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SUMMARY 

Transistor is broadly used to address memristor networks, but its three-terminal structure can 

impose limitations on fully exploiting the potential of efficient integration a two-terminal 

memristor can offer. While a two-terminal selector is desirable for unlocking this potential, no 

existing device has attained a similar level of functional maturity. Diode, despite the technological 

maturity, is still limited by its unipolarity in addressing mainstream bipolar memristors. Here, we 

demonstrate that a diode can be implemented as a bidirectional selector for constructing two-

terminal memristor architecture by exploiting its reverse recovery dynamics. This is demonstrated 

by the construction of one-diode-one-memristor (1D1R) programmable arrays, which are 

implemented for in situ neural training and classification. Furthermore, a crossbar array made from 

stacking 1D1R cells is fabricated to demonstrate scalable integration. This dynamic paradigm 

combines the advantages of functional maturity and structural simplicity of diode selectors to 

improve the development of memristor integration.   
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INTRODUCTION 

Neuromorphic computing based on memristors has the potential to improve information 

processing by circumventing the data shuttle in traditional Von-Neumann architectures 1-8. 

Memristors built from emergent new materials (e.g., 2D materials) have further expanded the 

potential in functions and integration 9-13. The enabled vector-matrix multiplication (VMM) in the 

integrated memristor array can parallel previous computationally expensive sequences for efficient 

throughput 5-8,14,15. However, the precision in the network programming and subsequent VMM 

operation heavily depends on the effectiveness in suppressing the sneak-path conduction, which 

otherwise can yield programming and reading errors to impair computing accuracy16,17. One 

common solution is to pair a transistor with each memristor to control the local current passage. 

This one-transistor-one-memristor (1T1R) strategy has been successfully implemented in many 

systems for various functional demonstrations 8,13,14,18-23. However, the three-terminal transistor 

adds structural and addressing complexity to the architecture. A two-terminal selector is highly 

desirable to fully exploit the benefit of simplicity and compactness from a crossbar architecture 
16,24,25. Nevertheless, no existing two-terminal selector has achieved a functional maturity close to 

that of a transistor for practical implementation 7. For example, many demonstrated selectors based 

on filamentary switching devices lack the stability for high endurance and uniformity required in 

a programmable network 16,26. Although the diode features a technology maturity similar to the 

transistor, its unipolarity only allows for addressing unipolar memristors 16,27 but prevents 

compatibility with the mainstream networks built from bipolar memristors 8,14,18-23. Bidirectional 

tunneling devices are limited in current density and introduce large nonlinearity that can prevent 

the direct use of VMM 16. During programing, the rest unselected cells are often applied with a 

voltage to the half or third value of the programming voltage V applied to the selected cell, in order 

to offset the voltage drop across these cells for avoiding unintended state change; this 1/2V or 1/3V 

programming theme can substantially increase power consumption in array applications 16.  

Despite the limited success, the potential benefits of a two-terminal selector have continued to 

stimulate the exploration of new concepts for better solutions. One general strategy is to explore 

the transient dynamics in some devices for timed addressing 24,28. For example, the delay time in 

a volatile bipolar memristor, which is inversely related to the applied voltage, is employed for the 

construction of a timing selector 28. The selectors along the sneak path, due to the voltage-divider 

effect, are activated slower than the one in the selected path. This time difference provides a 

transient window for selective programming. In another strategy, the retention time in a volatile 

unipolar memristor with the ultralow threshold 29 is exploited to enable bidirectional addressing 24. 

On the one hand, the forward selective addressing is readily enabled by the unidirectional 

conduction in the switch. On the other hand, the retention time also creates a transient window for 

the reverse addressing. These strategies, however, still suffer from instability and nonuniformity 

resulted from the inherent stochasticity in the filamentary selectors for practical implementations 
30. Nonetheless, they do offer an insightful perspective: if the transient dynamics of a mature device 

technology are harnessed, it may lead to the practical solution of a reliable two-terminal selector.   

