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ABSTRACT
Ranked enumeration is a query-answering paradigm
where the query answers are returned incrementally in
order of importance (instead of returning all answers
at once). Importance is defined by a ranking function
that can be specific to the application, but typically in-
volves either a lexicographic order (e.g., “ORDER BY
R.A, S.B” in SQL) or a weighted sum of attributes (e.g.,
“ORDER BY 3*R.A + 2*S.B”). Recent work has intro-
duced any-k algorithms for (multi-way) join queries,
which push ranking into joins and avoid materializing
intermediate results until necessary. The top-ranked an-
swers are returned asymptotically faster than the com-
mon join-then-rank approach of database systems, re-
sulting in orders-of-magnitude speedup in practice.

In addition to their practical usefulness, these tech-
niques complement a long line of theoretical research
on unranked enumeration, where answers are also re-
turned incrementally, but with no explicit ordering re-
quirement. For a broad class of ranking functions with
certain monotonicity properties, including lexicographic
orders and sum-based rankings, the ordering require-
ment surprisingly does not increase the asymptotic time
or space complexity, apart from logarithmic factors.

A key insight is the connection between ranked enu-
meration for database queries and the fundamental task
of computing the kth-shortest path in a graph. Although
this connection is important for grounding the problem
in the literature, it can obfuscate the simplicity of the al-
gorithm. In this article, we adopt a pragmatic approach
and present a slightly simplified version of the algorithm
without the shortest-path interpretation. We believe that
this will benefit practitioners looking to implement and
optimize any-k approaches.

1 Introduction
Data analytics queries can generate large interme-
diate or final results, rendering data systems unre-
sponsive. A primary culprit is the join operator,
⇤Work done while at Northeastern University.
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Figure 1: Enumerating the query answers in
ranked order without first materializing the un-
ordered query result. Sorting is pushed into the

join operation so that joining and ranking are in-
terleaved.

which combines data from different tables, poten-
tially causing a combinatorial explosion in the out-
put. Consequently, traditional join-processing tech-
niques can become infeasible, or they simply take
too long before delivering any answer to the user or
to the next step in a data-processing pipeline. Work
on enumeration [6, 41] addresses this by return-
ing query answers incrementally as quickly as possi-
ble, even when the full query output is too large to
compute. However, enumeration traditionally does
not support a desired order (or ranking) specify-
ing, which answers should be returned first. We
thus refer to it as unranked enumeration. In prac-
tice, certain answers may be preferred over others
based on some notion of importance or relevance.
For instance, higher importance may be assigned
to newer or more trusted data. Ranked enumera-

tion [24, 44] therefore augments enumeration with
a total-order feature over the query answers, for-
malized by a ranking function (e.g., expressed by
an ORDER BY clause in SQL).

Database systems today follow a join-then-rank
approach, i.e. they first compute all join answers

and then apply the ranking (by sorting either in-
crementally or in batch). One way to think about
the improvement we seek is that we want to “push”

6 SIGMOD Record, September 2024 (Vol. 53, No. 3)



SELECT Cit1.PaperID, Cit2.PaperID, Cit3.PaperID,
Cit3.CitedPaperID, Cit1.InflWeight +
Cit2.InflWeight + Cit3.InflWeight AS Weight

FROM Cit Cit1, Cit Cit2, Cit Cit3
WHERE Cit1.CitedPaperID = Cit2.PaperID AND

Cit2.CitedPaperID = Cit3.PaperID
ORDER BY Weight

Figure 2: SQL query for ranking chains of highly
influential citations.

the ranking operator deeper into the query plan.
While this resembles typical database optimiza-
tions, such as pushing projections before joins, the
task is more challenging, because join and ranking
operators generally do not commute. Novel algo-
rithms are required, where joining and ranking are
interleaved.1

Performance Goal. How can performance for
such an algorithm be measured? The top-ranked
answers should be returned quickly without wast-
ing resources on low-ranked ones, similar to clas-
sic top-k queries [29]. However, in contrast to top-
k, where “pruning” techniques based on the given

number of returned answers k can be leveraged,2
a ranked-enumeration algorithm does not know the
value k in advance. Instead of pruning, it can at
best postpone work on lower-ranked answers, pro-
viding guarantees no matter how many answers are

eventually returned. We are thus interested in the
Time-To-k, or TT(k), for any possible value of k.
This gave rise to the “any-k” label, quasi an “any-
time top-k” algorithm [14, 53, 54].

Note that a stricter and popular [6, 28, 38, 41]
measure of performance involves combining prepro-

cessing time (i.e., TT(1)) with the worst-case delay

between answers (i.e., the maximum inter-arrival
time). However, lowering the worst-case delay may
have no practical benefit if it does not also improve
TT(k) [18, 20, 46]. Adopting TT(k) allows for situ-
ations where a spike in delay is offset by shorter de-
lays in previous iterations. An established example
where this difference occurs is incremental Quick-
Sort [40] which guarantees TT(k) = O(n+ k log k),
but has a linear worst-case delay between answers.

An Example. Consider a bibliography dataset
that stores the influence of research papers on later

1Even simpler top-1 queries are not efficiently
supported by current systems. For a min-
imum example in PostgreSQL, see slide 20:
https://northeastern-datalab.github.io/cs7240/

sp24/download/cs7240-T3-U1-Acyclic_Queries.pdf.
2Besides the requirement of k being fixed in advance,
older work on top-k joins assumes a cost model that
accounts for data access, but not for intermediate re-
sults [48, Part 1].
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Figure 3: Ranked enumeration guarantees for the
query of Figure 2: The first answer (TTF for Time-
To-First) is returned in Õ(n) and the last answer
(TTL for Time-To-Last) in Õ(n2).

papers that cite them. Each tuple in relation
Cit(PaperID,CitedPaperID, InflWeight) states that
a paper with ID CitedPaperID influenced a later
paper PaperID with a numerical weight InflWeight.
For the sake of the example, assume that the in-
fluence weight has been precomputed by some pre-
diction technique and takes on an integer value in
range [1, 10], with 1 being the most influential. To
extract chains of highly influential citations, we can
write the join query

Cit(p1, p2, s1) , Cit(p2, p3, s2) , Cit(p3, p4, s3)

and order its answers in ascending sequence of the
SUM s1 + s2 + s3. For readers unfamiliar with
Datalog, note that relation Cit appears three times
to indicate a self-join (which requires renaming to
Cit1,Cit2,Cit3 in SQL as shown in Figure 2) and
that a variable like p2 appearing more than once
indicates an equi-join between the corresponding
columns (i.e., Cit1.p2 = Cit2.p2). How fast can
ranked enumeration be here? The entire query out-
put can have size n

2 in the worst case [5]. On the
other hand, simply checking if any query answer
exists (called the Boolean query) takes ⇥(n) [55].
Ranked enumeration aims to cover the continuum
between those two with TT(k) = Õ(n+k), as shown
in Figure 3. The Õ notation abstracts away loga-
rithmic factors in n and k introduced by join indexes
or sorting (by s1 + s2 + s3).

