Minimally Factorizing the Provenance of Self-join Free
Conjunctive Queries

NEHA MAKHIJA, @ Northeastern University , USA
WOLFGANG GATTERBAUER, @ Northeastern University , USA

We consider the problem of finding the minimal-size factorization of the provenance of self-join-free conjunc-
tive queries, i.e., we want to find a formula that minimizes the number of variable repetitions. This problem is
equivalent to solving the fundamental Boolean formula factorization problem for the restricted setting of the
provenance formulas of self-join free queries. While general Boolean formula minimization is Z‘g -complete,
we show that the problem is NP-complete in our case. Additionally, we identify a large class of queries that
can be solved in PTIME, expanding beyond the previously known tractable cases of read-once formulas and
hierarchical queries.

We describe connections between factorizations, Variable Elimination Orders (VEOs), and minimal query
plans. We leverage these insights to create an Integer Linear Program (ILP) that can solve the minimal
factorization problem exactly. We also propose a Max-Flow Min-Cut (MFMC) based algorithm that gives an
efficient approximate solution. Importantly, we show that both the Linear Programming (LP) relaxation of our
ILP, and our MFMC-based algorithm are always correct for all currently known PTIME cases. Thus, we present
two unified algorithms (ILP and MFMC) that can both recover all known PTIME cases in PTIME, yet also
solve NP-complete cases either exactly (ILP) or approximately (MFMC), as desired.

CCS Concepts: « Theory of computation — Database theory; « Information systems — Data manage-
ment systems.

Additional Key Words and Phrases: Factorization, Provenance, Boolean Formulas

ACM Reference Format:

Neha Makhija and Wolfgang Gatterbauer. 2024. Minimally Factorizing the Provenance of Self-join Free
Conjunctive Queries. Proc. ACM Manag. Data 2, 2 (PODS), Article 104 (May 2024), 24 pages. https://doi.org/10.
1145/3651605

1 INTRODUCTION

Given the provenance formula for a Boolean query, what is its minimal size equivalent formula?
And under what conditions can this problem be solved efficiently? This paper investigates the
complexity of minFACT, i.e. the problem of finding a minimal factorization for the provenance of
self-join-free conjunctive queries (sj-free CQs). While the general Boolean formula minimization is
Z‘g -complete [7], several important tractable subclasses have been identified, such as read-once
formulas [32]. In this paper, we identify additional tractable cases by identifying a large class of
queries for which the minimal factorization of any provenance formula can be found in PTIME.
We focus on provenance formulas for two key reasons: 1) Provenance computation and storage
is utilized in numerous database applications. The issue of storing provenance naturally raises the
question: How can provenance formulas be represented minimally? This problem has previously
been investigated in this context [50, 51], where algorithms were described for factorizations with

Authors’ addresses: Neha Makhija(® Northeastern University, USA, makhija.n@northeastern.edu; Wolfgang Gatterbauer
Northeastern University, USA, w.gatterbauer@northeastern.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.
BY

© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/5-ART104
https://doi.org/10.1145/3651605

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

HTTPS://ORCID.ORG/0000-0003-0221-6836
https://orcid.org/0000-0003-0221-6836
HTTPS://ORCID.ORG/0000-0002-9614-0504
https://orcid.org/0000-0002-9614-0504
https://doi.org/10.1145/3651605
https://doi.org/10.1145/3651605
https://orcid.org/0000-0003-0221-6836
https://orcid.org/0000-0003-0221-6836
https://orcid.org/0000-0002-9614-0504
https://orcid.org/0000-0002-9614-0504
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3651605

104:2 Neha Makhija and Wolfgang Gatterbauer

Linear Queries Linearizable Queries (= without Active Triad) ... with Deactivated Triad
Queries wih
ffH' hical z-MQP\ ..with23 MQPA f without Co-\ / ... with Co- \N Active Triad
psiarch ca Queries Deactivated Triad || Deactivated Triad
Queries
(1-mQpP) QY

RES(Q) PTIME PTIME PTIME PTIME PTIME NP-C
FACT(Q) PTIME PTIME ? ? NP-C NP-C
Prob(Q) PTIME #P-hard #P-hard #P-hard #P-hard #P-hard

Fig. 1. This paper gives hardness results, identifies PTIME cases, and gives exact and approximate algorithms
for self-join-free conjunctive queries. We prove that the tractable queries for minFACT reside firmly between
the tractable cases for probabilistic query evaluation (PROB) = the hierarchical queries with one minimal query
plan, and those for resilience (RES) = queries without active triads. The open cases are linear queries with > 3
minimal query plans (though we know that Q3° is in PTIME), and linearizable queries with deactivated triads
and without co-deactivated triads (though we know that the triangle unary query Q[A] is in PTIME).

asymptotically optimal sizes, leading to work on factorized databases. However, finding instance-
optimal factorizations i.e. factorizations that are guaranteed to be the smallest possible, for any
arbitrary input, remains an open challenge, and is the focus of our work.

2) Minimal factorizations of provenance formulas can be used to obtain probabilistic inference
bounds. Prior approaches for approximate probabilistic inference are either incomplete i.e. focus on
just PTIME cases [17, 54, 56], or do not solve all PTIME cases exactly [17, 28]. As we show, using
minimal factorization as a preprocessing step achieves the best of both worlds: It is complete (i.e. it
applies to easy and hard cases) while recovering all known PTIME cases exactly.

In this paper, we prove that the minimal factorization problem is NP-complete (NP-C) for
provenance formulas, and give two algorithms for all sj-free CQs that are unified algorithms in
the sense that they solve all known tractable cases in PTIME, and provide approximations for hard
cases. We further place the set of tractable queries firmly between the tractable queries for two
other related problems: resilience [24] and probabilistic query evaluation [16] (Fig. 1).

Contributions & Outline. @) The minFACT problem has strong ties to the diverse problems of
Boolean factorization, factorized databases, probabilistic inference, and resilience, among others.
Section 2 explains these connections before Section 3 formalizes the problem. @) Section 4 describes
connections between provenance factorizations, variable elimination orders (VEOs) and query plans.
These connections allow us to reformulate minFACT as the problem of assigning each witness to
one of several “minimal VEOs” e Section 5 develops an ILP encoding to solve minFACT for any
sj-free CQ exactly. We are not aware of any prior ILP formulation for minimal-size encodings of
propositional formulas, for restricted cases like for monotone formulas. @ Section 6 describes
our two unified PTIME algorithms that are exact for all known PTIME cases, and approximations
otherwise. The first one encodes the problem in the form of a “factorization flow graph” s.t. a
minimal cut of the graph corresponds to a valid factorization of the instance. We refer to this
algorithm as the MFMC (Max-Flow Min-Cut) based algorithm. The second is an LP relaxation of our
ILP encoding, for which we also prove a guaranteed constant factor approximation for hard queries.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:3

@ Scction 7 proves that both our unified algorithms can solve the minFACT problem exactly if
the database instance allows a read-once factorization. This implies that our algorithms recover
and generalize prior approaches [54] that are limited to read-once formulas. @) Section 8 provides
a large class of queries for which our PTIME algorithms can solve the minFACT problem exactly
over any database instance. This class includes hierarchical queries as a strict subset, proving that
the tractable queries for minFACT are a strict superset of those for probabilistic query evaluation
(PROB) [17]. o Section 9 proves that the decision variant of minFACT is NP-C for a set of queries that
form a strict superset of queries that contain “active triads”. This result proves that the intractable
queries for minFACT are a strict superset of those that are intractable for resilience (RES) [24],
thereby bounding the tractable queries for our problem firmly between those tractable for PROB
and those tractable for RES.

Appendix. The appendix contains details about notations and some additional discussion about
related work. However, a much longer online appendix [43] contains all proofs, more illustrating
examples, and further discussions. It also shows that using minimal factorization can lead to more
accurate probabilistic inference [43]. We also perform experiments evaluating the performance and
results of the ILP encoding, LP relaxation, or MFMC-based algorithm [43].

2 RELATED WORK

Boolean Factorization. Minimum Equivalent Expression (MEE) is the problem of deciding whether
a given Boolean formula ¢ (note that we use the terms expressions and formulas interchangeably)
has a logically equivalent formula ¢’ that contains < k occurrences of literals. It was known to be
at least NP-hard for over 40 years [26, Section 7.2] and was shown to be Zz—complete only 10 years
ago [7]. The problem is more tractable for certain restrictions like Horn formulas [38] as input, or if
allowing arbitrary Boolean functions as connectors [39], or if posed as the Minimum Formula Size
Problem (MFSP) that takes the uncompressed truth table as input [2, 40]. There is a lot of work on
approximate Boolean function factorization [45, 47], however efficient, exact methods are limited
to classes such as read-once [32] and read-polarity-once formulas [9] (see [14, Section 10.8] for a
detailed historical overview). Our problem restricts the formula to be minimized to the provenance
of a sj-free conjunctive query (i.e. a monotone, m-partite DNF that follows join dependencies), with
the goal of uncovering important classes that permit a PTIME exact evaluation. An illustration of
an overview of known results can be found in the full online appendix. [43, Fig 7] To the best of our
knowledge, no prior work has provided a general approach for finding the minimal factorization
of monotone k-partite Boolean formulas given as DNFs, and we are unaware of prior work that
provides an ILP for the problem, even under restricted settings.

Factorized Databases and Related Work on Factorization. Our problem has been studied
before in the context of Factorized Databases (FDBs) [49-52]. Five key differences in focus are: (i)
The tight bounds provided through that line of work are on “readability” i.e. the lowest k such
that each variable in the factorized formula is repeated at most k times. The work shows that the
class of queries with bounded readability is strictly that of hierarchical queries [51]. In contrast,
we focus on the minimal number of variable repetitions and show this can be calculated in PTIME
for a strict superset of hierarchical queries. (ii) For bounds on the minimal length (as is our focus),
FDBs focus only asymptotic bounds on the size of query result representations [52] whereas we
focus on minimizing the exact number of variables (e.g. whether a provenance is read-once or has
a factor 2 bigger size is of no relevance in the asymptotic analysis of FDBs). (iii) variants of FDBs
permit the reuse of intermediate results, i.e. they focus on the corresponding circuit size, while
we focus on formulas. (iv) Intuitively, FDBs study the trade-offs between applying one of several
factorizations (or query plans or variable elimination orders) to the entire query results at once,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

104:4 Neha Makhija and Wolfgang Gatterbauer

whereas we may factorize each witness in different ways. (v) Except for [50], the work on FDBs
focuses on factorizations in terms of domain values whereas provenance formulas are defined in
terms of tuple variables (e.g, a tuple from an arity-3 relation has 3 different domains, but is still
represented by a single tuple variable). These discrepancies lead to different technical questions and
answers. Also related is the very recently studied problem of finding a factorized representation of
all the homomorphisms between two finite relational structures [5]. Similar to FDBs, that work
also differs from ours in that it focuses on the asymptotic factorization size (and proves lower
bounds and allows a circuit factorization instead of a formula). Our problem is also different from
the problem of calculating a “p-minimal query” for a given query [3]: The solution to our problem
depends on the database instance and factorizes a given provenance formula, whereas the latter
problem is posed irrespective of any given database, chooses among alternative polynomials, and
becomes trivial for queries without self-joins.

