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Abstract—This work considers hybrid embedded implemen-
tations of the dense extended Kalman filter (DEKF) – a novel
state estimation technique which reduces the traditional Kalman
filter’s time complexity from O(N3) to O(N) – to estimate the
state-of-charge (SOC) of 16 serially-connected lithiom-ion battery
cells. Design space exploration (DSE) is used to recommend an
optimal hybrid binding considering execution time and energy as
the primary objectives. High-level synthesis (HLS) tools are used
to inform the DSE and to aid in implementation. Furthermore,
each implementation’s performance is gauged and compared to
our MATLAB model of the DEKF and our DSE. Our results
indicate close precision and accuracy to MATLAB with RMS
near 0.2% with execution times as low as 52 µs.

I. INTRODUCTION

With the rising popularity of electric vehicles in recent
years, it is important to consider the battery cells – typi-
cally lithium-ion [1], [2] – that power them. These cells are
organized into groups and must be carefully monitored so
as to inhibit the aging process of the battery pack, as well
as to mitigate the possibility of thermal runaway caused by
excessive charging/discharging. To quantify the level of charge
left in each cell, state-of-charge (SOC) is the universally
adopted metric. However, because lithium-ion cells have a
complex internal chemistry, measuring the SOC is a challeng-
ing feat. Kalman filtering provides us with the ability to instead
estimate each cell’s SOC given a pre-conceived mathematical
model and voltage measurements. Applying the traditional
Kalman filtering algorithm to the large-scale estimation prob-
lem is computationally inefficient. Instead, a novel variant of
the extended Kalman filter – the dense extended Kalman filter
(DEKF) [3] – is explored in this work, its computational
efficiency verified by an optimal hybrid embedded system
implementation, and its estimation performance validated by
ground-truth simulation results.

Embedded implementations of Kalman filters for battery
SOC estimation is an active area of research. Hong et. al.
[4] introduce research exploring deployment of the Extended
Kalman Filter (EKF) and the unscented Kalman Filter (UKF)
on a Raspberry Pi with 1-12 cells. Their research employs
a more sophisticated model for acquiring battery data. Their
final results indicate runtimes in the order of 101 s and

a mean absolute error of just below 3%. Cui et. al. [5]
deploy the square root cubature Kalman filter on an embedded
MCU for SOC estimation. They achieve an execution time of
about 2.5 s with root mean square error reaching just below
0.7%. In Oehler et. al.’s paper [6], the authors pursue an
embedded implementation of an EKF using a more accurate
electrochemical battery model rather than an equivalent circuit
model. They achieve a runtime in the order of 101 ms with a
mean relative error of 1.5% or less. Our implementations of
the DEKF are able to achieve run times in the order of 102

µs or less with RMS near 0.2%.
For our implementations, we utilize an XC7Z020CLG400-1

Xilinx FPGA containing an ARM microprocessor. Techniques
such as nonlinear integer programming (NLIP) and probability
density functions (PDF) are utilized for design space explo-
ration (DSE) to determine an optimum partition in this hybrid
system. We use high-level synthesis (HLS) tools to inform our
DSE and to speed up implementation allowing us to efficiently
compare two full implementations of different partitions.

II. BATTERY CELL STATE ESTIMATION

A. Model of a Battery Cell
This work considers the case of N serially-connected

battery cells, adopting a first-order equivalent circuit model
(ECM) [7]–[9] to characterize a single cell’s dynamics, where
the open-circuit voltage (Voc), open-circuit resistance (Ro),
terminal voltage (y), total cell current (u), relaxation resistance
(Rp) and relaxation capacitance (Cp) are all model parameters.
Discrete-time cell dynamics are specified by
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where the superscript i denotes the ith cell, si is the ith cell’s
state of charge (SOC), V i is the ith cell’s relaxation voltage,
ηi is the Coulombic efficiency, Ci is the cell capacity with
unit of Amp-hours, and ui

k is the ith cell’s total current at
time step k.



Denoting xi :=
[
si V i

]T
, the linear state equation for a

single cell can be compactly represented as
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The measurement function (1c) is nonlinear, since the open
circuit voltage Voc is nonlinear as a function of SOC –
typically stored in a lookup table [10].