Prioritizing Computation. To build intu-
ition, let us first consider how unranked enumera-
tion works. If we were to follow a standard table-at-
a-time approach, we would start by joining Cit1 ./

Cit2. This is a costly bulk computation of time com-
plexity Õ(n2). However, it would not yet produce a
single query answer because table Cit3 has not been
checked. To produce answers as quickly as possible,
we need to be more careful in where we spend re-
sources and prioritize differently. Instead of a table-
at-a-time, a tuple-at-a-time approach is needed. We
start with only one tuple from Cit1, look up the
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matches in Cit2, pick one, and then look up the
Cit3 matches to produce one answer. This strategy
can be implemented using a pipelined execution in a
database system. The standard unranked enumer-
ation algorithm [6] achieves Õ(n + k) by following
such an approach, preceded by a Õ(n)-time semi-
join reduction [55], which removes “dangling” tuples
that do not contribute to the final output.

Ranked enumeration appears more challenging
because additional prioritization is required to avoid
low-ranking query answers. Interestingly, a more
careful look at the unranked enumeration algo-
rithm [6] reveals that, with appropriate sorting of
the input relations, the output naturally follows a
lexicographic order. A lexicographic order is defined
by a sequence of variables, such as s1 s2 s3. It
means that the answers are first ordered by vari-
able s1, then by s2, and then by s3 (ORDER BY
Cit1.InflWeight, Cit2.InflWeight, Cit3.InflWeight in
SQL). This heavily prioritizes the weight of the first
citation in the chain; a chain with weights 1 10 10
would be ranked higher than a chain with weights
2 1 1. The enumeration algorithm of Bagan et
al. [6] is capable of producing such an order, granted
that we first sort each copy of Citi by InflWeight.

But what if a different order that is “inconvenient”
for the algorithm is required? As we will discuss
in more detail, certain lexicographic orders, such
as s2 s1 s3 cannot be achieved by this approach.
Moreover, for SUM ranking, the situation is more
difficult because a high-ranking tuple in Cit1 might
only join with low-ranking tuples in Cit2 and Cit3,
leading to low-ranking answers in aggregate. Ad-
dressing this requires a stronger form of prioritiza-
tion that incorporates lookahead information about
tuples and weights that come later in the query
plan.

Any-k Algorithms. Recent developments led
to the design and implementation of any-k algo-
rithms achieving TT(k) = Õ(n+ k) for acyclic join
queries and appropriately monotone ranking func-
tions [24, 44]. These include all lexicographic or-
ders, SUM, as well as MIN and MAX. In our exam-
ple, the first k = O(1) answers are obtained after
only Õ(n), and—if the enumeration is carried out
to the end—the last answer in Õ(n2), matching the
join-then-rank approach. Compared to unranked
enumeration, ranking by s1+s2+s3 introduces only
a logarithmic factor in k.

Although multiple any-k algorithms exist, their
complexity differences concern logarithmic factors
and treating query size as a variable that can grow
arbitrarily, which may not always materialize in
practice. In this article, we cater to practicality and

ease of understanding, focusing on data complexity,
guarantees in Õ without logarithmic factors, and on
the easiest-to-understand variant.3 We describe the
algorithm in a streamlined way, without the graph
abstraction that has been used [44] to highlight the
connection to earlier work on shortest-path enumer-
ation [30, 33].

Organization. The rest of this article is orga-
nized as follows. Section 2 introduces necessary
concepts and notation. Section 3 presents a sim-
ple algorithm that works for certain lexicographic
orders and explores which lexicographic orders are
achievable with this algorithm. Section 4 takes on
the harder case of SUM. Section 5 discusses several
extensions that generalize the approach to more ex-
pressive queries and ranking functions. Section 6
concludes and provides directions for future work.

2 Basic Concepts
We focus on Select-Project-Join queries, which we
formally define in the usual way as Conjunctive
Queries. Throughout the article, we use [m] to de-
note the set of integers {1, . . . ,m}.

Database. A database D is a set of finite rela-
tions {R1, . . . , Rm}, where each Ri for i 2 [m] has
arity ar(R) (i.e., ar(R) attributes or columns) and
draws values from a fixed infinite domain dom, (i.e.,
Ri ✓ domar(Ri)). The size of the database n is the
number of tuples across all relations.

Query. In Datalog, a Conjunctive Query (CQ)
Q is an expression Q(Y) :�R1(V1), . . . , R`(V`),
where each Vi for i 2 [`] is a list of either variables

(representing database attributes) or constants
from dom (encoding selection). Each atom Ri(Vi)
refers to a (not necessarily distinct) database re-
lation with |Vi| attributes. If X is the set of
all distinct variables appearing in all lists Vi for
i 2 [`], then the variables Y (representing output
attributes) need to be a subset of X and are called
free. A Join Query (JQ) is a special case of a CQ
where all variables are free (i.e., Y = X). Multiple
atoms are allowed to refer to the same relation, re-
sulting in a self-join. The query size, measured by
the number of symbols in the query, is assumed to
be O(1). This is often referred to as data complex-

ity [51] and it is relevant in practice because while
new data may be collected, the query size does not
typically grow unboundedly.

Queries are evaluated over a database D and pro-
duce a result Q(D). A query answer or output tuple

is an element q 2 Q(D). The occurrence of the same
3The specific variant we present is anyK-part with ea-
ger sorting [44, Figure 6].
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variable in different atoms encodes an equi-join con-
dition, implying equality between the corresponding
attributes. A typical preprocessing step for all algo-
rithms is to (1) remove self-joins from the query by
copying database tables and (2) remove selections
on individual relations (like R(x, 1) or R(x, x)) by
filtering. These operations take O(n) and can be
ignored because the cost is asymptotically the same
as reading the database once. Afterwards, a naive
evaluation strategy to compute Q(D) (which helps
to understand the query semantics) is to (i) mate-
rialize the Cartesian product of the ` relations, (ii)
select tuples that satisfy the equi-joins, and (iii)
project on the Y attributes.

Acyclicity. A CQ is (alpha-)acyclic [16] if it ad-
mits a join tree. A join tree is a rooted tree whose
nodes are the query atoms and for each variable x,
all tree nodes containing x form a connected sub-
tree.4 The acyclicity of a CQ can be tested, and a
corresponding join tree can be constructed, in linear
time in the query size [42].

Ranking. Ranked enumeration assumes a user-
specified ranking function that orders the query
answers Q(D) by mapping them to a domain W

equipped with a total order �. Ties are broken arbi-
trarily. Given a query Q, a lexicographic order L is
a sequence of query variables x1 x2 . . ., implying
that the answers are first compared by the values of
x1, and if tied by the values of x2, and so on. A par-

tial lexicographic order contains a strict subset of
the query variables. Another case is SUM, given by
an expression f1(x1)+ f2(x2)+ . . ., where f1, f2, . . .

can be arbitrary, O(1)-computable functions map-
ping dom to R. The ranking may alternatively be
defined using values on the database tuples instead
of the query variables; the latter can be reduced
to the former in linear time as we will see in more
detail in Section 4.1.