Here, we demonstrate that the transient reverse recovery time (Trr) in a diode31,32 can be 

exploited to enable bidirectional addressing for constructing reliable one-diode-one-memristor 

(1D1R) programmable memristor networks. This strategy can work with all memristors (e.g., both 



unipolar and bipolar types), thus greatly expanding the capacity in previous 1D1R architecture that 

only works with unipolar memristors 16,27. Meanwhile, the number of addressing lines (2N) in a 

1D1R architecture (e.g., with a N×N array size) is reduced from that (3N) in the 1T1R architecture. 

As a result, this strategy has the combined advantages of both functional maturity and structural 

simplicity for practical applications. We validate the strategy by connecting commercial diodes 

with the mainstream Ta-HfO2 nonvolatile memristors 14,19,22,33 to construct an 8×8 array for 

programmable network. The programmability is analyzed and demonstrated by in situ training of 

the network for digit classifications. The functional validation is followed by the fabrication and 

integration of 1D1R stacking cells in a crossbar network to demonstrate the potential for integrated 

neuromorphic computing. This 1D1R integration can also be readily used for constructing two-

terminal crossbar memory array.  

RESULTS 

1. General concept 

A 2×2 array that is the constituent unit in larger arrays is used to illustrate the working concept. 

The 1D1R array shares the same structural configuration as previously used for addressing 

unipolar memristor networks 16,27,34-38, with the rectifying effect in the diode readily exploited to 

suppresses the sneak-path conduction in a forward operation (Fig. 1A). Here, the fundamental 

difference is that the reverse recovery time Trr of the diode is harnessed to enable reverse selective 

addressing (Fig. 1B). Specifically, Trr describes the finite time needed for the diode to discharge 

before it switches from the forward-biased (On) state to the reverse-biased (Off) state (Fig. 1B (ii)) 
31,32. This transient window allows the reverse current flow (Fig. 1B (iii)) for the reverse 

programming of the connected memristor. Note that in the sneak path, this transient window does 

not exist since the two forward-biased diodes are initially in the Off state (Fig. 1B (i)). Together, 

this enables the selected reverse programming in the network. The blockage of the sneak-path 

conduction during both the forward and reverse programming suggests that concurrent 

programming of multiple cells (e.g., along the same column) is feasible. In addition, this selective 

programming theme does not need the 1/2V or 1/3V method 16, benefiting the power reduction in 

array applications.   

We first employed commercial diodes for the characterization and demonstration. The 

measured Trr was positively related to the driving voltage and time (Fig. S1), consistent with the 

general expectation that the internally stored charge in the junction region increases with the input 

voltage and charging time. The measured Trr of several µs can provide a sufficient time window 

for the mainstream (e.g., Ta-HfO2-based) nonvolatile memristors 39 (Fig. S2 and Experimental 

Procedures). The fabricated Ta-HfO2 memristors showed a high yield and relatively uniform 

performance (Fig. S3) for integrated demonstration.  

We then constructed a 1D1R cell by connecting the two devices and tested the programmability 

(Fig. 1C). A 0.7 V reading pulse (t = 50-150 µs) was applied to the Word Line (WL) with the Bit 

Line (BL) grounded, showing an initial reading current of ~21 µA (Fig. 1C (i)). For the SET 

programming, a pulse of 1.2 V, 3 µs was then applied (t ~ 200 µs). Note that although the reverse 

recovery process yielded a reverse current right after the SET pulse (gray region), the absence of 

applied reverse voltage did not yield any RESET effect. The subsequent reading (t = 250-350 µs) 



showed an increased current of ~80 µA, showing the successful SET process. For the RESET 

programming (Fig. 1C (ii)), a pulse of 0.7 V, 5 µs (t = 200 µs) was first applied to forwardly 

activate the diode. The pulse was immediately followed by a RESET pulse of -1.2 V, 3 µs (t = 200-

203 µs). This reverse pulse was within the Trr window, so it could apply to the cell. The successful 

RESET programming was confirmed by that the cell changed from an initial reading current of 

~98 µA (t = 50-150 µs) to ~34 µA (t = 250-350 µs)) after the RESET pulse.  