Probabilistic Inference, Read-Once Formulas, and Dissociation. Probabilistic query evalu-
ation (PROB) is #P-hard in general [17]. However, if a provenance formula ¢ can be represented in
read-once form then its marginal probability P[¢] can be computed in linear time in the number
of literals. Olteanu and Huang [48] showed that the previously known tractable queries called
hierarchical queries lead to read-once factorizations. A query Q is called hierarchical [17] iff for
any two existential variables x, y, one of the following three conditions holds: at(x) € at(y),
at(x) 2 at(y), or at(x) N at(y) = 0, where at(x) is the set of atoms of Q in which x participates.
Roy et al. [54] and Sen et al. [56] independently proposed algorithms for identifying read-once
provenance for non-hierarchical queries in PTIME. Notice that finding the read-once form of a
formula (if it exists) is just an extreme case of representing a Boolean function by a minimum length
(V, A)-formula. Our solution is a natural generalization that is guaranteed to return a read-once
factorization in PTIME should there be one. We give an interesting connection by proving that the
tractable queries for our problem are a strict superset of hierarchical queries and thus the tractable
queries for probabilistic query evaluation.

Resilience. The resilience problem [24, 25] is a variant of the deletion propagation problem [8, 19]
focusing on Boolean queries: Given D = Q, what is the minimum number of tuples to remove
(called a “contingency set”) in order to make the query false? We give an interesting connection
by proving that the tractable queries for our problem are a strict subset of the tractable queries
for resilience. Concretely, we show that the structural hardness criterion for resilience also makes
the factorization problem hard. We achieve separation by giving a query that is easy for resilience
yet hard to factorize. Additionally, we hypothesize that linear queries Addititonally, very recent
concurrent work by us on resilience [44] has made a similar observation that the LP relaxation of a
natural ILP formulation for resilience solves all PTIME queries exactly, which suggests a deeper
connection of our problems with general reverse data management problems [46].

Linear Optimization. The question of when an Integer Linear Program (ILP) is tractable has
many theoretical and practical consequences [13]. Since we model our problem as an ILP, we can
leverage some known results for ILPs to evaluate the complexity of our problem. We show that
for a certain class of queries, the constraint matrices of our ILP are Totally Unimodular [55] and
hence the ILP is guaranteed to be solvable in PTIME. Additionally, we find cases that do not fit
known tractable classes, such as Total Unimodularity [55], Iterative Rounding [41], or Balanced
Matrices [12]. We nevertheless prove that they are in PTIME and can be solved efficiently by ILP
solvers. We believe that additional optimization theory will be instrumental in completing the
dichotomy. From a practical perspective, modeling our problem as an ILP allows us to use highly
optimized solvers [35] to obtain exact results even for hard queries.

Relation to Holistic Join Algorithms. Our approach has an interesting conceptual connection
to “holistic” join algorithms [1] that rely on not just a single tree decomposition (thus one query

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:5

plan) but rather multiple tree decompositions (thus multiple plans) for different output tuples. Very
similarly, our approach also carefully assigns different witnesses to different query plans.

3 FORMAL SETUP

This section introduces our notation and defines the problem minFACT i.e. the problem of finding
the minimal factorization of the provenance of a query.

3.1 Standard database notations

We write D for the database, i.e. the set of tuples in the relations. A conjunctive query (CQ) is a first-
order formula Q(y) = 3x (g1 A ... A gm) where the variables x = (xy, . .., xy) are called existential
variables, y are called the head variables and each atom g; represents a relation g; = Rj, (x;) where
x; € xUy.! Wlo.g., we discuss only connected queries.? We write var(X) for the set of variables
occurring in atom/ relation/ query/ formula X and at(x) for the set of atoms that contain variable
x. We write [w/x] as a valuation (or substitution) of query variables x by constants w. These
substitutions may be written explicitly by “domain-annotating” variables with domain constants as
subscripts. Domain-annotated tuples use such domain-annotated variables as subscripts, e.g. 7, y,
represents a tuple of relation R(x,y) with x = 1 and y = 2. We sometimes informally omit the
variables and use the notation ry,,, ,, Where v10; ..., are the domain values of var(R) in the
order that they appear in atom R. Thus, r;; also represents R(1, 2). A self-join-free (sj-free) CQ is
one where no relation symbol occurs more than once and thus every atom represents a different
relation. Thus, for sj-free CQs, one may refer to atoms and relations interchangeably. We focus on
Boolean queries (i.e., where y = 0), since the problem of finding the minimal factorization of the
provenance for one particular output tuple of a non-Boolean query immediately reduces to the
Boolean query case (see e.g. [57]).° Unless otherwise stated, a query in this paper denotes a sj-free
Boolean CQ. Appendix A defines further notation.

3.2 Boolean and Provenance formulas

The terms provenance and lineage are used in the literature with slightly different meanings. While
lineage was originally formalized in [15], we follow the modern treatment of data provenance as
denoting a proposition formula that corresponds to the Boolean provenance semiring of Green et al.
[33, 34], which is the commutative semiring of positive Boolean expressions (B[X], V, A, 0,1). We
sometimes write V as semiring-plus (®) and A as times (®).

We assign to every tuple t € D a provenance token, i.e. we interpret each tuple as a Boolean variable.
Then the provenance formula (equivalently, provenance expression) ¢, of a query Q :— Ry (xy),. ..,
Ry (xm) on D is the positive Boolean DNF formula

Prov(Q.D) = \/ Ri(0x1)) A+ A R (0(xm))
0:DEQ[0(x) /x]
where D = Q[6(x)/x] denotes that 6(x) is a valuation or assignment of x to constants in the active
domain that make the query true over database D. Notice that for sj-free queries, this DNF is always

We follow the conventional notation for boolean CQs that omits writing the existential quantification and that replaces A
by a comma. W.l.o.g., we assume that x; is a tuple of only variables and don’t write the constants. Selections can always be
directly pushed into the database before executing the query. In other words, for any constant in the query, we can first
apply a selection on each relation and then consider the modified query with a column removed.

ZResults for disconnected queries follow immediately by factorizing each of the query components independently.

3A solution to Boolean queries immediately also provides an answer to a non-Boolean query Q(y): For each output tuple
t € Q(D), solve the problem for a Boolean query Q’ that replaces all head variables y with constants of the output tuple ¢.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

104:6 Neha Makhija and Wolfgang Gatterbauer

R S T
R|x ix y Ty m S11 @
ri 1 S11 11 51 1 12
ry 2 S12 12 Iy 2
r3 3 S$23 23 I3 3
$33 33 323
@ 533 £
(a) D with and D’ without (b) Bipartite join graph

Fig. 2. Examples 1 and 2: (a): Database instance with provenance tokens to the left of each tuple, e.g. s12 for
5(1,2). (b): Prov(Qy, D) for Q) := R(x),S(x,y), T(y) represented as bipartite graph. D denotes the database
with the orange tuple s;3 and D’ denotes the database without it.

m-partite as each disjunct contains one tuple from each of the m tables and that the notions of
provenance polynomial and provenance formula are interchangeable.

Read-once. For a formula ¢, we denote by var(¢) the set of variables that occur in ¢, and
by len(¢) its length, i.e., the number of its literals.* A provenance is called read-once if it can be
represented in read-once form, i.e. there is an equivalent formula in which each literal appears
exactly once [30, 37, 48]. This is possible iff that equivalent formula can be built up recursively from
the provenance tokens by disjunction (and conjunction), s.t. whenever ¢ = @1 V ¢ (or ¢ = @1 A ¢2),
then var(¢;) Nvar(e,) = 0.

Witnesses. We call a witness w a valuation of all variables x that is permitted by D and that
makes Q true (i.e. D E Q[w/x]).> The set of witnesses witnesses(Q, D) (shorthand W) is then

witnesses(Q,D) = {w | DE Q[w/x]} .

Since every witness implies exactly one set of m tuples from D that make the query true, we will
slightly abuse the notation and also refer to this set of tuples as a “witness” We will also use
“witness” to refer to a product term in a DNF of the provenance polynomial.

ExAMPLE 1 (PROVENANCE). Consider the Boolean 2-star query Q) :— R(x), S(x,y), T(y) over the
database D’ in Fig. 2 (ignore the tuple s,5 for now). Each tuple is annotated with a Boolean variable
(or provenance token) 1,15, The provenance ¢, is the Boolean expression about which tuples
need to be present for Q3 to be true:

@p = 1181181 V 1181282 V raSa3ts V r3sssis (1)

This expression contains |var(¢,)| = 10 variables, however has a length of len(¢,) = 12 because
variables ry and t3 are repeated 2 times each. The witnesses are witnesses(Q;,D’) = {(1,1),(1,2),
(2,3),(3,3)} and their respective tuples are {ry, s11, t1}, {r1, S12, t2}, {r2, S23, 13}, and {rs, ss3, t3}.

The provenance can be re-factored into a read-once factorization ¢’ which is a factorized repre-
sentation of the provenance polynomial in which every variable occurs once, and thus len(¢’)| =
[var(¢’)| = 10. It can be found in PTIME in the size of the database [31]:

’
@' =ri(s1t1 V siatz) V (12823 V r3s33) 13
“4Notice that the length of a Boolean expression ¢ is also at times defined as the total number of symbols (including operators
and parentheses, e.g. in [14]). In our formulation, we only care about the number of variable occurrences.

SNote that our notion of witness slightly differs from the one used in provenance literature where a “witness” refers to a
subset of the input database records that is sufficient to ensure that a given output tuple appears in the result of a query [11].

