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Abstract—We analyze a general problem in a crowd-sourced
setting where one user asks a question (also called item) and
other users return answers (also called labels) for this question.
Different from existing crowd sourcing work which focuses on
finding the most appropriate label for the question (the “truth”),
our problem is to determine a ranking of the users based on
their ability to answer questions. We call this problem “ability
discovery” to emphasize the connection to and duality with the
more well-studied problem of “truth discovery”.

To model items and their labels in a principled way, we draw
upon Item Response Theory (IRT) which is the widely accepted
theory behind standardized tests such as SAT and GRE. We
start from an idealized setting where the relative performance
of users is consistent across items and better users choose better
fitting labels for each item. We posit that a principled algorithmic
solution to our more general problem should solve this ideal
setting correctly and observe that the response matrices in this
setting obey the Consecutive Ones Property (C1P). While C1P is
well understood algorithmically with various discrete algorithms,
we devise a novel variant of the HITS algorithm which we call
“HITSNDIFFS” (or HND), and prove that it can recover the
ideal C1P-permutation in case it exists. Unlike fast combinatorial
algorithms for finding the consecutive ones permutation (if it
exists), HND also returns an ordering when such a permutation
does not exist. Thus it provides a principled heuristic for our
problem that is guaranteed to return the correct answer in the ideal
setting. Our experiments show that HND produces user rankings
with robustly high accuracy compared to state-of-the-art truth
discovery methods. We also show that our novel variant of HITS
scales better in the number of users than ABH, the only prior
spectral C1P reconstruction algorithm.

Index Terms—truth discovery, item response theory, consecu-
tive ones property

I. INTRODUCTION

Motivation. We first present a couple of examples from a
class to a more general crowdsourcing context.

Example 1 (Student ranking). Kiyana, an innovative instruc-
tor for an online class who suffered from the leakage of
previous exam questions and difficulty of creating new ones,
notices a lot of interactions in student forums like Piazza [2]
and pilots a new learning approach. Since students are
willing to ask and answer questions, Kiyana aims to utilize
such communication for both practice and assessment of the
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class by requiring students to suggest and answer multiple-
choice questions (MCQs) themselves. The task of students
is to come up with meaningful MCQs (including question
stems and choices) related to the topics of the class and
answer the questions from others. In this way, the initiative of
and interactions between students are encouraged, and their
performances can be used as another important measure
(e.g., a “participation” score) towards the grade assessment,
in addition to traditional exam scores. To assess students,
Kiyana first simply counts how many times a student answers
questions, which is the traditional way for an instructor to
give a participation score for students in a forum. However,
in this way, the grades are biased towards students who
answer a lot of questions randomly. The second attempt is to
require all students to answer the same number of questions
and rank them by how many questions they answer correctly,
which still requires a lot of efforts for her to figure out
all the correct answers and suffers from the problem that
each question has quite different difficulties. Kiyana wonders
whether there is a more principled way for ranking students
by their abilities to answer questions correctly.

Example 2 (Crowd workers ranking). Daiyu wants to release
a human intelligence task which consists of a set of ques-
tions at a crowdsourcing platform like Amazon Mechanical
Turk [1]. Suffering from low-quality answers from the crowd
workers, she wonders whether there is a better way to select
top crowd workers instead of simply setting thresholds for the
number of tasks they have finished or finished successfully.

The above examples motivate our problem of “ability dis-
covery” which ranks the users (students/workers) based on
their abilities to answer questions correctly.

The ability discovery problem. We have m users and n
items.! Each item has up to k labels,? and the labels usually
vary between items (the items are thus “heterogeneous”). Each
user chooses up to one label to each of the items, and two

'We use item/question and label/option/answer/choice interchangeably.
2In other words, the item(s) with the most unique labels has k different
labels. Labels can be proposed either from questioners or answerers.


https://orcid.org/0000-0003-2872-1865
https://orcid.org/0000-0001-7603-1207
https://orcid.org/0000-0002-9614-0504

users may choose the same label to the same item. Our goal
is to derive a principled way for determining a ranking of the
users in terms of their ability to pick correct labels for the
items based solely on the user responses.

Connection to truth discovery. Ability discovery can be
considered a dual problem of the widely studied truth discov-
ery problem [69]. The setup is similar; the difference is that the
truth discovery problem measures success in finding the truth
(thus the correct label for each item) whereas our problem
focuses on finding the correct ranking of the users by their
relative abilities. While the truth discovery problem occurs in a
wide range of problems related to crowdsourcing and has been
of intense focus for the data management community [69], the
ability discovery problem gets little attention and is usually
treated as a sub-problem: if one knows the truth, it is easier
to rank the users based on the choices they make. In turn, if
one knows the order of user abilities, it is easier to determine
the truth. However, we show in Section IV that it is not
straightforward to rank users correctly, even when given the
correct answers to the questions beforehand, which means
even the perfect truth discovery method is not guaranteed to
perform well for the ability discovery problem. Furthermore,
we argue that ability discovery is much more than a sub-
problem of truth discovery and highlight its importance in
two aspects: 1) It has different application scenarios as we
discussed in the examples. 2) Different from correctness of
answers, user abilities are abstract and cannot to be measured
directly, which makes ability discovery results valuable but
also hard to evaluate with no acknowledged ground truth.

Assumptions. Similar as in truth discovery, we assume an
objective total order on the labels of each item based on their
correctness, and a total order on the users based on their latent
one-dimensional abilities for choosing the correct labels.

Our approach. We first define an idealized scenario in
which the user responses are consistent with their abilities
across the items and characterize it as the response matrix
having the Consecutive Ones Property (C1P). We then suggest
an efficient spectral method that we call HITSNDIFFs (HND)
for reconstructing such ideal orderings if they exist. We prove
that in the ideal error-free scenario (better users always make
better choices) our method is guaranteed to find the correct
ranking, which puts our approach on a stronger theoretical
footing as a cross between a heuristic and an exact algorithm.
Importantly, our method generalizes to the general non-ideal
case and allows us to compare it with existing truth discovery
methods for ranking users. One key innovation in our work
is the use of Item Response Theory (IRT) [57] to model both
label rankings as well as the propensity of users of different
abilities to choose such labels, and the previously not made
connection to C1P. We utilize 3 different generative models
from the IRT literature to generate realistic synthetic data.
Experiments on these data show that (¢) our new method is
more accurate than existing truth discovery methods, and (i1) it
can also serve as scalable approach that reconstructs the C1P
order if it exists and generalizes much better on non-ideal
inputs than the only other C1P order reconstruction method

that works in the non-ideal scenario.

Contributions. (1) We connect the notion of consistent
responses in heterogeneous multiclass classification to the
well-known Consecutive Ones Property (C1P) from seriation
theory [4], [21], [27]. We argue that any principled solution to
ranking users by their abilities should be able to recover the
correct ranking when responses are consistent with abilities.