Consider the collection of state update equations across all
N cells
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and define the sparse state vector as Xk =[
x1
k x2

k . . . xN
k

]T
, which is the state vector for the

entire battery pack at time step k. This allows for the state
dynamics across the pack to be represented as

Xk+1 = AXk +BUk, (4)

where A ∈ R2N×2N = blkdiag({Ai}Ni=1), and B ∈ R2N×N

= blkdiag({Bi}Ni=1), and current matrix Uk is defined as[
u1
k u2

k . . . uN
k

]T
. The measurement function, in the case

of pack-level dynamics, is a scalar quantity representative of
the pack’s terminal voltage defined as
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)
:= h(Xk, Uk). (5)

B. Dense Extended Kalman Filter

This section describes the process for estimating over N
serial-connected battery cells with the EKF, which has a com-
plexity of O(N3) since the sizes of the covariance matrices
and vectors grow proportionally to N .

a) Sparse Prediction Model and Time Update: Because
of the inherent deviations of real-life systems from mathemat-
ical models, (4) and (5) take on the form

Xk+1 = AXk +BUk +Wk

yk = h(Xk, Uk) + vk,

where Wk :=
[
w1

k w2
k . . . wN

k

]T
, wi

k (∼ N (0, Qi
k)) is

the process noise of the the ith cell, and vk (∼ N (0, Rk))
is the measurement noise, the latter two satisfying zero-mean
Gaussian distributions with covariances Qi

k and Rk.
However, the state vector Xk ∈ R2N , meaning the predicted

covariance matrix associated thereof contains 2N2+N unique
elements (Pk = PT

k ∈ R2N×2N ). Modern automotive-
grade MCUs typically have RAM space in the range of
128 to 512 KB [11], [12]. For N = 16, the worst-case
requires 9.6% of the total on-chip SRAM, and 468 µs of
total execution time. As reported in [3], memory consumption

Algorithm 1 DEKF Algorithm: Time Update

1: procedure TIME(x̂+
µ,k, P+

µ,k, Uk, X̂+
k , k)

2: Γk ← computing (6);
3: Γ†

k ← computing pseudoinverse;
4: Aµ,k ← Γ†

kAΓk; Bµ,k ← Γ†
kB;

5: x̂−
µ,k+1 ← Aµ,kx̂

+
µ,k +Bµ,kUk;

6: X̂−
k+1 ← X̂+

k + Γk(x̂
−
µ,k+1 − x̂+

µ,k);
7: P−

µ,k+1 ← Aµ,kP
+
µ,kA

T
µ,k +Qµ;

8: return x̂−
µ,k+1, P

−
µ,k+1, X̂

−
k+1

9: end procedure

grows quadratically in N , and computational latency grows
cubically in N . While the sparse Kalman filtering algorithm
is possible on automotive-grade MCUs, it is an energy-hungry
algorithm inducing a large amount of memory overhead onto
the system. [3] introduces the novel DEKF, which sees the
memory consumption and computational latency growing lin-
early in N , removing nearly all of the overhead involved while
maintaining estimation accuracy.

The modified dense model of the system is

xµ,k+1 = Aµxµ,k +BµUk + wµ,k

yµ,k =
1

N
h(Xk, Uk) + vµ,k,

where xµ ∈ R2, Γ ∈ R2N×2, Aµ ∈ R2×2 = Γ†AΓ, Bµ ∈
R2×N = Γ†B, wµ,k ∼ N (0,Γ†QΓ), vµ,k ∼ N (0, 1

N2Rk). Γ
is what is referred to as the “RFF matrix”, and is formally
defined as

Γk =
∂Xk
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=
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where γi
s is the RFF associated with the ith cell’s SOC, and

γi
V the RFF associated with the ith cell’s relaxation voltage.

