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Abstract— Layer jamming (LJ) materials and structures
have shown promise in designing variable stiffness compliant
mechanisms for robotics. However, design challenges persist due
to time-consuming prototyping, testing, and significant compu-
tational resources needed for finite element (FE) simulations.
The complexity stems from the intricate mechanics behavior be-
tween jamming materials and substrate structures. This article
presents a hybrid model that combines machine learning (ML)
with data generated from finite element (FE) analysis to predict
the mechanical behavior of LJ-based compliant parallel-guided
mechanisms, including force-deflection relationships, stiffness,
and hysteresis. An experimentally validated FE model generates
data by varying geometric and material parameters, capturing
key mechanical performance metrics. This data serves as input
for training a neural network model, which evaluates the
impact of selected design parameters on performance metrics.
The resulting ML model is highly efficient, with predictions
taking seconds compared to hundreds of hours needed for FE
simulations, and remarkably accurate, with less than a 5%
error relative to FE simulations. This efficient computational
model can be used for designing and analyzing LJ-based
parallel-guided mechanisms, with the validated workflow pro-
cess applicable to other LJ-compliant mechanisms and robotic
systems.

I. INTRODUCTION

Layer jamming (LJ) materials and structures have become
an attractive solution for stiffness tuning, drawing significant
interest in recent years [1]. LJ mechanisms consist of a
sealed volume that contains friction layers, with or without
a substrate structure. By introducing a pressure differential,
the jamming layers are pressed against each other, increasing
the friction between them, and significantly enhancing the
stifftness of the LJ mechanism. The air pressure can be varied
to achieve a continuum of stiffness values. Wall et al. [2]
demonstrated that LJ has the highest range of stiffness or
stiffness change ratio among the three jamming methods (LJ,
grain, and fiber). Furthermore, the force-deflection behavior
comparison presented in [3] indicates the superiority of LJ
over other jamming mechanisms under bending load. LJ has
been successfully applied in various robotic devices, includ-
ing variable stiffness mechanisms [4] and high-performance
variable stiffness robotic grippers [5], [6], [7].

The ability of LJ structures to vary stiffness with minimal
mechanical design overhead makes them ideal candidates for
designing mechanisms and robotic devices, such as soft grip-
pers, with enhanced payload capacity [8], [9], [10]. To handle
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delicate objects or work alongside human operators, robots
require both flexibility and rigidity [11], [12]. Robots capable
of controlling their stiffness can significantly enhance their
load carrying capability while maintaining flexibility when
not carrying a load. For instance, a robot capable of varying
its stiffness can become more rigid when load capability
is needed, but can also become more compliant to avoid
injuring surrounding humans or damaging the load. Kim et
al. [13], [14] developed a manipulator using LJ for minimally
invasive surgery that can assume a flexible state for insertion
without accidental injury, but can then become stiff to
achieve the required positional accuracy. This marks the
beginning of exploring the application of LJ as an effective
variable stiffness solution. Recent studies and applications
of LJ mechanisms have focused on finding new designs
of backbones on which jamming layers are attached [15],
[16] or exploring appropriate application scenarios [17], [18],
[19], [20], [21], [22].

Design modeling of LJ mechanisms remains a significant
challenge due to the complexity of the underlying mechanics
of these materials and structures. Several mechanics models
have been developed to quantify the relationship between
performance metrics and design parameters [23], [24], [25].
Finite Element models have also been developed to simulate
the mechanics behavior of L] structures [26] and have shown
great accuracy compared with experimental tests. However,
the FE model developed in the study only demonstrates
force-deflection behavior and does not offer the capability
of sizing design parameters for performance metrics. This
capability, often called the “inverse design model,” has not
been comprehensively addressed in LJ literature. Zeng et al.
[27] proposed a preliminary inverse design model based on a
mechanics mode for an LJ-based parallel-guided compliant
mechanism. However, due to the large number of frictional
contact pairs, large deflection, and non-linear nature, these
FEA simulations are computationally expensive, taking 20-
40 hours each. Thus, generating the entire solution space
efficiently is impossible [27].

