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AbstractÐ Layer jamming (LJ) materials and structures
have shown promise in designing variable stiffness compliant
mechanisms for robotics. However, design challenges persist due
to time-consuming prototyping, testing, and significant compu-
tational resources needed for finite element (FE) simulations.
The complexity stems from the intricate mechanics behavior be-
tween jamming materials and substrate structures. This article
presents a hybrid model that combines machine learning (ML)
with data generated from finite element (FE) analysis to predict
the mechanical behavior of LJ-based compliant parallel-guided
mechanisms, including force-deflection relationships, stiffness,
and hysteresis. An experimentally validated FE model generates
data by varying geometric and material parameters, capturing
key mechanical performance metrics. This data serves as input
for training a neural network model, which evaluates the
impact of selected design parameters on performance metrics.
The resulting ML model is highly efficient, with predictions
taking seconds compared to hundreds of hours needed for FE
simulations, and remarkably accurate, with less than a 5%
error relative to FE simulations. This efficient computational
model can be used for designing and analyzing LJ-based
parallel-guided mechanisms, with the validated workflow pro-
cess applicable to other LJ-compliant mechanisms and robotic
systems.

I. INTRODUCTION

Layer jamming (LJ) materials and structures have become

an attractive solution for stiffness tuning, drawing significant

interest in recent years [1]. LJ mechanisms consist of a

sealed volume that contains friction layers, with or without

a substrate structure. By introducing a pressure differential,

the jamming layers are pressed against each other, increasing

the friction between them, and significantly enhancing the

stiffness of the LJ mechanism. The air pressure can be varied

to achieve a continuum of stiffness values. Wall et al. [2]

demonstrated that LJ has the highest range of stiffness or

stiffness change ratio among the three jamming methods (LJ,

grain, and fiber). Furthermore, the force-deflection behavior

comparison presented in [3] indicates the superiority of LJ

over other jamming mechanisms under bending load. LJ has

been successfully applied in various robotic devices, includ-

ing variable stiffness mechanisms [4] and high-performance

variable stiffness robotic grippers [5], [6], [7].

The ability of LJ structures to vary stiffness with minimal

mechanical design overhead makes them ideal candidates for

designing mechanisms and robotic devices, such as soft grip-

pers, with enhanced payload capacity [8], [9], [10]. To handle
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delicate objects or work alongside human operators, robots

require both flexibility and rigidity [11], [12]. Robots capable

of controlling their stiffness can significantly enhance their

load carrying capability while maintaining flexibility when

not carrying a load. For instance, a robot capable of varying

its stiffness can become more rigid when load capability

is needed, but can also become more compliant to avoid

injuring surrounding humans or damaging the load. Kim et

al. [13], [14] developed a manipulator using LJ for minimally

invasive surgery that can assume a flexible state for insertion

without accidental injury, but can then become stiff to

achieve the required positional accuracy. This marks the

beginning of exploring the application of LJ as an effective

variable stiffness solution. Recent studies and applications

of LJ mechanisms have focused on finding new designs

of backbones on which jamming layers are attached [15],

[16] or exploring appropriate application scenarios [17], [18],

[19], [20], [21], [22].

Design modeling of LJ mechanisms remains a significant

challenge due to the complexity of the underlying mechanics

of these materials and structures. Several mechanics models

have been developed to quantify the relationship between

performance metrics and design parameters [23], [24], [25].

Finite Element models have also been developed to simulate

the mechanics behavior of LJ structures [26] and have shown

great accuracy compared with experimental tests. However,

the FE model developed in the study only demonstrates

force-deflection behavior and does not offer the capability

of sizing design parameters for performance metrics. This

capability, often called the ºinverse design model,º has not

been comprehensively addressed in LJ literature. Zeng et al.

[27] proposed a preliminary inverse design model based on a

mechanics mode for an LJ-based parallel-guided compliant

mechanism. However, due to the large number of frictional

contact pairs, large deflection, and non-linear nature, these

FEA simulations are computationally expensive, taking 20-

40 hours each. Thus, generating the entire solution space

efficiently is impossible [27].