3 Enumeration by Lexicographic Order
We begin with the lexicographic orders that can
be produced as a by-product of the standard “un-
ranked” enumeration algorithm through a minor ex-
tension (i.e., pre-sorting all input relations accord-
ing to the lexicographic order). Although various
descriptions of this algorithm exist in the literature
using different abstractions [6, 11, 38, 41], it is often
overlooked that it can easily produce query answers
according to certain lexicographic orders.

We offer a detailed description that (i) is easy to
implement and (ii) generalizes to SUM (Section 4)
4For an illustration, please see https://www.youtube.

com/watch?v=toi7ysuyRkw&t=340 [49].

Figure 4: An example database for the join query
R(x1, x2), S(x1, x3), T (x2, x4), U(x4, x5). The rela-
tions are organized in a join tree. Red marks indi-
cate tuples removed by the semijoin reduction. Also
shown are shared variables between child-parent
pairs and the relation ordering rel used by the lex-
icographic enumeration algorithm.

and other orders. We focus on acyclic JQs and dis-
cuss how this restriction can be lifted in Section 5.

The algorithm consists of two phases. First, the
preprocessing phase builds essential data structures
such as join indexes and applies a semijoin reduc-
tion [55] to remove dangling tuples from the input
relations. Then, the enumeration phase traverses
the relations using the indexes to connect joining tu-
ples. The Õ(n+k) complexity guarantee for TT(k)
hinges on the semijoin filtering, which eliminates
“dead-ends” by ensuring that every partial query
answer—generated by joining tuples from a subset
of relations—can be extended to a complete query
answer. We will detail both phases in Sections 3.1
and 3.2, then examine, which lexicographic orders
can be supported by this algorithm in Section 3.3.

As a guiding example, we use the query R(x1, x2),
S(x1, x3), T (x2, x4), U(x4, x5) and show how to
achieve the order x1 x2 x3 x4 x5. An example
database is shown in Figure 4.

3.1 Bottom-up Preprocessing Phase
Join Order. The preprocessing phase starts by
organizing the relations in a (rooted) join tree T .
Unlike a database query plan, a join tree does not
fully specify the join order. It only determines that
a parent relation must be processed before its chil-
dren (also called a topological sort). Hence any or-
der that respects this constraint can be followed by
the enumeration algorithm. Let function rel de-
note such an order, i.e., it maps the integers [`] to
database relations, where ` is the number of rela-
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tions. In our example, we have rel(1)=R, rel(2)=
S, rel(3) = T, rel(4) =U (see Fig. 4). This means
that relation S will always be visited before relation
T during enumeration. To encode the tree struc-
ture, we refer to the parent of the r-th relation in
the order as pr(r), for r 2 [2, `].

Join Indexes. Next, we build join indexes, e.g.,
B-trees or hash indexes, allowing us to find match-
ing tuples efficiently. We abstract an index as a
function JoinIndexR!S , which, given a tuple t 2 R,
returns a list M of S tuples that agree with t on
the join attributes between R and S (i.e., the com-
mon variables between the atoms). To achieve the
desired TT(k) guarantees, the index must be built
in Õ(n) with lookups in Õ(1) (not including the
time it takes to read M). We construct one in-
dex for each parent-child pair in the join tree, i.e.,
JoinIndexR!S based on x1, JoinIndexR!T based
on x2, JoinIndexT!U based on x4 in our example.
Figure 4 shows each relation grouped by the at-
tributes that join with the parent, i.e., the image of
JoinIndexpr(r)!rel(r) for the r-th relation, r 2 [2, `].
The root has no grouping.

Semijoin reduction. Using the join tree and
indexes, we perform a semijoin reduction exactly
as in the bottom-up step of the Yannakakis algo-
rithm [55]. The relations are traversed in reverse
topological order with a semijoin applied for each
parent-child pair. In our example, the semijoins are
executed in the following order:

T = T n U, R = Rn T, R = Rn S

This step is crucial for our desired complexity guar-
antee. To understand why, consider tuple R(0, 0),
for which there are matching tuples in S and T ,
but none in U . Consequently, the time process-
ing R(0, 0) is wasted, without producing an output
tuple. With sufficiently many such “dangling” tu-
ples, the time between consecutive answers would
grow to exceed TT(k) = Õ(n + k). The semijoin
reduction prevents this by removing dangling tu-
ples like R(0, 0) and T (0, 0). Notice that S(0, 1) is
dangling, but not removed. Removing all dangling
tuples would require a full reduction [9, 13], which
is not necessary for the enumeration algorithm. It
is easy to show that any remaining dangling tuples
will never be accessed by top-down traversals.

Algorithm 1 presents the semijoin reduction ex-
pressed in a way that easily generalizes to support
other orders, as we will see in Section 4. Specifi-
cally, it can be viewed as message passing at the tu-
ple level: Each tuple pulls “messages” from joining
tuples in the children relations, determines its own
state based on the messages, and later passes a mes-

Algorithm 1: Preprocessing for lexicographic enumeration
(Section 3.1).

Input: acyclic JQ Q (without self-joins), database D, join
tree T , lexicographic order L, relation ordering rel
consistent with T

1 Output: reduced and sorted database D0, JoinIndexR!S
for each parent R and child S in T

2 Initialize val(t) = True for all tuples t of all relations
3 //Process relations in reverse rel order (bottom-up in T )
4 for i = ` down to 2 do

5 relation S = rel[i]; relation R = pr(S)
6 //Relation S has been reduced in a previous iteration
7 (or is a leaf)
8 Construct JoinIndexR!S on shared attributes
9 Sort JoinIndexR!S entries by L

10 for tuple t 2 R do

11 M = JoinIndexR!S(t)
12 //Memoization: val(M) is reused
13 if val(M) not already computed then

14 val(M) = False _
W

t02M val(t0)
15 val(t) = val(t) ^ val(M)
16 if not val(t) then remove t from R in D
17 Sort the root R by L
18 return D, JoinIndexR!S for all (R,S) 2 T

sage up the tree. The “message” here is a Boolean
value that indicates whether matching tuples exist
in the subtree. If the aggregated message from at
least one of the children relations is “False”, then
the tuple is removed and a “False” message is prop-
agated upwards. Note that parents are “pulling” in-
stead of children “pushing” messages so that we can
use the parent-to-child join indexes that we anyway
need in the enumeration phase. The algorithm em-
ploys memoization for the aggregated message of a
join group (Line 13), since multiple tuples in the
parent relation may access it. This is important in
order to guarantee linear time.