2. 8×8 1D1R array 

We then connected 64 commercial diodes with 64 Ta-HfO2 memristors to form an 8×8 1D1R 

programmable array (Figs. S4-6). Without loss of generality, we used a 2×2 array, which is the 

constituent unit for an arbitrary-sized array24, to examine the selective reading (Fig. 2A, 

Experimental Procedures). We considered the worst case when the memristors in the sneak path 

(black cells) were set to a Low Resistance State (LRS) and the memristor in the selected path 

(orange cell) was set to a High Resistance State (HRS). A 0.7 V reading voltage was applied 

between WL1 and BL1 for current readout. The sneak-path current (blue curve) showed negligible 

value compared to the reading current of ~8 µA (red curve) from the selected cell, showing 

successful suppression of the sneak-path current by rectification from the diode. Analysis showed 

that the read margin could maintain a value >60 % with the array size (N×N) increasing to N > 103 

(Fig. S7). We then used a 3×3 array to examine the selective programmability. Using the addressing 

strategy in Fig. 1C, we could reversibly adjust the conductance in selected memristors (orange) in 

a 3×3 array without altering states in unselected (black) memristors (Fig. 2B).  

The selective programming and state readout were then applied to the entire 8×8 array (Fig. 

2C). A 16×32 pixeled "UM" logo was used as the targeting pattern to program. The background 

was designed to have a gradient, whereas the "U" and "M" letters had fixed weights. This 16×32 

pixeled image can be divided into eight 8×8 sub-images. The same 8×8 array was consecutively 

programmed to the eight sub-images, showing reliable re-programmability needed for in situ 

neural training. 

3. Seven-segment-display (SSD) classification 

We further evaluated the enabled selective programmability by implementing the 8×8 array as 

a double-layer neural network. The synaptic weight in a neural network is often represented by the 

differential conductance (e.g., G+-G-) between a pair of memristors2. We therefore used a 1×2 array 

from the entire array as the pair to test the ability in synaptic weight update (left panel, Fig. 3A). 

The weight increase was achieved by increasing the conductance G+ in one memristor using SET 

pulses, whereas the weight reduction was achieved by increasing G- in the other memristor using 

RESET pulses. Both cases employ SET programming that does not involve the use of Trr. Only 

when the conductance of a memristor reaches a maximum, a RESET programming involving Trr 

is executed (Fig. S8). This strategy minimizes the time budget added by Trr. In this way, more than 

100 weight states could be achieved in the unit pair (Fig. S9). The updates were reversible, 

maintaining good linearity and symmetry during the repeated cycles (right panel, Fig. 3A), which 

can be attributed to the reliable and confined Ta conductive channel formed in the HfO2 matrix33. 

These properties showed reliable programmability in the cells for neural networks.   



We first used the array for SSD classification (e.g., "1" to "4"). SSD is used for displaying 

decimal numerals and intensity variation in the segments represents realistic scenarios that require 

intelligent recognition, providing a good example for evaluating neural network40. To emulate the 

realistic intensity variation, a 21-level grayscale was used for the segments and different noise 

levels (e.g., the Gaussian distribution σ = 0.5, 1.5, 2.5, and 3.5) were randomly added (Fig. 3B, 

Fig. S10).  

For the paired representation of synaptic weight, the differential output from a pair of 

neighboring BLs served as one neuronal output (Fig. 3C). The resultant four outputs thus 

represented the four classifications of the digits. The converted grayscale intensity from the seven 

segments (plus one constant bias of 0.7 V) served as the vector input to the 8 WLs. An offset value 

of 0.3 V was applied to each converted analog input to bypass the nonlinear region of the diode. 

The 21-level grayscale was thus converted to a voltage between 0.3 to 0.7 V. For simplified training, 

clear SSD digits (i.e., without added noise) were used (Fig. S11, Experimental Procedures). The 

trained network showed a dispersion in the synaptic weights (Fig. 4A), which was then used to 

classify the more realistic SSD digits added with noise. Note that the synaptic weight was 

converted from the reading current (at V = 0.7 V) by the formula: weight = current/(6×10-5 A), 

where 6×10-5 A is the conversion coefficient (Experimental Procedures). For the entire database of 

400 samples, the network showed excellent recognition rates of 100 %, 99.5 %, and 95.2 % for 

noise levels (σ) of 0.5, 1.5, and 2.5, respectively (Fig. 4B). Note that the high recognition rates at 

low noise levels are reasonable for the small number of classifications with well-defined patterns. 