For the predicted covariance, the DEKF draws equivalence of
a dense covariance Pµ ∈ R2×2 to the sparse covariance in the
following manner
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This equivalence to the sparse EKF means we can estimate
over the dense state with mean and covariance xµ and Pµ,
which are a fixed size no matter how large N is. The only
variable in the dense formulation that grows in proportion to
N is Γ, which contains 2N unique elements. The algorithm
is expressed in its entirety in Algorithms 1 and 2. The fixed
size of the estimated distribution along with the linear growth
of Γ allows for implementation on an embedded system with
significantly lower available memory.



Algorithm 2 DEKF Algorithm: Measurement Update

1: procedure MEAS(x̂−
µ,k+1, P−

µ,k+1, X̂−
k+1, yµ,k+1, k)

2: Hµ ← evaluates measurement Jacobian at X̂−
k+1;

3: Kµ,k+1 ← computing dense Kalman gain;
4: x̂+

µ,k+1 ← x̂−
µ,k+1+Kµ,k+1(yµ,k+1−Hµ(x̂

−
k+1−x̂

+
k ));

5: X̂+
k+1 ← X̂−

k+1 + Γk(x̂
+
µ,k+1 − x̂−

µ,k+1);
6: P+

µ,k+1 ← (I −Kµ,k+1Hµ)P
−
µ,k+1;

7: k ← k + 1
8: return x̂+

µ,k+1, P
+
µ,k+1, X̂

+
k+1

9: end procedure

III. DESIGN SPACE EXPLORATION

Pursuing an optimal partition, we divide the DEKF
into three constituent sub-tasks (time update (TU), Kalman
gain (KG), and measurement update (MU)), establish pro-
grammable software (PS) on the ARM core and programmable
logic (PL) on the FPGA as our binding elements, and aim to
optimize over energy and execution time. For clarity, TU is
the entirety of Algorithm 1, KG is lines 2 and 3 in Algorithm
2, and MU is the rest of Algorithm 2. The problem can be
cast as the following nonlinear binary integer program

x∗ =argmin
x

(c(x))Tx+ dT1(x) s.t. x ∈ Ω,

f : {0, 1}n → R, Ω ⊆ {0, 1}n,
Ω = {x ∈ {0, 1}n | Aeqx− beq = 0},

The optimization variable is a binary vector, each index
denoting whether or not a particular task is bound to a certain
element. For example, consider the case of α processing
elements and β tasks. Then, card(x) = α∗β, and the binding
of task q to processing element r is indicated by index number
α∗(q−1)+r of x, where q ∈ [1, β], r ∈ [1, α]. The following
equality constraint ensures that each task is only bound once:

Aeq(i, j) =

{
1, if i = ⌊ j−1

α ⌋+ 1
0, otherwise.

}
beq = diag(Iβ),

where Aeq ∈ {0, 1}β×αβ and beq ∈ {0, 1}β .
The objective function consists of two parts. The first is

a weighted nonlinear combination of objectives pertaining to
execution time (cT (x)) and energy (cJ(x)):

(c(x))Tx = (wT cT (x) + wJcJ(x))
Tx. (8)

Through kernel density estimation (KDE), an approximate
probability density function is obtained for each task’s execu-
tion time in PS (considering pipeline flushing, cache hit ratio,
etc.). We compute how likely a task j on PS is to execute faster
than on the equivalent PL implementation and vice versa:

Aj
PL = P (tjPL ≥ tjPS) =

∫ tjPL

0

p̂jPS(x)dx. (9a)

Aj
PS = P (tjPL < tjPS) =

∫ ∞

tjPL

p̂jPS(x)dx. (9b)

Termed “performance risks”, these provide the objective
values which are stored in cT from (8). To estimate energy,
we model each implementation as a pulse-wave comprised
of active (dynamic power) and latent (static power) periods,
computing Pavg = λ(Pst+Pd)+ (1−λ)Pst, and multiply by
execution time to get energy. Here, λ ∈ [0, 1] is the portion of
time the system is in an active state. Nonlinear dependence
on x arises from edge cases requiring that the cache is
flushed, which shifts some of the probability density functions
associated thereof, ultimately contributing to execution time.

