Fig. S7). We then used a 3x3 array to examine the selective programmability. Using the addressing
strategy in Fig. 1C, we could reversibly adjust the conductance in selected memristors (orange) in
a 3x3 array without altering states in unselected (black) memristors (Fig. 2B).

The selective programming and state readout were then applied to the entire 8§x8 array (Fig.
2C). A 16x32 pixeled "UM" logo was used as the targeting pattern to program. The background
was designed to have a gradient, whereas the "U" and "M" letters had fixed weights. This 16x32
pixeled image can be divided into eight 8x8 sub-images. The same 8x8 array was consecutively
programmed to the eight sub-images, showing reliable re-programmability needed for in situ
neural training.

3. Seven-segment-display (SSD) classification

We further evaluated the enabled selective programmability by implementing the 8x8 array as
a double-layer neural network. The synaptic weight in a neural network is often represented by the
differential conductance (e.g., G'-G") between a pair of memristors”. We therefore used a 1x2 array
from the entire array as the pair to test the ability in synaptic weight update (left panel, Fig. 3A).
The weight increase was achieved by increasing the conductance G* in one memristor using SET
pulses, whereas the weight reduction was achieved by increasing G™ in the other memristor using
RESET pulses. Both cases employ SET programming that does not involve the use of 7r. Only
when the conductance of a memristor reaches a maximum, a RESET programming involving T
is executed (Fig. S8). This strategy minimizes the time budget added by 7. In this way, more than
100 weight states could be achieved in the unit pair (Fig. S9). The updates were reversible,
maintaining good linearity and symmetry during the repeated cycles (right panel, Fig. 3A), which
can be attributed to the reliable and confined Ta conductive channel formed in the HfO, matrix*3.
These properties showed reliable programmability in the cells for neural networks.



We first used the array for SSD classification (e.g., "1" to "4"). SSD is used for displaying
decimal numerals and intensity variation in the segments represents realistic scenarios that require
intelligent recognition, providing a good example for evaluating neural network*’. To emulate the
realistic intensity variation, a 21-level grayscale was used for the segments and different noise
levels (e.g., the Gaussian distribution ¢ = 0.5, 1.5, 2.5, and 3.5) were randomly added (Fig. 3B,
Fig. S10).

For the paired representation of synaptic weight, the differential output from a pair of
neighboring BLs served as one neuronal output (Fig. 3C). The resultant four outputs thus
represented the four classifications of the digits. The converted grayscale intensity from the seven
segments (plus one constant bias of 0.7 V) served as the vector input to the 8 WLs. An offset value
of 0.3 V was applied to each converted analog input to bypass the nonlinear region of the diode.
The 21-level grayscale was thus converted to a voltage between 0.3 to 0.7 V. For simplified training,
clear SSD digits (i.e., without added noise) were used (Fig. S11, Experimental Procedures). The
trained network showed a dispersion in the synaptic weights (Fig. 4A), which was then used to
classify the more realistic SSD digits added with noise. Note that the synaptic weight was
converted from the reading current (at ¥ = 0.7 V) by the formula: weight = current/(6x10 A),
where 6x107 A is the conversion coefficient (Experimental Procedures). For the entire database of
400 samples, the network showed excellent recognition rates of 100 %, 99.5 %, and 95.2 % for
noise levels (o) of 0.5, 1.5, and 2.5, respectively (Fig. 4B). Note that the high recognition rates at
low noise levels are reasonable for the small number of classifications with well-defined patterns.
Similar results were obtained by simulation using a larger testing dataset with different noise levels
(Fig. S12). The recognition rate dropped to ~80 % with the noise level o = 3.5. This is because the
level of noise has blurred the segments beyond easy recognition even by human eyes (bottom panel,
Fig. 3B). For example, in one case, the blurring led to ambiguity between the two digits "1" and
"3" (Fig. 4C). The close values between the neuronal outputs of "1" and "3" still captured this
ambiguity. In another case, even though the ambiguity existed between patterns of "1" and "2", the
network could still successfully classify digit "2" since the digit "1" was not displayed in the right
place (Fig. 4D).