Similar results were obtained by simulation using a larger testing dataset with different noise levels 

(Fig. S12). The recognition rate dropped to ~80 % with the noise level σ = 3.5. This is because the 

level of noise has blurred the segments beyond easy recognition even by human eyes (bottom panel, 

Fig. 3B). For example, in one case, the blurring led to ambiguity between the two digits "1" and 

"3" (Fig. 4C). The close values between the neuronal outputs of "1" and "3" still captured this 

ambiguity. In another case, even though the ambiguity existed between patterns of "1" and "2", the 

network could still successfully classify digit "2" since the digit "1" was not displayed in the right 

place (Fig. 4D).  

4. Hand-written digit classification 

We then used the 8×8 array for hand-written digit recognition from the Modified National 

Institute of Standards and Technology (MNIST) dataset, which is a standard benchmark to evaluate 

learning algorithms 41. The MINST image is usually flatted to N × N pixels, yielding an input 

vector size of N2 that exceeds the input size (e.g., 8) of the array 22. Therefore, we used reservoir 

computing to first compress the N2-sized input vector to an N-sized one 42. Specifically, we 

proposed to use the temporal dynamics innate to a resistor-capacitor (RC) circuit as the reservoir 

system to compress the data (Fig. 5A). First, each of the images ("1" through "4") from the MNIST 

database was rescaled to 7 × 7 pixels (Experimental Procedures). The grayscale (out of 256 levels) 

in each pixel was converted to an analog voltage (between 0.3 to 0.7 V). The sequence of the seven 

converted values in each row was fed into the RC reservoir for an output. In this way, the 7 × 7 

input vector was compressed to a 7×1 vector, which (plus one constant bias of 0.7 V) served as the 

input to the 8 WLs in the 1D1R array for training and classification. 



The time constant (e.g., RC) in the reservoir system was chosen to be comparable to the time 

span of the input sequence (i.e., ND×T, where ND and T are the number and width of the converted 

pixels in an input sequence). Specifically, we used NDT = 2.5RC with ND = 7, T = 100 µs, R = 2.9 

kΩ, and C = 100 nF (Experimental Procedures). For reservoir computing, an activation pulse (400 

mV, 200 µs) was first used to raise the output baseline (to ~1/2 V), followed by the seven sequential 

converted pixel values in a row vector. The instant voltage across the capacitor right after the 

seventh input was taken as the reservoir output. Fig. 5B shows two special cases when the input 

streams were "0000000" (green curve) and "VVVVVVV" (V representing the full amplitude of 

400 mV, yellow curve) to yield the minimum and maximum reservoir outputs, respectively. For a 

typical MNIST digit (e.g., "3"), the seven-row vectors (each having seven sequential pixel values) 

yielded seven differentiated reservoir outputs (Fig. 5C). Inputs converted from other digits also 

yielded differential reservoir outputs (Fig. S13), suggesting that the RC reservoir system can 

effectively compress input data. 

The compressed input data sets (from a total of 34000 MNIST images) were used to train the 

8×8 neural network (Fig. S11 and Experimental Procedures). The 32 synaptic weights in the array 

showed progressive dispersion after the in situ training (Fig. 5D, Fig. S14). After 85 epochs, an 

average recognition rate of 71 % was achieved from the testing of 400 images (Fig. 5E, green 

curve), with the recognition rates for individual digits also shown (Fig. 5F). We compared the 

experimental result to the simulation result (Fig. S15), which showed that the two had very close 

rates (Fig. 5E, yellow curve). The method can be used to classify images applied with the same 

degree of rotation to achieve a similar level of recognition rate (Fig. S16), showing the generality 

in its applicability. Increasing the data variety (e.g., mixing rotated images with unrotated ones) 

did lead to a reduced classification rate, suggesting that a larger array size is needed for augmenting 

data complexity. Increasing the array size (e.g., to 64×128) is expected to improve the recognition 

rate, as revealed by simulation (Figs. S15, S17). Note that with the optimal choice of input voltage 

range, the effect of possible nonlinearity from the diode can be effectively suppressed (Fig. S18). 