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:7

3
— ® :5?3 8 v :—523:;%
® o
™ ty ~Y2, Y3
® PRI By S
N 22 7 > — t2y2
' r2 v T2y, Y2 = S22,
@ oo TRy r
AN b S11 N Toxy & P,y &g
® > «— X1Y1
~ e,
51 1y,
(a) Factorization Tree (FT) (b) Domain-annotated FT
Ys {rz.so3,t3}: %2 < U3 R T
X2 < U1t x «— Y
~
Yo {ra, sz, ta}: X2 « Y2
T R
Y1« X1 {risi,tip Y1 < x V2t Y x
(c) VEO Factorization Forest (VEOFF) (d) VEO instances (e) VEOs

Fig. 3. Representation of a factorization as a mapping of witnesses to VEOs for an example database under
query Q; Theorem 4.5 shows the correspondence of (a) via (b) to (c). Theorem 4.6 shows the correspondence
of (c) via (d) to (e) for some minimal factorization tree.

3.3 Minimal factorization minFACT
For a provenance ¢, = Prov(Q, D) as DNF, we want to find an equivalent formula ¢’ = ¢, with

the minimum number of literals.

Definition 3.1 (FACT). Given a query Q and database D, we say that (D, k) € FACT(Q) if there is
a formula ¢’ of length len(¢’) < k that is equivalent to the expression ¢, = Prov(Q, D).

Our focus is to determine the difficulty of this problem in terms of data complexity [60], i.e.,
we treat the query size |Q| as a constant. We are interested in the optimization version of this
decision problem: given Q and D, find the minimum k such that (D, k) € FACT(Q). We refer to this
optimization variant as the minFACT problem and use minFACT(Q, D) to refer to the length of the
minimal size factorization for the provenance of database D under query Q.

ExXAMPLE 2 (FACT). Now consider the provenance of Q5 over the modified database D with tuple
from Fig. 2. It has no read-once form and a minimal size formula is

@ =ri(suty V siaty V s15t3) V (72823 V r3ss3)is

We see that 1en(¢"’) = 12. 1t follows that (D, 12) € FACT(QY). At the same time, (D, 11) ¢ FACT(Q})
and thus minFACT(Q}, D) = 12.

4 SEARCH SPACE FOR minFACT

Factorizations. In order to find the minimal factorization of a provenance formula, we first define
a search space of all permissible factorizations. Each factorized formula can be represented as a
factorization tree (or FT), where each literal of the formula corresponds to a leaf node,® and internal

%A variable may appear in multiple leaves just as it can in a factorized formula.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

104:8 Neha Makhija and Wolfgang Gatterbauer

nodes denote the ® and ® operators of the commutative provenance semiring. The length (size) of a
FT is the number of leaves. We allow the semiring operations to be k-ary (thus even unary) and use
prefix notation for the operators when writing FTs in linearized text. Notice that the space of FTs is
strictly larger than the space of factorized expressions: E.g., the FT ®(r1, 51, t1) is not equivalent
to ®(r1, ®(sy, t1)), although they represent the same formula r;s;t;. We consider FTs as equivalent
under commutativity i.e. we treat ®(ry, s1, £1) as equivalent to ®(sy, 1, r1). Furthermore, w.lo.g., we
only consider trees in which the operators @, ® alternate: E.g., ®(r1, ®(sy, t1)) is not alternating but
represents the same formula as the alternating tree ®(ry, ®(®(s1, t1))) using unary &. Henceforth,
we use factorization trees or FTs as a short form for alternating factorization trees.

Variable Elimination Order (VEO). FTs describe tuple-level factorizations, however, they fail
to take into account the structure (and resulting join dependencies) of the query producing the
provenance. For this purpose, we define query-specific Variable Elimination Orders (VEOs). They are
similar to VEOs in general reasoning algorithms, such as bucket elimination [20] and VEOs defined
in FDBs [49] for the case of no caching (i.e. corresponding to formulas, not circuits). However, our
formulation allows each node to have a set of variables instead of a single variable. This allows
VEOs to have a 1-to-1 correspondence to the sequence of variables projected away in an “alternating”
query plan, in which projections and joins alternate, just as in our FTs (details in [43]). Furthermore,
we show VEOs can be “annotated” with a data instance and “merged” to form forests that describe a
minimal factorization tree of any provenance formula.

Definition 4.1 (Variable Elimination Order (VEQ)). A VEO v of a query Q is a rooted tree whose
nodes are labeled with non-empty sets of query variables s.t. (i) each variable of Q is assigned to
exactly one node of v, and (ii) all variables x for any atom R(x) in Q must occur in the prefix of
some node of v.

Definition 4.2 (VEO instance). Given a VEO v and witness w, a VEO instance v(w) is the rooted tree
resulting from annotating the variables x in v with the domain values of w.

In order to refer to a VEO in-text, we use a linear notation with parentheses representing sets of
children. To make it a unique serialization, we need to assume an ordering on the children of each
parent. For notational convenience, we leave out the parentheses for nodes with singleton sets. For
example, x <y, (instead of {x} < {y}) and {x, y} are two valid VEOs of Q). We refer to the unique
path of a node to the root as its prefix.

ExaMmPLE 3 (VEO AND VEO INSTANCE). Consider the 3-chain Query Q3 :— R(x,y), S(y, z), T(z, u).
An example VEO isv = z < (u, y < x) [43]. To make it a unique serialization, we need to assume an
ordering on the children of each parent. Notice that our definition of VEO also allows sets of variables
as nodes. As an extreme example, the legal query plan P’ = myyz, > (R(x,Y),S(y, 2), T(z,v))
corresponds to a VEO v” with one single node containing all variables. In our short notation, we denote
nodes with multiple variables in brackets without commas between the variables to distinguish them
from children: v’ = {xyzu}.

Now consider a witness w = (1, 2,3,4) for (x,y, z,u), which we also write as w = (x1, Ys, 23, Ug)-
The VEO instance of w for v is then v{w) = z3 « (u4, y < x1). Notice our notation for domain values
arranged in a tree: In order to make the underlying VEO explicit (and avoiding expressions such as
o(w) = 3 « (4 < 2,1) which would become quickly ambiguous) we include the variable names
explicitly in the VEO instance. We sometimes refer to them as “domain-annotated variables.”

Definition 4.3 (VEO table prefix). Given an atom R in a query Q and a VEO v, the table prefix o is
the smallest prefix in v that contains all the variables x € var(R).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:9

Similarly to v(w) denoting an instance of a given VEO v for a specific witness w, we also define a
table prefix instance v®(w) for a given table prefix o® and witness w.

ExAMPLE 4 (VEO TABLE PREFIX AND VEO TABLE PREFIX INSTANCE). Consider again the VEO v =
z (u,y < x) in Example 3. The table prefix of table S(y, z) on v isv° = z < y. Assume a set of two
witnesses W = {(x1, Y1, 21, U1), (X1, Y1, 21, Uz) }. Then for both witnesses w1 and w, the table prefix
instances for S are identical: v5 (w) = v5(w3) = zy <y [43].

Definition 4.4 (VEO factorization forest (VEOFF)). A VEOFF V of provenance ¢, of database D over
query Q is a forest whose nodes are labeled with non-empty sets of domain-annotated variables,
such that: (1) For every w € witnesses(Q, D) there exists exactly one subtree in ‘V that is a VEO
instance of w and Q; (2) There is no strict sub-forest of V that fulfills condition (1).

ExaMPLE 5 (VEO FACTORIZATION FOREST). Continuing with the Q3° query, and the witnesses
W = {(x1,y1, 21, u1), (x1, Y1, 21, u2) } as in Example 4, we illustrate several valid and invalid VEOFF s
(with accompanying figures in the online appendix [43]). We represent a forest of VEO instances
in-text as a set of trees {t1, ts, ...}.

The forest Vi = {x1 < (u1, uz, (y1 < z1))} is a valid VEOFF since (1) for both wy and w, there is
exactly one subtree each in ‘V that is a VEO instance. These subtrees are x; < (uy, (y; < z1)) and
x1 < (u1, (y; < z1)). This VEOFF also satisfies property (2) removing any variable would lead to a
VEOFF that does not satisfy property (1).

The forest Vs = {x1 « (u1, (y1 < 1)), y1 < (21, (x1 < uy))} is also a valid VEOFF since (1) for
both wy and w, there is exactly one subtree each in V that is a VEO instance. These subtrees are
x1 ¢ (u1, (y1 < z1)) and y1 < (z1, (x1 < uz)). This VEOFF also satisfies property (2) removing any
variable would lead to a VEOFF that does not satisfy property (1).

The forest V5 = {x1 « (u1, (y1 < 2z1)),y1 < (z1,(x; < uy < uz))} is not a valid VEOFF,
although it satisfies property (1) with the same subtrees above. It does not satisfy property (2) since
removing u, in the second tree would lead to a VEOFF that still satisfies property (1).

THEOREM 4.5 (FACTORIZATIONS AND VEOs). There exist transformations from FTs to VEOFFs and
back such that the transformations can recover the original FT for at least one minimal size FT ¢’ of
any provenance formula ¢,,.

ProorF INTUITION. We describe a transformation from FTs to VEOFFs via domain-annotated FTs
as intermediate step (Fig. 3). A domain-annotated FT is constructed as follows: We first replace the
® operator with a join (=) and the ® operator with a projection () and label the leaves with the
domain-annotated variables. We then recursively label each join and projection bottom-up as follows:
(1) label each > by the union of variables of its children, and (2) label each 7t with the subset of variables
of its children that are not required for subsequent joins (this can be inferred from the query). To get the
VEOFF instance, we remove all variables on joins that appear in ancestor joins. We remove the leaves
and absorb all non-join (projection) nodes into their parents (eliminating the root projection node).

We show that if this transformation succeeds then it is a bijection and can be reversed. The only case
when this transformation fails is when it results in an empty annotation for a node, i.e. when there is a
join after which no variable is projected away (since by design VEOs do not permit empty nodes). In
that case, the FT can always be simplified by removing a & node and merging two ® nodes.

THEOREM 4.6 (ninFACT wrTH VEOs). There exists a transformation that constructs FTs of a prove-
nance ¢, from mappings of each witness of ¢, to a VEO of Q, and there exists a mapping that is

transformed into a minimal size factorization tree ¢’ of ¢, under this transformation.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

104:10 Neha Makhija and Wolfgang Gatterbauer

PrOOF INTUITION. From Theorem 4.5, we know that for every provenance formula ¢, there exists
a minimal size FT that has a reversible transformation to a VEOFF. We show all such VEOFFs can be
constructed by assigning a VEO to each witness of ¢,. This is constructed by defining a merge operation
on VEOs that greedily merges common prefixes.