(2) We propose a novel yet simple adaptation of the HITS
algorithm [29] that we call HITSNDIFFs (HND) for ranking
users based on their abilities. We prove the surprising result
that HND recovers the consecutive ones ranking of users
when a unique such order exists. Unlike fast combinatorial
algorithms for finding the C1P ordering if it exists, HND
can also deal with the general case when no such order
exists. This makes HND an ideal candidate for our problem
(and even becomes an exact algorithm in special settings).
We compare HND against ABH [4], which is the only other
spectral approach that has these properties, and give intuitive
and experimental evidence for why HND performs better.

(3) We show how Item Response Theory (IRT) [57], which is
widely deployed in educational testing, provides a natural and
mathematically principled theory (including generative mod-
els) for modeling heterogeneous item ranking that includes the
C1P as a special case of consistent responses.

(4) We conduct extensive experiments on synthetic datasets
generated by 3 polytomous IRT models and show that HND
can outperform other existing truth discovery approaches in
terms of accuracy of the user ranking. We also show (both
in theory and with experiments) that HND has better scala-
bility and accuracy than ABH (which is the only other C1P
reconstruction approach known today that can be used for the
general ranking problem).

Outline. Section II defines our problem, draws the connec-
tion to the C1P property, and introduces IRT as generalization
of C1P. Section III introduces our approach, gives its formal
properties and compares it to closely related work. Section IV
presents experiments. Section V discusses additional related
work on truth discovery before Section VI concludes. Code,
proofs and more experiments are available online [8], [9].

II. FORMAL SETUP
A. Ability discovery problem formulation

Consider a setting with m users choosing among k options
for each of n items. Items are heterogeneous in that they have
different options, as is the case in MCQs used in standardized
test settings (see Figure 1a). This setup is different from typical
multiclass classification [12] where all n items have the same
class of k labels. To emphasize the difference, we refer to our
setup as heterogeneous multiclass classification.

User responses can be represented in one-hot encoding as
a (m x kn) binary response matrix C (see Figure 1b) where
each row represents the choices of a user and each column
represents an option for some item. The number of non-zeros
in C is mn and the number of non-zeros in each row n.

We assume that each user j has a latent one-dimensional
ability 0; that represents the user’s ability to choose high-



quality options for each item. Our goal is to rank the users by
their abilities to choose high-quality options.

Definition 1 (Ability discovery). Given m users and their
choices among k options for n heterogeneous items as binary
response matrix C.3 Rank the users by their abilities to choose
higher quality options for each item.

Several approaches on homogeneous items assume the prob-
abilities of users getting a correct answer to be identical across
questions and encode user abilities as a (k x k) dimensional
confusion matrix per user [12], [69]. In our setting, this is
not the case: each option h for item ¢ may have a different
“quality” m;p. The higher the quality is, the more likely it
is picked by better students. The probability of answering a
question correctly (i.e. choosing the highest-quality option)
then depends on the interplay between the user ability and
the option qualities. This setup perfectly fits Item Response
Theory (IRT) [36], [57], summarized in detail in Section II-D.

Example 3. Figure la shows m =4 users answering n=3
MCQs. Each question has k = 3 choices labeled A to C
in decreasing order of quality. Figure 1b shows a response
matrix C' and its binary form C. Assuming that users’
choices are “consistent” with their abilities (i.e. correctness
of labeling increases with ability), the only possible ranking
of users for the observed C'is 1,2, 3,4, orits reverse. Figure
Ic illustrates an IRT model for the probability of picking the
correct answer A for each item as function of user abilities
when the correct ranking is 1, 2, 3, 4. For example, user
2 has the ability to label items 1 and 2 correctly and thus
chooses the correct answer A for both items. Our problem is
to rank the users by their mastery of the subject based solely
on the users’ choices without knowing the correct labels.

B. The ideal case with consistent responses

We call a response matrix “consistent” if there is a (total)
order of the users (based on their abilities) that is consistently
reflected in their responses across all items. In this ideal case,
if a user jy1 chooses a better option (i.e. one of higher quality)
than user jo for an item, then user j1 must also choose an
equal or better option than user jo for any other item. This
implies that there are also, for each item, a total order among
the options from best to worst, and the better users choose
better or equal options for every item.

In other words, assume that the user abilities 0; are all
distinct, and also that for every item ¢, the qualities 7;, of
its options are all distinct, then there is a unique total order
of the users, and of the options for each item.

Definition 2 (Consistent Responses). A response matrix C is
consistent if there exists an assignment of user abilities 0 and
option qualities m, s.t. for any pair of users j1 and jo with
0;, > 0;,, and for any item i where user ji chooses option
h1 and user jo chooses option hy, we have n;p, > Nip,.

3To simplify the discussion and different from Section I, we assume here

that each item has exactly k choices. For items with k’ <k choices, we can
assume them to have k—k’ more choices and nobody choosing them.
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Fig. 1: (a) Ability discovery problem: m =4 users choose one from
k=3 choices of labels A, B, C for each of n = 3 items. (b) Input: the
(m x k) response matrix C’, or equally its flattened (m x kn) binary
response matrix C. (c) Model: the probability of picking the correct
answer in terms of the user ability for Items 1,2,3. The abilities of
all 4 users are marked on the horizontal axis.

C. Relation to Consecutive ones Property (CIP)

We observe that consistent response matrices, when row-
sorted according to user abilities, satisfy a widely studied
ordering property in seriation, called the consecutive ones
property (C1P) [4], [21], [27]. We follow the notation from
seriation theory and call it a P-matrix.

Definition 3 (C1P, P-matrix & pre-P-matrix [4]). A binary
matrix satisfies C1P and is called a P-matrix if in each column,
all the 1’s are consecutive. If the rows of a matrix can be
permuted so it becomes a P-matrix, we call it a pre-P-matrix.

In other words, no 0’s appear between any two 1’s in
a column in a P-matrix (see C in Figure 1b). To see that
consistent responses with users sorted by abilities 6 give a P-
matrix, suppose for a contradiction that a column correspond-
ing to an option for an item has two or more blocks of ones.
Then the users corresponding to the zeros in between these
blocks will have chosen another option for which the quality
is strictly higher or lower than that of this option since the
option qualities are assumed to be distinct. But this violates
consistency since the rows are ordered by user ability.

Observation 1 (Consistent Responses imply C1P). A response
matrix C is consistent iff it is a pre-P-matrix.

Consequently, ranking the users in a scenario of consistent
responses corresponds to the problem of determining a per-
mutation of the rows of C so that the result obeys C1P.

State-of-the-art on C1P. Booth and Leuker [6] (“BL”)
proposed the fastest known algorithm for finding all possible
permutations of the rows that reconstruct the C1P ordering in



time linear in the number of nonzero entries in the matrix,
taking time O(mn) in our setting. However, their method
fails to produce an ordering of the rows when the matrix
is not a pre-P-matrix, and therefore cannot be used as a
general heuristic for simulated or real-world datasets that are
not ideal. In contrast, Atkins et al. [4] (“ABH”) proposed
an elegant spectral method to determine whether a matrix
obeys C1P, thus giving a rare continuous method to solve
a combinatorial ordering problem. Moreover, it can also be
adapted as a heuristic when the input matrix is not a pre-P-
matrix. To the best of our knowledge, this is the only currently
known method that can be used for ability discovery that is
also guaranteed to recover a C1P ranking if it exists.