In the aerospace industry, researchers have used numeri-
cal optimization to generate optimum aerodynamic shapes,
substantially reducing experimental time and costs [28]. A
comparable computational methodology is needed for the
design of robotic jamming layer structures to reduce the
design cycle. Specifically, a highly efficient and accurate
computational tool is needed to (1) predict a design’s per-
formance prior to prototyping, and (2) determine design
parameters to meet predefined performance metrics.
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Fig. 1: The work flow to train and apply the machine learning model for performance prediction of LJ mechanisms.

II. WORK FLOW OF THE MACHINE LEARNING MODEL

The finite element simulation of LJ mechanisms is ex-
tremely computationally expensive, taking tens of hours,
making it highly inefficient. To overcome this challenge,
we propose a machine learning (ML) model for predicting
the performance of LJ-based compliant mechanisms. To
demonstrate the process, we use the compliant parallel-
guided mechanism shown in Figure 1. The goal is to explore
the entire design space of this type of mechanism and
develop a highly efficient model to gain deeper insights
into how key performance metrics are determined by various
design/control parameters.

Figure 1 illustrates the basic workflow for training the
ML model and applying it to performance prediction. The
first step is to develop an accurate finite element (FE) model
for evaluating the key performance metrics. The second step
involves running numerous FEA simulations by sweeping
geometric/material/control parameters to identify the key
performance metrics, including the stiffness change ratio,
maximum achievable stiffness, and residue deflection, among
others. Although this step is the most time-consuming (taking
hundreds of simulation hours), it is a one-time computation.
In the third step, we feed the simulation data to a neural
network model that maps the performance metrics to the
design parameters. The trained model is highly efficient and
capable of predicting the performance metrics based on the
input of design parameters in seconds rather than hours. We
can then use this ML model to generate the entire design
space by sampling the design and control parameters. The
result is a novel, efficient, and accurate computational model
that can be used for the design and analysis of LJ compliant
mechanisms in the early design iterations.
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Fig. 2: Initial FE model calibration based on a stack of layers
under 3-point bending. (a) FE model of a stack of layers. (b)
Experiment setup. (c) FE data compared with experiment
result. The vertical bars are experimental testing data. And
the curves are the FE simulation data.
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Fig. 3: The parallel-guided LJ mechanism. (a): Main compo-
nents of the parallel-guided compliant mechanism showing
(1) Vacuum Membrane, (2) Jamming Layers, (3) Hourglass
Shaped Beam (Substrate), (4) Layer Clamp. (b): The geo-
metric design parameters of a single beam.

III. CALIBRATION OF THE MATERIAL PROPERTIES

To develop a finite element model of an LJ compliant
mechanism, we must first calibrate the material properties
to match the FE model with experimental results. To do
so, we develop a FE model for a stack of jamming layers
and calibrate the material properties by comparing the results
with physical experiments as shown in Fig. 2. The jamming
layers are made from polyester film, which typically has a
modulus of elasticity ranging from 3.10 GPa to 4.36 GPa.
Meanwhile, the vacuum membrane is made of Polyurethane
elastomer, which has a wide range of modulus of elasticity
from 0.00114 GPa to 0.248 GPa (Matweb). The modulus
of the polyester film is iterated from 3.10 GPa to 4.4 GPa
with an increment of 0.10 GPa, while the modulus of the
Polyurethane elastomer is iterated from 0.005 GPa to 0.25
GPa with an increment of 0.005 GPa. The calibrated material
parameters are listed in Table I, with the friction coefficient
obtained from a previous study using the same materials
[27]. The modulus of elasticity of the beam material is also
obtained from this study.

IV. THE PARALLEL GUIDED LAYER JAMMING
MECHANISM

A. The finite element model

For more details on the parallel-guided compliant mecha-
nism, please refer to the work of Zeng et al [4].