Minimal Variable Elimination Orders (mveo). By reducing the problem of finding the minimal
factorization to that of assigning a VEO to each witness, we have so far shown that FACT is in NP
with respect to data complexity.” However, we can obtain a more practically efficient result by
showing that we need not consider all VEOs, but only the Minimal Variable Elimination Orders of a
query or mveo(Q). We can define a partial order < on VEOs of a query Q as follows: v; < v, if for
every relation R; € Q the variables in the R; table prefix of v; are a subset of the variables of the
R; table prefix of v,, i.e. VR; € Q : var(vf") c var(vf"). mveo(Q) then is the set of all VEOs of Q
that are minimal with respect to this partial order <. For Q}, there are only two minimal variable
elimination orders x «—y and y < x, but not {x, y}, and for Q;‘ , there are only 6, despite 13 possible
VEOs in total. Interestingly, mveo(Q) corresponds exactly to Minimal Query Plans as defined in
work on probabilistic databases [28], and we can use this connection to leverage prior algorithms
for computing mveo(Q).

THEOREM 4.7 (ninFACT wiTH mveos). There exists a transformation that constructs FTs of a prove-
nance ¢, from mappings of each witness of ¢, to a VEQ v € mveo(Q), and there exists a mapping that
is transformed into a minimal size factorization tree ¢’ of ¢, under this transformation.

5 ILP FORMULATION FOR minFACT

Given a set of witnesses W = witnesses(Q, D) for a query Q over some database D, we can use the
insight of Theorem 4.7 to describe a 0-1 Integer Linear Program (ILP) minFACT_ILP (3) that chooses
a v € mveo or equivalently a minimal query plan, for each w € W, s.t. the resulting factorization is
of minimal size. The size of the ILP is polynomial in n = |D| and exponential in the query size.

ILP Decision Variables. The ILP is based on two sets of binary variables: Query Plan Variables
(QPV) g use a one-hot encoding for the choice of a minimal VEO (or equivalently minimal query
plan) for each witness, and Prefix Variables (PV) p encode sub-factorizations that are a consequence
of that choice. Intuitively, shared prefixes encode shared computation through factorization.

(1) Query Plan Variables (QPV): For each witness w € W and each minimal VEO v € mveo(Q) we
define a binary variable q[o(w)], which is set to 1 iff VEO v is chosen for witness w.

(2) Prefix Variables (PV): All witnesses must be linked to a set of prefix variables, by creating
instances of VEO prefixes that are in a query-specific set called the Prefix Variable Format (PVF). This
set PVF is composed of all table prefixes of all minimal VEOs v € mveo(Q). Notice that prefix variables
can be shared by multiple witnesses, which captures the idea of joint factorization. Additionally, we
define a weight (or cost’) ¢(vR) for each table prefix o® € PVF; this weight is equal to the number
of tables that have the same table prefix for a given VEO. From that PVF set, then binary prefix
variables p[vR(w)] are defined for each table prefix o® € PVF and w € W.

ILP Objective. The ILP should minimize the length of factorization len, which can be calculated
by counting the number of times each tuple is written. If a tuple is a part of multiple witnesses, it
may be repeated in the factorization. However, if the tuple has the same table prefix instance across
different witnesses (whether as part of the same VEO or not), then those occurrences are factorized

"This follows from the fact that the number of witnesses is polynomial in the size of the database, and the number of VEOs
only depends on the query size.

8Notice that we use indexing in brackets g[o(w)] instead of the more common subscript notation Qo(w) since each o(w)
can depict a tree. Our bracket notation is more convenient.

9We write ¢ for weight (or cost) to avoid confusion with witnesses w.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:11

min 3 (@) p[of(w)]

oR(w)ePV
st. Y qlo(w)] =1, Yw e W
vemveo(Q) (3)
p[UR<W>] 2 ZZ}R<W> prefix of o(w) Q[Z’(W)], vp [UR<W>] EPV
pleRw)] € 0,1}, VploR(w)] € PV
qlo(w)] € {0,1}, Vg[o(w)] € QPV
Fig. 4. ILP Formulation for minFACT
R T
x u
y / . /
NS T NS R
Z— U Y«——x
@ov =ye—(x,zu) (b) 02 =z (u,y —x)

Fig. 5. Example 6: mveo for 3-chain query Q5°.

together and the tuple is written just once in the factorization. Thus, len is the weighted sum of
all selected table prefix instances. The weight accounts for tuples of different tables that have the
same table prefix under the same VEO. Since p[0R(w)] = 0 for unselected table prefixes, we can
calculate len as:

len= > (") plo(w)] @)
oR(w)ePV

ILP Constraints. A valid factorization of W must satisfy three types of constraints:

(1) Query Plan Constraints: For every witness w € W, some v € mveo(Q) must be selected.!’ For
example, for w = (x1,y;) under Q}, we enforce that: g[x; «y;] + gy <x;] > 1.

(2) Prefix Constraints: For any given table prefix p, it must be selected if any one of the VEOs that
has it as a prefix is selected. Since (under a minimization optimization) only one VEO is chosen per
witness, we can say that the value of p[oR(w)] must be at least as much as the sum of all query
plan variables q[o(w)] such that oR(w) is a prefix of v(w). For example, we enforce that p[x;]
must have value at least as much as g[x; « y; < z1] + q[x1 < z; < y1]. But we cannot enforce
plx1] = qlx1 « y1 < z1] + q[x1 < z1 < y2] (as both VEOs do not belong to the same witness.)

(3) Boolean Integer Constraints: Since a VEO is either selected or unselected, we set all variables in
PV and QPV to 0 or 1.

THEOREM 5.1 (ILP CORRECTNESS). The objective of minFACT_ILP for a query Q and database D is
always equal to minFACT(Q, D).

COROLLARY 5.2. FACT, the decision variant of minFACT, is in NP.
EXAMPLE 6 (ILP FORMULATION FOR 3-CHAIN QUERY). Consider the 3-Chain query Q3° :—R(x,y),

S(y,z), T(z,u) with a set of 2 witnesses W = {(x1, y1, 21, U1), (X1, Y1, 21, Uz) } and provenance in DNF
of riis11t11 + riis11tiz. Using the dissociation based algorithm [28], we see that this query has 2

10We wish to have exactly one query plan or minimal VEO per witness, but in a minimization problem, it suffices to say that
at least one v € mveo is selected - if multiple are selected, either one of them arbitrarily still fulfills all constraints.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

104:12 Neha Makhija and Wolfgang Gatterbauer

minimal query plans corresponding to the two VEOs shown in Fig. 5. We use these VEOs to first build
the set QPV (Query Plan Variables) and enforce a query plan constraint for each of the 2 witnesses:

qlyr — (x1,z1 —ur)] + qlz1 — (u, yr —x1)] > 1
qlyr — (x1,z1 —uz)] + qlz1 — (uz, y1 —x1)] 2 1

Then, we calculate the elements of the set PVF (Prefix Variable Format) as well as their weights.
For the two VEOs from Fig. 5, and the three tables R, S, T, we get 6 distinct table prefixes:

VEO 0, \ VEO v,
Uf—y<—x v§_z<—y<—x
S S _

V] =Yz v, =z Y
UIT:y<—z<—u Ug:Z<—u

We add all these table-prefixes to the PVF. Since no table prefix is repeated, they all are assigned
weight ¢ = 1. Notice that prefixes y for v, and z for v, are no table prefixes (and thus have weight
¢ = 0 and do not participate in the objective).

From the set of table prefixes PVF, we then create the set of prefix variables PV, one for each table
prefix and each witness w € W, and define their prefix constraints. The prefix constraints necessary
for witness wy = (x1, Y1, 21, u1) are as follows:

plyr—x1] = qlyr < (x1, 21 —uy)] plyr—z1] 2 qlys « (x1, 21 —u1)]
plyr—z1 « w] 2 qlys — (x1, 21 <)) plzi =y < x1] 2 qlz1 < (ur, y1 —x1)]
plzi—uy1] > qlz1 « (u, y1 —x1)] plzi—u1] 2 qlz1 < (ur, y1 < x1)]

The prefix constraints for witness W, = (x1, y1, 21, Up) are:
plyr —x1] 2 qly; « (x1, 21 —up) | plyr—z1] 2 qly1 « (x1, 21 —u2)]
plyr —z1 « uz] > qy1 — (x1, 21 —uz)] plzi =y &« x1] = qlz1 < (uz, y1 —x1)]
plzi—=uy1] > qlz1 (uz, y1 —x1)] plz1—uz] 2 qlz1 & (uz, y1 < x1)]

Notice that we have 12 constraints (one for each pair of witness and table prefix), yet only 8 distinct
prefix variables due to common prefixes across the two witnesses (which intuitively enables shorter
factorizations). For this query, for every witness, there are 6 prefix variables in the objective (some of
which are used by multiple witnesses), 1 Query Plan constraint, and 6 Prefix constraints.

Finally, we define the objective to minimize the weighted sum of all 8 prefix variables in PV (here
all weights are 1):

len = p(y1 < x1) +plys — z1] +plys & 21 — wi] +plzs — y1 — x1] +plz1 — y1]+
plzi — w] +plyr « 21 — uz] + plz1 — up]

In our given database instance, len has an optimal value of 4 when the prefixes p[z; < y; < x1],
plz1 « y1], plz1 < u1] and p[z; < u,] are set to 1. This corresponds to the minimal factorization

risi (g + ti2).

6 PTIME ALGORITHMS

We provide two PTIME algorithms: (1) a Max-Flow Min-Cut (MFMC) based approach and (2)
an LP relaxation from which we obtain a rounding algorithm that gives a guaranteed |mveo|-
approximation for all instances. Interestingly, Section 8 will later show that both algorithms (while
generally just approximations) give exact answers for all currently known PTIME cases of minFACT.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:13

Fig. 6. A flow graph F for minFACT. The goal is to disconnect the source and the target nodes with minimum
cuts. White g and p nodes can be cut and have capacities (in orange) equal to the weights of the corresponding
variables in the ILP objective. Edges and connector nodes (in blue) have infinite capacity and cannot be cut.

6.1 MFMC-based Algorithm for minFACT

Given witnesses W and mveo(Q), we describe the construction of a factorization flow graph F s.t.
any minimal cut of F corresponds to a factorization of W. A minimal cut of a flow graph is the
smallest set of nodes whose removal disconnects the source (L) and target (T) nodes [62]. Since
minimal cuts of flow graphs can be found in PTIME [18], we obtain is a PTIME approximation for
minFACT.

6.1.1 Construction of a factorization flow graph We construct a flow graph F s.t. there
exists a valid factorization of W of length < c if the graph has a cut of size c. F is constructed by
transforming decision variables in the ILP into "cut" nodes in the flow graph that may be cut at a
penalty equal to their weight. Any valid cut of the graph selects nodes that fulfill all constraints of
the ILP. We prove this by describing the construction of F (Fig. 6).