The second term is nonlinear, accounting for every binding’s
communication costs d ∈ Zαβ

, and computing the following
inner product:

dT1(x) =
αβ∑
i=1

d(i)1xi
(x), (10)

1(x) =
[
1x1

(x) 1x2
(x) ...1x

αβ
(x)

]T
, (11)

1xi
(x) : {0, 1}αβ → {0, 1} =

{
1, if x = xi

0, otherwise.

}
.

In essence, (10) functions as a look-up table, where the input
is the binding, and the output is the communication overhead.

Our objective function is non-differentiable and discontin-
uous with respect to x, meaning that traditional (simplex
method) and gradient-based (interior-point method) techniques
are not applicable in finding the optimal binding. For this case,
however, α = 2 and β = 3, so there is no need to employ
heuristic methods – the objective function can be evaluated
over all 8 bindings, and from there, x∗ can be discovered by
inspection.

A. DEKF Optimal Binding

With a combination of preliminary implementation details
obtained from HLS, wall-clock timing, and data sheets for
the target part, we gain a set of initial estimates for the
power consumption (Tables I and II) as well as distributions
of execution times for each task on PS

TABLE I
PL: EXPECTED POWER CONSUMPTION (MW)

TU KG MU
Static 107 107 104
Total 349 373 205

TABLE II
PL: EXPECTED EXECUTION TIME (µs)

TU KG MU
Time 39.18 0.524 0.183

Using the previously discussed techniques, we can discover
by inspection that executing all tasks using PL is the optimal
binding over the objectives of time and energy. For com-
parison, we also implement the second-most Pareto-dominant



solution, which is binding TU to PS, and the rest of the tasks
to PL. The estimated execution time and consumed energy for
both bindings is labeled in the plot. The following sections
explore the implementation of the full PL and hybrid bindings,
comparing them across all objectives, and comparing them
back to the model procured from DSE.

IV. IMPLEMENTATION

A. Sensor Emulation

To generate the battery data, we use the MATLAB model
from [3] and simulate 16 cells over 600 0.1 s time steps.
We extract the updated states X+

k , cell currents Uk, and
average terminal voltage measurements yµ. The embedded
implementations consult the latter two to make their pre-
dictions which are compared to X+

k . Relaxation resistances
and capacitances are kept constant across all cells, but ca-
pacities and efficiencies are normally randomized to induce
heterogeneity onto the pack. The data is generated with
process noise Wk ∼ N (0, 10−10 · I) and measurement noise
vµ,k ∼ N (0, 1

162 · 10
−5). To access the data in our embedded

system, we store the sensor data as .csv files in a micro-SD
card. For validation, we also store the resulting predicted SOC
on the SD card.

B. High-level Synthesis

Per our DSE, we designed two components using HLS - one
containing the KG and MU algorithms, and one containing
the entire DEKF. For simplicity, we will refer to these as
our hybrid implementation and our PL implementation, re-
spectively. To maximize precision, our HLS components are
generated with full floating point accuracy on 64-bit doubles.
Table III presents the performance of our two components in
size and speed. As expected, the PL-only component is bigger

TABLE III
HLS COMPONENT SIZE AND SPEED

Size (LUTs) Execution Time (µs)
Hybrid 11,304 7.090

PL 19,691 41.400

and takes longer to execute. This is due to the inclusion of the
TU algorithm which is our most computationally expensive
algorithm. Note that these results are with no performance-
related directives. Our exploration of directives yielded only
results with lower quality. Additional hardware must also be
included to facilitate memory transfer between PS and PL
such as block-ram controllers and CDMA’s. Naturally, this
additional hardware scales with the number of variables that
must be shared across PS and PL.

V. RESULTS

Our final results for speed, size, and power utilization can
be found in tables IV, V, and VI respectively. As expected,
our PL implementation yields the best results with the lowest
execution time and lowest power consumption. Interestingly,
due to fewer inputs and outputs, it uses less total hardware

TABLE IV
FINAL TIMING RESULTS (µS)

CDMA CDMA
TU KG MU Write PL Read Total

Hybrid 72 – – 25 8 8 113
PS 68 24 8 – – – 100
PL – – – 6 43 3 52

TABLE V
FINAL SIZE RESULTS

Size (LUTs) Digital Logic Memory Full BD % Util.
Hybrid 13,218 18,333 32,448 61

PL 18,504 12,867 32,021 60

than the Hybrid implementation when considering the addi-
tional hardware required to interact with the PS. In the next
subsections we will more closely examine our performance
relative to the DSE and our outputs relative to the expected
outputs from the MATLAB model.

