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A Review on Reinforcement Learning-based
Highway Autonomous Vehicle Control

Abstract—Autonomous driving is an active area of research
in artificial intelligence and robotics. Recent advances in deep
reinforcement learning (DRL) show promise for training au-
tonomous vehicles to handle complex real-world driving tasks.
This paper reviews recent advancement on the application
of DRL to highway lane change, ramp merge, and platoon
coordination. In particular, similarities, differences, limitations,
and best practices regarding the DRL formulations, DRL training
algorithms, simulations, and metrics are reviewed and discussed.
The paper starts by reviewing different traffic scenarios that are
discussed by the literature, followed by a thorough review on
the DRL technology such as the state representation methods
that capture interactive dynamics critical for safe and efficient
merging and the reward formulations that manage key metrics
like safety, efficiency, comfort, and adaptability. Insights from this
review can guide future research toward realizing the potential of
DRL for automated driving in complex traffic under uncertainty.

Index Terms—Autonomous vehicles, connected and automated
vehicles, deep reinforcement learning, platoon.

I. INTRODUCTION

Autonomous vehicles (AVs) have the potential to transform
transportation systems by improving safety, efficiency, acces-
sibility, and comfort. According to [1], autonomous driving
(AD) has the potential to revolutionize the way consumers
experience mobility and make driving safer, more convenient,
and more enjoyable. According to the Environmental and
Energy Study Institute, when incorporated into shared mass
transit systems, AVs are more accessible and sustainable,
which could improve accessibility for people who may not
have access to traditional transportation options [2]. However,
developing reliable control policies for AVs to handle the
complexity of real-world driving remains an immense chal-
lenge [3]. The AVs technology can save lives, reduce crashes,
congestion, fuel consumption, pollution, and parking space
[4]–[12]; but it can also increase traffic, disrupt transit and
insurance sectors, and pose ethical and legal issues [13]–[15].

One challenge area in AD is the traffic merging control,
especially in mixed-traffic environments. AVs must interact
with human drivers in a safe and efficient manner. The merging
scenario involves an ego AV attempting to merge from a ramp
or lane onto a highway lane already occupied by host vehicles
as shown in Fig. 1. Host vehicles could be AVs, human-driven
vehicles (HDVs), or both. For this maneuver, the ego vehicle
needs to negotiate right-of-way with the host vehicles while
avoiding collisions and minimizing disruption to traffic flow.
Merging control presents several key difficulties for AVs. First,
human drivers have various driving styles, which can range
from being aggressive to being cautious [16] and their behav-
iors are inherently ambiguous and uncertain [17]. According
to [18], even the same driver may react differently to the same

Fig. 1. On-ramp traffic scenario in the presence of HDVs.

circumstances. An AV needs to be able to quickly infer the
cooperativeness of host drivers based on limited observations
and react accordingly. Second, merging requires navigating
a temporary conflict zone where collisions can easily occur
if improperly timed, making an accurate real-time control
necessary [19]. The AV must accurately judge acceptable gaps
in host vehicle traffic and select appropriate merge points.
Third, efficiency and comfort concerns during merging must
be balanced with safety. Conservatively waiting for large gaps
reduces disruption but can significantly slow down traffic flow.
On the other hand, aggressively forcing merges into small gaps
risks collisions or requires uncomfortable acceleration/braking.

AVs require control strategies to operate effectively. These
strategies can be categorized as rule-based, optimization-
based, or learning-based methodologies. Rule-based ap-
proaches rely on predefined models and hard-coded rules to
determine AV behaviors, such as car following and lane chang-
ing rules [20], [21]. In [22], the authors suggested various rules
and used a gap acceptance algorithm to determine vehicle
behavior before it merges into the target lane. Similarly, In
[23], authors tested rule-based baseline that predict the behav-
ior of surrounding vehicle which would demonstrate social
behavior in AVs. According to this approach, vehicles are less
inclined to yield when accelerating, whereas they are more
likely to yield when decelerating. Rule-based approaches lack
adaptability to unexpected situations and becomes impractical
in a complex scenarios.

In an optimization-based approach, vehicle interactions are
modeled as a dynamic system with vehicles’ actions as in-
puts such as acceleration or steering angle [5]. In reference
[24], the authors studied cooperative merging algorithms for
autonomous vehicles interacting with human-driven vehicles.
They used a model predictive control (MPC) approach which
breaks down the problem into handling groups of three
vehicles (triplets) at a time. The MPC controller generates
smooth motion trajectories for different compositions of ve-
hicle triplets. In reference [25], the authors looked specifi-
cally at lane change scenarios where a human-driven vehicle
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cuts into a platoon of connected and autonomous vehicles.
Although the MPC-based methods show promising results,
they heavily depend on precise dynamic merging models
(even for human driving behavior). Moreover, these methods
often require significant computer resources due to solving
online optimizations at every time step. On the other hand,
learning-based methods utilizing deep neural networks can
extract complex features and patterns to better imitate human
driving. In AVs control, the learning-based approaches can
be classified into supervised learning (SL) and Reinforcement
learning (RL) [26]. SL techniques train models on labeled real-
world or simulated driving data to reproduce expert driving
performance. However, SL relies heavily on the quality and
coverage of this training data [27]. Models may be biased
if not exposed to rare but critical events like near-collisions.
On the other hand, RL does not need human labeled-data but
can generate the data directly through interacting with the
environment. This paper focuses specifically on reinforcement
learning (RL) approaches for autonomous vehicle merging
control.

RL and especially deep reinforcement learning (DRL) have
achieved remarkable success in recent years [28]–[31]. Neural
networks serve as powerful function approximators that can
learn to map complex, high-dimensional observations to opti-
mal actions. For example, Deep Q-networks (DQN) developed
in [28] used CNNs and experience replay to master Atari
games from pixel inputs. Policy gradient methods like A3C
apply actor-critic architectures with parallel workers to learn
policies mapping images to controls [29]. AlphaGo combined
deep neural networks with Monte Carlo tree searching to
defeat world champions in the game of Go [30]. Deep RL with
recurrent policies and attention has shown promise for partially
observed tasks like navigating from first-person views [32].
End-to-end training of deep networks has enabled learning
of visuomotor policies directly from raw sensory inputs. The
ability of deep RL to handle high-dimensional state spaces
provides wider applicability to real-world problems. However,
challenges like sample efficiency, hyperparameter tuning, and
training stability remain active areas of research. Careful
architecture design and algorithms tailored to the problem
dynamics are crucial for successful deep RL applications.