(1) mveo order: We use Q to describe a total order on mveo (i.e. a total order on the set of minimal
query plans). In Fig. 6, mveo is ordered by Q = (v1, 0, ..., vx) where k = |mveo|.

(2) QPV: For each witness w, connect the query plan variables (QPV) as defined by Q. Since all
paths from source to target must be disconnected, at least one mveo must be cut from this path.
Thus, F enforces the Query Plan Constraints.

(3) PV: For each witness w and prefix variable p, identify the first and last query variable for
which p is a prefix and connect the corresponding prefix variable node to connector nodes before
and after these query variables. For example, in Fig. 6, for w, p; starts at g[v;(w;)] and ends at
qlv2{w2)] implying that p; is a prefix for q[v;(w2)] and g[v,(w2)], but no query plan after that.
Now if either of g[v;(W3)] or q[v,{w3)] are in the minimal cut, the graph is not disconnected until
p1 is added to the cut as well. These nodes guarantee that F enforces Prefix Constraints.

(4) Weights: Assign each g and p node in F the same weight as in the ILP objective. Recall that
this weight is the number of tables with the same table prefix under the same VEO and that it helps
calculate the correct factorization length.

Thus, a min-cut of F contains at least one plan for each witness, along with all the prefixes that are
necessary for the plan. This guarantees a valid (although not necessarily minimal) factorization.!!

11f a min-cut contains more than one plan for a witness, then one can pick either of the plans arbitrarily to obtain a valid
factorization.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

104:14 Neha Makhija and Wolfgang Gatterbauer

6.1.2 When is the MFMC-based algorithm optimal? In the previous subsection we saw that
a min-cut of F always represents a valid factorization. However, the converse is not true: there can
be factorizations that do not correspond to a cut. The reason is that spurious constraints might arise
by the interaction of paths; those additional constraints no longer permit the factorization. There
are two types of spurious paths:

(1) Spurious Prefix Constraints. Spurious prefix constraints arise when a prefix node p is in
parallel with a query node q of which it is not a prefix. This happens when a q is not prefixed by p,
but other query plans before and after are. To avoid this, the ordering Q must be a Running-Prefixes
(RP) ordering.'?

Definition 6.1 (Running-Prefixes (RP) ordering). An ordering Q = (q1,qsz, - - -, qx) is an RP Ordering
and satisfies the RP-Property iff for any p that is a prefix for both g; and g; (i < j), p is a prefix for
all gx withi <k < j.

ExaMPLE 7 (RP ORDERING). Assume mveo = {(x <y« z),(x <z«), (z <y < x)}. Then
Qi =((x—y2z), (zeyx), (x—z«1y)) is not an RP ordering since the 1st and 3rd VEO share
prefix x, however the 2nd starts with z. In contrast, Q; = ((x —y 2z2), (x —z—y), (z—y«x)) is
an RP ordering.

It turns out that for some queries RP-Orderings are impossible (such as Q¢,, . [43]). However, we
are able to adapt our algorithm for such queries with a simple extension called nested orderings. We
first define two query plans as nestable if each query plan can be “split” into paths from root to
leaf such that they have an equal number of resulting paths, and that the resulting paths can be
mapped to each other satisfying the property that corresponding paths use the same set of query
variables. Nested orderings then are partial orders of query plans such that the pair of query plans
may be uncomparable iff they are nestable. Finally, we define Nested RP-orderings as those such
that all paths in the partial nested order satisfy the RP property. Intuitively, nested orderings add
parallel paths for a single witness to model independent decisions. We can now prove that there
always is an ordering that avoids spurious prefix constraints.

THEOREM 6.2 (RUNNING PREFIXES (RP) PROPERTY). For any query, there is a simple or nested
ordering Q that satisfies the RP Property.

(2) Spurious Query Constraints. Query Plan constraints are enforced by paths from source to
target such that at least one node from each path must be chosen for a valid factorization. Due to
sharing of prefix variables, these paths can interact and can lead to additional spurious paths that
place additional spurious constraints on the query nodes. The existence of spurious query constraints
does not necessarily imply that the algorithm is not optimal. In fact, Section 8 shows that Q;; and Q°
have spurious query paths, yet the min-cut is guaranteed to correspond to the minimal factorization.
However, if the presence of spurious query paths prevents any of the minimal factorizations to be
a min-cut for F, then we say that the factorization flow graph F has “leakage” [43]. Since all paths
along one witness are cut by construction, a leakage path must contain nodes from at least two
different witnesses.

Definition 6.3 (Leakage). Leakage exists in a factorization flow graph if no minimal factorization
is a valid cut of the graph. A leakage path is a path from source to target such that a valid minimal
factorization is possible without using any node on the path.

Optimality of algorithm. Thus, a solution found by the MFMC-based algorithm is guaranteed
to be optimal if it has two properties:

12Notice that this concept is reminiscent of the running intersection property [4, 6] and the consecutive ones property [10].

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:15

R S S R R
XY+ z Yz —— x ‘7y R‘xy S‘yz T‘zx
T T T S r()()OO 30000 t()()‘oo
1 2 o1 01 S10 10
(@)v =xyez (b) vz =yze—x (Quv3 =zxey (d) Database instance D

(e) Flow graph F.
Fig. 7. Example 8: Three mveo’s for triangle query Q* :— R(x,v), S(y, z), T(z, x) (a)-(c), example database
instance D (d), and constructed flow graph for mveo order Q = [v1,v2,v3] (e). Notice that several variables
may appear in the same node of a mveo (e.g., x and y in xy « z).

(1) The ordering Q is a Running-Prefixes ordering or a nested Running-Prefixes ordering (always
possible).
(2) There is no leakage in the flow graph (not always possible).
We use these properties in Section 7 and Section 8 to prove a number of queries to be in PTIME.
In fact, all currently known PTIME cases can be solved exactly with the MFMC-based algorithm

via a query-dependent ordering of the mveos.

ExaMPLE 8 (FLOW GRAPH CONSTRUCTION FOR TRIANGLE QUERY). Consider the triangle query
Q% :=R(x,y),S(y,z), T(z,x). The query has 3 minimal Query Plans corresponding to mveos shown
in Figs. 7a to 7c. The provenance of Q“ over the database shown in Fig. 7d, has 2 witnesses: W =
{ro0sootoo, 0151000 }- We build a flow graph to find a factorization. (1) We choose Q = (v1, v2,v3) as
linear order for the mveo. (2) For each witness, we connect their three query plan variables q[v(w)]
in this order serially from source to target. (3) In Q*, each mveo has a single prefix. We attach these
variables in parallel to their corresponding query variables. Notice that the prefix zox, is shared
by both w; and w,, and therefore is attached in parallel to both corresponding query variables. (4)
Finally, we add weights corresponding to the number of tables having each prefix (see Figs. 7a to 7c).

The resulting flow graph is shown in Fig. 7e. The min-cut (highlighted in purple) consists of the
nodes {zoxo < Yo, 20X0, Z0Xo <— Y1} The corresponding factorization using the selected query plans
is too (FooSoo V To1810)- The weighted cut-value (5) is equal to the length of the factorization. This

factorization is minimal.

6.2 LP relaxation for minFACT and an LP relaxation-based approximation

Linear Programming relaxation and rounding is a commonly-used technique to find PTIME approx-
imations for NP-C problems [61]. The LP relaxation for minFACT simply removes the integrality
constraints on all the problem variables. The LP relaxation may pick multiple query plans for a
given witness, each with fractional values. We present a rounding scheme for minFACT and show it
to be a |mveol|-factor approximation of the optimal solution. The rounding algorithm simply picks

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

104:16 Neha Makhija and Wolfgang Gatterbauer

the maximum fractional value of query plan variables for each witness, breaking ties arbitrarily.
Finally, it counts only the prefix variables necessitated by the chosen query plans.

THEOREM 6.4. The described rounding scheme gives a PTIME, |mveo|-factor approximation for
minFACT.

6.2.1 When is the LP relaxation optimal? Experimentally, we observed that the LP solution
of many queries are equal to the integral ILP solution. This is surprising since the ILP does not
satisfy any of the known requirements for tractable ILPs such as Total Unimodularity, Balanced
Matrices, or even Total Dual Integrality [55]. Interestingly, we next prove that the LP relaxation
has the same objective value as the original ILP whenever the MFMC-based algorithm is optimal.

LeEMMA 6.5. If all database instances can be solved exactly by the MEMC-based algorithm for a
given query Q (i.e. for each database instance there exists an ordering that generates a leakage-free
graph), then the LP relaxation of minFACT always has the same objective as the original ILP.

This result is important as it exposes cases for which the optimal objective value of minFACT_ILP
is identical to the optimal objective value of a simpler LP relaxation. The only example we know of
where this has been shown using flow graphs is in recent work on resilience [44]. In such cases,
standard ILP solvers return the optimal solution to the original ILP in PTIME. This is due to ILP solvers
using an LP-based branch and bound approach which starts by computing the LP relaxation bound
and then exploring the search space to find integral solutions that move closer to this bound. If
an integral solution is encountered that is equal to the LP relaxation optimum, then the solver is
done [36]. We use this knowledge in Section 8 to show that ILP solvers can solve all known PTIME
cases in PTIME.

7 RECOVERING READ-ONCE INSTANCES

It is known that the read-once factorization of a read-once instance can be found in PTIME with
specialized algorithms [31, 54, 56]. We prove that our more general MFMC based algorithm and LP
relaxation are always guaranteed to find read-once formulas when they exist, even though they are
not specifically designed to do so.

THEOREM 7.1 (READ-ONCE). minFACT can be found in PTIME by (a) the MFMC based algorithm,
and (b) the LP relaxation, for any query and database instance that permits a read-once factorization.

8 TRACTABLE QUERIES FOR minFACT

We now go beyond cases when PROB is in PTIME (i.e. read-once instances). We first prove that
minFACT(Q) is PTIME for the large class of queries with 2 minimal query plans. We then show
examples of queries with 3 and 5 minimal query plans that are PTIME as well. All these newly
recovered PTIME cases, along with the previously known read-once cases, can be solved exactly
with both our PTIME algorithms from Section 6. Finally, we hypothesize that minFACT is in PTIME
for any linear query.

8.1 All queries with <2 minimal query plans

We prove that our MFMC-based algorithm has no leakage and thus always finds the minimal
factorization for queries with at most 2 minimal VEOs (2-MQP) queries such as Q} and Q5°. We also
give an alternative proof that shows that any ILP generated by such a query is guaranteed to have
a Totally Unimodular (TU) constraint matrix, and thus is PTIME solvable [55].