Our goal. Our goal is to develop a fast and principled
algorithm that just like ABH (¢) returns a P-matrix in the
special case of pre-P matrix inputs, and (i¢¢) can solve the
problem in the more general case when the response matrix
is not pre-P. As we show, the performance of ABH quickly
drops in the non-ideal setting (the general IRT setting in
Section II-D) which makes it unusable for ability discovery.
We show that our method is more robust and generalizes better,
thus being the first method with a useful accuracy for ability
discovery that is also guaranteed to solve the ideal case.

D. Relation to Item Response Theory (IRT)

Brief introduction of IRT models. A large body of work
from psychological and educational researchers called Item
Response Theory (IRT) [36], [57] studies the mathematical
functions relating the probability of an examinee’s response on
a test item to an underlying ability. All major educational tests,
such as the Scholastic Aptitude Test (SAT) [36] and Graduate
Record Examination (GRE) [28], are based on IRT. IRT
forms a mathematically principled, experimentally validated,
and widely used theory on how users answer items. Figure 2
summarizes the connections between various IRT models, and
our online appendix [9] contains the full details on IRT.

Dichotomous IRT models can be seen as variations of the
standard logistic or sigmoid function o : R — [0, 1] defined
by 0(2) = 7%= = 79+= which is widely used in machine
learning models and a smooth relaxation of the Heaviside
step function H(z) = I(z > 0) [40]. These models describe
the probability P;(#) for a student with ability 6 to answer
a question ¢ correctly. We discuss here only the 3PL model
(other binary models follow based on Figure 2). Parameter 6
is the latent user ability, and a, b, ¢ are latent item factors
characterizing the questions and their options, representing
discrimination, difficulty and random guessing, respectively:

1—Ci

3PL
P; (9) 1+ eai(6-by)

=ci+ (1—c)o(ai(0— b)) =ci +

Multinomial IRT models measure the probability P;;, (6) for
a student with ability 6 to choose an option h for a question .
Thus different from binary models whose parameters belong
to questions, multinomial IRT models have parameters for
each option. For example, the Graded Response Model (GRM)

Binary (k=2) Multinomial (k>2)
GLAD 1pPL . GRM
k=2 | [for aBok = p . aORM
2PL Bock
c=0 byeren
k=2 & c=1/k
3L :Samejima

Fig. 2: Correspondences between the discussed IRT models. Orange
numbers show number of free parameters per question. Arrows mean
“specializes into.” White arrows require special assumptions for the
specialization: Bock to GRM holds only approximately after fixing
ay** =h . a°"™ Samejima to 3PL for k=2 when c¢=1/k. It turns
out that 2PL is isomorphic to standard logistic regression, and Bock
is identical to multinomial logistic regression.

model [50] assumes one discrimination a; parameter for each
question ¢, and one difficulty parameter b;;, per option:

P (0) = PN (0) — PRI (0)

. 1
B (0) = o (it = b)) = T =a=mn

— 00 =bjp < b1 < ... <bi,k—1 < bj, = 0

The Bock model [5] further assigns a discrimination parameter
a;p, for each option h, and the Samejima model [49] takes into
account random guessing by adding a dummy option.

Option qualities. Notice that the option discrimination
parameters in IRT determine the order of options in terms of
quality (or correctness). Intuitively, the higher a; for a question
1 is, the more “discriminating” it is (the probability of cho-
sen the correct answers more quickly increases with student
ability). The probability of answering a question correctly is
then a function of the user ability and all the question and
option parameters (discrimination scores and difficulties). This
provides a flexible way to model the option quality.

Another way to model the option qualities is to define the
option quality as a function of the user abilities of users who
choose this option (e.g., HITS sums up the user abilities), as
we discuss in Section III-A.

Connection between IRT and C1P. We introduced the
definition of consistent responses in Section II-B, When a
response matrix is consistent, it is a pre-P-matrix and can be
permuted to become a P-matrix which has the consecutive ones
property (C1P). If the response matrix is a pre-P-matrix, the
corresponding response function of the probability for a user
to choose a specific option h € {0, ..., k—1} can be expressed
as the difference between two Heaviside step functions:

Pin(0) = H(O — bip,) — H(0 — bj pt1)
for appropriately chosen b, such that:
—00=bjg < bj1 <..< bi_’kfl < by, = o0

Notice that this response function is exactly the GRM model
in the limit of @ — oo: Whenever the user ability € is between
bir, and b; p41, then this student chooses option h.



To summarize, IRT models can be seen as a relaxed version
of the response function in the ideal case when the response
matrix can be permuted to obey CIP. As widely accepted
models for MCQs, they strongly support our principle of
satisfying the more strict C1P in the ideal case and can be
used to generate data in non-ideal cases (see Section IV).

III. A FAMILY OF HITS ALGORITHMS

We review the HITS algorithm and variants that have
been proposed for truth discovery. We then describe a natural
averaging version of HITS that we call “AVGHITS.” Our key
observation is that the eigenvector corresponding to the 2nd
largest eigenvalue of its update matrix reconstructs the user (or
row) ordering with C1P if one exists and is unique.* We then
describe a variant that we call “HITSNDIFFS” (or HND in
short) on a tripartite graph to find this eigenvector efficiently:
it keeps an additional vector of differences between adjacent
scores and updates it in the loop of the AVGHITS algorithm
to compute the ordering of users that we require. We prove
that HND returns the correct ordering when the user responses
are consistent and compare its time complexity and expected
accuracy for non-consistent responses with other methods.

Required background from spectral graph theory. We
say that v is an eigenvector of (n X n) quadratic matrix A
with eigenvalue A if v # 0 and Av = Av. If A is symmetric,
then all eigenvalues are real [31]. We use indices to refer to
eigenvalues sorted algebraically: \;y > Ay > ... A1 > Ap.
We write v; to refer to the eigenvector corresponding to
eigenvalue \; and will be cavalier in referring to it as “the -
th largest eigenvector” when we really mean “the eigenvector
corresponding to the i-th largest eigenvalue.”

If the matrix is non-negative and irreducible, then according
to the Perron-Frobenius theorem [20], [39], [45] the first
eigenvector is also the largest by amplitude (A; = max; |A;|)
and the corresponding eigenvector v is positive.

A. “HITS” and its variants for truth discovery

Hubs and Authorities (HITS) [29]° is a classic spectral
approach that several truth discovery approaches have built
upon. The original aim of the algorithm is to rate web pages
by two scores: authority and hub score. These scores are
recursively defined such that the hub scores are proportional
to the sum of the authority scores of the nodes they point to,
and the authority scores are proportional to the sum of the
scores of the hubs pointing to them, thus reflecting a mutually
consistent set of scores [41].