5. Diode-memristor integration 

Following the above functional validation, we provided a proof-of-concept demonstration of 

crossbar architecture fabricated from the 1D1R stacking cells for the potential of integrated 

neuromorphic computing. The diode was fabricated by depositing a layer of n-type ZnO onto a p-

type Si layer 43. ZnO was used for the n-type layer for fabrication convenience. The memristor 

with a layered structure of Ta/HfOx/HfOy/Pt was fabricated on top of the diode to form the stacking 

1D1R cell (Fig. 6A, Fig. S19). An 8×8 crossbar array was integrated on a Si substrate (Fig. 6B-D, 

Fig. S20 and Experimental Procedures, and Supplemental Experimental Procedures).  

The 64 diodes in the integrated array showed uniform current-voltage (I-V) characteristics 

featuring the rectifying effect and transient dynamics (Fig. 6E). A reverse current larger than 4 mA 

(at a reverse bias of -1 V) could pass the diode during the reserve recovery time (Trr ~ 200 ns, 

inset), which is sufficient for RESET operation in typical memristors39. The Trr maintained the 

stable value after extensive switching (e.g., 107 cycles) in the diode (Fig. S21), showing the 

reliability for scalable integration. The 64 Pt/HfOx/HfOy/Ta memristors were fabricated in a 

reverse layer structure to conform to the driving-current direction in the diode (Fig. S22). The 



memristors showed average SET and RESET thresholds of 0.58±0.08 V and -0.47±0.04 V, 

respectively (Fig. 6F). The On-state curves (set by applying the same compliance current) also 

showed uniform distribution (Fig. S23.a), which is relevant because the SET operation is 

predominantly used for weight update in the array (Fig. S8). As a result, the integrated 1D1R cell 

could be successfully programmed to different conduction states by applying different compliance 

currents (Fig. 6G). The cell could be reset to an HRS from these programmed states by applying a 

RESET pulse (e.g., -0.5 V) in the Trr window (Fig. S24). The cell could also be repeatedly 

programmed to different conduction states (Fig. 6H), showing reliable programmability for 

synaptic weight update in a network. Note that a one-time RESET was used to closely represent 

the actual weight update strategy in a cell made from a pair of memristors (Fig. S8). The 

programmability in the entire array was demonstrated by the consecutive programming of the array 

into pixeled letters of "UMASS" (Fig. 6I). The dispersity in the programmed pixels in the array 

was consistent with the conductance dispersity in individual Ta-HfO2 memristors (Fig. S23), 

suggesting that the inherent stochasticity in memristors (rather than the programming theme) 

caused the image dispersion. Improving performance uniformity in the memristors (e.g., by 

denoising procedure 44) is expected to improve programming uniformity in the array.    

DISCUSSION AND OUTLOOK  

In this work, we have demonstrated that a diode can be implemented as a bidirectional selector 

for constructing two-terminal memristor architecture by exploiting its reverse recovery dynamics. 

The constructed 1D1R arrays are implemented for in situ neural training and classification, and a 

stacking 1D1R cell structure is exploited to demonstrate scalable integration. 

The diode needs to maintain a certain driving current and Trr in order to ensure successful SET 

and RESET programming in the memristors. We used the mainstream memristor (e.g., Ta-HfO2 

system) to estimate the scaling potential in the diode. An empirical driving current >5 mA (at 2 V) 

and Trr ≥ 40 ns were revealed to ensure the successful programming of the memristor (Fig. S25 a-

c). Our simulated diode model showed that the diode could maintain a driving current ~8 mA (at 

2 V) and Trr ~80 ns with the size reduced to 10×10 µm2 (Fig. S25 d-f). This size is compatible with 

the integration density achieved in many current neuromorphic systems 20-22. Further downsizing 

the system is possible by engineering high-current/long-retention diode45 or low-current/fast-

switching nonvolatile memristors 46,47.  

Besides improving the compactness/simplicity in integration, the two-terminal 1D1R 

architecture can also reduce the peripheral budget compared to other multiple-terminal systems. 