The finite element model configuration, presented in Fig.4
(a), comprises hour-glass shaped sections that are relatively
more rigid compared to the thin beam sections. Since the
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Fig. 4: The finite element model. (a) FEA configuration
showing the major components: 1. Vacuum Membrane. 2.
Jamming Layers. 3. Flexible Section of the Beam (Center
Beam). 4. Rigid Section of the Beam (Hourglass-Shaped
Structure). (b) FEA schematic figure showing the contact
pairs: 5. Frictional Contact Pairs. 6. Rigid Connections. (c)
Boundary conditions.

more rigid hour-glass sections exhibit significantly lower
stress and deflection, the primary interest lies in calculat-
ing the stress and deformation in the thin beam sections.
Therefore, all the hour-glass shaped sections are defined
to have a rigid stiffness behavior. To model the frictional
contact pairs between the beam and bottom jamming layer,
in-between jamming layers, and between the top jamming
layer and vacuum bag, a coefficient of friction of 0.167 is
used based on experimental measurements of the jamming
layers. The contact formulation uses augmented Lagrange
to achieve minimal penetration, high robustness, and low
computational cost. Table I lists the dimensions and material
properties used in the model.

B. Sensitivity Analysis of Key Design Parameters

The geometric and material design parameters of the
compliant parallel-guided mechanism are presented in Table
I and illustrated in Fig. 3 (b). The geometric parameters
consist of the number of jamming layers N, the beam
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TABLE I: The design parameters for the FE model

Symbol Description Value
Key Design Parameters
N number of frictional layers on each side 4
H beam height 75 mm
d beam thickness 10 mm
de center beam thickness 0.8 mm
Material Parameters
E; modulus of layer material 4.0GPa
Ey modulus of beam material 2.6 GPa
E, modulus of vacuum membrane material ~ 0.02 GPa
m friction coefficient 0.167
Beam Dimensions
Ly beam length 227 mm
l length of flexible part of one unit 7 mm
t length of rigid part of one unit 3mm
L total length of one unit 10 mm
n total number of unit sections 23
N=4 Load (N) d=5mm Load (N)
Displacement (mm) . Displacement (mm)
= o
N=5 Load (N) d=15mm Load (N)
Displacement (rlnlny /./' //’i
i /

Load (N) Load (N)

Fig. 5: Comparison of the experimental results and the finite
element simulations. The dots represent the experimental
data while the curves represent the simulation data.

thickness d, the center beam thickness dc, and the beam
height H, while the material parameters include the elastic
modulus of the beam material Eb and the elastic modulus
of the layer material Fj.

To verify the finite element (FE) model employed in the
parallel-guided mechanism, experiments were carried out
with varying design parameters, including the number of
layers, beam thickness, and beam height. The respective
experimental and FE results were gathered and compared
in Fig.5. Both the experimental and FE studies obtained the
full loading and unloading curves to exhibit the hysteresis
behavior of the jamming structures.
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With the FE model validated by experimental results, a
thorough sensitivity analysis is conducted by varying all
the geometric and material design parameters. Each design
parameter is increased and decreased by 25% and 50%,
respectively, to investigate its effect on the system’s behavior.
All the design studies are listed in Fig. 6. A design principle
for achieving a higher stiffness ratio in the parallel-guided
mechanism can be drawn from these studies.

1) Estimated from the spacing between the curves, the pa-
rameters that exhibit the highest sensitivity to stiffness
ratio are the beam height (H), beam thickness (d), and
center beam thickness (d..).

A higher modulus of the layer material results in a
greater stiffness ratio. This can be attributed to the
higher stiffness achieved due to the increased modulus
of the layer material.

Increasing the number of layers leads to a higher
stiffness ratio, but its effect is not as significant as that
of varying H, d, or d..

Both the beam height and the center beam thickness
are negatively correlated with the stiffness ratio. A
decrease in these parameters can lead to a higher
stiffness ratio; however, this may result in a greater
maximum stress, which can compromise the load-
carrying capacity of the design. Thus, it is necessary
to exercise caution when reducing the beam height and
center beam thickness.

2)

3)

4)

V. DEVELOPMENT OF THE MACHINE LEARNING MODEL

The compliant parallel-guided mechanism with LJ has
eight key design parameters, including beam height, beam
thickness, center beam thickness, number of layers, modulus
of elasticity of the beam material, modulus of elasticity of
the layer material, layer thickness, and the ratio of modulus
of elasticity of layer and beam materials. However, each
curve in Fig.6 only corresponds to one design point in the
design space and takes about 10-30 hours to compute. As
a result, it would be computationally expensive to generate
a comprehensive design contour that could indicate the
trend of stiffness ratio or other performance metrics with
continuously changing design parameters.