In the aerospace industry, researchers have used numeri-

cal optimization to generate optimum aerodynamic shapes,

substantially reducing experimental time and costs [28]. A

comparable computational methodology is needed for the

design of robotic jamming layer structures to reduce the

design cycle. Specifically, a highly efficient and accurate

computational tool is needed to (1) predict a design’s per-

formance prior to prototyping, and (2) determine design

parameters to meet predefined performance metrics.
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Machine Learning 

Model Trained Based on

FEA Data Points 

FEA Verified 

from Experiment

Design Contour 

from the Machine 
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Fig. 1: The work flow to train and apply the machine learning model for performance prediction of LJ mechanisms.

II. WORK FLOW OF THE MACHINE LEARNING MODEL

The finite element simulation of LJ mechanisms is ex-

tremely computationally expensive, taking tens of hours,

making it highly inefficient. To overcome this challenge,

we propose a machine learning (ML) model for predicting

the performance of LJ-based compliant mechanisms. To

demonstrate the process, we use the compliant parallel-

guided mechanism shown in Figure 1. The goal is to explore

the entire design space of this type of mechanism and

develop a highly efficient model to gain deeper insights

into how key performance metrics are determined by various

design/control parameters.

Figure 1 illustrates the basic workflow for training the

ML model and applying it to performance prediction. The

first step is to develop an accurate finite element (FE) model

for evaluating the key performance metrics. The second step

involves running numerous FEA simulations by sweeping

geometric/material/control parameters to identify the key

performance metrics, including the stiffness change ratio,

maximum achievable stiffness, and residue deflection, among

others. Although this step is the most time-consuming (taking

hundreds of simulation hours), it is a one-time computation.

In the third step, we feed the simulation data to a neural

network model that maps the performance metrics to the

design parameters. The trained model is highly efficient and

capable of predicting the performance metrics based on the

input of design parameters in seconds rather than hours. We

can then use this ML model to generate the entire design

space by sampling the design and control parameters. The

result is a novel, efficient, and accurate computational model

that can be used for the design and analysis of LJ compliant

mechanisms in the early design iterations.

(a)

(c)

Displacement

Fixed

Fixed

(b)

Displacement Sensor

Force
Sensor

Phase II Phase IIIPhase I

Fig. 2: Initial FE model calibration based on a stack of layers

under 3-point bending. (a) FE model of a stack of layers. (b)

Experiment setup. (c) FE data compared with experiment

result. The vertical bars are experimental testing data. And

the curves are the FE simulation data.
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Fig. 3: The parallel-guided LJ mechanism. (a): Main compo-

nents of the parallel-guided compliant mechanism showing

(1) Vacuum Membrane, (2) Jamming Layers, (3) Hourglass

Shaped Beam (Substrate), (4) Layer Clamp. (b): The geo-

metric design parameters of a single beam.

III. CALIBRATION OF THE MATERIAL PROPERTIES

To develop a finite element model of an LJ compliant

mechanism, we must first calibrate the material properties

to match the FE model with experimental results. To do

so, we develop a FE model for a stack of jamming layers

and calibrate the material properties by comparing the results

with physical experiments as shown in Fig. 2. The jamming

layers are made from polyester film, which typically has a

modulus of elasticity ranging from 3.10 GPa to 4.36 GPa.

Meanwhile, the vacuum membrane is made of Polyurethane

elastomer, which has a wide range of modulus of elasticity

from 0.00114 GPa to 0.248 GPa (Matweb). The modulus

of the polyester film is iterated from 3.10 GPa to 4.4 GPa

with an increment of 0.10 GPa, while the modulus of the

Polyurethane elastomer is iterated from 0.005 GPa to 0.25

GPa with an increment of 0.005 GPa. The calibrated material

parameters are listed in Table I, with the friction coefficient

obtained from a previous study using the same materials

[27]. The modulus of elasticity of the beam material is also

obtained from this study.

IV. THE PARALLEL GUIDED LAYER JAMMING

MECHANISM

A. The finite element model

For more details on the parallel-guided compliant mecha-

nism, please refer to the work of Zeng et al [4].

The finite element model configuration, presented in Fig.4

(a), comprises hour-glass shaped sections that are relatively

more rigid compared to the thin beam sections. Since the

1: Vacuum Membrane

(a)

(b)

2: Four Jamming Layers

1

2

3
4

3: Flexible Section (Center Beam)

4: Rigid Section

5

6

(c)

Prescribed displacement
Pressure

Fixed

Pressure

Fig. 4: The finite element model. (a) FEA configuration

showing the major components: 1. Vacuum Membrane. 2.