One such area is the power consumption involved in digital-to-analog converters (DACs) 14. The 

1D1R architecture was estimated to save 68×(N-1) mW (with an array size of N×N) in DACs 

compared to other memristor architectures (Note S1).  

We acknowledge that the 1T1R architecture can remain as the mainstream strategy for the 

reliable and efficient integration of memristor networks. Our work points to a potential alternative 

for constructing two-terminal memristor architectures. The strategy can hold promise for practical 

implementation due to the technological maturity of diode. The current demonstration is based on 



diodes that are not fully optimized for memristor pairing, which means that continuous study in 

device engineering may progressively improve the function and integration.  

 

EXPERIMENTAL PROCEDURES 

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by 

the lead contact, Jun Yao (juny@umass.edu). 

Materials availability 

All processing solvents, such as acetone, isopropyl alcohol, were purchased from commercial 

sources and used as received. Silicon-on-insulator (SOI) wafer (12 µm p-type layer, ρ ~ 0.007-

0.015 Ω‧cm) was purchased from EI-Cat Inc. 

Data and code availability 

The data that support the findings of this study are available within the paper and its 

supplemental information files. Additional data and files are available from the corresponding 

author upon reasonable request. 

Device fabrication 

Ta/HfO2/Pt memristor. The memristor was fabricated following previous procedures 19,33. 

Briefly, the bottom electrode (Ti/Pt, 5/25 nm) was defined by standard photolithography, metal 

deposition, and liftoff processes on a Si substrate capped with 600 nm thermal oxide. A 5 nm-thick 

HfO2 dielectric layer was deposited by atom layer deposition (ALD) at 250 ℃. The top electrode 

(Ta/Pt, 20/15 nm) was defined by similar lithographic processes. Reactive ion etching (RIE) was 

used to selectively expose the bottom electrode for electrical addressing. 

Stacking 8×8 1D1R array. A silicon-on-insulator (SOI) wafer (12 µm p-type layer, ρ ~ 0.007-

0.015 Ω‧cm) was used. The detailed fabrication procedure is described in Fig. S20 and 

Supplemental Experimental Procedures. 

Electrical measurement 

All the electrical measurements were performed in the ambient environment. The I-V/I-t/V-t 

curves and pulse measurements were performed by using a semiconductor analyzer (Keysight 

B1500). The voltage output from the RC reservoir was collected by an ADC (Digidata 1440A). 

The diode endurance was measured by the combination of a waveform generator (Keysight 

33500B), a current amplifier (DL-1211), and an ADC (Digidata 1440A) as illustrated in Fig. S21b. 

The programming and processing in the 8×8 1D1R array were performed by a homemade circuit 

system (Fig. S5). The sneak-path current was measured by a current amplifier (DL-1211;) 

connected with an ADC (Digidata 1440A).  

Dataset 

The dataset with noise for SSD classification was generated using the Gaussian random 

number generator (Fig. S10). The dataset for MNIST classification was cropped from the original 

28 × 28 pixels images to 20 × 20 pixels ones. Then, a bicubic interpolation algorithm22 was used 
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to further reduce the image size to 7 × 7 pixels (for experiment and simulation) or 8 × 8 pixels (for 

simulation). 

Algorithm 

The in-situ training involved feedforward interference and feedback weight update48 (Fig. S11). 

All memristors were initially set to the HRS. The grayscale (21 levels for SSD images and 256 

levels for MNIST images) was linearly converted to a voltage between 0.3 to 0.7 V.  

For the SDD training, each epoch used 4 images (e.g., 4-time weight updates per epoch), and 

16 epochs were used. For the MNIST training, each epoch used 400 images with a minibatch size 

of 50 (e.g., 8-time weight updates per epoch), and 85 epochs (a total of 34000 images) were used. 