In recent years, DRL has shown increasing promise for AVs,
being applied to behaviors like lane changing, merging, car
following, and intersection handling [33]–[36]. Several key
considerations arise when applying RL to AV control. Firstly,
an appropriate reward function that balances safety, efficiency,
and comfort must be carefully designed [37]. Common ob-
jectives include avoiding collisions, minimizing disruptions to
traffic flow, and preferring smooth accelerations/decelerations.
Secondly, the action space must also be chosen carefully as
well, where options include continuous acceleration control
[38], discrete maneuver choices [39], and high-level decisions
[40]. Another challenge lies in the handling of the partial
observability of the environment. RL agents are typically only
provided local observations from onboard sensors. In this re-
gard, recurrent policies [41] or attention mechanisms [42] have
been investigated to help infer unobserved information like
driver intent from observation histories. Moreover, multi-agent

RL can also enable collaborative sensing between networked
vehicles [43].

However, identifying effective RL formulations and algo-
rithms tailored to the dynamics and constraints of on-road
driving remains an active research problem. Careful design
of the action space, state representation, reward, and training
methodology is necessary to ensure that training can lead to
optimal policies that meet safety and comfort requirements.
Many surveys exist on the topic of Reinforcement learning in
the context of autonomous driving, such as the paper by Kiran
et al. [44]. They focus specifically on deep reinforcement
learning for autonomous driving and provides background on
RL, review applications to tasks like motion planning and
control, and outlines challenges. Similarly, in [45], authors
present an extensive survey on the application of deep learning
(DL) and reinforcement learning (RL) across various func-
tionalities in autonomous vehicles (AVs). This comprehensive
survey focuses on key areas such as scene understanding,
motion planning, decision-making, vehicle control, and social
behavior of AVs. Yadav et al. [46] have also narrowed down
the scope in a similar way. They provide a comprehensive
survey on multi-agent reinforcement learning (MARL) for
connected and automated vehicles (CAVs). They discuss vari-
ous MARL techniques, algorithms for motion planning under
uncertainty, learning paradigms, simulators, datasets, applica-
tions, and future research directions. However, there is a lack
of extensive reviews on RL based autonomous vehicles that is
focused on a specific scenario. Johnson et al. [47] examine the
specific context of ramp merging strategies for connected and
autonomous vehicles on freeways. It examines the impact of
CAVs on traffic flow efficiency and safety at critical freeway
junctions. The paper categorizes existing strategies based on
application contexts, such as single-lane freeways with varying
CAV penetration and multi-lane freeway scenarios.

In contrast, this paper aims to provide a comprehensive
survey of deep RL (DRL) techniques for longitudinal and
lateral vehicle control behaviors. In particular, we analyze
various RL formulations, algorithms, simulations, and metrics
used in a diverse set of studies related specifically to highway
lane change, highway ramp merging, and platoon coordination.
The primary objective is to describe recent advancements in
this challenging area, highlight key trends, gaps, and best
practices, and identify research directions. Our work adds to
and expands upon the broader discussions found in the works
of Elallid et al. [45] and Johnson et al. [47], making a unique
contribution to the field of autonomous vehicle research. The
insights from this literature review can help guide future
research toward realizing the full potential of RL for AV
control in complex real-world conditions. The papers reviewed
in this paper are summarized in Tables I and II.

The remainder of this paper is organized as follows. Section
II provides necessary preliminary on reinforcement learning
and discusses key concepts. The scenarios studied are dis-
cussed in Section III, while Section IV provides an overview
of the RL algorithms used and discusses sophisticated ex-
tensions added to the RL algorithms. Section V reviews
relevant literature according to how action space is setup and
Section VI reviews the key themes adopted when designing
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Fig. 2. General flow of reinforcement learning algorithm.

the state space. Section VII categorizes the literature according
to the rewards function design, Section VIII discusses the
challenges and provides future work directions, and the paper
is concluded in Section IX.

II. PRELIMINARY ON REINFORCEMENT LEARNING

Reinforcement learning (RL) is a feedback-based machine
learning approach in which an agent learns how to operate in
a given environment by choosing actions and observing their
consequences [79]. The agent receives positive feedback for
choosing a good action and negative feedback or a penalty for
choosing a poor action. The agent interacts with its environ-
ment, and its primary objective is to enhance performance by
maximizing positive reinforcements. As illustrated in Fig. 2,
the key elements of RL are:

• Environment: The external world that the agent interacts
with. It can be modeled as a Markov decision process
(MDP) consisting of states s, actions a, transition proba-
bilities P (s′|s, a), and a reward function R(s, a, s′) [79]–
[82].

• Agent: The learner that interacts with the environment by
taking actions and observing results. Its goal is to find
an optimal policy π∗(a|s) that maximizes the expected
cumulative reward. Simple agents use linear policies,
while more complex agents use non-linear function ap-
proximators like neural networks.

• States: A state represents the current situation of the
agent in its environment. It serves as input for the agent
to determine the next action. States need to contain all
relevant information while being represented efficiently.

• Actions: Actions are the moves the agent can make in
response to the environment. Choosing the best action
given the current state is the core challenge in RL.

• Reward: A reward is feedback from the environment
evaluating the agent’s previous action. The agent seeks
to maximize the cumulative reward over time.

Particularly, at time step t, let r(st, at) be a scalar reward
function that indicates the immediate reward received by the

agent from the environment after applying action at at state st
and define the expected cumulative future rewards from time
t as

G = Eπ

[ ∞∑
t=0

γtr(st, at)

]
, (1)

where the scalar γ ∈ [0, 1] is the discount factor. Then the
goal of RL training is to find an optimal policy π∗(a|s)
that maximizes G. Different RL algorithms employ different
assumption about the value function approximation. The major
categories of RL algorithms include: value-based methods like
Q-learning [83], [84] and SARSA [85] that estimate value
functions to derive a policy, policy gradient methods that
directly learn and optimize parametric policies [86], actor-
critic methods that learn both a policy and value function [87],
and model-based methods that also learn a model of the MDP
for planning [30], [88].

III. SCENARIOS FOR RL-BASED CONTROL

This section discusses three major scenarios studied in
the relevant literature, namely highway lane change, highway
ramp merging, and platoon coordination, as shown in Table
III.

A. Highway Lane Change

Lane changing on highways is an important and challenging
task for AVs. Several studies have investigated using DRL to
train AV agents to perform safe and efficient lane changes in
highway environments. A common scenario studied is an agent
controlling a single AV that needs to execute a lane change
maneuver on a multi-lane highway segment in the presence
of surrounding traffic [48], [58]. The highway environment
is typically simulated using tools like SUMO (Simulation
of Urban MObility) [48], VISSIM or custom cellular au-
tomaton models [34], with the RL agent controlling actions
like lateral movement, acceleration, and deceleration. For
instance, authors in [48] trained a policy using proximal policy
optimization (PPO) to have an AV perform discretionary lane
changes on a congested highway simulated in SUMO. Another
example is [58], where the authors also studied an agent
making a single lane change on a highway but used a deep Q-
network (DQN) algorithm. Similarly, [78] used a double deep
Q-network (DDQN) algorithm incorporated with a model of
human lane-changing decisions as a safety supervisor to train
AVs to drive safely in a 2-lane highway. The agent waited
for a suitable gap before changing lanes and maintained lane
keeping after the maneuver.