In the context of truth discovery, the authority and hub
scores can be interpreted as the user abilities and option
correctness scores, respectively. Let C represent the m X n
binary response matrix where C; ; = 1 iff user j chooses item
7, and s be the m-dimensional user score vector, and w be

4We consider an ordering and its reverse ordering to be the same.
SHITS originally stood for “Hyperlink-Induced Topic Search.”

the n-dimensional item weight vector. In matrix notation, the
scores are recursively defined as:

s « BCw w4+ aC's

where « and [ are normalization constants and C' is the
transpose of C. The algorithm starts from an initial assign-
ment, such as s = e and iteratively updates then normalizes
w and s. The user scores s will converge to the 1st eigenvector
of the matrix CC .

TruthFinder [64] modifies HITS by first taking the average
instead of the sum of the chosen item scores as user scores and
interpreting them as probabilities of the users being correct on
any question. It then defines an item’s score as the probability
of it being true given the independent probabilities of all the
users choosing the item. When appropriately initialized, the
approach does not require normalization. In the following
matrix formulation, let C™" represent the row-normalized
response matrix C:

s+ C™w w1 —exp (C' log(1 —s))

Investment [44] calculates the ability of users as the sum of
the scores of their chosen options, weighted by the user ability
they invested in the previous iteration. PooledInvestment [44]
extends Investment by using a different formula for the item
scores. Both variants use non-linear scaling of the item scores
with different user-specified hyperparameters.

Our method. We build upon this key idea of updating
scores in a bipartite graph of users and items by iteratively
summing scores from one side to update the other. However, in
contrast to other methods, we focus on the 2nd largest instead
of the dominant eigenvector of a new variant and show that
this approach is guaranteed to recover the correct ranking in
case of consistent responses. As we will show in Section IV,
no other existing truth discovery method can do that.

B. “AVGHITS”

In our setup, there are nk different choices (k choices for
each of n items). Consider a bipartite graph G = (LU R, E)
that corresponds to the (m x nk) response matrix C: Partition
L contains a vertex for each of m users: L = {uy, ..., Un }.
Partition R is a collection of n vertex sets R = {I1,..., I, },
one for each item. Each set I; contains k; < k vertices I; =
{¢i1, ..., cik, } where c¢;;, represents option h of item i. We add
an edge to between a user u; and an option c;, E if user j
chooses option h for item :.

To make our derivations easier to follow, we will con-
veniently assume that each item ¢ has the same number
k; = k of options. Notice however, that this is not required
for our approach. We further assume C to be connected.
This requirement applies to all spectral truth ranking methods
including HITS as otherwise the relative ranking of users
(or items) from different components can’t be established.®
Finally, define s as a (m x 1) user score vector and w as a

6PageRank achieves the connectivity with the teleport operation.



(kn x 1) option weight vector denoting weights for each of
the kn options according to their order in C.

We call AVGHITS the modification of the HITS update
rule that uses averages instead of sums to iteratively update
the user scores and option weights in both directions: the user
score s; is updated to be the average of the weights of all the
options that user j picked, and an option weight ¢;;, is updated
to be the average of the scores of all users who picked it. In
the following matrix formulation, let C™" represent the row-
normalized and C°' the column-normalized response matrix
C. At each iteration (until convergence), we update the user
score vector s and the option weight vector w as follows:

s+ C™"w w  (CN)Ts

By combining the above two update equations, we can
update user scores between iterations directly by replacing the
two normalized response matrices with one update matrix U:

S CrOW(Ccol)TS (l)
W—/
U

These iterations are not yet very helpful. Indeed, we observe
that the largest eigenvector of U is the all-ones vector e, and
this is the vector of user scores that AVGHITS converges to.
It turns out that it is the eigenvector corresponding to the 2nd
largest eigenvalue of U that we seek.

C. Our algorithm “HITSNDIFFS” (HND)

In the following, we show a simple algorithm to find the 2nd
largest eigenvector ordering of U and prove that it can be used
to find the unique consecutive ones ordering of the response
matrix C. By “the eigenvector ordering”, we mean the ranking
of entries in this eigenvector in terms of their values. For
example, vi = {0.36,0.8,0.48} and vo = {0.48,0.64,0.6}
have the identical ordering {3,1,2} or its reverse {1,3,2}.
Our algorithm does not return the 2nd largest eigenvector of
U but instead returns a vector with the identical ordering.

The 2nd largest eigenvector of a matrix can be found using
a variant of the deflation method [38], [40], which we will
discuss in detail in Section III-F. Here we present a novel,
conceptually simple, and faster algorithm that we term “HITS
and DIFFS” (HITSNDIFFS or HND) that extends AVGHITS
from a bipartite to a tripartite graph and whose iterative
updates converge to a user ranking that is guaranteed to be
CI1P in the ideal case, and that performs well also in more
general settings. This approach leverages particular properties
of our problem that don’t apply to the 2nd largest eigenvector
orderings of any matrix from more general settings.

First, we propose a new intermediate step that calculates
differences between user scores in the iterative updates of
AVGHITS. Rather than updating the user scores iteratively,
HITSNDIFFs updates the differences between adjacent user
scores by using a suitably modified update matrix, and results
in the scores converging to the ordering according to the
second largest eigenvector of U. Furthermore, this modifica-
tion only adds a linear overhead of computing the user score
difference vectors and normalizing it in every iteration. As

m-1=3 user diffs

m=4 users

n-k=9 item choices

110 0 08'"8

0-11=0

S=l: -« w0 T= 10
0~ 0 -11 Foie 0

11 1

Fig. 3: HITSNDIFFS uses a 3-partite graph of option weights, user
scores, and user diffs. Contrast this graph with Figure 1. The update
equations (see Algorithm 1) use two re-shaping matrices S and T.

we will show in Theorem 2, when the response matrix obeys
C1P, then HND reconstructs the correct ordering of the rows.

As shown in Figure 3, we define a new vector s4 of
differences in user scores with entries s?iff = Sj41 — S,
j € [m—1]. This is equal to s{ = Ss where S € ROm=1)xm jg
shown in Figure 3. In the reverse direction, there are infinitely
many vectors s that can be generated from a given s%iff, all
shifted by different constants. Since we only want a final
ordering of users, we can WLOG set the first element of the
vector s to be 0. The transformation then is s = Ts% where
T € R™*(m=1) i5 the lower unit triangular matrix’.

We can now get a user difference score update rule:

Sdiff « Ss = SCrOW(Ccol)TS _ SCrOW(CCOI)TTSdiff (2)
—_——
Udiff

In other words, U™ = SUT is a “difference update” matrix
that is used to update s%f from one iteration to the next.
With these update equations, s%f converges to the largest
eigenvector of Ut Our algorithm HND that implements this
is described in Algorithm 1.

We now prove the connection between the 1st eigenvector
of UYT and the 2nd largest eigenvector of U.