THEOREM 8.1 (2-MQP QUERIES). minFACT can be found in PTIME for any query with max 2
minimal VEOs by (a) the MFMC based algorithm, and (b) the LP relaxation.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:17

vy
x x
2N V2N
Yy—m—">z Yy—m——z
S S
(a) Triangle Query ga (b) Triangle-Unary Query g u

Fig. 8. We show that Q* is hard in Section 9 because it contains an “active triad.” Surprisingly, for QLA], a
query that differs by a single unary relation, the minimal factorization can always be found in PTIME by
either using our MFMC based algorithm from Section 6.1 or our LP relaxation from Section 6.2.

The theorem recovers the hierarchical queries which are equivalent to 1-MQP queries since they
have one “safe plan” [17]. The PTIME nature of 1-MQP queries also follows from Theorem 7.1, as
all hierarchical queries have read-once formulations.

CoROLLARY 8.1. minFACT for Hierarchical Queries is in PTIME.

CoOROLLARY 8.2. The classes of queries for which minFACT is in PTIME is a strict super-class of those
for which probabilistic query evaluation is in PTIME (if P # NP).

8.2 Two queries with > 3 minimal query plans

Triangle-unary Q. Q;; is structurally similar to Q* (Fig. 8) and both have |mveo| = 3. However,
while Q* contains an “active triad” [44] and is hard, we show that Q; is in PTIME by proving that
the factorization flow graph has no leakage. Interestingly, Q;’s ILP is not guaranteed to have a TU
constraint matrix, yet the MFMC algorithm is optimal, and the LP relaxation recovers the minimal
ILP objective, showing that PTIME cases extend beyond Total Unimodularity of the ILP constraint
matrix.

THEOREM 8.2 (Qf; 1S EASY). minFACT(Q;;, D) can be found in PTIME for any database D by (a) the
MFEMC based algorithm, and (b) the LP relaxation.

4-chain Q. This is arguably the most involved proof in the paper. Q;° has [mveo| = 5. Yetin a
similar proof to Q“, we can show that the MFMC-based algorithm and the LP are both optimal.
This surprising result leads to the conjecture that minFACT for longer chains, and all linear queries
are in PTIME.

THEOREM 8.3 (Q5° 15 EASY). minFACT(Q;°, D) can be found in PTIME for any database D by (a) the
MFMC based algorithm, and (b) the LP relaxation.

8.3 Conjecture for Linear Queries

A query is acyclic if it has a join tree, i.e. it permits a placement of its atoms into a tree s.t. for any
two atoms, the intersection of variables is contained in the union of the variables of the atoms on
the unique path between them.!* A query is linear if it permits a join path.!* We have spent a lot
of time trying to prove the hardness of such queries without success. Based on our intuition we
hypothesize that all linear queries are in PTIME. Our intuition is strengthened by the fact that over
many experimental evaluations, the LP relaxation of the minFACT_ILP was always integral and
optimal, thus being able to solve the problem in PTIME.

3The concept is alternatively called coherence, the running intersection property, connected subgraph property [4, 6, 58],
and is used in the definition of the junction tree algorithm [42] and tree decompositions [21, 53].

4This definition, introduced in [44], is more restrictive than linear queries defined in the original work on resilience [24] as
it does not allow linearizable queries (those that can be made linear by “making dominated atoms exogenous”).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

104:18 Neha Makhija and Wolfgang Gatterbauer

HypotHEsIS 1 (PTIME coNJECTURE). IfQ is a linear query, then minFACT(Q, D) can be found in
PTIME for any database D.

We think that additional insights from optimization theory are needed to explain the integrality
of the solution to the LP relaxation and to thus prove this conjecture. We leave open the structural
criterion that separates the easy and hard cases.

9 HARD QUERIES FOR minFACT

In this section, we first prove that all queries that contain a structure called “an active triad” (e.g.
Q7 and Q*) are NP-C. We then prove another query to be NP-C that does not contain an active
triad, but a “co-deactivated triad” We thus show that while active triads are sufficient for FACT of a
query to be NP-C, they are not necessary, and minFACT is a strictly harder problem than RES.

Queries with Active triads. We repeat here the necessary definitions introduced in the context
of resilience under bag semantics [44]. A triad is a set of three atoms, 7 = {Ry, Ry, R3} s.t. for every
pair i # j, there is a path from R; to R; that uses no variable occurring in the third atom of 7.
Here a path is an alternating sequence of relations and variables R —x; —Rp — - Xp-1 — R, s.t. all
adjacent relations R;, R;4+; share variables x;. In a query Q with atoms R and S, we say R dominates
S iff var(R) c var(S). We call an atom g in a query independent iff there is no other atom in the
query that contains a strict subset of its variables (and hence it is not dominated). A triad is active
iff none of its atoms are dominated.

THEOREM 9.1 (ACTIVE TRIADS ARE HARD). FACT(Q) for a query Q with an active triad is NP-C.

Separation between RES and minFACT. A triad is deactivated if any of the three atoms is
dominated. A triad is co-deactivated if all three atoms are dominated only by the same (non-
empty) set of atoms. The co-deactivated triangle query Q% , := A(w), R(w, x,), S(w, y, 2), T(w, z, x)
contains no active triads: notice that the tables R, S and T are not independent and have no
independent paths to each other. Thus, RES(Q CAO d) is PTIME. However, QCA(‘) 4 contains a co-deactivated
triad since R, S and T are all dominated only by atom A. We next prove that FACT(Q? ;) is NP-C,
thus showing a strict separation in the complexities of the two problems.

THEOREM 9.2 (CO-DEACTIVATED TRIADS ARE HARD). FACT(Q) for a query Q with a co-deactivated
triad is NP-C.

10 CONCLUSION

We propose an ILP framework for minimizing the size of provenance polynomials for sj-free CQs.
We show that our problem is NP-C and thus in a lower complexity class than the general Minimum
Equivalent Expression (MEE) problem. Key to our formulation is a way to systematically constrain
a space of possible minimum factorizations thus allowing us to build an ILP, and connecting
minimal variable elimination orders to minimal query plans developed in the context of probabilistic
databases. We complement our hardness results with two unified PTIME algorithms that can recover
exact solutions to a strict superset of all prior known tractable cases.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foundation (NSF) under award numbers
I1S-1762268 and IIS-1956096, and conducted in part while the authors were visiting the Simons
Institute for the Theory of Computing.

REFERENCES

[1] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2017. What Do Shannon-Type Inequalities, Submodular Width,
and Disjunctive Datalog Have to Do with One Another?. In PODS. 429-444. https://doi.org/10.1145/3034786.3056105

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

https://doi.org/10.1145/3034786.3056105

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:19

(2]

[10]
[11]

[12

—

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21
[22]

—

[23]

[24]

[25]
[26]

[27]

Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael Saks. 2008. Minimizing Disjunctive Normal
Form Formulas and AC? Circuits Given a Truth Table. SIAM . Comput. 38, 1 (2008), 63-84. https://doi.org/10.1137/
060664537

Yael Amsterdamer, Daniel Deutch, Tova Milo, and Val Tannen. 2012. On Provenance Minimization. ACM Trans.
Database Syst. 37, 4, Article 30 (dec 2012), 36 pages. https://doi.org/10.1145/2389241.2389249

Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. 1983. On the Desirability of Acyclic Database
Schemes. 7. ACM 30, 3 (July 1983), 479-513. https://doi.org/10.1145/2402.322389

Christoph Berkholz and Harry Vinall-Smeeth. 2023. A Dichotomy for Succinct Representations of Homomorphisms.
In ICALP (LIPIcs, Vol. 261), Kousha Etessami, Uriel Feige, and Gabriele Puppis (Eds.). 113:1-113:19. https://doi.org/10.
4230/LIPIcs.ICALP.2023.113

Philip A. Bernstein and Nathan Goodman. 1981. Power of Natural Semijoins. SIAM J. Comput. 10, 4 (1981), 751-771.
https://doi.org/10.1137/0210059

David Buchfuhrer and Christopher Umans. 2011. The complexity of Boolean formula minimization. J. Comput. System
Sci. 77,1 (2011), 142-153. https://doi.org/10.1016/].jcss.2010.06.011

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. 2002. On Propagation of Deletions and Annotations Through
Views. In PODS. 150-158. https://doi.org/10.1145/543613.543633

Vinicius Callegaro, Mayler GA Martins, Renato P Ribas, and André I Reis. 2013. Read-polarity-once Boolean functions.
In 2013 26th Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 1-6. https://doi.org/10.1109/SBCCL
2013.6644862

Zixuan Chen, Subhodeep Mitra, R Ravi, and Wolfgang Gatterbauer. 2024. HITSNDIFES: From Truth Discovery to Ability
Discovery by Recovering Matrices with the Consecutive Ones Property. In ICDE. https://arxiv.org/pdf/2401.00013
James Cheney, Laura Chiticariu, and Wang Chiew Tan. 2009. Provenance in Databases: Why, How, and Where.
Foundations and Trends in Databases 1, 4 (2009), 379-474. https://doi.org/10.1561/9781601982339

Michele Conforti, Gérard Cornuéjols, and Kristina Vuskovi¢. 2006. Balanced matrices. Discrete Mathematics 306, 19-20
(2006), 2411-2437. https://doi.org/10.1016/j.disc.2005.12.033

Gérard Cornuéjols and Bertrand Guenin. 2002. Ideal clutters. Discrete Applied Mathematics 123, 1-3 (2002), 303-338.
https://doi.org/10.1016/S0166-218X(01)00344-4

Yves Crama and Peter L. Hammer. 2011. Boolean Functions: Theory, Algorithms, and Applications. Cambridge University
Press. https://doi.org/10.1017/cbo9780511852008.003

Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the lineage of view data in a warehousing environment.
ACM TODS 25, 2 (2000), 179-227. https://doi.org/10.1145/357775.357777

Nilesh N. Dalvi and Dan Suciu. 2004. Efficient Query Evaluation on Probabilistic Databases. In VLDB. 864-875.
https://doi.org/10.1016/b978-012088469-8.50076-0

Nilesh N. Dalvi and Dan Suciu. 2007. Efficient query evaluation on probabilistic databases. VLDB 7. 16, 4 (2007),
523-544. https://doi.org/10.1007/s00778-006-0004-3

Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. 2008. Algorithms. McGraw-Hill Higher
Education, Boston. http://www.loc.gov/catdir/enhancements/fy0665/2006049014-t.html

Umeshwar Dayal and Philip A. Bernstein. 1982. On the Correct Translation of Update Operations on Relational Views.
ACM TODS 7, 3 (1982), 381-416. https://doi.org/10.1145/319732.319740

Rina Dechter. 1999. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113, 1 (1999), 41-85.
https://doi.org/10.1016/S0004-3702(99)00059-4