Jamming Layers. 3. Flexible Section of the Beam (Center

Beam). 4. Rigid Section of the Beam (Hourglass-Shaped

Structure). (b) FEA schematic figure showing the contact

pairs: 5. Frictional Contact Pairs. 6. Rigid Connections. (c)

Boundary conditions.

more rigid hour-glass sections exhibit significantly lower

stress and deflection, the primary interest lies in calculat-

ing the stress and deformation in the thin beam sections.

Therefore, all the hour-glass shaped sections are defined

to have a rigid stiffness behavior. To model the frictional

contact pairs between the beam and bottom jamming layer,

in-between jamming layers, and between the top jamming

layer and vacuum bag, a coefficient of friction of 0.167 is

used based on experimental measurements of the jamming

layers. The contact formulation uses augmented Lagrange

to achieve minimal penetration, high robustness, and low

computational cost. Table I lists the dimensions and material

properties used in the model.

B. Sensitivity Analysis of Key Design Parameters

The geometric and material design parameters of the

compliant parallel-guided mechanism are presented in Table

I and illustrated in Fig. 3 (b). The geometric parameters

consist of the number of jamming layers N , the beam
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TABLE I: The design parameters for the FE model

Symbol Description Value

Key Design Parameters
N number of frictional layers on each side 4
H beam height 75mm

d beam thickness 10mm

dc center beam thickness 0.8mm

Material Parameters
El modulus of layer material 4.0GPa

Eb modulus of beam material 2.6GPa

Ev modulus of vacuum membrane material 0.02GPa

µ friction coefficient 0.167

Beam Dimensions

Lb beam length 227mm

l length of flexible part of one unit 7mm

t length of rigid part of one unit 3mm

L total length of one unit 10mm

n total number of unit sections 23
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Fig. 5: Comparison of the experimental results and the finite

element simulations. The dots represent the experimental

data while the curves represent the simulation data.

thickness d, the center beam thickness dc, and the beam

height H , while the material parameters include the elastic

modulus of the beam material Eb and the elastic modulus

of the layer material El.

To verify the finite element (FE) model employed in the

parallel-guided mechanism, experiments were carried out

with varying design parameters, including the number of

layers, beam thickness, and beam height. The respective

experimental and FE results were gathered and compared

in Fig.5. Both the experimental and FE studies obtained the

full loading and unloading curves to exhibit the hysteresis

behavior of the jamming structures.

With the FE model validated by experimental results, a

thorough sensitivity analysis is conducted by varying all

the geometric and material design parameters. Each design

parameter is increased and decreased by 25% and 50%,

respectively, to investigate its effect on the system’s behavior.

All the design studies are listed in Fig. 6. A design principle

for achieving a higher stiffness ratio in the parallel-guided

mechanism can be drawn from these studies.

1) Estimated from the spacing between the curves, the pa-

rameters that exhibit the highest sensitivity to stiffness

ratio are the beam height (H), beam thickness (d), and

center beam thickness (dc).

2) A higher modulus of the layer material results in a

greater stiffness ratio. This can be attributed to the

higher stiffness achieved due to the increased modulus

of the layer material.

3) Increasing the number of layers leads to a higher

stiffness ratio, but its effect is not as significant as that

of varying H , d, or dc.

4) Both the beam height and the center beam thickness

are negatively correlated with the stiffness ratio. A

decrease in these parameters can lead to a higher

stiffness ratio; however, this may result in a greater

maximum stress, which can compromise the load-

carrying capacity of the design. Thus, it is necessary

to exercise caution when reducing the beam height and

center beam thickness.

V. DEVELOPMENT OF THE MACHINE LEARNING MODEL

The compliant parallel-guided mechanism with LJ has

eight key design parameters, including beam height, beam

thickness, center beam thickness, number of layers, modulus

of elasticity of the beam material, modulus of elasticity of

the layer material, layer thickness, and the ratio of modulus

of elasticity of layer and beam materials. However, each

curve in Fig.6 only corresponds to one design point in the

design space and takes about 10-30 hours to compute. As

a result, it would be computationally expensive to generate

a comprehensive design contour that could indicate the

trend of stiffness ratio or other performance metrics with

continuously changing design parameters.

Five groups of two design parameters were selected,

as shown by the black squares in Fig.7. A total of 86

FEA studies were carried out using the uniformly selected

parameter pairs in these five sub-design spaces. A ML model

was then built based on the 86 sets of design parameters and

the stiffness ratio change. The small dataset was less likely to

suffer from the over-fitting problem. Hyper-parameters were

tuned to avoid overfitting as well as to achieve high accuracy.