More complex highway scenarios with continuous lanes and
dynamic surrounding traffic have also been explored as illus-
trated in Fig. 3. Wang et al. [34] used deep deterministic policy
gradients (DDPG) to train an agent to make lane changes on
a 3-lane highway with entering and exiting traffic modeled
with an intelligent driver model (IDM). Wang et al. [36] also
studied an agent controlling a vehicle that needed to change
lanes to pass slower cars on a 3-lane highway simulated using
an open-source self-driving car simulator provided by Udacity.
Additionally, Zhou et al. [56] considered multiple AVs and
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TABLE I
STATE OF THE ART ARTICLES ON AUTONOMOUS VEHICLE MANEUVERS CONTROL USING REINFORCEMENT LEARNING

References Scenario State Space Action Space Software RL Method Rewards

[48] Lane changing Raw sensors data
(acc., pos., and speed) Three discrete actions SUMO PPO Comfort, efficiency,

and safety

[49] Navigate congested
highway

Ego vehicle and
surrounding raw

sensors data

Discrete combinations of
acceleration and
steering angle

SUMO Policy Gradient Fast and safe
driving

[39] Platoons at non
signalized intersection

AV and its surrounding
motion values

Discrete set of
the acceleration SUMO PPO Average speed

[38] Platoon in freeway Leader, ego vehicle, and
its preceding vehicle

Acceleration
(continuous) SUMO CommPPO Fuel consumption

[50] Highway on-ramp
Relative speed and

position of surrounding
vehicles

Discrete high
level decisions

Highway-env
[51] Novel MARL Collision, merging cost,

speed, and time headway

[52] Highway on-ramp

Relative speed and
position of surrounding

vehicles and the
Road layout

Discrete high
level decisions

Highway-env
[51] MARL Safety

[53] Highway on-ramp Traffic state and
vehicle motion information

Three discrete
actions SUMO STDQN Efficiency, goal,

driving comfort, and safety

[54] Highway
navigation

Self, connected agents
and infrastructure

observations (location,
velocity and acceleration)

Discrete high
level decisions CARLA [55] Constrained

MARL
Maximize speed of

every agent

[56] Lane changing
Relative speed and

position of surrounding
vehicles

Discrete high
level decisions TORCS Discrete high

level decisions
Collision, comfort,

speed, and time headway

[57] Enter/Exit highway
merge

The relative speed of
surrounding vehicles, the

position of the
ego vehicle, and
the road layout.

Discrete high
level decisions Highway-env MADDQN Safe altruistic behavior

[58] Lane change
The relative distance to
the surrounding vehicles

and detected lane.

Continuous steering
and

longitudinal speed.
Python DDPG Security, comfort,

and efficiency

[35] Lane change
The relative distance and

absolute speed
of front vehicles.

To change lane
or to stay

MATLAB &
VISSIM [59] DQN Safety and

efficiency

Car-following

The relative distance and
absolute speed of the front

and back vehicles and
the ego vehicle speed
and maximum speed

Six different speeds
to choose from

MATLAB &
VISSIM DQN Safety, comfort,

and efficiency

[60] Highway on-ramp
Speed, position,

heading angle, and
lateral offset to the lines

Continuous acceleration
and steering angle

Simulation
of real world

data
DQN Safety, Smoothness,

and timeliness

[34] Lane changing
Ego and surrounding

vehicles dynamics, and
road curvature

Continuous yaw
acceleration Not mentioned DDPG

Large action changes,
Maneuvering time, and

lateral deviation

[36] Lane changing
Speed and position

of the ego vehicle and
its surrounding vehicles

Discrete high
level decisions

Udacity
simulator DQN Safety and Speed

[61] Highway work
zone

Speed and acceleration
grid maps and neighboring

vehicles information

Acceleration and
deceleration VISSIM SAC Safety, comfort,

and traffic flow

[62] Platoon maneuvers
Speed, acceleration and
position of ego, front

and rear vehicles

Brake, throttle
and steering CARLA SAC Safety, comfort,

smoothness and headway

[63] Platoon in a stop-
and-go traffic

Headway, acceleration
and speed of ego and

front vehicles

Continuous
acceleration SUMO SAC Safety, efficiency, and

oscillation dampening

[64] Platoon forming Speed, acceleration and
headway

Full-speed
headway Not mentioned DDPG Velocity and headway

[65] Platoon Longitudinal
Control

Relative distance,
ego vehicle speed,

preceding vehicle speed,
and the distance gap error

Continuous
acceleration SUMO DDPG Gap regulation, comfort

speed consensus,and safety

[66] Highway-on ramp
Speed and position of

AVs and HVs, merging
vehicle, and road layou

Continuous
acceleration and
steering angle

OpenAI Gym Multi-agent
A2C

driving safety, traffic
flow efficiency, and

socially desirable behaviors

[67] Highway-on ramp
Speed and position of

AVs and HVs, merging
vehicle, and road layout

Discrete high
level actions OpenAI Gym Multi-agent

A2C

traffic throughput, safety,
and individual driving

comfort
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TABLE II
STATE OF THE ART ARTICLES ON AUTONOMOUS VEHICLE MANEUVERS CONTROL USING REINFORCEMENT LEARNING - CONTINUED

References Scenario State Space Action Space Software RL Method Rewards

[68] Highway merging

Egos speed & acceleration,
surrounding vehicles relative

speed & distance, and
distance to both

conflict zone and goal

Discrete high
level actions Not mentioned DQN Efficiency and comfort

[37] Highway merging
Egos kinematics, surrounding

occupancy and speed map,
priority, and driver type

Discrete actions Custom simulator A-C MARL Safety, flow,
efficiency, and success

[40] Highway merging
Egos local information,

position, motion, & Gaps
between surrounding vehicles

Discrete actions NGSIM A2C Speed and successful
merge

[69] Highway merging
Egos kinematics and
position and speed

of surrounding vehicles

Continuous
acceleration SUMO A2C Collisions, braking,

and successful merge

[70] Lane changing

Egos kinematics and
position ,speed, heading

angle, and size of
surrounding vehicles

Continuous
acceleration

and steering angle
Not mentioned FSM and SAC Risk penalty, approach

reward, and comfort

[71] Lane changing
Egos kinematics and
position & speed of
surrounding vehicles

Discrete actions Julia [72] DQN Safety, efficiency,
and lane changing

[73] Highway merging Ego vehicle, road geometry,
and surrounding traffic Discrete actions Custom simulator DQN Average speed

[74] Highway merging
Distance to the merge point,

velocity, acceleration, and
cooperation parameter

Discrete actions Julia [72] DQN Collision, goal,
and time penalty

[33] Platoons facing
Road reduction

Distance to the merge point,
position, and state Discrete actions Python MPPO Energy, time,

speed, and jerk

[75] Highway on-ramp
Closing gap and speed,

time to position,
and position of the ego

Discrete actions Python Q-learning Safety, comfort,
and energy

[76] Platoon coordination
management

Platoon state,
states of AVs in the platoon,

and environment state.
Discrete actions PLEXE [77] DRG-SP Driving strategy

[78] Lane changing
Velocity and relative distance of

surrounding vehicles,
and ego kinematics.