Rina Dechter. 2003. Constraint Processing. Morgan Kaufmann. https://doi.org/10.1016/b978-1-55860-890-0.x5000-2
Maarten Van den Heuvel, Peter Ivanov, Wolfgang Gatterbauer, Floris Geerts, and Martin Theobald. 2019. Anytime
Approximation in Probabilistic Databases via Scaled Dissociations. In SIGMOD. 1295-1312. https://doi.org/10.1145/
3299869.3319900

Robert Fink, Jiewen Huang, and Dan Olteanu. 2013. Anytime approximation in probabilistic databases. VLDB . 22, 6
(2013), 823-848. https://doi.org/10.1007/s00778-013-0310-5

Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou. 2015. The complexity of resilience and
responsibility for self-join-free conjunctive queries. PVLDB 9, 3 (2015), 180-191. https://doi.org/10.14778/2850583.
2850592

Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou. 2020. New Results for the Complexity of
Resilience for Binary Conjunctive Queries with Self-Joins. In PODS. 271-284. https://doi.org/10.1145/3375395.3387647
Michael R Garey and David S Johnson. 1979. Computers and intractability. Vol. 174. W. H. Freeman & Co. https:
//dl.acm.org/doi/10.5555/578533

Wolfgang Gatterbauer and Dan Suciu. 2014. Oblivious bounds on the probability of Boolean functions. TODS 39, 1
(2014), 1-34. https://doi.org/10.1145/2532641

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

https://doi.org/10.1137/060664537
https://doi.org/10.1137/060664537
https://doi.org/10.1145/2389241.2389249
https://doi.org/10.1145/2402.322389
https://doi.org/10.4230/LIPIcs.ICALP.2023.113
https://doi.org/10.4230/LIPIcs.ICALP.2023.113
https://doi.org/10.1137/0210059
https://doi.org/10.1016/j.jcss.2010.06.011
https://doi.org/10.1145/543613.543633
https://doi.org/10.1109/SBCCI.2013.6644862
https://doi.org/10.1109/SBCCI.2013.6644862
https://arxiv.org/pdf/2401.00013
https://doi.org/10.1561/9781601982339
https://doi.org/10.1016/j.disc.2005.12.033
https://doi.org/10.1016/S0166-218X(01)00344-4
https://doi.org/10.1017/cbo9780511852008.003
https://doi.org/10.1145/357775.357777
https://doi.org/10.1016/b978-012088469-8.50076-0
https://doi.org/10.1007/s00778-006-0004-3
http://www.loc.gov/catdir/enhancements/fy0665/2006049014-t.html
https://doi.org/10.1145/319732.319740
https://doi.org/10.1016/S0004-3702(99)00059-4
https://doi.org/10.1016/b978-1-55860-890-0.x5000-2
https://doi.org/10.1145/3299869.3319900
https://doi.org/10.1145/3299869.3319900
https://doi.org/10.1007/s00778-013-0310-5
https://doi.org/10.14778/2850583.2850592
https://doi.org/10.14778/2850583.2850592
https://doi.org/10.1145/3375395.3387647
https://dl.acm.org/doi/10.5555/578533
https://dl.acm.org/doi/10.5555/578533
https://doi.org/10.1145/2532641

104:20 Neha Makhija and Wolfgang Gatterbauer

[28]

[29]

[30]

[31]

[32]
[33]
[34]

[35]
[36]

[37]
[38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]
[49]

[50]

[51]
[52]

[53]

Wolfgang Gatterbauer and Dan Suciu. 2017. Dissociation and propagation for approximate lifted inference with standard
relational database management systems. VLDB 7. 26, 1 (2017), 5-30. https://doi.org/10.1007/s00778-016-0434-5
Judy Goldsmith, Matthias Hagen, and Martin Mundhenk. 2008. Complexity of DNF minimization and isomorphism
testing for monotone formulas. Information and Computation 206, 6 (2008), 760-775. https://doi.org/10.1016/j.ic.2008.
03.002

Martin Charles Golumbic and Vladimir Gurvich. 2010. Read-once functions. Cambridge University Press, Chapter 10.
https://doi.org/10.1017/cbo9780511852008.011

Martin Charles Golumbic, Aviad Mintz, and Udi Rotics. 2006. Factoring and recognition of read-once functions using
cographs and normality and the readability of functions associated with partial k-trees. Discrete Applied Mathematics
154, 10 (2006), 1465-1477. https://doi.org/10.1016/j.dam.2005.09.016

Martin Charles Golumbic, Aviad Mintz, and Udi Rotics. 2008. An improvement on the complexity of factoring read-once
Boolean functions. Discrete Applied Mathematics 156, 10 (2008), 1633-1636. https://doi.org/10.1016/j.dam.2008.02.011
Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semirings. In PODS. 31-40. https:
//doi.org/10.1145/1265530.1265535

Todd J. Green and Val Tannen. 2017. The Semiring Framework for Database Provenance. In PODS. 93-99. https:
//doi.org/10.1145/3034786.3056125

LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual. http://www.gurobi.com

LLC Gurobi Optimization. 2021. Mixed-Integer Programming (MIP) — A Primer on the Basics. https://www.gurobi.
com/resource/mip-basics/

V.A. Gurvich. 1977. Repetition-free Boolean functions. Uspekhi Mat. Nauk 32 (1977), 183-184. http://mi.mathnet.ru/
umn3055 (in Russian).

Peter L Hammer and Alexander Kogan. 1993. Optimal compression of propositional Horn knowledge bases: complexity
and approximation. Artificial Intelligence 64, 1 (1993), 131-145. https://doi.org/10.1016/0004-3702(93)90062-G

Edith Hemaspaandra and Henning Schnoor. 2011. Minimization for generalized boolean formulas. In 21st International
Joint Conference on Artificial Intelligence (IJCAI). 566-571. https://doi.org/10.1109/sfcs.1997.646147

Rahul llango. 2022. The Minimum Formula Size Problem is (ETH) Hard. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 427-432. https://doi.org/10.1109/FOCS52979.2021.00050

Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. 2011. Iterative methods in combinatorial optimization. Vol. 46.
Cambridge University Press. https://doi.org/10.1017/cb09780511977152.002

S. L. Lauritzen and D. J. Spiegelhalter. 1988. Local Computations with Probabilities on Graphical Structures and Their
Application to Expert Systems. Journal of the Royal Statistical Society. Series B (Methodological) 50, 2 (1988), 157-224.
http://www.jstor.org/stable/2345762

Neha Makhija and Wolfgang Gatterbauer. 2021. Minimally Factorizing the Provenance of Self-join Free Conjunctive
Queries. (2021). https://arxiv.org/abs/2105.14307 (Full technical report with Online Appendix).

Neha Makhija and Wolfgang Gatterbauer. 2023. A Unified Approach for Resilience and Causal Responsibility with
Integer Linear Programming (ILP) and LP Relaxations. PACMMOD 1, 4 (dec 2023), 228:1-228:27. https://doi.org/10.
1145/3626715

Mayler GA Martins, Leomar Rosa, Anders B Rasmussen, Renato P Ribas, and Andre I Reis. 2010. Boolean factoring
with multi-objective goals. In International Conference on Computer Design (ICCD). IEEE, 229-234. https://doi.org/10.
1109/ICCD.2010.5647772

Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. 2011. Reverse Data Management. PVLDB 4, 12 (2011),
1490-1493. https://doi.org/10.14778/3402755.3402803

Aviad Mintz and Martin Charles Golumbic. 2005. Factoring Boolean functions using graph partitioning. Discrete
Applied Mathematics 149, 1-3 (2005), 131-153. https://doi.org/10.1016/j.dam.2005.02.007

Dan Olteanu and Jiewen Huang. 2008. Using OBDDs for Efficient Query Evaluation on Probabilistic Databases. In
SUM. 326-340. https://doi.org/10.1007/978-3-540-87993-0_26

Dan Olteanu and Maximilian Schleich. 2016. Factorized Databases. SIGMOD Rec. 45, 2 (2016), 5-16. https://doi.org/10.
1145/3003665.3003667

Dan Olteanu and Jakub Zavodny. 2011. On Factorisation of Provenance Polynomials. In 3rd Workshop on the Theory
and Practice of Provenance (TaPP’11). USENIX. https://www.usenix.org/conference/tapp11/factorisation-provenance-
polynomials

Dan Olteanu and Jakub Zavodny. 2012. Factorised representations of query results: size bounds and readability. In
Proceedings of the 15th International Conference on Database Theory. 285-298. https://doi.org/10.1145/2274576.2274607
Dan Olteanu and Jakub Zavodny. 2015. Size Bounds for Factorised Representations of Query Results. ACM Trans.
Database Syst. 40, 1 (2015), 2:1-2:44. https://doi.org/10.1145/2656335

Neil Robertson and Paul D. Seymour. 1986. Graph Minors. II. Algorithmic Aspects of Tree-Width. 7. Algorithms7, 3
(1986), 309-322. https://doi.org/10.1016/0196-6774(86)90023-4

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

https://doi.org/10.1007/s00778-016-0434-5
https://doi.org/10.1016/j.ic.2008.03.002
https://doi.org/10.1016/j.ic.2008.03.002
https://doi.org/10.1017/cbo9780511852008.011
https://doi.org/10.1016/j.dam.2005.09.016
https://doi.org/10.1016/j.dam.2008.02.011
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/3034786.3056125
https://doi.org/10.1145/3034786.3056125
http://www.gurobi.com
https://www.gurobi.com/resource/mip-basics/
https://www.gurobi.com/resource/mip-basics/
http://mi.mathnet.ru/umn3055
http://mi.mathnet.ru/umn3055
https://doi.org/10.1016/0004-3702(93)90062-G
https://doi.org/10.1109/sfcs.1997.646147
https://doi.org/10.1109/FOCS52979.2021.00050
https://doi.org/10.1017/cbo9780511977152.002
http://www.jstor.org/stable/2345762
https://arxiv.org/abs/2105.14307
https://doi.org/10.1145/3626715
https://doi.org/10.1145/3626715
https://doi.org/10.1109/ICCD.2010.5647772
https://doi.org/10.1109/ICCD.2010.5647772
https://doi.org/10.14778/3402755.3402803
https://doi.org/10.1016/j.dam.2005.02.007
https://doi.org/10.1007/978-3-540-87993-0_26
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/3003665.3003667
https://www.usenix.org/conference/tapp11/factorisation-provenance-polynomials
https://www.usenix.org/conference/tapp11/factorisation-provenance-polynomials
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2656335
https://doi.org/10.1016/0196-6774(86)90023-4