Five groups of two design parameters were selected,
as shown by the black squares in Fig.7. A total of 86
FEA studies were carried out using the uniformly selected
parameter pairs in these five sub-design spaces. A ML model
was then built based on the 86 sets of design parameters and
the stiffness ratio change. The small dataset was less likely to
suffer from the over-fitting problem. Hyper-parameters were
tuned to avoid overfitting as well as to achieve high accuracy.
The hyper-parameters of the narrow neural network are listed
in Table II. Design contour curves were plotted on top of
the FEA design points, facilitating the comprehension of the
stiffness ratio change corresponding to a design parameter
variation.

In addition to the stiffness ratio, the maximum stiffness
achievable by the layer jamming mechanism is also a signifi-
cant parameter, as it is directly related to the load capacity. To
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Fig. 6: Sensitivity Analysis on Key Design Parameters Based on the ML model.
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Fig. 7: Design contour map of the compliant parallel-guided
mechanism with layer jammming.

explore the design space for maximum stiffness, a separate
set of FEA simulations was conducted and a machine learn-
ing model was trained on this design space. The resulting
sensitivity studies are presented in Fig. 8, which clearly
indicate that the beam height H and beam thickness d are
the most sensitive design parameters for maximum stiffness,
while the modulus of elasticity of the beam material Ej, is
the least sensitive. This finding is consistent with the fact
that the maximum stiffness is primarily influenced by the
jammed layer, which is mainly affected by the modulus of
the layer material.

1) Fraz—presiip 1S the maximum load the mechanism can
bear before the mechanism starts to have excessive
deformation caused by the slip within jamming layers.
The beam thickness, d, and the beam height, H, are
the two parameters that contribute most to a high load
capacity.

dres 1S the residue deformation when the beam is un-
loaded by removing the external load. It characterizes
the hysteresis caused by the friction forces between
the jamming layers. The study suggests that lower
beam thickness, d, and lower modulus of elasticity of
the layer material, F;, would lead to a low hysteresis
design. Fewer number of jamming layers, N, would
also help to reduce hysteresis, not as effectively as the
aforementioned parameters though.

2)
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3) Maximum stiffness, k4., is desired for high precision

on motion and manipulation. The study shows that
higher beam thickness, d, and higher modulus of
elasticity of the layer material, E;, would give a higher
maximum stiffness.

The studies presented in Fig. 9 suggest that the most sensitive
design parameters can be manipulated to achieve a specific
performance metric. However, modifying design parameters
to optimize one performance metric may have an adverse
effect on another metric. For example, increasing the beam
thickness, d, and the modulus of elasticity of the layer
material, F;, may result in a higher maximum stiffness, but
it may also cause higher hysteresis.

To assess the accuracy of the machine learning models
built from FEA studies, 10 sets of randomly selected design
parameters were chosen, and performance metrics were
calculated using both the machine learning model and the
FEA model. In Table III, the results were compared, and
it was found that the largest deviation from the machine
learning model results to the FEA results was within 5%.

VI. CONCLUSIONS

In this article, a machine learning model was developed
and trained on the finite element studies to predict the
mechanics behavior of a layer jamming based compliant
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parallel-guided mechanism, including force-deflection rela-
tion, maximum achievable stiffness, and hysteresis. The
traditional method of swiping input parameters to generate
the design space is inefficient due to the high computational
cost caused by the complicated mechanical interactions of
the jamming layers. The machine learning model was trained
using the data generated from the finite element model,
which was experimentally validated. The ML model has
a comparable accuracy (5% error) with the finite element
model but takes only seconds to achieve the prediction,
compared to the several hundreds of hours needed for the
finite element model.

Due to the high computational cost of finite element
analysis, the number of evaluations is severely limited. To
overcome this challenge, a fast machine learning model
was trained based on the finite element studies. This model
predicts the effects of selected key design parameters on
the mechanics behaviors, providing guidelines for the op-
timal design of layer jamming mechanisms for a selected
performance metric. The trend on which the performance
metrics vary with the design parameters can be used in the
preliminary design stage of layer jamming mechanisms to
provide initial design decisions regarding dimensions and
material selections.
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