Discrete actions CARLA DDQN Safety, speed,
and lane centering

TABLE III
STUDIES ORGANIZED BY AUTOMATED DRIVING SCENARIO

Scenario References

Highway Lane Change
Simple surrounding [48], [58], [78]

Complex surrounding [34], [36], [56]
Lane merging [61], [70], [71], [74]

Highway Ramp Merging
Multi-agent merging [50], [52], [53], [57], [75]
Cooperative merging [37], [66]–[69]

Using real-world traffic data [40], [60], [89]

Platooning
Cooperative speed control [39], [62]–[64]

Safe coordination [38], [54], [76]
Platoon joint [33], [65]

human-driven vehicles (HDVs) in a two-lane highway. The
scenario starts with the AVs and HDVs randomly spawned
on the highway with different initial speeds. As the vehicles
drive on the highway, the AVs will try to make lane changes to
overtake slower HDVs, while cooperating with each other and
reacting to the HDVs. Similarly, Hwang et al. [70] proposed
a hybrid finite state machine (FSM) and RL approach for AV
merging. The FSM handled gap selection while the RL policy
executed the final merge maneuver.

In addition to discretionary lane changes, mandatory lane
changes such as merging have been studied. In Ref. [61], a

Fig. 3. Illustration of the Lane-changing highway scenario.

highway work zone merge scenario is simulated where the
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right lane is closed and vehicles in the right lane have to
move into the left lane. In the scenario, there are multiple
independent agents, each of which is a vehicle in the closed
right lane. The highway consists of three zones: two metering
zones and one merging zone. In metering zones, vehicles in the
right lane use RL to optimize their longitudinal positions but
do not change lanes. In the merging zone, vehicles merges
based on their longitudinal positions. Bouton et al. [71]
specifically examined dense traffic merging using a level-k
reasoning model for surrounding vehicles. A common evalu-
ation approach is to initialize episodes with different traffic
densities and vehicle configurations and assess the trained
policy based on metrics such as success rate, collision rate,
and trip time [34], [39], [69]. On the other hand, Bouton et
al. proposed a Cooperative Intelligent Driver Model (C-IDM)
to simulate the longitudinal driving behavior of the main lane
vehicles [74]. It adds a cooperation level parameter to the basic
Intelligent Driver Model (IDM). The scenario is initialized by
simulating the main lane vehicles for 10–20 seconds to create
a realistic dense traffic situation. The main lane has 10-14
vehicles initially, with a randomized initial velocity of 4-6
m/s. The ego vehicle then starts driving in the merge lane,
observing the main lane vehicles.

While the core task is similar, studies have explored various
unique scenario variants. The studies incorporated different
elements in their highway lane change scenarios to evaluate
their RL policies under varying conditions. Ye et al. [48]
specifically focused on congested highways to test discre-
tionary lane changes in dense traffic. In [34], the simulated
scenario involves one reinforcement learning (RL) ego vehicle
agent that is learning to perform lane change behaviors,
interacting with other vehicles on a three-lane highway. In
each episode, the ego RL vehicle starts randomly in the middle
lane and travels approximately 80 meters before a lane change
command to either the left or right is issued. A gap selection
module picks a target gap for the RL vehicle to merge into.
The RL agent then attempts to execute a smooth lane change
maneuver into this target gap. There are two conditions that
will terminate the episode: if the RL vehicle deviates more
than one full lane width from the center of the target lane,
or if the lane change maneuver exceeds 10 seconds. When an
episode ends, the next one begins with the ego RL vehicle
respawned in a new random position on the middle lane.
Through this training approach of placing the learning vehicle
in diverse situations across many episodes, the goal is for
the RL agent to learn an optimized policy for completing
commanded lane changes properly despite realistic highway
traffic. Wang et al. [36] leveraged an open source simulator to
evaluate lane changes for passing slower vehicles. Hwang et al.
[70] included a finite state machine for higher-level planning
in their hybrid approach. Bouton et al. [71] is unique in using
level-k reasoning for surrounding vehicles to model imperfect
human drivers. The diversity of conditions and approaches
highlights the complexity of the lane change problem and the
need for adaptable RL solutions.

B. Highway Ramp Merging

Various approaches have been proposed for AVs to safely
and efficiently merge onto highways amidst surrounding traffic
using RL. A common scenario studied is an AV starting on
a highway on-ramp that must merge onto an adjacent multi-
lane highway before a predefined merge point. The highway
has surrounding HDVs or AVs that the merging vehicle must
coordinate its actions with. Fig. 1 depicts such a scenario.

Several studies have employed multi-agent reinforcement
learning (MARL) algorithms for this merging task. Schester et
al. [75] presents a multi-agent reinforcement learning approach
where tabular Q-learning is used, comparing single-agent
and multi-agent formulations, to learn policies that capture
the complex interactions between vehicles during merging.
Authors demonstrate that a multi-agent approach considering
joint actions can achieve lower collision rates compared to
single-agent policies. Additionally, Chen et al. [50] developed
a MARL approach with discrete actions, safety measures like
action masking, and a reward function considering metrics
like collisions. The proposed MARL algorithm incorporates
two safety measures. Firstly, it employs an action masking
technique to eliminate any invalid actions. Secondly, a novel
priority-based safety supervisor is introduced to evaluate safety
by predicting the future movement of vehicles for a defined
number of steps. Mahatthanajatuphat et al. [52] extended Chen
et al.’s problem where multiple agents (AVs) are randomly
placed on the merge lane.