A. Comparison to DSE

For our final timing results, the largest error by DSE on this
front is an ∼89.3% error in hybrid execution time between
what the DSE predicted and what was observed. DSE un-
derestimated the execution time of the hybrid implementation
due to initially poor estimates for the delay tmem caused by
memory accesses after flushing the cache. Furthermore, our
DSE assumed tmem to be a static value, which in reality is a
stochastic value [13].

The greatest oversight by the DSE is the dynamic power
estimation for the full PL implementation. Table I predicts the
expected power consumption of the full PL implementation to
be 927 mW, while Table VI tells us that it’s actually closer
to 1964 mW, yielding a ∼111.9% error. Table VI suggests
that the missing link was the power consumed by the Zynq
Processing System, which is still required to facilitate the
hardware execution interface with the SD card. The DSE did
not factor this in; the removal of the Zynq Processing System
from the resulting power rating brings down the estimated
error to ∼24.7%. The remaining error could be a result of
shared resources (data dependencies and potentially re-usable
hardware elements could overlap) or the lack of a sophisticated
power model to approximate the combined power consumption
of each task in PL (additional factors should be taken into
account, like resource utilization, switching activity, fanout,
and so on [14]).

TABLE VI
FINAL POWER RESULTS

Total
Power (W) Static Dynamic Zynq PS Total (PL Only)

Hybrid 0.155 1.891 1.272 2.046 0.774
PL 0.152 1.812 1.266 1.964 0.698



Fig. 1. Estimation performance and average numerical error.

B. Estimation Performance

The pack characteristics see the average terminal voltage
(yµ) monotonically decrease at a value of ∼ 3.3V. As for the
net currents, the 16 current trajectories are distributed symmet-
rically around and converging to 4.6A. This behavior simulates
the effects of balancing currents, where

∑N
i=1 β

i = 0. For the
estimation performance, we plot four trajectories (MATLAB,
full PL, full PS, and hybrid) and observe the numerical error
incurred by reduced precision in the embedded system. Fig. 1
shows MATLAB as exhibiting estimation error on the order
of 10−4, whereas the pure implementations garner an error
of ∼ 2 · 10−4 and an average error delta (second subplot)
of approximately 1.7 · 10−3. It should be noted that the PS
and PL implementations overlay one another perfectly, with a
computed absolute error of exactly 0.

The hybrid system’s error trajectory in magenta visibly out-
performs the other three implementations. One interpretation
of this result is theoretical, which would suggest a minimal er-
ror trajectory that drifts over time is the result of over-reliance
on the model predictions. In other words, Qµ may either be
0, or Rµ may be excessively large. Another interpretation is
the embedded side, where a hybrid implementation may be
freeing up resources which are now utilized for extended-
precision computation. However, the latter would not explain
the apparent dissimilarity in the error trajectories between the
hybrid and the others.

VI. CONCLUSIONS

In embedded implementations, speed, power efficiency, and
accuracy are crucial for deployment. Using the novel DEKF
and hardware acceleration, we successfully created several
systems achieving run times as fast as 52 µs with RMS
averaging around 0.2%. Compared to the run time in the order
of milliseconds presented in [6] and the RMS near 0.7% in [5],
this result shows great potential for the DEKF in the context
of Kalman filter based SOC estimation.

In the future, this research can be improved in several ways.
First, our model for DSE should be updated to match the
implementation more closely. Additionally, more objectives
can be added to the DSE including size, development time,
and cost. Relating to cost, additional configurations could
be considered such as cheaper FPGA’s and cheaper MCU’s.
Our algorithms could be modified to use less precision and
evaluated to see the trade-off between final accuracy and
speed/size. Finally, further HLS directive exploration may
yield more optimal results.
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