Sorting. When we build a join index, we sort its
entries (i.e., the tuples within the same join group)
by the same lexicographic order. In the example,
the entries of JoinIndexR!S are sorted by x1 x3,
the entries of JoinIndexR!T by x2 x4, and so on.
The join index is built after reducing a relation with
messages from its children, and sorted thereafter.
The tuples of the root relation are considered to
belong to the same join group (as if a parent rela-
tion with an empty set of join variables to group-by
existed) and are also sorted. Slightly abusing the
notation, we treat a relation as a sorted list of tu-
ples; e.g., R[1] denotes the first tuple of R.

3.2 Top-down Enumeration Phase
While the semijoin reduction proceeds bottom-up
in the opposite direction of relation order rel
(Line 4), the enumeration phase traverses the rela-
tions top-down. We start with tuple R[1] = R(1, 1)
and, through the join indexes, find the first match
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in every relation, yielding the first query answer
(1, 1, 1, 3, 8).5 In the second iteration, we proceed
with the matches from the last relation, i.e., tu-
ple (3, 9) from U , obtaining (1, 1, 1, 3, 9). This ex-
hausts all matches in U , therefore in the third it-
eration the algorithm backtracks to the next match
in preceding relation T . Since no second match ex-
ists in T , we backtrack once again to S, encounter-
ing (1, 2) there. With (1, 1, 2) as a partial answer,
the algorithm proceeds forward to T, U to obtain
(1, 1, 2, 3, 8). The process continues analogously, re-
turning answers (1, 1, 2, 3, 9), (2, 2, 3, 2, 1), etc.6

This enumeration can be implemented recur-
sively, akin to a standard depth-first search (DFS).
Equivalently, we implement it with a stack of par-
tial query answers (LIFO), which tracks the cur-
rent frontier. A partial answer contains matched
tuples from only a subset of the relations. When
a partial answer is popped from the stack and we
extend it into a complete answer, alternatives that
use the next available tuple are pushed back onto
the stack, starting from the current relation. The
extension of a partial answer always selects the first
matching tuple following the relation order. This is
illustrated in Figure 5. Notice that when the second
answer (1, 1, 1, 3, 9) is popped, the current relation
is rel(4) = U , with R(1, 1), S(1, 1), and T (1, 3)
from the earlier relations considered fixed (so we do
not generate new answers from those relations). In
fact, (1, 1, 2) is already on the stack from the previ-
ous iteration. This logic ensures that we enumerate
each query answer exactly once. For the time com-
plexity, note that we visit each relation at most once
in each iteration, thus the cost per iteration is Õ(1)
because query size is treated as a constant.

The LIFO nature of the stack is essential for
achieving the lexicographic order. For instance, new
answers that replace U -tuples (thus, change only
the x5 value) are always popped before answers that
replace tuples in R, S, or T . In the following, we
discuss the achievable orders in more detail.

3.3 Supported Lexicographic Orders
Different lexicographic orders can be achieved by
different sortings of the individual relations. For
example, if we sort R by x2 x1, we can achieve the
order x2 x1 x3 x4 x5 without any other change
in the algorithm. Some other orders can be achieved
5Answers are represented as a tuple of values assigned
to variables (x1, . . . , x5), or alternatively, as a list of
joining tuples [t1, . . . , t4]. For ease of presentation, we
use the former in text and the latter in pseudocode.
6For an illustration, please see https://www.youtube.

com/watch?v=toi7ysuyRkw&t=1720s [49].

Algorithm 2: Ranked enumeration for lexicographic orders
without disruptive trios

Input: acyclic JQ Q, database D, lexicographic order L
without disruptive trio

Output: Ranked enumeration of Q(D) in L order
1 Remove self-joins from Q by copying the corresponding

relations and renaming them in both D and Q
2 Construct an L-consistent join tree T of Q with

L-consistent relation order given by rel(i), i 2 [`]
3 Preprocess(Q, D, T , L, rel) (Algorithm 1)
4 //A partial answer in the stack is represented as a list of

input tuples together with their positions in the
corresponding join groups (to easily get the next)

5 Initialize stack S with element [(t1, 1)] where t1 = R[1] and
R is the root of T

6 repeat

7 //Pop a partial answer (1  r  |T |), which also
contains the positions ji for each tuple ti

8 s = S.pop(); [(t1, j1), . . . , (tr, jr)] = s
9 //Look up matches in r-th relation

10 Mr = JoinIndexpr(r)!rel(r)(tpr(r))
11 //Push partial answer with next tuple of r-th relation.

It exists if jr is not the last position in the group Mr

12 if |Mr| � jr + 1 then

13 s0 = s.copy().replaceLast((Mr[jr + 1], jr + 1))
14 S.push(s0)
15 //Range over the remaining relations
16 for i from r + 1 to |T | do

17 //Look up matches in i-th relation
18 Mi = JoinIndexpr(i)!rel(i)(tpr(i))
19 //Extend partial answer with first tuple in matches

of i-th relation
20 ti = Mi[1]; s.append((ti, 1))
21 //s is now [(t1, j1), . . . , (tr, jr), . . . , (ti, 1)]
22 if |Mi| � 2 then

23 //Push partial answer with next tuple of i-th
relation to stack S

24 s0 = s.copy().replaceLast((Mi[2], 2))
25 S.push(s0)
26 Merge s into single tuple and output
27 until query is interrupted or S is empty

by additionally selecting a different topological
sort on the join tree. With [R, T, U, S] instead
of [R,S, T, U ], we can achieve x1 x2 x4 x5 x3.
However, certain lexicographic orders cannot be
achieved by this algorithm. Brault-Baron [15] iden-
tified a sufficient condition, which was later termed
a disruptive trio [21] and shown to be necessary for
other problems related to enumeration. (We discuss
this in more detail in Section 5.4.)

Definition 1 (Disruptive Trio). For a CQ

Q and lexicographic order L, three variables

x1, x2, x3 from L with relative order x1 x2 x3

form a disruptive trio if x1 and x2 are not neighbors

(i.e., they do not appear together in a Q atom), but

x3 is a neighbor of both x1 and x2.

In our example, x1, x4, x2 form a disruptive trio
if L is x1 x4 x2 or even x1 x3 x4 x5 x2. In-
tuitively, during the enumeration, we cannot tran-
sition from R to T without fixing x1, x2 before x4,
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Figure 5: Enumeration steps for the first 4 answers by Algorithm 2 described in Section 3. The stack,
shown on top, pops a partial answer, which is extended with the first matching tuples (in orange color) and
moved to the output in each iteration. Starting from the last relation for which a tuple is in the partial
answer (in red color), we check if a “next” tuple in the same join group exists (in blue color) and push a new
answer to the stack. Dashed arrows indicate that there is no next.

which is inconsistent with the order L.
Brault-Baron showed that for lexicographic or-

ders containing all free variables, the absence of a
disruptive trio is equivalent to L being a reverse

alpha elimination order [15, Theorem 15], and for
partial lexicographic orders, it is equivalent to the
lexicographic order being consistent with (or, in
other words, a restriction of) a reverse alpha elim-
ination order. An alpha elimination order is an
ordering of the variables that guides the join tree
construction [16]. If variable y follows variable x

in the elimination order, then in the resulting join
tree, y will never appear without x in any ancestor
of a node that contains x.7 This guarantees that
there exists a relation ordering rel such that the L

variables are encountered in the desired sequence.
We call such an ordering of the relations, and its
corresponding join tree, L-consistent.