Other work has focused on DRL that utilize spatiotemporal
information. Due to the limited information that the current
step sensor observations provide, using only the current ob-
servations as inputs to the learning agent is not enough to
accurately determine surrounding vehicles’ intent. Researchers
have looked into using a temporal series of data as inputs
to enrich the agent’s representation and reasoning of the
dynamic traffic environment. This is intended to incorporate
more contextual information regarding the past behaviors and
interactions of relevant participants. By utilizing these addi-
tional spatiotemporal insights, the agent can achieve greater
awareness and foresight regarding the potential trajectories
and actions of other vehicles. Wang et al. [53] proposed
a spatiotemporal deep Q network (STDQN) that processes
current and prior observations to find the optimal action.
However, the raw sensor data collected from the traffic envi-
ronment is likely very high-dimensional and contains a lot of
redundant or irrelevant information. Hence, instead of having
the observations fed directly to the network, a set of the
current and prior observations will go through a spatiotemporal
information extraction module to extract only valuable infor-
mation, which will be sent to the network. The information
extraction model consists of a long short-term memory neural
network with an attention mechanism (AttenLSTMNN) and
a graph convolution network (GCN) to encode spatial and
temporal structure in the traffic data. Valiente et al. [57]
also used DRL but focused on the robustness of AVs in a
mixed-traffic environment to different human-driven vehicle
behaviors. Furthermore, a decentralized reward function that
can promote different social value orientations (SVO), such as
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altruistic or egoistic behaviors, is used. As a result, altruistic
AVs learn to account for other vehicles’ interests safely, such
as accelerating or decelerating to allow human drivers to exit
or merge on the highway.

Enabling altruistic and cooperative actions has been another
area of focus. Toghi et al. [66], [67] simulated AVs learning
to coordinate with each other and yield to a human-driven
merging vehicle. The scenario involves a highway with mul-
tiple lanes and a merging ramp. The scenario starts with all
vehicles initialized at random positions on the highway and
a single HV on the merging ramp trying to merge into the
highway traffic. The goal is for the AVs to learn altruistic
behaviors to coordinate with each other and allow the merging
vehicle to safely merge into traffic without collisions. In
contrast, Kamran et al., [68], focuses on the problem of AV
merging in environments with multiple interacting agents such
as highways or unsignalized intersections. The key element
studied is the uncertainty in predicting whether other vehicles
will cooperatively create gaps or not. The authors simulate an
ego vehicle approaching a merge point and interacting with up
to 16 randomly behaving surrounding vehicles. Some agents
are set as cooperative, slowing down to allow merging, while
others are non-cooperative.

Some studies have concentrated on the development of
decentralized policies and interaction-aware decision making
for merging vehicles. Lin et al. [69] focused on learning fully
decentralized policies for smooth and safe merging based
on local observations. The merging problem encompasses a
rich set of scenarios, challenges, and approaches using RL
for AV control. Continued progress in areas like interaction-
aware MARL, handling complex dynamics, and testing in
realistic traffic conditions will further advance capabilities in
this critical domain. Hu et al. [37] proposed a model named
IDAS that handles negotiating and leveraging cooperation
from surrounding human drivers. The primary goals are to
enable an AV to strategically leverage human drivers’ coop-
eration and negotiate smooth merging maneuvers via multi-
agent interactions. The scenario involves the interaction of a
total of eight autonomous and human-driven vehicles. To teach
the agent general policy, various driver behaviors are used at
random - some drivers are more cooperative when merging
than others.

Finally, approaches using real traffic data have been ex-
plored. Triest et al. [40] extracted over 400 real highway
merging scenarios from the NGSIM dataset [89] to train and
test an ego vehicle. However, this mean that the surrounding
vehicles follow their recorded trajectories from the NGSIM
data without responding to the ego agent. The ego agent
must learn to safely merge into gaps between host vehicles
based on local observations of surrounding vehicles. On the
other hand, Wang et al. [60] combined LSTM (Long Short-
Term Memory) and DQN to learn optimal policies while
addressing challenges like balancing exploration/exploitation
and avoiding local optima. In particular, the authors used a
LSTM architecture to model the interactive environment and
incorporate historical driving information. The LSTM is pre-
trained in a supervised manner on real-world driving data
to represent the interactive environment. The DQN is then

trained via deep Q-learning using the simulated scenarios.
This method recognizes the importance of temporal context
in decision-making and leverages real-world driving data to
train the model. However, it should be noted that while
this approach is effective, it may introduce complexity and
computational overhead.

C. Platooning
Vehicular platooning has emerged as an essential research

topic for enabling cooperative and automated driving behav-
iors. A vehicle platoon consists of a company of coordinated
vehicles traveling together. The vehicles maintain close prox-
imity to one another in order to decrease aerodynamic friction
and increase roadway throughput. There may be both AVs
and HDVs in the platoon. Maintaining safe longitudinal and
lateral control of platoon vehicles, responding to perturba-
tions, and performing split/join maneuvers to modify platoon
composition are crucial technical challenges. If vehicles can
be controlled in a safe, seamless, and coordinated manner,
platooning has the potential to increase traffic flow stability,
improve mobility, and decrease energy consumption. This
encouraged research into RL techniques for training vehicle
controllers capable of handling the unique difficulties of pla-
toon coordination in mixed traffic.

A common scenario is a mix of AVs, controlled by a cen-
tralized RL agent, and HDVs following simple car-following
models. A major focus has been on using RL to enable
cooperative acceleration and speed control in platoons. The
human unpredictability stresses the RL agent’s ability to
handle unknown dynamics. In [64], the platoon consists of
8 vehicles, with vehicles 1, 3, 5, 7 being autonomous and
2, 4, 6, 8 being human-driven. HDVs cause randomness and
unknown dynamics for the DRL algorithm to handle. The
scenario starts with the platoon trying to catch up to the lead
vehicle, which starts much farther ahead. The goal for the
DRL agent is to learn to coordinate the AV accelerations to
help the whole platoon steadily catch up to the lead vehicle.
Lu et al. [62] developed a novel DRL algorithm, platoon
sharing deep deterministic policy gradient algorithm (PSD-
DPG), which outperformed traditional methods in smoothing
traffic flow and robustness. The PSDDPG is used to train
three different networks: the lane-changing, car-following, and
decision-making networks. So, for different networks, the
authors designed different reward functions to achieve good
cruising, overtaking, and obstacle avoidance strategies. Jiang
et al. [63] applied RL to dampen stop-and-go oscillations in
vehicle platoons by training cooperative longitudinal control
policies. The authors train RL agents using real driving data,
collected from German highways using drones, demonstrating
the applicability of RL to improve existing adaptive cruise
control systems. Quang et al. [39] investigated using RL for
autonomous lead vehicles to improve flow at intersections in
mixed traffic.