Lemma 1 (Eigenvector correspondence). X is the 2nd largest
eigenvector of U iff y = Sx is the largest eigenvector of U,

Proof sketch. Due to the limit of space, we only provide
the high-level ideas of our proofs in the paper. First, we can
find out that each row of U has sum 1. Using this, we can
prove that the largest eigenvector of U is in the direction of
the all ones vector e = 1,,, if the largest eigenvalue of U has
multiplicity 1 (i.e. the graph is a single connected component).
Let x be an eigenvector of U that is not in the direction of
the all ones vector, i.e. x # ae. Note that TS = (I,,, — ee] )

"It is this fixing that intuitively keeps the ordering, but changes the actual
amplitudes.



Algorithm 1: HITSNDIFFs (HND-power): A fast implemen-
tation of equation (2) to calculate the 2nd eigenvector ordering
of U= CrOW(Ccol)T

Input: Response matrix C, randomly initialized user scores s
Output: User scores s
diff diff

s™ < sp // initialize user score differences
repeat

s « Tsdif /l update user scores

w < (C®)Ts  // update option weights

s+ C™w /I update user scores

si  Ss /I update user score differences

Normalize s%f to be a unit vector
until convergence or iteration limit

s + Tsdil

and each row of SU sums to 0. Then,

Ux = \x
SUx = ASx
SU(I,, — ee] )x = ASx
SUTSx = A\Sx
Uity — \y, where y =Sx 3)

Therefore, U%" has exactly the same eigenvalues as U
except the largest eigenvalue 1, and the eigenvectors of ydiff
are the differences between the entries of the corresponding
eigenvector of U. Thus we prove the lemma. [

Theorem 1 (2nd eigenvector of AVGHITS recovers C1P). If
C is a pre-P-matrix with a unique consecutive ones ordering
of its rows and each row has the same row sum, then this
ordering of the rows of C is given by the ranking of the rows
sorted by values in the 2nd largest eigenvector of U.

Proof sketch. We can first prove that if C is a pre-P-matrix
with a unique consecutive ones ordering of its rows and each
row has the same row sum, U is an R-matrix (defined in
[4]) where in each row and column, the entries closer to the
diagonal are larger than or equal to the further entries. Using
this, we can prove every entry in [SRTS non-negative by
computing each entry in pditt step by step according to its
definition, which means Ut is a non-negative matrix. We
can now apply the Perron-Frobenius Theorem [20], [45]: there
exists a non-negative eigenvector of it corresponding to
the largest eigenvalue of U%T, We know U™ has exactly the
same eigenvalues as U, except the largest eigenvalue 1, and the
eigenvectors of UYM are the differences between the elements
of the corresponding eigenvector of U. Since the differences
between the elements of the eigenvector corresponding to the
2nd largest eigenvalue of U (largest eigenvalue of U%M) is
non-negative, that eigenvector of U is monotonic. Therefore,
sorting the rows according to the second largest eigenvector
ordering of the corresponding update matrix U gives a P-
matrix, proving the theorem. []

Theorem 2. If C is a pre-P-matrix with a unique CIP
ordering of its rows and each row has the same row sum, then

HND reconstructs the consistent ordering of the users taking
linear time in the number of nonzeros in U per iteration.

Proof sketch. From Lemma 1, we know by converting the
converged largest eigenvector of U%T back into a user score,
we regain the ordering of the rows according to values in the
second largest eigenvector of U. This, along with Theorem 1,
proves this theorem that HND detailed in Algorithm 1 recon-
structs the ideal consistent ordering. [

D. Decile entropy-based symmetry breaking

Notice that reversing the order of a P-matrix still leaves
it as a P-matrix. Thus all methods for solving C1P suffer
from a natural symmetry breaking problem: they have to decide
between the order returned by an algorithm or its exact inverse.

Our solution to this symmetry-breaking problem is moti-
vated by the following observation: users with higher ability
tend to converge on the correct option as a majority answer,
while users with lower ability at the other end of the ordering
tend to answer randomly. This idea is similar to the main
argument in [33] that experts tend to answer similar correct
answers. Thus the lower end of the user ordering has a higher
entropy in the choices picked than the higher quality end.
Notice that this idea is also implicit in IRT models with ran-
dom guessing where users with low ability choose uniformly
random among the options (hence have high entropy), whereas
users of high ability pick the single correct choice.

We operationalize this idea in a new heuristic that is very
effective in practice: Given a ranking of the users, we compute,
for the top and the bottom user decile, the average entropy of
the chosen item options across all items. We pick the side
with lower entropy as the users with higher quality. We use
this “decile entropy method” for both HND and ABH in our
experiments.

E. Why HND works better than ABH

HND and ABH rely on strikingly similar intuitions about
spectral properties of matrices: HND ranks users by the 2nd
largest eigenvector of U (whose difference is the largest
eigenvector of UM = SC™(C)TT), whereas it can be
shown that ABH ranks users by the 2nd smallest eigenvector
of the Laplacian matrix L of CC" (whose difference is the
smallest eigenvector of M = SLT). In an ideal scenario with
consistent responses (thus in an IRT scenario with very large
discriminations), both methods are guaranteed to return the
correct C1P ordering.®

We can also expect the accuracy to be identical in the other
extreme scenario where all questions have O discrimination.
But how can we expect their accuracy to compare in the more
general scenario?

We interpret the general IRT scenario as random pertur-
bations [54] from the ideal CI1P case. Now notice that the
smallest eigenvector of M is identical to the largest eigenvec-
tor of SI,,,_1 — M where [ is larger than all the entries and

8Recall that they are guaranteed to return the same ordering, but not the
same eigenvector.



all the eigenvalues of M.? Thus the comparison of HND and
ABH corresponds to the largest eigenvector of it against
BI — M. Since both matrices have all non-negative entries
in the ideal scenario, we know from the Perron-Frobenius
theorem [20], [45] that all values in their largest eigenvector
are non-negative.

The user score of the kth user equals to the cumulative
sum of the first £ — 1 entries in the eigenvector. In the ideal
case when C is a C1P matrix, every entry of s%f is non-
negative so s give us a perfect ranking of the students. In the
non-ideal scenario when C' is not a C1P matrix and the users
are permuted by their abilities, the sign of the entries in sdiff
change. When the eigenvector is even, a simple sign change
in one of the entries does not influence the entire ranking of
s but when the eigenvector has a large variance, a simple sign
change in one large entry can break the entire ranking. For
example, if the kth entry of s%ff is quite large but the sign is
negative, the error of the ranking of the (k + 1)th students can
be very large.

Based on our observation above, we expect HND to work
better than ABH as the variance of largest eigenvector of 51—
M should be much larger compared to U%T. The result is
verified with dedicated experiments in Section I'V-D: Figure 6a
shows our observations on the variances of the s4 for SI—M
and U4, Figure 6b and Figure 6¢ verify that ABH is less
accurate and less stable than HND.