If a desired lexicographic order has no disruptive
trio, then we can find an L-consistent join tree and
an L-consistent ordering of the relations to use with
the enumeration algorithm discussed above.

Theorem 2 (LEX). Let Q be an acyclic join

query over database D and L a lexicographic order

of the variables in Q. If L does not contain a dis-

ruptive trio, then ranked enumeration of Q(D) by

7A similar property has been proposed in factorized
databases in order to detect whether a lexicographic
order is admissible with a given factorization order [7].

L can be achieved with TT(k) = Õ(n+ k).

Algorithm 2 shows the pseudocode. After the
preprocessing phase, a loop returns query answers
iteratively by popping and pushing from the stack.
Notice that, for each answer, the algorithm keeps
track of the positions j1, . . . , j` of the tuples within
the corresponding join group. This allows it to
quickly access the next tuple in the group when con-
structing new answers (in Lines 13 and 24).

What about the lexicographic orders that contain
disruptive trios? Algorithm 2 does not apply be-
cause there is no join tree that can match the order.
For these orders, as well as SUM, we need a different
strategy. Lexicographic orders with disruptive trios
can in fact be reduced to a SUM-ordering problem
by assigning the appropriate variable weights: If all
relations have cardinality at most n, we can achieve
that by setting the weight of the i

th value of the j
th

variable in the order to i · n
|L|�1�j .

4 Enumeration by SUM Order
In this section, we shift focus to ranking by SUM.
Let

P5
i=1 xi (in ascending order) be the ranking

function for our example query. A naive strategy
is to select the best tuple from each relation based
on its individual weight. For instance, using the
same join tree as before, we could start with R(1, 1)
since it has the lowest weight 1 + 1 = 2 within R.
However, this strategy is not guaranteed to find the
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top answers, at least not within the time bounds we
aim for. Once we choose R(1, 1), we will be stuck in
a region of query answers with high overall weight
because of the high weights of U(3, 8) and U(3, 9),
which are the only matching tuples in U . The true
top-1 answer (2, 2, 3, 2, 1) starts with R(2, 2), which
matches with U(2, 1). To make the right choices
in R, the algorithm needs “lookahead” information
about later matches in relations like U .

Unfortunately, it is infeasible to explicitly pre-
compute the “lookahead” combinations of S, T, U

tuples in the preprocessing phase, because that
would exceed our desired Õ(n). Instead, we rely on
Dynamic Programming and a factorized represen-
tation of the query output. The enumeration phase
is similar to the algorithm of Section 3.2, but uses
a priority queue instead of a stack in order to pri-
oritize the candidates according to the “lookahead”
information computed during preprocessing.

4.1 Bottom-up Preprocessing Phase
To prioritize the tuples that lead to the lowest total
weight, we modify the semijoin reduction so that, in
addition to removing dangling tuples, we also com-
pute the best possible weight opt(t) reachable by
each tuple t when joining it with other tuples in its
subtree. This bottom-up computation is essentially
a form of Dynamic Programming.

The algorithm is easier to present using tuple
weights instead of attribute weights. We set the
weights of R to x1 + x2, of S to x3, of T to x4 and
of U to x5. Such a conversion is always possible in
linear time, which means that both regimes are sup-
ported in the algorithm. We only need to be careful
so that the weight of each variable is assigned to
a unique relation; this can be achieved through a
mapping µ that assigns each variable x in the SUM
to the first relation (or atom) that contains x in the
topological sort rel. We denote the weight of tuple
t by w(t). Algorithm 3 computes opt(t) for all tuples
t by aggregating the input weights using min and +,
bottom-up in reverse rel order 4 3 2 1 ,
as shown in Figure 6. The leaf relations set opt(t)
to be equal to w(t). For tuple T (2, 2), which is in
the non-leaf relation T , we add its own weight 2 to
the message min{1, 2} from the joining group in U ,
hence opt(T (2, 2)) = 2+min{1, 2} = 3. For a re-
lation with multiple children, we add the messages
from all of them. E.g., for R(2, 2), we add its own
weight 4 with the message min{3, 5} from S and the
message min{3} from T , hence opt(R(2, 2)) = 10.
By the end of the preprocessing step, we know the
optimal weight opt(t) for each tuple t, and the join
index entries are sorted according to these values.
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Figure 6: Bottom-up Dynamic Programming for
SUM (preprocessing). Orange circles show the
weights w(t) assigned to tuples. Blue squares show
the calculated minimal subtree weight opt(t) for
each tuple.

Algorithm 3: Preprocessing for enumeration by SUM
(Section 4.1). Changes compared to Algorithm 1 are in blue.

Input: acyclic JQ Q (without self-joins), database D with
tuple weights, join tree T , relation ordering rel consistent
with T

1 Output: reduced and sorted database D0, JoinIndexR!S
for each parent R and child S in T

2 Initialize opt(t) = w(t) for all tuples t of all relations
3 rel = relation ordering consistent with T
4 //Process relations in reverse rel order (bottom-up in T )
5 for i = ` down to 2 do

6 relation S = rel[i]; relation R = pr(S)
7 //Relation S has been reduced in a previous iteration
8 (or is a leaf)
9 Construct JoinIndexR!S on shared attributes

10 Sort JoinIndexR!S entries by opt
11 for tuple t 2 R do

12 M = JoinIndexR!S(t)
13 //Memoization: val(M) is reused
14 if opt(M) not already computed then

15 opt(M) = min{1,mint02M opt(t0) }
16 opt(t) = opt(t) + opt(M)
17 if opt(t) == 1 then remove t from R in D
18 Sort the root R by opt
19 return D, JoinIndexR!S for all (R,S) 2 T

Remark 1. The fact that Algorithm 3 is so sim-

ilar to the semijoin reduction in Algorithm 1 is not

a coincidence. They are both instances of the FAQ

framework [2] with different semirings. In partic-

ular, the aggregation operators _ and ^ from the

semi-join reduction are replaced with min and + in

the variant for SUM. In more technical terms, the

former corresponds to the Boolean semiring and the

latter to the tropical semiring.

4.2 Top-down Enumeration Phase
As can be seen in Algorithm 4, the high-level logic
of the enumeration is the same as the lexicographic
enumeration of Algorithm 2. Lines 14 and 25 gen-
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Algorithm 4: Ranked enumeration for SUM orders.
Changes compared to Algorithm 2 are shown in blue.