In the forward path, the weight summation was performed in the memristor array by: 

𝐼𝑗 = ∑ 𝑓𝑖𝑗(𝑉𝑥(𝑖)) 

8

𝑖=1

(1) 

, where 𝐼𝑗 is the output current of BL 𝑗 and 𝑉𝑥(𝑖) the input voltage of WL 𝑖 for pattern 𝑥. 𝑓𝑖𝑗() is 

the I-V relationship of each 1D1R cell. Next, an activation function was used to obtain the final 

neuronal outputs: 

𝑂(𝑘) =
1

1 + 𝑒−(𝐼2∗𝑘−𝐼2∗𝑘−1)/0.00006 
(2) 

, where k = 1, 2, 3, 4 (note that a pair of BLs forms one neuron) and (2𝑘-1, 2𝑘) is the neighboring 

pair of BLs. Thus, the current difference 𝐼2∗𝑘 − 𝐼2∗𝑘−1 represents the immediate neuronal output. 

A coefficient of 0.00006 (A) is used in the activation function. 

In the backward path, the weight adjustment 𝛥𝑤𝑖𝑘 is first calculated by: 

𝛥𝑤𝑖𝑘 = 𝑙𝑟 ∗ (𝑇𝑥(𝑘) − 𝑂(𝑘)) ∗ 𝑂(𝑘) ∗ (1 −  𝑂(𝑘)) ∗ (𝑉𝑥(𝑖) −  0.3) (3) 

, where 𝑙𝑟 is the learning rate (𝑙𝑟 = 2.5) and 𝑇𝑥(𝑘) the target output from the kth neuron for 

each specific input pattern 𝑥 . Then, the accumulated weight adjustment ∆𝑤𝑖𝑘
𝑎𝑐𝑐 is updated 

according to the minibatch size M (M = 1 for SSD and M = 50 for MNIST classification): 

∆𝑤𝑖𝑘
𝑎𝑐𝑐 =  ∆𝑤𝑖𝑘

𝑎𝑐𝑐 +  
𝛥𝑤𝑖𝑘

𝑀
(4) 

With the accumulated weight, the compliance current used for synaptic weight update for each 

1D1R cell is: 

{
𝐶𝐶𝑖,2∗𝑘 = 𝐶𝐶𝑖,2∗𝑘 +  ∆𝑤𝑖𝑘

𝑎𝑐𝑐 ∗ 0.00012

𝐶𝐶𝑖,2∗𝑘−1 = 𝐶𝐶𝑖,2∗𝑘−1
 𝑖𝑓∆𝑤𝑖𝑘

𝑎𝑐𝑐 > 0 (5) 

and 

{
𝐶𝐶𝑖,2∗𝑘 = 𝐶𝐶𝑖,2∗𝑘

𝐶𝐶𝑖,2∗𝑘−1 = 𝐶𝐶𝑖,2∗𝑘−1 + ∆𝑤𝑖𝑘
𝑎𝑐𝑐 ∗ 0.00012

 𝑖𝑓∆𝑤𝑖𝑘
𝑎𝑐𝑐 < 0 (6) 



, where a coefficient of 0.00012 (A) is used to convert the weight to the compliance current.  

RC reservoir design 

According to the equation of an RC circuit: 

𝐶
𝑑𝑉

𝑑𝑡
+

𝑉

𝑅
= 0 (7) 

, the output voltage 𝑉 is: 

𝑉(𝑡) = 𝑉0𝑒−
𝑡

𝑅𝐶 (8) 

We choose the time constant that allows the voltage to reduce to ~10% of the initial value 

during the input sequence of (0000000) (i.e., the lower-bound output) to ensure a wide output 

window. This leads to   

 𝑅𝐶 ≈
𝑁𝐷 × 𝑇

2.5
(9) 

or, 

𝑁𝐷 × 𝑇 = 2.5𝑅𝐶 (10) 

, where 𝑁𝐷 and 𝑇 are the number and width of the converted pixels in an input sequence (Fig. 

5B). 
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Figure 1. Addressing concept and basic performance in the 1D1R cell. A, (i) Schematic of a 

2×2 1D1R array during a forward selective addressing, which relies on the (ii) rectification window 

(yellow) in the diode. (iii) The suppression of reverse current in the rectification window measured 

from a diode, with the applied voltage following the schematic sequence in (ii). B, (i) Schematic 

of a reverse selective addressing, which relies on the (ii) reverse recovery window (purple) in the 

diode. (iii) The reverse current flow in the reverse recovery window measured from a diode, with 

the applied voltage following the schematic sequence in (ii). C, (i) A SET operation in a 1D1R cell 

(left schematic). The SET process used a pulse of 1.2 V, 3 µs. An increase in the reading current 

was shown by the reading pulses (0.7 V, 100 µs) before and after the SET operation. (ii). The 

RESET process involved a positive pulse of 0.7 V, 5 µs to first activate the diode, immediately 

followed by a negative pulse of -1.2 V, 3 µs within the reverse recovery window. A decrease in the 

reading current was shown by the reading pulses (0.7 V, 100 µs) before and after the RESET 

operation.  