4. Hand-written digit classification

We then used the 8x8 array for hand-written digit recognition from the Modified National
Institute of Standards and Technology (MNIST) dataset, which is a standard benchmark to evaluate
learning algorithms *!. The MINST image is usually flatted to N x N pixels, yielding an input
vector size of N? that exceeds the input size (e.g., 8) of the array 2. Therefore, we used reservoir
computing to first compress the N*-sized input vector to an N-sized one *2. Specifically, we
proposed to use the temporal dynamics innate to a resistor-capacitor (RC) circuit as the reservoir
system to compress the data (Fig. 5A). First, each of the images ("1" through "4") from the MNIST
database was rescaled to 7 % 7 pixels (Experimental Procedures). The grayscale (out of 256 levels)
in each pixel was converted to an analog voltage (between 0.3 to 0.7 V). The sequence of the seven
converted values in each row was fed into the RC reservoir for an output. In this way, the 7 x 7
input vector was compressed to a 7x1 vector, which (plus one constant bias of 0.7 V) served as the
input to the 8 WLs in the 1D1R array for training and classification.



The time constant (e.g., RC) in the reservoir system was chosen to be comparable to the time
span of the input sequence (i.e., NpxT, where Np and T are the number and width of the converted
pixels in an input sequence). Specifically, we used Np7 = 2.5RC with Np=7, T=100 us, R =2.9
kQ, and C =100 nF (Experimental Procedures). For reservoir computing, an activation pulse (400
mV, 200 us) was first used to raise the output baseline (to ~1/2 V), followed by the seven sequential
converted pixel values in a row vector. The instant voltage across the capacitor right after the
seventh input was taken as the reservoir output. Fig. 5B shows two special cases when the input
streams were "0000000" (green curve) and "VVVVVVV" (V representing the full amplitude of
400 mV, yellow curve) to yield the minimum and maximum reservoir outputs, respectively. For a
typical MNIST digit (e.g., "3"), the seven-row vectors (each having seven sequential pixel values)
yielded seven differentiated reservoir outputs (Fig. 5C). Inputs converted from other digits also
yielded differential reservoir outputs (Fig. S13), suggesting that the RC reservoir system can
effectively compress input data.

The compressed input data sets (from a total of 34000 MNIST images) were used to train the
8x8 neural network (Fig. S11 and Experimental Procedures). The 32 synaptic weights in the array
showed progressive dispersion after the in situ training (Fig. 5D, Fig. S14). After 85 epochs, an
average recognition rate of 71 % was achieved from the testing of 400 images (Fig. 5E, green
curve), with the recognition rates for individual digits also shown (Fig. 5F). We compared the
experimental result to the simulation result (Fig. S15), which showed that the two had very close
rates (Fig. SE, yellow curve). The method can be used to classify images applied with the same
degree of rotation to achieve a similar level of recognition rate (Fig. S16), showing the generality
in its applicability. Increasing the data variety (e.g., mixing rotated images with unrotated ones)
did lead to a reduced classification rate, suggesting that a larger array size is needed for augmenting
data complexity. Increasing the array size (e.g., to 64x128) is expected to improve the recognition
rate, as revealed by simulation (Figs. S15, S17). Note that with the optimal choice of input voltage
range, the effect of possible nonlinearity from the diode can be effectively suppressed (Fig. S18).

5. Diode-memristor integration

Following the above functional validation, we provided a proof-of-concept demonstration of
crossbar architecture fabricated from the 1DIR stacking cells for the potential of integrated
neuromorphic computing. The diode was fabricated by depositing a layer of n-type ZnO onto a p-
type Si layer ¥*. ZnO was used for the n-type layer for fabrication convenience. The memristor
with a layered structure of Ta/HfOx/HfOy/Pt was fabricated on top of the diode to form the stacking
IDIR cell (Fig. 6A, Fig. S19). An 8%8 crossbar array was integrated on a Si substrate (Fig. 6B-D,
Fig. S20 and Experimental Procedures, and Supplemental Experimental Procedures).