Input: acyclic JQ Q, database D, SUM order W
Output: Ranked enumeration of Q(D) in W order

1 Remove self-joins from Q by copying the corresponding
relations and renaming them in both D and Q

2 Construct a join tree T of Q with tree-consistent relation
order given by rel(i), i 2 [`]

3 Convert attribute weights to tuple weights
4 Preprocess(Q, D, T , rel) (Algorithm 3)
5 //A partial answer in the stack is represented as a list of

input tuples together with their positions in the
corresponding join groups (to easily get the next)

6 Initialize priority queue P with element [(t1, 1)] where
t1 = R[1] and R is the root of T

7 repeat

8 //Pop a partial answer (1  r  |T |), which also
contains the positions ji for each tuple ti

9 s = S.pop(); [(t1, j1), . . . , (tr, jr)] = s
10 //Look up matches in r-th relation
11 Mr = JoinIndexpr(r)!rel(r)(tpr(r))
12 //Push partial answer with next tuple of r-th relation.

It exists if jr is not the last position in the group Mr

13 if |Mr| � jr + 1 then

14 s0 = s.copy().replaceLast((Mr[jr + 1], jr + 1))
15 P.push(s0) with priority prio(s0)
16 //Range over the remaining relations
17 for i from r + 1 to |T | do

18 //Look up matches in i-th relation
19 Mi = JoinIndexpr(i)!rel(i)(tpr(i))
20 //Extend partial answer with first tuple in matches

of i-th relation
21 ti = Mi[1]; s.append((ti, 1))
22 //s is now [(t1, j1), . . . , (tr, jr), . . . , (ti, 1)]
23 if |Mi| � 2 then

24 //Push partial answer with next tuple of i-th
relation to priority queue P

25 s0 = s.copy().replaceLast((Mi[2], 2))
26 P.push(s0) with priority prio(s0)
27 Merge s into single tuple and output
28 until query is interrupted or P is empty

erate new query answers with the tuple in the next
position in the join group, like before. However,
tuples within a join group are now sorted by opt,
so each answer generated is guaranteed to produce
the next-best weight (among those in the same join
group) when extended to a complete answer.

Another important difference is that the stack
that maintains the partial answers is replaced by
a priority queue P. Initially, P only contains a par-
tial answer with R[1] = R(2, 2), producing the top-1
answer (2, 2, 3, 2, 1) with weight opt(R(2, 2)) = 10.
The second iteration has 3 candidates in P: (1, 1),
(2, 2, 5) and (2, 2, 3, 2, 2). The priority of each can-
didate s, denoted by prio(s) is the weight of the
answer we will obtain if we fully extend it. We
compute it before inserting it into P; we can ei-
ther prematurily extend it into a full answer, or we
can subtract from the previous answer the weight of
the subtree that was removed and add the weight of
the new subtree. For example, for (2, 2, 5), we can

subtract the weight of the subtree rooted at S(2, 3)
and add the new weight opt(S(2, 5)) to the weight
of the answer of the previous iteration, yielding
10�3+5 = 12. Based on the priorities, (2, 2, 3, 2, 2)
with priority 11 will be the winner in the second it-
eration, and the enumeration continues accordingly.
Figure 7 depicts the process.

The size of the priority queue P is at most k`,
since we push at most ` candidates in each itera-
tion. Hence, the time of each iteration now includes
a logarithmic cost for priority-queue operations (in-
stead of the earlier constant one for stack accesses).
However, if we ignore logarithmic factors, the TT(k)
complexity remains the same as in Theorem 2.

Theorem 3 (SUM). Let Q be an acyclic join

query over database D and W a SUM ranking func-

tion. Ranked enumeration of Q(D) by W can be

achieved with TT(k) = Õ(n+ k).

4.3 Performance in Practice
Any-k (enumeration by SUM) has been im-

plemented and the experimental results from
PVLDB’20 [44] and PVLDB’21 [47] have been inde-
pendently reproduced.8 In Figure 8, we repeat and
show an experiment from PVLDB’20 [44] that mea-
sures TT(k) for a 4-path query (joining relations in
a chain) on synthetic data.

The experiment compares 1 Any-k against 2
JoinFirst (computing the full result with the
Yannakakis algorithm [55]), and 3 PSQL (Post-
greSQL 9.5.20). TT(k) is depicted on the x-axis
and k on the y-axis. By the time JoinFirst re-
turns the first answer (in 10.7 sec), any-k has al-
ready returned more than 4 million, starting with
the first one after 67 msec. PSQL follows an ap-
proach similar to JoinFirst and is outperformed
for the top-ranked answers. For the last answer,
any-k is slower by less than a factor of 3.

5 More General Queries and Tasks
We review a number of generalizations that have

been studied, going beyond the task of ranked enu-
meration by SUM for acyclic JQs.

5.1 General Ranking Functions
Beyond lexicographic orders and SUM, the algo-
rithm of Section 4 can be used with any rank-
ing function that obeys a property called subset-

monotonicity. Recall that a ranking function w

maps the query answers to a domain W ordered
by �. We consider ranking functions that achieve
8The code is available to use at https://github.com/

northeastern-datalab/anyk-code.
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Figure 7: The example from Fig. 5 adapted with a priority queue instead of a stack to support ranked
enumeration by SUM.

Any-k JoinFirst PSQL

Figure 8: Any-k against the join-then-rank ap-
proach (JoinFirst) and PostgreSQL (PSQL):
Any-k returns the top answer in 67 msec, whereas
JoinFirst needs 10.7 sec [44].

this by aggregating (a multiset of) input weights via
an aggregate function wA. For example, wA is

P

for SUM.

Definition 4 (Subset-Monotonicity).

A ranking function w is subset-monotone if

wA(X1) � wA(X2) ) wA(X1 ] Y ) � wA(X2 ] Y )
for all X1, X2, Y 2 NW

, where ] is multiset union.

Intuitively, subset-monotonicity allows to infer
the ranking of complete solutions from the rank-
ing of partial solutions. This is essentially enabling
Dynamic Programming [10]. Any subset-monotone
ranking function can be handled efficiently with the
Õ(n+k) guarantee for acyclic queries [43, 46].9 For
9Alternatively, the ranking function can be defined as a
selective dioid [44], which can be shown to obey subset-
monotonicity.

instance, we may choose the aggregate function to
be max instead of

P
. Under this ranking, only the

highest weight is relevant for ordering the answers.
Deep and Koutris [24] generalize subset-

monotonicity10 so that the property is sensitive to
the join tree structure; to achieve the desired guar-
antee, the property needs to hold only across the
specific nodes of the join tree used by the algo-
rithm. As an example, consider f(x, y) + g(z) for
arbitrary f, g and the query Q(x, y, z) :�R(x, y),
S(y, z). Even though this ranking function is not
subset-monotone, it can be supported efficiently be-
cause x and y are encountered together.

What about other ranking functions? A known
negative result is that if the ranking function is a
black box, then one cannot do better than materi-
alizing the entire query output [24]. Thus, the only
guarantee we can hope for is the worst-case output
size of the query, given by the AGM bound [5].