Ensuring safe and efficient coordination is another key
challenge. Zhang et al. [54] incorporated safety constraints
and spatial-temporal modeling of the environment for CAV
coordination. The authors proposed using multi-agent rein-
forcement learning (MARL) for CAVs facing problematic



8

driving scenarios in mixed traffic, such as vehicles running red
lights and sudden brakes on the highway. The authors designed
a safety shield module that uses control barrier functions and
quadratic programming to loop through all candidate actions
to check the safety of each action and mask unsafe actions.
Li et al. [38] proposed a multi-agent algorithm, CommPPO,
that uses a specialized communication protocol to avoid
common multi-agent RL issues and improve platoon energy
efficiency. Therefore, the proposed communication protocol
only transmits valuable information explicitly designed for the
leader-follower platoon topology. Also, a more explicit and
representative reward for each agent is used to avoid lazy agent
issues.

Recent work has also focused on integrated longitudinal
control combining speed regulation, spacing, and platoon
joining/leaving. Berahman et al. [65] developed a unified
DRL solution using DDPG that jointly handles speed control,
gap regulation, and split/join maneuvers in a single frame-
work. Precisely controlling vehicle platoons involves balancing
multiple objectives such as maintaining a constant speed,
fixing gaps between vehicles, and smoothly joining/leaving the
platoon. This paper formulates a multi-task DRL framework to
jointly learn all these platoon behaviors, which is first trained
using only two vehicles: the ego vehicle being controlled and
the lead vehicle in front of it. The two vehicles are spawned
with random initial speeds and inter-vehicle gaps. This small
scenario allows the agent to learn longitudinal control behav-
iors like gap regulation and speed tracking through trial-and-
error experience. After the training is complete, the controller
is then tested in a more complex situation with one lead car and
seven follower vehicles driving behind it. This larger platoon
more realistically evaluates the scalability and performance
of the trained control policy on factors like string stability,
robustness to perturbations, speed consensus among followers,
and inter-vehicle gap errors. Moving from logitudinal control
to wider platoon management, [76] proposes a hybrid deep
reinforcement learning and genetic algorithm called DRG-
SP for smart platooning AVs. The key objectives are to
intelligently control the leader AV to make optimal platooning
decisions, effectively form platoons, and maintain balanced
platoon structures. The environment is a four-lane highway
populated with AVs. Each platoon has one lead AV (captain
AV) and a number of follower AVs. Initially, some AVs are
on the highway driving individually but as the simulation
progresses, these individual AVs send join requests to the
captain AV of a platoon. The captain AV decides whether to
accept or reject these requests based on the platoons current
state. The simulation ends after sufficient time has elapsed to
evaluate the platoon management strategies.

More complex scenarios are being studied as well. Irshayyid
et al. [33] applied RL to optimize merge coordination between
platoons in a lane reduction scenario, utilizing gap generation
maneuvers. Two leader-follower formation platoons facing a
two-lane road reduction are simulated. The destination platoon
consists of ten vehicles, and the merging platoon consists of
four. The two-lane highway is to be reduced to one with
the merging platoon lane closing. The goal of the RL is to
find the optimal distance from the merging point at which

Merging platoon vehicles

Start of the reduction

Fig. 4. Two platoons facing a road reduction.

the merging vehicles should ask to perform the lane change
maneuver. When a vehicle asks to change lanes, the destination
platoon performs a gap generation operation, which will be
cooperatively performed to make a safe distance for the
merging vehicle. See Fig. 4 for more details.

IV. RL ALGORITHMS

RL has become a dominant technique for training au-
tonomous agents to optimize behaviors and policies through
trial-and-error interactions with an environment [44], [90]. The
past decade has witnessed remarkable advances in RL algo-
rithms, enabling agents to achieve superhuman performance
across complex domains like games, robotics, and autonomous
driving. This section synthesizes key developments in modern
RL algorithms based on recent research papers in this growing
field, as summarized in Table IV.

A. Deep Reinforcement Learning Algorithms

Recent research in RL for autonomous driving has explored
both single agent and multi-agent approaches. Within single
agent methods, deep Q-networks (DQN) have emerged as
a widely adopted algorithm, leveraged for tactical decision
making tasks like lane changing and merging [35], [36], [68],
[71], [73], [74]. In [35], Deep Q-Network (DQN) is used to
train two different policies: the lane-changing policy and the
car-following policy in mixed traffic. First, Q-learning is used
to estimate the Q values (expected rewards) for each state-
action pair, which are stored in a table. Then use the Q values
from the table to train neural networks to approximate the Q
function. The DQN agent in [36] learns to map traffic states to
optimal lane change actions. Actions are selected using an ϵ-
greedy, [79], approach to balance exploration and exploitation.

While adopting DQN as the core algorithm, differences exist
in the specific DQN extensions used, with papers selecting
double DQN [91], dueling DQN [92], prioritized experience
replay [93], etc. based on their needs. Some works integrate
DQN with safety mechanisms like action masking or trajectory
checks to override unsafe decisions made by the DQN policy.
As an example, in [36], the DQN outputs high-level lane
change decisions, but before executing the action, rule-based
safety checks are performed. If the DQN decision is unsafe
(will cause a collision), it is overridden. The car is forced
to stay in the current lane instead. This prevents the DQN
from choosing actions that lead to crashes which means that
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TABLE IV
STUDIES ORGANIZED BY RL ALGORITHMS

RL Algorithms References

Single Agent RL

DQN and DDQN [35], [36], [60], [68], [71], [73], [74], [78]
PPO [33], [39], [48]

DDPG [34], [58], [64], [65], [69]
Others (SAC, A2C, etc.) [40], [49], [63], [70], [75], [76]

Multi-Agent RL
Centralized training [37], [54], [62]

Decentralized training [50], [56], [57], [66], [67]
Curriculum learning [34], [37], [38], [71]

Representation learning [37], [53], [54], [60], [73]

the agent will not learn to not select unsafe actions because
these unsafe actions will not be executed. Similarly, Wang et
al. [60] proposed dividing the reinforcement learning into two
components - an LSTM network to model the interactive driv-
ing environment’s history, and a DQN for estimating Q-values
and action selection. The LSTM handles the non-Markovian
aspect and history modeling, while the DQN provides a way
to learn an optimal policy from scratch. In [73], the authors
uses DQN enhancements such as Double DQN and Dueling
DQN to improve the merging agents performance and stability.
additionally, Convolutional Neural Network (CNN) is used for
handling the image-based state space.

Other papers have explored alternative single agent RL
algorithms such as, PPO [33], [39], [48], DDPG, [34], [58],
[64], [65], [69], SAC [63], Vanilla policy gradient [49], and
A2C [40]. For instance, Szoke et al. [49] adopted a vanilla
policy gradient approach with a neural network policy repre-
sentation to learn optimal acceleration and steering on high-
ways. Policy gradient methods can directly optimize policies,
unlike value-based techniques like DQN. Meanwhile, Jiang et
al. [63] applied Soft Actor-Critic (SAC), an off-policy actor-
critic algorithm well-suited for continuous action spaces like
vehicle acceleration control. Compared to DQN, SAC provides
increased stability and sample efficiency stemming from its
focus on entropy maximization. In [39], authors propose using
PPO with an adaptive KL penalty to optimize the policy for
controlling multiple AVs at a non-signalized intersection.