The 64 diodes in the integrated array showed uniform current-voltage (/-V) characteristics
featuring the rectifying effect and transient dynamics (Fig. 6E). A reverse current larger than 4 mA
(at a reverse bias of -1 V) could pass the diode during the reserve recovery time (7 ~ 200 ns,
inset), which is sufficient for RESET operation in typical memristors*. The T maintained the
stable value after extensive switching (e.g., 107 cycles) in the diode (Fig. S21), showing the
reliability for scalable integration. The 64 Pt/HfOx/HfOy/Ta memristors were fabricated in a
reverse layer structure to conform to the driving-current direction in the diode (Fig. S22). The



memristors showed average SET and RESET thresholds of 0.58+0.08 V and -0.47+0.04 V,
respectively (Fig. 6F). The On-state curves (set by applying the same compliance current) also
showed uniform distribution (Fig. S23.a), which is relevant because the SET operation is
predominantly used for weight update in the array (Fig. S8). As a result, the integrated 1DIR cell
could be successfully programmed to different conduction states by applying different compliance
currents (Fig. 6G). The cell could be reset to an HRS from these programmed states by applying a
RESET pulse (e.g., -0.5 V) in the Ty window (Fig. S24). The cell could also be repeatedly
programmed to different conduction states (Fig. 6H), showing reliable programmability for
synaptic weight update in a network. Note that a one-time RESET was used to closely represent
the actual weight update strategy in a cell made from a pair of memristors (Fig. S8). The
programmability in the entire array was demonstrated by the consecutive programming of the array
into pixeled letters of "UMASS" (Fig. 6I). The dispersity in the programmed pixels in the array
was consistent with the conductance dispersity in individual Ta-HfO> memristors (Fig. S23),
suggesting that the inherent stochasticity in memristors (rather than the programming theme)
caused the image dispersion. Improving performance uniformity in the memristors (e.g., by
denoising procedure **) is expected to improve programming uniformity in the array.

DISCUSSION AND OUTLOOK

In this work, we have demonstrated that a diode can be implemented as a bidirectional selector
for constructing two-terminal memristor architecture by exploiting its reverse recovery dynamics.
The constructed 1DIR arrays are implemented for in sifu neural training and classification, and a
stacking 1DIR cell structure is exploited to demonstrate scalable integration.

The diode needs to maintain a certain driving current and 7 in order to ensure successful SET
and RESET programming in the memristors. We used the mainstream memristor (e.g., Ta-HfO:
system) to estimate the scaling potential in the diode. An empirical driving current >5 mA (at 2 V)
and T+ > 40 ns were revealed to ensure the successful programming of the memristor (Fig. S25 a-
¢). Our simulated diode model showed that the diode could maintain a driving current ~8§ mA (at
2 V) and T:»~80 ns with the size reduced to 10x10 pm? (Fig. S25 d-f). This size is compatible with
the integration density achieved in many current neuromorphic systems 2?2, Further downsizing
the system is possible by engineering high-current/long-retention diode*> or low-current/fast-
switching nonvolatile memristors 4447,

Besides improving the compactness/simplicity in integration, the two-terminal 1DI1R
architecture can also reduce the peripheral budget compared to other multiple-terminal systems.
One such area is the power consumption involved in digital-to-analog converters (DACs) 4. The
ID1R architecture was estimated to save 68x(N-1) mW (with an array size of NxN) in DACs
compared to other memristor architectures (Note S1).

We acknowledge that the 1TIR architecture can remain as the mainstream strategy for the
reliable and efficient integration of memristor networks. Our work points to a potential alternative
for constructing two-terminal memristor architectures. The strategy can hold promise for practical
implementation due to the technological maturity of diode. The current demonstration is based on



diodes that are not fully optimized for memristor pairing, which means that continuous study in
device engineering may progressively improve the function and integration.

EXPERIMENTAL PROCEDURES
Lead contact

Further information and requests for resources should be directed to and will be fulfilled by
the lead contact, Jun Yao (Juny@umass.edu).

Materials availability

All processing solvents, such as acetone, isopropyl alcohol, were purchased from commercial
sources and used as received. Silicon-on-insulator (SOI) wafer (12 um p-type layer, p ~ 0.007-
0.015 Q-cm) was purchased from EI-Cat Inc.

Data and code availability

The data that support the findings of this study are available within the paper and its
supplemental information files. Additional data and files are available from the corresponding
author upon reasonable request.

Device fabrication

Ta/HfO>/Pt memristor. The memristor was fabricated following previous procedures '*.
Briefly, the bottom electrode (Ti/Pt, 5/25 nm) was defined by standard photolithography, metal
deposition, and liftoff processes on a Si substrate capped with 600 nm thermal oxide. A 5 nm-thick
HfO:; dielectric layer was deposited by atom layer deposition (ALD) at 250 °C. The top electrode
(Ta/Pt, 20/15 nm) was defined by similar lithographic processes. Reactive ion etching (RIE) was

used to selectively expose the bottom electrode for electrical addressing.