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:21

[54]
[55]
[56]
[57]

[58]

[59]
[60]

[61]
[62]

Sudeepa Roy, Vittorio Perduca, and Val Tannen. 2011. Faster query answering in probabilistic databases using read-once
functions. In ICDT. 232-243. https://doi.org/10.1145/1938551.1938582

Alexander Schrijver. 1998. Theory of linear and integer programming. John Wiley & Sons. https://doi.org/10.1137/
1030065

Prithviraj Sen, Amol Deshpande, and Lise Getoor. 2010. Read-Once Functions and Query Evaluation in Probabilistic
Databases. PVLDB 3, 1 (2010), 1068-1079. https://doi.org/10.14778/1920841.1920975

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Morgan & Claypool.
https://doi.org/10.2200/s00362ed1v01y201105dtm016

Robert Endre Tarjan and Mihalis Yannakakis. 1984. Simple Linear-Time Algorithms to Test Chordality of Graphs,
Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs. SIAM 7. Comput. 13, 3 (1984), 566-579.
https://doi.org/10.1137/0213035

Christopher Umans. 2001. The minimum equivalent DNF problem and shortest implicants. J. Comput. System Sci. 63, 4
(2001), 597-611. https://doi.org/10.1109/sfcs.1998.743506

Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages (Extended Abstract). In STOC. 137-146.
https://doi.org/10.1145/800070.802186

Vijay V Vazirani. 2001. Approximation algorithms. Vol. 1. Springer. https://dl.acm.org/doi/10.5555/500776

David P Williamson. 2019. Network flow algorithms. Cambridge University Press. https://doi.org/10.1017/9781316888568

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

https://doi.org/10.1145/1938551.1938582
https://doi.org/10.1137/1030065
https://doi.org/10.1137/1030065
https://doi.org/10.14778/1920841.1920975
https://doi.org/10.2200/s00362ed1v01y201105dtm016
https://doi.org/10.1137/0213035
https://doi.org/10.1109/sfcs.1998.743506
https://doi.org/10.1145/800070.802186
https://dl.acm.org/doi/10.5555/500776
https://doi.org/10.1017/9781316888568

104:22

Neha Makhija and Wolfgang Gatterbauer

A NOMENCLATURE AND CONVENTIONS

Symbol Definition
Q a self-join free Boolean CQ
R S, T,U relational tables
ri, Si, i, Uj tuple identifiers
XY,z query variables
m number of atoms in a query
N size of database |D|
0.y propositional formulas / expressions
var(X) the set of variables in atom / relation / formula X
w set of witnesses W = witnesses(Q, D)
w witness
VEO(Q) set of all legal VEOs for Q
mveo(Q) set of minimal VEOs for Q
k = |mveo(Q)| number of minimal VEOs
o(w) a VEO instance of VEO v over witness w
var(gi) set of variables of a query q or atom g;
P query plan
P set of plans
F flow graph
l><l(...) provenance join operator in prefix notation
Tox, Ty provenance project operators: onto X, or project y away
X unordered set or ordered tuple
a/x substitute values a for variables x
Q[x] indicates that x represents the set of all existentially quantified variables for Boolean query Q
len Length of a Factorization
QpPV Query Plan Variables of an ILP
PV Prefix Variables of an ILP
ql...] a ILP decision query plan variable
pl..] a ILP decision prefix variable
c weight (or cost) of variables in the ILP / nodes in the Factorization Flow Graph
Q An Ordering of mveo chosen for MFMC based algorithm
(v1,02,...,0;) An ordered list of VEOs, VEOFFs or any other set of objects
Query Definition
> 2-chain query R(x,y), S(y, z)
037 3-chain query R(x,y), S(y, z), T(z, u)
Q7 4-chain query P(u,x), R(x,y),5(y, 2), T(2,0)
(0} 5-chain query L(a, u), P(u, x), R(x, 1), S(y, 2), T(z,0)
o 2-star query R(x)S(y), W(x,y)
Q; 3-star query R(x)S(y), T(2)W(x,y, z)
oA Triangle query R(x,y)S(y,z), T(z, x)
Qf; Triangle-unary query U (x)R(x, 4)S(y, 2), T(z,x)
Qewr 6-cycle query with end points A(x), R(x, y), B(y), S(y,2), C(2), T(z,u) D(u), U(u,0), E(v), V (v, w),
F(w), W(w, x)
cAod Co-dominated triangle query A(w), R(w, x,y), S(w, y, z), T(w, z, x)
We write [k] as short notation for the set {1, ..., k} and use boldface to denote tuples or ordered

sets, (e.g., X = (x1,...,x7)). We fix a relational vocabulary R = (Ry,...,R;;), and denote with

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries 104:23

arity(R;) the number of attributes of a relation R;. For notational convenience, we assume w.L.o.g.
that there are no two atoms R; and R; with var(R;) = var(R;). A database instance over R is
D=(RP,..., Rg), where each RiD is a finite relation. We call the elements of RiD tuples and write R;
instead of Rl’.) when D is clear from the context. With some abuse of notation we also denote D as
the set of all tuples, i.e. D = | J; R;. The active domain dom(D) is the set of all constants occurring
in D. W.Lo.g., we commonly use dom(D) € NU {a,b, ..., z}. The size of the database instance is
n = |D|, i.e. the number of tuples in the database.'

B ADDITIONAL DETAILS ON Section 2: RELATED WORK
B.1 Boolean Factorization

Fig. 9 illustrates the landscape of known results for the problem of Minimum Equivalent Expressions
(MEE) applied to formulas.

The general problem of MEE has been long known to be NP-hard [26]. However, only relatively
recently it has been proved to be Elz,-complete [7]. Various important classes of this problem have
been studied, a fundamental one being the factorization of DNF expressions. The MinDNF problem
[59], deals with finding the minimum equivalent DNF expression of an input DNF formula, and is
also known to be Zf,-complete. However, if the input to the MinDNF is the truth table (or set of all
true assignments of the formula) then the problem is NP-C [2]. If we take away the restriction that
the factorized formula must be a DNF, then the problem of finding the minimum factorization of
an input table is known as the Minimum Formula Size Problem (MFSP) and is shown to be in NP
and (ETH)-hard [40].

Another important class of restrictions is over monotone formulas (thus we do not allow negatives
in input or output formulas). Surprisingly, we do not know of any work that proves the complexity
of the general monotone boolean factorization problem. However, there are many interesting and
important restrictions for which complexity results are known. One such important sub-class is
that of read-once formulas, which can be factorized in PTIME [32]. For Monotone formulas with
DNF input and output restrictions, the problem can be solved in logspace by eliminating monomials
[29]. Interestingly the problem monotone formula factorization of an arbitrary formula with a DNF
restriction on the output only has differing complexity based on the input encoding of the length
of the factorization. Checking if the minimum size of a DNF for a monotone formula is at most k is
PP-complete, but for k in unary, the complexity of the problem drops to coNP [29]. The intuition is
that in this problem, (which can be seen as “dual” of minFACT since it has a DNF output restriction
instead of a DNF input restriction), the optimal output (a DNF) can be exponentially larger than
the input (any monotone formula).

Our problem of minFACT is a further restriction on the MEE problem applied to a monotone DNF.
Provenance formulas for sj-free CQs are k-partite monotone formulas that satisfy join dependencies.
We prove in this paper that the problem is NP-C, in general, and further identify interesting PTIME
subcases.

B.2 Probabilistic Inference and Dissociation

Given a provenance that is not read-once, one can still upper and lower bound its probability
efficiently via dissociation [27]: Let ¢ and ¢’ be two Boolean formulas with variables x and x’,
respectively. Then ¢’ is a dissociation of ¢ if there exists a substitution 6 : X’ — x s.t. ¢’ [6] = ¢.
Ifo1(x) = {x},..., x;}, then variable x dissociates into d variables x7, .. .,x(’j. Every provenance
expression has a unique read-once dissociation up to renaming of variables. One application of

I5Notice that other work sometimes uses |dom(D)| as the size of the database. Our different definition has no implication
on our complexity results but simplifies the discussions of our reductions.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

104:24 Neha Makhija and Wolfgang Gatterbauer

/ Output = DNF Input = DNF \\

Input = Truth Table

NP-C [2] In NP, (ETH) Hard [40]

(7]

Input = Monotone
Input = Provenanc

Unary input: NP'C

Co-NPC [29] (mlnFACT)
" ; L [29]
Binary input:

PP-C [29]

\ Input = Read-Once JJ

Fig. 9. An overview of related work on the Exact, Minimal Equivalent Expression (MEE) problem applied to
formulas.

compiling provenance polynomials into their smallest representation is motivated by the following
known results on “oblivious bounds" [27]: (i) lower and upper bounds for intractable expressions can
be found very efficiently; and (ii) those bounds work better the fewer times variables are repeated.
Similarly, anytime approximation schemes based on branch-and-bound provenance decomposition
methods [22, 23] give tighter bounds if Shannon expansions need to be run on fewer variables.

B.3 Resilience

The resilience of a Boolean query measures the minimum number of tuples in database D, the
removal of which makes the query false. The optimization version of this decision problem is then:
given Q and D, find the minimum k so that (D, k) € RES(Q). A larger k implies that the query is
more “resilient” and requires the deletion of more tuples to change the query output. We know
from [24] that all hard queries must have a “triad” which is a set of three non-dominated atoms,
T = {Ry, Rz, Rs} s.t. for every pair i # j, there is a path from R; to R; that uses no variable occurring
in the other atom of 7. In return, the tractable queries for RES are exactly those that are triad-free.

ExaMPLE 9 (RESILIENCE). The resilience for our example from Fig. 2 is 2 because removing the set

T = {ry, t3} removes one tuple from each witness and there is no smaller set that achieves that.

Received December 2023; revised February 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Formal Setup
	3.1 Standard database notations
	3.2 Boolean and Provenance formulas
	3.3 Minimal factorization minFACT

	4 Search Space for minFACT
	5 ILP Formulation for minFACT
	6 PTIME Algorithms
	6.1 MFMC-based Algorithm for minFACT
	6.2 LP relaxation for minFACT and an LP relaxation-based approximation

	7 Recovering Read-Once instances
	8 Tractable Queries for minFACT
	8.1 All queries with 2 minimal query plans
	8.2 Two queries with 3 minimal query plans
	8.3 Conjecture for Linear Queries

	9 Hard Queries for minFACT
	10 Conclusion
	References
	A Nomenclature and Conventions
	B Additional details on SEC:RELATEDWORK: Related Work
	B.1 Boolean Factorization
	B.2 Probabilistic Inference and Dissociation
	B.3 Resilience