B. Multi-agent reinforcement learning
Instead of having all the agents controlled by a centralized

RL policy, a multi-agent technique is used. In multi-agent
reinforcement learning (MARL), each agent, i.e., each AV,
is controlled by its own policy. There are multiple themes
to build MARL algorithms based on what the agents can
share between each other and how this shared information is
used [94]. Centralized training and a decentralized execution
scheme is often preferred in multi-agent reinforcement learn-
ing (MARL) because agents communicate and coordinate their
actions during training, but when it comes to execution, they
act independently. This can be seen as a more realistic scenario
in many real-world applications where perfect communication
is not realistic. Several papers utilize decentralized execution
with a centralized critic to enable training across agents’
experiences. Lu et al. [62] propose a novel deep reinforcement
learning algorithm named platoon sharing deep deterministic

policy gradient algorithm (PSDDPG) to overcome the problem
of low efficiency of continuous action space exploration. It
allows connected vehicles to jointly learn a shared policy
network through a centralized training process. Instead of
taking the local observations of all the vehicles as an input
and generating multiple outputs, the PSDDPG receives the
observations of the ego vehicle and its preceding vehicle and
generates only one action. simultaneously, all vehicles use the
network to get actions, and all vehicles experiences are used
to train the network. Hu et al. [37] use a centralized action-
value critic alongside decentralized value critics. Other works
focus on fully decentralized approaches which is scalable
to varying fleet sizes in contrast to decentralized execution
with a centralized critic. For instance, Chen et al. [50] and
Zhou et al. [56] employ a multi-agent advantage actor-critic
(MA2C) with shared parameters and multi-objective rewards.
Similarly, [57], the main RL method used is a multi-agent
version of the Double Deep Q-Network (DDQN). The problem
is formulated as a partially observable stochastic game (POSG)
with decentralized agents (AVs) that receive local observations
and rewards. On the other hand, Zhang et al. [54] adapt con-
strained MARL with decentralized training. Toghi et al. [66],
[67] propose a decentralized A2C variant with independent
actors and critics. Li et al. [38] present CommPPO which
adapts PPO for platoon-based multi-agent coordination. In the
CommPPO algorithm, each vehicle in the platoon is treated
as an agent that can learn and interact with the environment
and other agents. The agents share the same neural network
parameters and update them based on the collective reward
and the policy gradient method. The communication protocol
of the CommPPO consists of two parts:

• State transmission part: shares state information between
agents based on a predecessor-leader follower topology
of the platoon.

• Reward transmission part: A new reward communication
channel is proposed propagates rewards to avoid issues
like spurious rewards and lazy agents.

A key challenge in MARL is the credit assignment prob-
lem—how to allocate rewards or blame to each agent when
there are joint rewards or complex interactions. Most papers
use simple techniques like local rewards [57], [66], but this can
fail in complex cooperative settings. Hu et al. [37] employed a
counterfactual baseline in the centralized critic to address this
issue [95]. The counterfactual compares the joint Q-value to
the Q-value obtained if the agent did not take the action which
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helps calculate the agent’s contribution. Another limitation of
current MARL algorithms is the assumption of a fixed number
of agents (AVs). All of the papers discussed have a fixed
number of agents during the whole episodes for training and
evaluation. However, real-world traffic scenarios involve vary-
ing numbers of vehicles entering or leaving the environment.
The ability to handle a dynamic number of vehicles during
training and execution remains an open challenge for MARL
scaling.

C. Curriculum Learning

Curriculum learning is an important technique used in
several papers to improve the training process and performance
of RL agents for autonomous driving. For instance, in Bouton
et al. [71], curriculum learning is implemented by gradually
exposing the DQN agent to more sophisticated and diverse
driving behaviors. Training begins against simple rule-based
drivers at lower levels of reasoned decision making. As train-
ing progresses, higher level-k opponents with more complex
learned policies are introduced to increase task difficulty and
variability. This continuation method provides a smoother task
progression for the agent to master. Li et al., [38], also leverage
curriculum learning for their multi-agent platoon coordination
task. They begin training with small platoon sizes of just 2-
3 vehicles and incrementally increase the platoon length as
training advances. This prevents initial collisions that could
occur with large platoons and allows for an easier-to-harder
task curriculum. In contrast, in [37], the curriculum learning
is employed when designing the reward function. The agent
started with individual rewards before adding multi-agent
joint rewards. Additionally, Wang et al., [34], take a similar
approach by splitting training into two stages. First, an easy
lane keeping task is learned. Once the agent can reliably
perform lane following, the harder lane changing skills are
trained on top of those basics. The platform skills learned
in early curricula lead to faster training on more complex
tasks. Curriculum learning has several benefits for RL-based
autonomous driving:

• Smoother task progression prevents the agent from get-
ting overwhelmed early on

• Platform skills in early curricula accelerate later training
stages

• Gradual exposure allows for unsafe exploratory actions
to be filtered

• Shaping the task difficulty aids credit assignment in
multi-agent settings

The schedule and implementation of curriculum learning
remains an open research area. Adaptive curricula based on
agent progress seem promising. Overall, curriculum learning
is an effective technique for managing the training process of
RL driving agents.

D. Representation Learning

Existing state-of-the-art RL algorithms still require millions
of training examples in order to learn a decent or near-optimal
policy for completing a given task. This plays a notably critical

role in real-world implementations in industries, whether in
robotics or other complex optimization problems related to
decision-making or optimal control. In DRL, the agent’s policy
directly maps sensory input to action, requiring simultaneous
learning of representation and control. Learning useful repre-
sentations is key for AD, as raw sensor inputs like camera
images are high-dimensional and unstructured [96].

A common approach is to manually extract features like
distances to lane markings, surrounding vehicles, speed, etc.
based on domain knowledge of useful driving information
[33], [35], [38], [39], [48]–[50], [52], [75]. Using engineered
features can make it easier for the RL agent to learn by
reducing the state dimensionality and simplifying the manually
specified domain knowledge. However, this requires significant
feature engineering effort and may miss useful patterns that
could be automatically learned from raw data. It limits the
system to what humans can manually identify as relevant.
Once the features are extracted, conventional fully connected
neural networks are commonly used to represent the policy
and value functions [49], [64].