FE. Complexity Comparison

We analyze the asymptotic time complexity of the var-
ious methods. We compare HND against (i) existing C1P
reconstruction algorithms BL and ABH, and (i7) the deflation
method [38], [40] as an alternative method to compute the 2nd
largest eigenvector for AVGHITS.

The time complexity depends on the number of users m, the
number of questions n, and the number of iterations ¢ which
may be different for different methods. We assume ¢t < n
and ¢ < m and thus only focus on m and n. Notice that
although the response matrix C is a (m x kn)-matrix, it has
only O(mn) non-zero entries since every user can pick only
one label per question.

HITSNDIFFS. A naive way to calculate the ranking is
to first compute U and then use the power method on it.
However, computing U requires a matrix-matrix multipli-
cations before the iterations with time complexity O(m?n).
Since U% is a (m —1) x (m — 1) matrix, the time complexity
to run the power method on U is O(m?) per iteration. This
gives a total time complexity for the naive implementation
as O(m?n) + O(m?t) = O(m?n). By instead running the
mutual updates of w, s and s¥f as described in Algorithm 1,
we can replace matrix-matrix multiplications with several

matrix-vector multiplications and thereby get a more effi-
cient implementation of HITSNDIFFS in | O(mnt) |. In other

°To see that, assume Av = Av. Then (A + BI)v = Av + fIv =
Av + Bv = (A + B)v. Thus if v is an eigenvector of A with eigenvalue

A, then v is also an eigenvector of the spectrally shifted matrix A + SI, but
with eigenvalue \ 4 S.

words, the speed-up results from applying the associativity
law and replacing the calculation s « (SC™"(C™)TT)sdff
with s < S(C™¥((C®T(Ts%M))). One detail is that we
need however to implement Line 3 differently. Materializing
the matrix T would take O(m?). Instead, we calculate the
entries for s from s via cumulative summation (e.g. via
numpy . cumsum in Python).

The deflation method. Theorem 1 showed that our problem
can be formulated as finding the 2nd largest eigenvector v
of U. The problem of finding the eigenvector corresponding
to the second largest eigenvalue of a given matrix A can be
solved with the deflation method [38], [40]. The idea is to first
calculate the dominant eigenvector vi, and then eliminate the
influence of the v; from A to get a new matrix B whose 1st
eigenvector is the 2nd eigenvector of A. Then vy of A can
be obtained by using the power method on B. We next argue
(and later show experimentally in Section IV-C) that using
the deflation method is slightly less efficient than HND (in
addition to being not as simple to formulate as HND-power).

The most widely known deflation method [38], [40] only
works for symmetric matrices and does not apply to the
asymmetric U. [60] presents several more variants of the
deflation method including some that work for non-symmetric
matrices. Most of those methods either require matrix-matrix
multiplication or both the left dominant eigenvector and the
right dominant eigenvector. The only exception is Wilkinson’s
vector annihilation [62] which only needs the right dominant
eigenvector (which we know is a unit vector in the direction
of the all ones vector in our case). However, [60] claimed that
this method is difficult to apply in practice because of the need
to conduct annihilation between the power iterations and we
found no open-source implementation.

For our experiments in Section IV we implement Hotelling’s
matrix deflation [61] which uses both the left and right largest
eigenvectors and thus requires one more round of the power
iteration.' The experimental result in Section IV-C verifies
that HND is not just conceptually simpler but also slightly
more efficient than the deflation method.

ABH [4]. To reconstruct the C1P ordering, ABH requires
the computation of the Fiedler vector [17], which is the
eigenvector corresponding to the 2nd smallest eigenvalue of
the related Laplacian matrix L.

The original ABH paper [4] does not propose an explicit
solution and instead refers to the Lanczos algorithm [30], [43],
whose time complexity is O(dmt) with d being the average
number of non-zero entries in a row of a given (m X m) matrix
A. When the Laplacian matrix is dense as in our scenarios
the time complexity of the Lanczos algorithm is O(m?t). It
is efficient for eigenvector computations on large symmetric
matrices [10], and the state-of-the-art Fiedler vector solver [25]
uses Lanczos. However, implementation by libraries such as
Scipy [58] and Tenpy [23], require the full matrix as input,
which would require us to compute the Laplacian matrix first.

10We first calculate the dominant left eigenvector via power iteration, then
deflate the matrix, and then calculate the dominant right eigenvector on the
deflated matrix.



This calculation involves matrix-matrix multiplications and, as
we show in Section IV-C, results in

We provide another solution for ABH which is not in the
original paper [4]. Similar to how we implement HND as
Algorithm 1, we can also implement ABH by using the power
method on the matrix 51,,_1 —M to get its largest eigenvector
without having matrix-matrix multiplications. As we discussed
in Section III-E, this largest eigenvector of 51,1 — M is
identical to the smallest eigenvector of M which can be used
to compute the order of the 2nd smallest eigenvector of L in
the same way as Algorithm 1. The total time complexity for
this algorithm is . When m and n are close
or m < n, the time complexity becomes O(mnt) which is the
same as HND. However, when m > n, the time complexity
becomes O(m?t), which is larger than O(mnt) of HND.

BL [6]. The original paper by Booth and Leuker (BL) [6]
for reconstructing the C1P property can work directly on the
initial response matrix and runs in O(mk + n + f), where
f is the non-zero entries in the matrix. In our setup where
f = O(mn), the time complexity is O(mn). Therefore, BL
is the fastest method when it works. Since it cannot be used
for solving ability discovery in general, we are not using it in
our experiments.

HITS [29], Truthfinder [64], Investment [44], PooledIn-
vestment [44]. All these methods are iteration-based variants
of HITS that take at least O(mnt) and differ in how they
iterate between the user and the item scores. In practice,
only HITS can be defined as an eigenvector problem with
a closed-form solution and efficient linear algebra implemen-
tation. Truthfinder converges in practice, while Investment and
PooledInvestment can not converge and return different results
depending on initialization. Our approach in contrast comes
with the same computational properties as HITS: guarantee
of convergence, unique solution, an intuitive formulation as a
spectral problem, and an efficient matrix implementation.

IV. EXPERIMENTS

Our experiments compare the accuracy of ability discovery
and the scalability of the various methods. The main take-
aways from the experiments are: 1) HND robustly returns
rankings for users with accuracy on average better than or
equal to other truth discovery methods; 2) HND is competitive
with two “cheating competitors” (that are provided the ground
truth information about the correct options for each question
that is usually not available); 3) HND has better scalability as
a C1P reconstruction algorithm than ABH.

A. Experimental setup

Environment. All scalability experiments are run on Intel
Xeon E5-2680 CPUs with an exclusive environment and 128G
allocated memory. We implemented HND in Python 3.8.1.

Benchmarks. [52] provides an extensive benchmark for the
truth discovery problem, and [69] provides a broad survey of
existing truth discovery methods. Two points stand out: 1)
All open-source datasets used in the two papers lack ground
truth for user abilities. 2) All 20 datasets fall under the setting

with homogeneous items. As we discussed in Section I, it is
easy to understand the lack of ground truth for the ability
discovery problem because the user abilities are abstract and
not able to be obtained from external knowledge. To make up
for it, we first create synthetic data based on the polytomous
models from ltem Response Theory (IRT) (recall Section II-D).
Moreover, we use a real-world MCQ dataset with approximate
(but not accurate enough) ground truth as a supplementary
evidence to verify the usefulness of HND in Section I'V-E.