Stacking 88 IDIR array. A silicon-on-insulator (SOI) wafer (12 pum p-type layer, p ~ 0.007-
0.015 Q-cm) was used. The detailed fabrication procedure is described in Fig. S20 and
Supplemental Experimental Procedures.

Electrical measurement

All the electrical measurements were performed in the ambient environment. The I-V/I-t/V-t
curves and pulse measurements were performed by using a semiconductor analyzer (Keysight
B1500). The voltage output from the RC reservoir was collected by an ADC (Digidata 1440A).
The diode endurance was measured by the combination of a waveform generator (Keysight
33500B), a current amplifier (DL-1211), and an ADC (Digidata 1440A) as illustrated in Fig. S21b.
The programming and processing in the 8x8 1DI1R array were performed by a homemade circuit
system (Fig. S5). The sneak-path current was measured by a current amplifier (DL-1211;)
connected with an ADC (Digidata 1440A).

Dataset

The dataset with noise for SSD classification was generated using the Gaussian random
number generator (Fig. S10). The dataset for MNIST classification was cropped from the original
28 x 28 pixels images to 20 x 20 pixels ones. Then, a bicubic interpolation algorithm?®* was used
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to further reduce the image size to 7 X 7 pixels (for experiment and simulation) or 8 x 8 pixels (for
simulation).

Algorithm

The in-situ training involved feedforward interference and feedback weight update*® (Fig. S11).
All memristors were initially set to the HRS. The grayscale (21 levels for SSD images and 256
levels for MNIST images) was linearly converted to a voltage between 0.3 to 0.7 V.

For the SDD training, each epoch used 4 images (e.g., 4-time weight updates per epoch), and
16 epochs were used. For the MNIST training, each epoch used 400 images with a minibatch size
of 50 (e.g., 8-time weight updates per epoch), and 85 epochs (a total of 34000 images) were used.

In the forward path, the weight summation was performed in the memristor array by:

8
L= f5(%0) &

i=1
, where I; is the output current of BL j and V,. (i) the input voltage of WL i for pattern x. f;;() is

the /-V relationship of each 1DIR cell. Next, an activation function was used to obtain the final
neuronal outputs:

1
1 + e_(IZ*k_IZ*k—1)/0-00006 (2)

0(k) =

, where k=1, 2, 3, 4 (note that a pair of BLs forms one neuron) and (2k-1, 2k) is the neighboring
pair of BLs. Thus, the current difference I,,, — I,.,_; represents the immediate neuronal output.
A coefticient of 0.00006 (A) is used in the activation function.

In the backward path, the weight adjustment Awyy, is first calculated by:
Awye = Ir x (T (k) = 0(k)) * O(k) * (1 = 0(k)) * (Ve (i) — 0.3) (3)

, where Ir is the learning rate (Ir = 2.5) and T, (k) the target output from the ™ neuron for
each specific input pattern x. Then, the accumulated weight adjustment Awf ¢ is updated

according to the minibatch size M (M = 1 for SSD and M = 50 for MNIST classification):

Awik
M

acc __ acc
AWik = AWik

(4)

With the accumulated weight, the compliance current used for synaptic weight update for each
IDIR cell is:

CC; o = CC; o + AWEE % 0.00012
(oam T St i w0 (5)
and
CCi,Z*k = CCi,Z*k ' e
{CCi.Z*k—l = CCppuper + AwE< 0,00012 TAWik™ <0 (6)



, Where a coefficient of 0.00012 (A) is used to convert the weight to the compliance current.

RC reservoir design
According to the equation of an RC circuit:

C il + v 0 (7)
dt R
, the output voltage V is:
t
V(t) = Vye RC (8)

We choose the time constant that allows the voltage to reduce to ~10% of the initial value
during the input sequence of (0000000) (i.e., the lower-bound output) to ensure a wide output
window. This leads to

rC Np X T ©
T 25
or,
Ny, X T = 2.5RC (10)