5.2 CQs with Projection
So far, we have focused on join queries, yet CQs
may also contain projection. Projections introduce
a new challenge: even if ranked enumeration is ef-
ficient for a join query, this may not be true for
projections, because we need to eliminate duplicates
(under set semantics), potentially increasing TT(k).

Bagan et al. [6] established a dichotomy for
unranked enumeration that precisely characterizes
queries that admit TT(k) = Õ(n + k). The neg-
ative side of the dichotomy applies only to self-

10Subset-monotonicity is also referred to as a “totally
decomposable ranking” [24].
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join-free CQs and relies on two complexity-theoretic
hypotheses: SparseBMM [11] states that two
Boolean matrices A and B, represented as lists of
non-zeros, cannot be multiplied in time m

1+o(1)

where m is the number of non-zeros in A, B, and
AB. Hyperclique [1, 34] states that for every
k � 2, there is no O(n polylog n) algorithm to de-
cide the existence of a (k+1, k)-hyperclique in a
k-uniform hypergraph with n hyperedges, where a
(k+1, k)-hyperclique is a set of k+1 vertices such
that every subset of k vertices forms a hyperedge,
and a k-uniform hypergraph is one where all hy-
peredges contain exactly k vertices. Under these
assumptions, the only efficient (self-join-free) CQs
are those that are free-connex. A CQ is free-connex
if it is acyclic and additionally, it remains acyclic if
we add an atom that contains all free variables [15].

Interestingly, that frontier of tractability for un-
ranked enumeration turns out to be the same for
ranked enumeration with subset-monotone ranking
functions (modulo logarithmic factors).

Theorem 5 (Dichotomy [43, 46]). Let Q

be a CQ. If Q is free-connex, then ranked enu-

meration with a subset-monotone ranking function

is possible with TT(k) = Õ(n + k). Otherwise,

if it is also self-join-free, then it is not possible

with TT(k) = Õ(n + k) for any ranking function,

assuming SparseBMM and Hyperclique.

For the class of acyclic but non-free-connex CQs,
the dichotomy precludes the existence of an algo-
rithm with the efficient Õ(n + k) guarantee. How-
ever, Õ(n · k) is possible for subset-monotone rank-
ing functions. This result has been established by
the algorithm of Bagan et al. [6] for lexicographic
orders, by Deep et al. [23] for lexicographic orders
and SUM through a different algorithm, and by
Kimelfeld and Sagiv [32] for all subset-monotone
ranking functions through a third algorithm.

Theorem 6 (Non-free-connex [6, 23, 32]).

Let Q be an acyclic, non-free-connex CQ. Ranked

enumeration of Q(D) with a subset-monotone

ranking function is possible with TT(k) = Õ(n · k).

5.3 Beyond Acyclic CQs
We can apply the ranked-enumeration algorithms
even to queries that are not acyclic CQs, albeit with
adjusted complexity guarantees. This is possible if
the query can be transformed into an acyclic and
free-connex CQ, or a union of such queries. In
that case, we first apply the transformation and
then perform ranked enumeration on the resulting
queries. To deal with a union, we maintain a top-
level priority queue that retrieves the next query

answer from the query with the lowest weight in
each iteration. Duplicate answers introduce poten-
tial complications, but as long as the number of du-
plicates per answer is bounded by a constant, they
can be filtered on-the-fly without increasing com-
plexity. In general, identifying such transformations
is an orthogonal research problem, and we discuss
three notable cases.

Cyclic JQs. For cyclic JQs, we can employ (hy-
per)tree decompositions [27] to reduce them to a
union of acyclic JQs. A decomposition is associated
with a width parameter that captures the degree of
acyclicity of the query and affects the complexity
of subsequent algorithms; for a JQ with width d,
we can achieve TT(k) = Õ(nd + k). The state-of-
the-art width for a JQ Q is the submodular width
subw(Q) [3, 35], transforming a cyclic JQ over a
database of size n to a union of acyclic JQs of
size O(nsubw(Q)), allowing ranked enumeration with
TT(k) = Õ(nsubw(Q) + k).11

Built-in Predicates. Another case involves
acyclic JQs that additionally contain built-in predi-
cates [50] such as inequalities. For non-equalities (or
“disequalities” 6=), we can always achieve TT(k) =
Õ(n + k) regardless of where the non-equalities
appear in the JQ through a “color-coding” tech-
nique [39]. Abo Khamis et al. [31] showed that the
same is true for a multidimensional generalization of
non-equality, called a Not-All-Equal (NAE) predi-
cate. For inequalities (<,>), we can successfully
reduce the query to an acyclic JQ over an Õ(n)
database, hence achieving TT(k) = Õ(n + k), as
long as the inequality predicate involves variables
that appear in join-tree nodes that are adjacent [47].
This condition can be checked directly from the
query structure; it is equivalent to the absence of
a chordless path of length at least 4 connecting the
inequality variables, in the query’s hypergraph [45].

CQs with FDs. While a CQ may be acyclic but
not free-connex, or even cyclic, it may still be pos-
sible to transform it to an acyclic CQ without em-
ploying a hypertree decomposition, which generally
increase the complexity. This is the case when Func-
tional Dependencies (FDs) are present in the CQ.
We can achieve TT(k) = Õ(n+k) for queries whose
so-called FD-extension, also known as the closure of
Q [26], is free-connex [19].

5.4 Direct Access
A problem that is closely related to ranked enu-
meration is direct access [21, 22, 25], which asks
whether it is possible to efficiently jump to arbitrary

11An analog exists for CQs (with projection) [12].
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positions in the (implicit) output array, after a pre-
processing phase. Ranked enumeration is a special
case of this problem, where the accessed positions
are 1, 2, 3, . . .

Interestingly, the absence of disruptive trios (Def-
inition 1) that describes the feasible lexicographic
orders for the algorithm of Section 3 also appears
as a necessary condition for achieving direct ac-
cess with quasilinear preprocessing and polyloga-
rithmic delay [21] (assuming SparseBMM). The
other necessary condition is for the (self-join-free)
acyclic CQ to be L-connex for the variables L that
appear in the lexicographic order; similarly to the
free-connex property, this means that the query re-
mains acyclic when we add a hyperedge consisting
of the L variables. These two conditions are also
sufficient for acyclic CQs and thus, provide a di-
chotomy for self-join-free CQs, under SparseBMM

and Hyperclique.
A similar, but much more restrictive on the

positive side, dichotomy has been established for
SUM [21]. Going beyond quasilinear preprocessing
time, Bringman et al. [17] derived precise bounds
for each JQ and lexicographic order, Eldar et al. [25]
considered queries with aggregation, while Tziavelis
et al. [45] studied the problem of a single access
where no preprocessing is required.