Polytomous synthetic data generator. We use the three
polytomous IRT models from Section II-D (GRM [50],
Bock [5] and Samejima [49]) to generate synthetic data sets
with known ground truth. Samejima model takes random
guessing into account so it models the educational test scenario
where students try to maximize their scores. Bock and GRM
models with no random guessing models the crowdsourcing
scenario where workers usually do not guess.

By default, we set user ability 6 to be within [0, 1], item dif-
ficulty b to be within [—0.5,0.5], and the item discrimination
a to be within [0, 10], all uniformly random. Besides varying
the number of users, items and options, Section IV-B also
has experiments with shifted b’s (chosen to achieve a certain
percentage of users giving correct answers).!!

Methods and their implementations. For a thorough
evaluation, we created three alternative implementations of
HND and two alternative implementations of ABH. HND-
power follows Algorithm 1 which only involves matrix-vector
multiplications. ABH-power is our novel kimplementation of
ABH that avoids matrix-matrix multiplications by using the
power method on the matrix 8I,,_; — M. ABH-direct is
the implementation of ABH using the Lanczos algorithm as
suggested by [4]. Section III-F discussed the drawback of
requiring matrix-matrix multiplications. We use an efficient
sparse Linear Algebra Python library called Scipy [58]. HND-
direct implements HND similarly by directly computing the
2nd largest eigenvector of U by using the Arnoldi algorithm
[3], which can be considered the general version of the
Lanczos algorithm on asymmetric matrices, also using Scipy.
HND-deflation implements HND with the deflation method
discussed also in Section III-F. For HND-power, ABH-power
and HND-deflation, the criterion for convergence is a maximal
L2-norm of 10~° over the change. For our experiments (other
than Section IV-C) we used “HND-power” for HND and
“ABH-direct” for ABH since they turned out to be the fastest
implementations.

We also implemented HITS [29], TruthFinder [64], In-
vestment and PooledInvestment [44]. Since none of those
iteration-based approaches (except HITS) allows an efficient
matrix formulation, our implementation in Python uses loops
and is not efficient. We thus do not report scalability exper-
iments on those methods as native implementation in C++
would bring those close to HND as discussed in Section III-F.

For experiments with GRM data, we use the data generator from the
GIRTH package which requires at least k = 3 options. We implemented Bock
and Samejima generators ourselves and thus options can start from k = 2.



For Investment and PooledInvestment (which do not converge)
we use 10 iterations instead of tuning the number of iterations.

Two cheating baselines. To show the effectiveness of HND,
we also compare HND with two “cheating competitors” that
are given additional ground truth information about questions
that is usually not available: True-answer has information
about which choices are correct for each question (which is
usually not known in our scenario) and then ranks users by
the number of correctly answered questions. GRM-estimator
uses a Python package called GIRTH [51] that estimates the
parameters of a GRM model including user abilities. However,
it requires knowing the order of options for each question
by correctness. Our comparison with this approach is notable
because it is the theoretically “best” model to fit data generated
by the same synthetic GRM process.

B. Accuracy on synthetic data

Accuracy. To determine the accuracy of a method, we
calculate Spearman’s rank correlation coefficient [53] between
the returned user ranking and the ground truth ranking by
their actual abilities. Spearman’s correlation is defined as
the Pearson correlation between the rankings of two scoring
functions and ranges between —1 and 1. It is similar to
Kendall’s correlation, yet strictly preferred if there are ties
in the data [46]. There can be negative accuracy at times
(not shown in Figure 4), which means the returned ranking
is negatively correlated or random whose coefficient is near 0.

Setup. We conduct experiments to determine the accuracy
as function of the 1) number of items n, 2) number of users
m, 3) number of options k, 4) option difficulties b;, and 5)
probability of questions to be answered p. In the first experi-
ment, we use data generated according to the three polytomous
models (GRM, Bock, Samejima) from Section II-D to also
show the robust performance of HND for all three models. In
other experiments, we only use data generated according to
the Samejima model since it is the most general one to avoid
redundancy. To verify the ability of algorithms to recover a
C1P ranking, we also generate data that 6) follows the consis-
tent response property (which as discussed in Section II-C is
the case for IRT models when the discrimination a;;, — 00).
Every question has the same number of options, and every user
answers every question. By default, we set the users m = 100,
items n = 100, and options k = 3.

1. Varying number of questions n (Figures 4a to 4c'?).
HND has better than or equal accuracy as the other methods
even including the two cheating competitors over data gener-
ated by all three models. Notice that the GRM-estimator works
poorly for Samejima as it does not model random guessing.

2. Varying number of users m (Figure 4d). HND works
also better than or equal to other approaches (except for the
data point with low m where the cheating competitors win).

3. Varying number of options & (Figure 4e). HND stays
top and accurate, even slightly outperforming True-answer.

4. Varying question difficulties b;;, (Figure 4f). Here,
we change the difficulty range from the default [—0.5,0.5]

12The GRM estimator does not work when the question number is large.
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to 7 different ranges, [—1,0], [—0.75,0.25], [-0.5,0.5],
[—0.25,0.75], [0, 1], [0.25, 1.25], [0.5, 1.5], while user abilities
6; remain at [0, 1]. Thus even the least able user has a high
probability to answer a difficult question in the easiest setting,
while even the best user can be incorrect for some easy
questions in the hardest setting. The x-axis here is the average
accuracy on the questions across all the users. In all scenarios,
we see HND outperforms other competitors.

5. Varying probability p of answering a question (Fig-
ure 4g). To show that HND works for more general scenarios
where users answer different number of questions, we vary
the probability of questions to be answered. For each pair of
question and user, there is the probability of p for the user
to answer the question. We see that HND performs well even
when the dataset is not complete.

6. C1P (Figure 4h)."* In addition to the three multinomial
IRT models, we also generate response matrices that are
consistent and can be reconstructed to be a P-matrix. These
responses correspond to a random GRM instance with very
strong discrimination a. We use these matrices to verify the
effectiveness of HND in reconstructing a C1P permutation. To
avoid ties in the rankings and provide a unique C1P ordering,
we set both the user ability § and the difficulty parameter b
to be within [0, 1], randomly chosen. We see that HND and
ABH are indeed the only two methods that can reconstruct
the C1P permutation if there exists one.

Summary. HITSNDIFFS is a robust method that outper-
forms the other approaches in most setups, especially those
with high discrimination. We see this as vindication for
designing an approach based on the principle that consistent
answers need to be solved correctly. HND is also competitive
even against the two cheating approaches which have the best
item answer given (i.e. they have access to an oracle that can
solve the entire problem of truth discovery). Moreover, we
verified that HND and ABH are indeed the only ones that
can reconstruct a C1P permutation if it exists.