, where N, and T are the number and width of the converted pixels in an input sequence (Fig.
5B).
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Figure 1. Addressing concept and basic performance in the 1D1R cell. A, (i) Schematic of a
2x2 1DIR array during a forward selective addressing, which relies on the (ii) rectification window
(yellow) in the diode. (iii) The suppression of reverse current in the rectification window measured
from a diode, with the applied voltage following the schematic sequence in (ii). B, (i) Schematic
of a reverse selective addressing, which relies on the (ii) reverse recovery window (purple) in the
diode. (ii1) The reverse current flow in the reverse recovery window measured from a diode, with
the applied voltage following the schematic sequence in (ii). C, (i) A SET operation ina 1DIR cell
(left schematic). The SET process used a pulse of 1.2 V, 3 pus. An increase in the reading current
was shown by the reading pulses (0.7 V, 100 ps) before and after the SET operation. (ii). The
RESET process involved a positive pulse of 0.7 V, 5 us to first activate the diode, immediately
followed by a negative pulse of -1.2 V, 3 us within the reverse recovery window. A decrease in the
reading current was shown by the reading pulses (0.7 V, 100 pus) before and after the RESET
operation.

Figure 2. Performance of 1D1R arrays. A, Demonstration of suppression of sneak-path current
in a 2x2 array, with the memristors in the sneak path having LRS and memristor in the selected
path having HRS. B, Selective programming of memristors (colorful) in a 3x3 array. The selected
memristors were successfully programmed to different states (color curves), whereas the
unselected ones maintained the same state (black curves). C, A 16x32 pixeled "UM" logo formed
by stitching eight 8x8 sub-images sequentially programmed by the 8x8 array. The programming
order was from top to bottom and from left to right, as shown by red dash lines.

Figure 3. SSD in situ training. A, Continuous synaptic weight updates (Vread = 0.7 V) in a synapse
formed by a pair of 1D1R cells (left schematic). Each cycle contains 102 states. B, Schematic of
noise generation in SSD. The bottom panel shows a series of SSD images added with different
noise levels. C, Circuit diagram of the 8x8 1DIR array for SSD classification. The converted
grayscale in each segment of the SSD was converted to voltage signal and served as the input to
the array. The differential current output in each pair of BLs represented the classification of each
digit.

Figure 4. Results of SSD classification. A, The weight distributions in the array before and after
the training. B, Evolution of the recognition rates with different noise levels added in the SSD
images. C, A case that the visual ambiguity between a"1" and "3" was captured by the close outputs
between neurons' 1' and '3'. D, A case that the digit "2" was successfully classified.

Figure 5. MNIST classification. A, Schematic of the MNIST classification process, involving the
image resizing and pixel vector (e.g., grayscale-to-voltage) conversion (left), reservoir
compression (middle), and classification by the 8x8 1D1R array (right). B, Schematic of the RC
reservoir output. An activation pulse (400 mV, 200 ps) is followed by 7 sequential converted pixel



values in a row. The upper (yellow) and lower (green) output bounds are generated by the
sequences of (0000000) and (VVVVVVYV), respectively. C, An exemplary input series
representing the digit "3" displayed in (A), with the corresponding output series (right). D,
Evolution of the 32 synaptic weights during the in-situ training. E, Comparison of the recognition
rates between the experiment and simulation. F, the confusion matrix for the experiment result

(right).

Figure 6. Integrated 8x8 1D1R stacking array. A, Schematic of the individual stacking cell. B,
Optical image of a fabricated cell. Scale bar, 150 um. C, Scanning electron microscope (SEM)
image of the integrated array. Scale bar, 200 um. D, Optical image of the integrated array on a Si
substrate. Scale bar, 5 mm. E, /-V characteristics and reserve recovery dynamics (inset) measured
from the 64 diodes in the array. The average Off current (V' = -2 V) was 5.88 = 0.71 pA (£s.d.),
and the average On current (J'=2V) was 7.35 £0.64 mA (£s.d.). F, I-V characteristics from the 64
memristors in the array. The green curves show the cumulative probabilities of the threshold
voltages. A current compliance of 500 pA was applied for the SET processes. G, Representative
I-V characteristics from a selected cell showing the controlled weight/conductance update by using
different compliance currents. H, Representative reversible programming from a selected cell.
Each cycle covered ten states. I, A "UMASS" logo made from five 8x8 pixeled letters that were
consecutively programmed by the same array. Each state was read by a reading voltage of 1.2 V.
Compliance currents of 0, 200, 400, 700, and 1100 pA and were used for programming the
background in the five letters, respectively. Compliance currents of 400, 700, 1100, 0, and 200 nA
were used to programming the letters, respectively.