The hyper-parameters of the narrow neural network are listed

in Table II. Design contour curves were plotted on top of

the FEA design points, facilitating the comprehension of the

stiffness ratio change corresponding to a design parameter

variation.

In addition to the stiffness ratio, the maximum stiffness

achievable by the layer jamming mechanism is also a signifi-

cant parameter, as it is directly related to the load capacity. To
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Fig. 6: Sensitivity Analysis on Key Design Parameters Based on the ML model.
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FEA Results

ML Model Results

Fig. 7: Design contour map of the compliant parallel-guided

mechanism with layer jammming.

explore the design space for maximum stiffness, a separate

set of FEA simulations was conducted and a machine learn-

ing model was trained on this design space. The resulting

sensitivity studies are presented in Fig. 8, which clearly

indicate that the beam height H and beam thickness d are

the most sensitive design parameters for maximum stiffness,

while the modulus of elasticity of the beam material Eb is

the least sensitive. This finding is consistent with the fact

that the maximum stiffness is primarily influenced by the

jammed layer, which is mainly affected by the modulus of

the layer material.

1) Fmax−preslip is the maximum load the mechanism can

bear before the mechanism starts to have excessive

deformation caused by the slip within jamming layers.

The beam thickness, d, and the beam height, H , are

the two parameters that contribute most to a high load

capacity.

2) dres is the residue deformation when the beam is un-

loaded by removing the external load. It characterizes

the hysteresis caused by the friction forces between

the jamming layers. The study suggests that lower

beam thickness, d, and lower modulus of elasticity of

the layer material, El, would lead to a low hysteresis

design. Fewer number of jamming layers, N , would

also help to reduce hysteresis, not as effectively as the

aforementioned parameters though.

N=6

N=5

N=4

N=3

N=2

Carbon Fiber Nylon (3.9 GPa)

Nylon(3.25 GPa)

PLA (2.6 GPa)

PETG (2.0 GPa)

TPU 85A(1.3 GPa)

PC 20-40% Glass Fiber (6.0 GPa)

ABS/PC 20% Glass Fiber (5.0 GPa)

Polyester (4.0 GPa)

Polyamide 6-6 (3.0 GPa)

PETG (2.0 GPa)

Fig. 8: Max stiffness vs. design parameters

3) Maximum stiffness, kmax, is desired for high precision

on motion and manipulation. The study shows that

higher beam thickness, d, and higher modulus of

elasticity of the layer material, El, would give a higher

maximum stiffness.

The studies presented in Fig. 9 suggest that the most sensitive

design parameters can be manipulated to achieve a specific

performance metric. However, modifying design parameters

to optimize one performance metric may have an adverse

effect on another metric. For example, increasing the beam

thickness, d, and the modulus of elasticity of the layer

material, El, may result in a higher maximum stiffness, but

it may also cause higher hysteresis.

To assess the accuracy of the machine learning models

built from FEA studies, 10 sets of randomly selected design

parameters were chosen, and performance metrics were

calculated using both the machine learning model and the

FEA model. In Table III, the results were compared, and

it was found that the largest deviation from the machine

learning model results to the FEA results was within 5%.

VI. CONCLUSIONS

In this article, a machine learning model was developed

and trained on the finite element studies to predict the

mechanics behavior of a layer jamming based compliant
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parallel-guided mechanism, including force-deflection rela-

tion, maximum achievable stiffness, and hysteresis. The

traditional method of swiping input parameters to generate

the design space is inefficient due to the high computational

cost caused by the complicated mechanical interactions of

the jamming layers. The machine learning model was trained

using the data generated from the finite element model,

which was experimentally validated. The ML model has

a comparable accuracy (5% error) with the finite element

model but takes only seconds to achieve the prediction,

compared to the several hundreds of hours needed for the

finite element model.

Due to the high computational cost of finite element

analysis, the number of evaluations is severely limited. To

overcome this challenge, a fast machine learning model

was trained based on the finite element studies. This model

predicts the effects of selected key design parameters on

the mechanics behaviors, providing guidelines for the op-

timal design of layer jamming mechanisms for a selected

performance metric. The trend on which the performance

metrics vary with the design parameters can be used in the

preliminary design stage of layer jamming mechanisms to

provide initial design decisions regarding dimensions and

material selections.
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