C. Scalability experiments

Figures 5a and 5b show the scalability in number of users
(m) and questions (n) of our various implementations of ABH
and HND, as well as the GRM-estimator. Each shown data
point is the median over 5 runs, and we set a timeout of 1,000
seconds. HND vs. ABH. Figure 5a shows that ABH-direct
and HND-direct scale with O(m?k) in the number of users
as predicted in Section III-F. The theoretic time complexity
of ABH-power is O(m?t) when m is much larger than n,
and thus it also takes quadratic time. In contrast, HND-power
can scale linearly and is about 20% faster than HND-deflation
on average for m > 1000 users as it needs only one round of
the power method. Figure 5b shows that although ABH-direct
is slightly faster for fixed few users, all implementations are
efficient even for a large number of questions.

GRM-estimator. As a representative of max likelihood pa-
rameter estimation, the GRM-estimator is expected to perform

31In the experiments, PooledInv returned all negative coefficients but we
consider its ranking to be the reverse one.
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Fig. 5: Section IV-C: Scalability experiments with n = 100 items
and increasing numbers of users m in (a), or m 100 users
and increasing numbers of items n in (b). The experiments confirm
that our method (HnD) scales linearly in the number of items and
users, whereas ABH (even trying various alternative methods) has an
unavoidable quadratic scalability in the number of users.

best on GRM data. However, Figure 5 shows that it is by orders
of magnitude slower than HND.

Summary. HND scales asymptotically and practically better
than the other existing C1P reconstruction algorithm ABH in
the number of users. Moreover, our intuitive Algorithm 1 is
slightly faster than an adaptation of the deflation method.

D. Stability experiments for ABH and HND

We next experimentally verify our prediction from Sec-
tion III-E that HND generalizes better from the ideal case
than ABH. In this setup, we fix m 100 users, n = 100
items, k£ = 3 options, with user abilities and item difficulties
equally spaced between [0, 1] and [—0.5, 0.5] respectively. For
one item, all the option difficulties are the same. All items have
identical discrimination a and all the options in one question
have equally spaced a (as in the GRM model). We then
vary the discriminations and compare the (i) variance of the
respective eigenvectors used for ranking; (¢¢) the normalized
average difference in rank between each user’s ranking;'* and

4Here difference means the average difference of each user’s rankings from
different runs, scaled down to [0, 1] by the user number.
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better stability and accuracy of the HND rankings. Figure 6b
confirms that the ranking of a user is more stable for HND.
Figure 6¢ shows the resulting increase in the accuracy of
HND over ABH. This confirms our original goal to develop
a spectral method that can achieve the same CIP ranking as
ABH, yet generalizing better in the non-ideal case.

E. Accuracy experiments on real-world data

As mentioned in Section IV-A, we do not know any existing
benchmark with a known true ranking of users by their
abilities. In order to still verify the performance of HND on
real-world datasets we use the ranking of the “True-answer”
baseline as the ground truth. Notice that although this baseline
performs well in our synthetic experiments, it is far from the
perfect gold standard (sometimes even outperformed by HND)
so the experimental result in this subsection should be seen
only as a supplementary evidence. The six used real world
MCQ datasets are from [33].

Figure 7 shows the average experimental result of six
datasets where PooledInvestment and HITS perform slightly
better than HND. However, we need to emphasize several
points: (1) All datasets are very small in terms of question
numbers (from 20 to 36) but have double user numbers on
average, which indicates their limited discrimination. (2) There
is no consistent winner on all six datasets (see detailed result
in our online appendix [9]), an observation also made by [69]
for the related truth discovery problem. (3) All other models
except ABH with poor performance tend to have more similar
accuracy than HND while HND tops them by far on 2 of the 6
datasets, which shows the novelty of HND and its usefulness
on data of different distributions.
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Fig. 7: Section IV-E: Correlation of user ranking on real-world
datasets with the “True-answer” baseline that serves us as approx-
imate gold standard user ranking. Notice that the true ranking of
users by ability is not known.

V. ADDITIONAL RELATED WORK

In this section, we discuss additional approaches for the
truth discovery problem. This is in addition to existing C1P
reconstruction algorithms discussed in Section II-C and HITS-
based truth discovery approaches discussed in Section III-A.

Spectral approaches. Dalvi et al. [11] proposed two meth-
ods that output the user abilities and item labels with the
help of eigenvector computation. Ghosh et al. [22] proposed
a method that only outputs the item labels, which involves
calculating the first eigenvector of a symmetric matrix. Both
approaches work only for binary problems and are not obvious
to generalize for k£ > 2 options.

Other truth discovery approaches. [33] proposes the
concept of experts and utilizes the observation that experts
are more likely to reach consensus on a set of single questions
(called hyper-questions in the paper) to conduct majority vote
on hyper-questions instead of single questions but cannot
quantify user abilities nor rank them. [37] relies on embed-
dings that cannot be easily converted into a ranking on users.
[34] uses confidence and focus on long-tail data. [12], [26] are
optimization-based methods that only consider homogeneous
questions (recall Section II-A).

Other truth discovery problems. Many approaches have
been proposed for truth discovery. Most have different setups
and are not applicable to our problem. [55], [63] change the
setup of the problem by assigning different tasks to two groups

12

of workers, where the first group answers the questions and the
second group evaluates the answers. [15], [47], [67], [70] work
on the problem of how to assign questions to only a subset of
the sources. [13], [14] pay attention to the sources of informa-
tion, yet focus on the copying relationships between sources.
In our setup, no information is copied between users. [48]
discusses the problem of how much training data is needed
to gain high-quality models. [42] studies truth discovery in
quantitative applications, such as percentage annotation and
object counting.

Crowdsourcing. The ability discovery problem is closely
connected to the truth discovery problem which occur in a
wide range of data management problems related to crowd-
sourcing [32], [69]. Various crowdsourcing systems have been
proposed [16], [68], and the crowdsourcing approach has been
refined for various tasks, such as query answering [19], entity
resolution [7], annotating Twitter data [18], top-k algorithms
[66] and various other labeling tasks [24], [56], [59].

Expert finding. The expert finding problem [35], [65] also
aims to assess the trustworthiness of users. The difference is
that it focuses on finding experts with expertise (skills) specific
to a given question while our ability discovery problem aims
to assess an overall user ability.

VI. CONCLUSIONS

We proposed HITSNDIFFS, a novel variant of HITS,
with surprising theoretical and practical properties for ability
discovery. On the theoretical side, we showed that 1) CIP
of the response matrix models consistent solutions for the
problem; 2) our method reconstructs the correct user rankings
in the consistent case; 3) does so in linear time and 4) can
handle more general cases (in contrast to other linear discrete
algorithms). On the practical side, we showed that HND
handles the problem of ability discovery with robust accuracy
and greater scalability in terms of the number of users than
the only existing C1P reconstruction algorithm that works for
general cases.
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