6 Conclusion and Future Outlook
In this paper, we explored the problem of ranked
enumeration without fully materializing the query
result. We discussed how, for acyclic join queries,
certain lexicographic orders can naturally be pro-
duced by the unranked enumeration algorithm
(with an additional sorting of individual relations).
However, not all orders can be handled in this
straightforward way. With additional preprocessing
and data structures for prioritization, we presented
an extended algorithm capable of handling more
complex ranking functions, including SUM. No-
tably, for free-connex CQs, this approach achieves
TT(k) = Õ(n+k) for any subset-monotone ranking

function, and no other self-join-free CQ admits this
guarantee (under common hypotheses). Broader
classes of queries are also within the reach of the
algorithm, as long as they can be efficiently reduced
to a union of acyclic and free-connex CQs.

These results are part of an extensive line of re-
search in database theory, focused on the compu-
tational tasks that can be efficiently performed on
query results without explicitly materializing them.
The goal is to offer the illusion of a materialized
result, while the actual operations are executed di-
rectly on the database. Beyond ranked enumera-

tion and direct access, related tasks include aggre-
gation [2], linear regression [37], and k-means clus-
tering [36], among others.

One of the areas lacking a refined understanding
for ranked enumeration is the complexity landscape
for ranking functions. Although some orders are al-
gorithmically easier to achieve than others within
the subset-monotone class, their complexity is the
same, modulo logarithmic factors. On the other
end of the spectrum, for arbitrary black-box rank-
ing functions, no strong guarantees can be achieved.
What about the space in-between? To contrast this
with the problem of direct access, more intriguing,
polynomial-time separations are known even within
the class of lexicographic and SUM ranking func-
tions. Mapping out properties of ranking functions
and their impact on complexity is an interesting re-
search direction.

Similarly, more work is needed to understand the
fundamental difficulty of ranking. For instance, are
there surprising cases where ranked enumeration is
harder than unranked? One avenue to approach
this question is to study CQs with “long” inequal-
ities (in contrast to the “short” inequalities of Sec-
tion 5.3). For queries, such as Q(x1, x2, x3, x4) :�
R(x1, x2), S(x2, x3), T (x3, x4), x1 < x4, it is known
that unranked enumeration can be achieved with
Õ(n+k) [52], yet ranked enumeration has not been
studied. Another avenue is to consider different
classes of circuits [4] instead of CQs in order to find
such a separation.

The relationship between ranked enumeration
and top-k can also lead to interesting questions.
Top-k introduces two relaxations, the exact impact
of which is not entirely clear: (1) k is a small con-
stant, and (2) k is known in advance.

Finally, parallelization is a natural, but challeng-
ing, direction. The prioritization of answers re-
quired by ranked enumeration implies a degree of
sequentiality in the computation, making a paral-
lel adaptation non-obvious. On the theoretical side,
the widely used MPC model [8] does not seem to be
a good fit because of its batch-processing nature.
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torised representations of query results. TODS,
40(1):2, 2015. doi: 10.1145/2656335.

[39] C. H. Papadimitriou and M. Yannakakis. On the
complexity of database queries. Journal of Com-

puter and System Sciences, 58(3):407–427, 1999.
doi: 10.1006/jcss.1999.1626.

[40] R. Paredes and G. Navarro. Optimal incremental

sorting. In ALENEX. 2006, pages 171–182. doi:
10.1137/1.9781611972863.16.

[41] L. Segoufin. Constant delay enumeration for con-
junctive queries. SIGMOD Record, 44(1):10–17,
2015. doi: 10.1145/2783888.2783894.

[42] R. E. Tarjan and M. Yannakakis. Simple linear-
time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs. SIAM J. Comput.,
13(3):566–579, 1984. doi: 10.1137/0213035.

[43] N. Tziavelis. Efficient Ranked Access to Database

Query Answers. PhD thesis, Northeastern Univer-
sity, 2024. url: https://hdl.handle.net/2047/
D20668633.

[44] N. Tziavelis, D. Ajwani, W. Gatterbauer, M.
Riedewald, and X. Yang. Optimal algorithms for
ranked enumeration of answers to full conjunc-
tive queries. PVLDB, 13(9):1582–1597, 2020. doi:
10.14778/3397230.3397250.

[45] N. Tziavelis, N. Carmeli, W. Gatterbauer, B.
Kimelfeld, and M. Riedewald. Efficient computa-
tion of quantiles over joins. In PODS, pages 303–
315, 2023. doi: 10.1145/3584372.3588670.

[46] N. Tziavelis, W. Gatterbauer, and M. Riedewald.
Any-k algorithms for enumerating ranked answers
to conjunctive queries. CoRR, abs/2205.05649,
2023. url: https://arxiv.org/abs/2205.05649.

[47] N. Tziavelis, W. Gatterbauer, and M. Riedewald.
Beyond equi-joins: ranking, enumeration and fac-
torization. PVLDB, 14(11):2599–2612, 2021. doi:
10.14778/3476249.3476306.

[48] N. Tziavelis, W. Gatterbauer, and M. Riedewald.
Optimal join algorithms meet top-k. In SIGMOD

tutorials, pages 2659–2665, 2020. doi: 10.1145/
3318464.3383132. url: https://northeastern-
datalab.github.io/topk-join-tutorial/.

[49] N. Tziavelis, W. Gatterbauer, and M. Riede-
wald. Toward responsive DBMS: optimal join
algorithms, enumeration, factorization, ranking,
and dynamic programming. In ICDE tutorials,
2022. doi: 10.1109/ICDE53745.2022.00299. url:
https://northeastern- datalab.github.io/

responsive-dbms-tutorial/.
[50] J. D. Ullman. Principles of database and

knowledge-base systems, Vol. I. Computer Science
Press, Inc., 1988. url: https://dl.acm.org/doi/
abs/10.5555/42790.

[51] M. Y. Vardi. The complexity of relational
query languages (extended abstract). In STOC,
pages 137–146, 1982. doi: 10 . 1145 / 800070 .

802186.
[52] Q. Wang and K. Yi. Conjunctive queries with

comparisons. In SIGMOD, pages 108–121, 2022.
doi: 10.1145/3514221.3517830.

[53] X. Yang, D. Ajwani, W. Gatterbauer, P. K.
Nicholson, M. Riedewald, and A. Sala. Any-k:
anytime top-k tree pattern retrieval in labeled
graphs. In WWW, pages 489–498, 2018. doi: 10.
1145/3178876.3186115.

[54] X. Yang, M. Riedewald, R. Li, and W. Gatter-
bauer. Any-k algorithms for exploratory analysis
with conjunctive queries. In International Work-

shop on Exploratory Search in Databases and the

Web (ExploreDB), pages 1–3, 2018. doi: 10.1145/
3214708.3214711.

[55] M. Yannakakis. Algorithms for acyclic database
schemes. In VLDB, pages 82–94, 1981. url:
https://dl.acm.org/doi/10.5555/1286831.

1286840.

SIGMOD Record, September 2024 (Vol. 53, No. 3) 19