 

Figure 2. Performance of 1D1R arrays. A, Demonstration of suppression of sneak-path current 

in a 2×2 array, with the memristors in the sneak path having LRS and memristor in the selected 

path having HRS. B, Selective programming of memristors (colorful) in a 3×3 array. The selected 

memristors were successfully programmed to different states (color curves), whereas the 

unselected ones maintained the same state (black curves). C, A 16×32 pixeled "UM" logo formed 

by stitching eight 8×8 sub-images sequentially programmed by the 8×8 array. The programming 

order was from top to bottom and from left to right, as shown by red dash lines. 

 

Figure 3. SSD in situ training. A, Continuous synaptic weight updates (Vread = 0.7 V) in a synapse 

formed by a pair of 1D1R cells (left schematic).  Each cycle contains 102 states. B, Schematic of 

noise generation in SSD. The bottom panel shows a series of SSD images added with different 

noise levels. C, Circuit diagram of the 8×8 1D1R array for SSD classification. The converted 

grayscale in each segment of the SSD was converted to voltage signal and served as the input to 

the array. The differential current output in each pair of BLs represented the classification of each 

digit. 

 

Figure 4. Results of SSD classification. A, The weight distributions in the array before and after 

the training. B, Evolution of the recognition rates with different noise levels added in the SSD 

images. C, A case that the visual ambiguity between a"1" and "3" was captured by the close outputs 

between neurons' 1' and '3'.  D, A case that the digit "2" was successfully classified.  

 

Figure 5. MNIST classification. A, Schematic of the MNIST classification process, involving the 

image resizing and pixel vector (e.g., grayscale-to-voltage) conversion (left), reservoir 

compression (middle), and classification by the 8×8 1D1R array (right). B, Schematic of the RC 

reservoir output. An activation pulse (400 mV, 200 µs) is followed by 7 sequential converted pixel 



values in a row. The upper (yellow) and lower (green) output bounds are generated by the 

sequences of (0000000) and (VVVVVVV), respectively. C, An exemplary input series 

representing the digit "3" displayed in (A), with the corresponding output series (right). D, 

Evolution of the 32 synaptic weights during the in-situ training. E, Comparison of the recognition 

rates between the experiment and simulation. F, the confusion matrix for the experiment result 

(right).  

 

Figure 6. Integrated 8×8 1D1R stacking array. A, Schematic of the individual stacking cell. B, 

Optical image of a fabricated cell. Scale bar, 150 µm. C, Scanning electron microscope (SEM) 

image of the integrated array. Scale bar, 200 µm. D, Optical image of the integrated array on a Si 

substrate. Scale bar, 5 mm. E, I-V characteristics and reserve recovery dynamics (inset) measured 

from the 64 diodes in the array. The average Off current (V = -2 V) was 5.88 ± 0.71 µA (±s.d.), 

and the average On current (V = 2V) was 7.35 ±0.64 mA (±s.d.). F, I-V characteristics from the 64 

memristors in the array. The green curves show the cumulative probabilities of the threshold 

voltages. A current compliance of 500 µA was applied for the SET processes. G, Representative 

I-V characteristics from a selected cell showing the controlled weight/conductance update by using 

different compliance currents. H, Representative reversible programming from a selected cell. 

Each cycle covered ten states. I, A "UMASS" logo made from five 8×8 pixeled letters that were 

consecutively programmed by the same array. Each state was read by a reading voltage of 1.2 V. 

Compliance currents of 0, 200, 400, 700, and 1100 µA and were used for programming the 

background in the five letters, respectively. Compliance currents of 400, 700, 1100, 0, and 200 µA 

were used to programming the letters, respectively.  

 