On the other hand, papers like [54] propose using graph neu-
ral networks (GNNs) to encode spatial relationships between
vehicles and extract structured state representations. GNNs
can capture complex dependencies better than fully-connected
layers [97]. Also, convolutional neural networks (CNNs) are
widely adopted to process visual inputs and extract hierarchi-
cal spatial features [37], [73]. This takes advantage of CNNs
abilities for translation invariance and local connectivity. At-
tention mechanisms are being increasingly incorporated [53] to
focus neural networks on relevant parts of the observation for
decision making, as opposed to treating all inputs uniformly.

Lastly, recent works propose decoupling representation
learning completely from policy learning for reinforcement
learning agents by using a trained external module to extract
key features that will then be fed to the RL agent. For instance,
[60], uses real-world driving data (video of a bird’s eye view of
the highway merge) to train the LSTM module, in a supervised
learning fashion, to process sequential observations and extract
relevant historical driving context.

V. ACTION SPACE

The research papers examined in this review employed
a variety of action spaces, as summarized in Table V, to
train RL agents for AD tasks like lane changing, merging,
car following, and platoon coordination. In particular, the RL
actions can be either continuous or discrete, or both, and can
include safety modules to ensure the safety during RL training.

The choice of action space plays an important role in
determining the flexibility and performance of the trained
agent. A key distinction is between continuous and discrete
action spaces. Continuous action spaces allow fine-grained
control over vehicle actuators like steering angle and ac-
celeration/deceleration [99]. This supports smoother driving
behavior. However, continuous spaces can be more challenging
to learn due to their high dimensionality [100]. Discrete action
spaces, on the other hand, simplify the learning problem but
reduce control flexibility [101]. Hybrid approaches combining
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TABLE V
STUDIES ORGANIZED BY THE ACTION SPACE USED

Reference Action Type Number of Actions Safety Mechanism
[48] Discrete 6 Safety Intervention Module [98]
[49] Discrete 9 None
[39] Continuous 1 None
[38] Continuous 1 DRAC
[50] Discrete 5 Novel priority-based safety supervisor
[52] Discrete 5 None
[53] Discrete 3 None
[54] Discrete 5 Control barrier function
[56] Discrete 5 None
[57] Discrete 5 Time-to-collision (TTC)
[58] Continuous 2 None

[35]
Binary 1 None

Discrete 6 None
[60] Continuous 2 None
[34] Continuous 1 None
[36] Discrete 3 Rule-based constraints
[61] Continuous 1 VISSIM basic safety constraints

[62]
Continuous 2 None

Discrete 3 None
[63] Continuous 1 None
[64] Continuous 1 None
[65] Continuous 1 None
[66] Discrete 5 None
[67] Discrete 5 None
[68] Discrete 3 MPC constraints
[37] Discrete 7 Masking
[40] Discrete 4 Low-level controller constraints
[69] Continuous 1 None
[70] Continuous 2 Finite state machine (FSM)
[71] Discrete 5 Intelligent Driver Model (IDM)
[73] Discrete 3 None
[74] Discrete 7 None
[33] Binary 4 None

[75]
Discrete 5 None
Discrete 25 None

[78] Discrete 5 Human decision-making model

both continuous and discrete actions are a useful compromise,
with discrete actions for high-level decisions and continuous
actions for lower-level control.

A. Continuous Action Spaces

Several studies utilized continuous action spaces directly
controlling longitudinal acceleration and lateral steering angle
[60], [69], [70]. This enables precise vehicle control for
maneuvers like merging and lane changing. However, directly
outputting raw control values from the policy network can
result in jerky trajectories. Constraining the maximum per-
timestep change in acceleration and steering helps smooth the
motion [70]. In contrast, [34] used a continuous action of
the derivative of the yaw rate only, which is referred to as
the yaw acceleration, to perform lane change maneuvers. But
directly controlling accelerations and steering angles requires
extensive training data and tuning to ensure safety. In [62],

continuous actions are used for throttle/braking and steering
control, while discrete actions are used for high-level decision
making like lane changes. For all networks, a hyperbolic
tangent activation is used to map the output to the interval
of [−1, 1]. For the car-following network, to get independent
control of acceleration and deceleration, the output interval is
divided into two subintervals [-1, 0] and [0, 1], where throttle
values range from 0 to 1 and brake values range from -1 to
0. For the lane-changing network, the network output directly
mapps to the steering angle using the tanh activation, ranging
from -1 to 1 (full left to full right steering). For the decision
making network, the output is divided into 3 discrete actions:
[−1,−0.5] for left lane change, [−0.5, 0.5] for no lane change,
and [0.5, 1] for right lane change.

In [39], the RL agent only controls the acceleration of
AVs to be within a specific range of maximum deceleration
and maximum acceleration values. In contrast, [38] used a
continuous action space between -3 m/s2 and 3 m/s2 for
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acceleration. Similarly, in [58], a continuous action space was
employed that enables control over both the steering wheel
angle and the longitudinal speed of the vehicle, which are
essential for executing lane-changing maneuvers. The use of
a continuous action space allows for more delicate actions to
ensure safety and comfort while driving. In [63], [65], the
action taken by the RL agents is the (continuous) acceleration
and deceleration of the ego vehicle, with bounds on the max-
imum acceleration and deceleration. For example, [63] uses
[−3 m/s2, 2 m/s2] while [65] uses [3.5 m/s2,−3.5 m/s2].
These range reflects the realistic acceleration capabilities of
regular passenger vehicles. The objective of the RL agent is
to smoothly regulate the ego vehicle’s speed and dampen any
oscillations propagated from the lead vehicle(s) by choosing
appropriate accelerations.

B. Discrete Action Space

Many works selected discrete speed control actions that are
converted to smooth accelerations by lower-level controllers
[33], [73], [74], [78]. This simplifies learning compared to
directly outputting accelerations, while maintaining adequate
control over speed changes for tasks like cooperative merging.
However, having only a few discrete speed options reduces
flexibility. In the research conducted by [48], the action space
is composed of six discrete actions categorized into longi-
tudinal and lateral control. The longitudinal control includes
following the current lane leader or the target lane leader, while
the lateral control includes lane keeping, changing lane, and
aborting the lane change. Each action affects the ego vehicle’s
speed and direction, resulting in six possible actions in the
action space. In a similar study conducted by [49], the action
space that controls the ego vehicle’s acceleration and steering
is described. Each action at every time step is defined by
two values: steering angle and acceleration, both of which are
discretized into three possible values each, resulting in nine
possible discrete combinations of steering and acceleration.

In many scenarios, the actions naturally correspond to
high-level tactical maneuvers like lane changes, while relying
on lower-level motion planners to execute the actions [33],
[40], [50], [67]. This simplifies the policy learning problem.
However, performance depends heavily on the capabilities of
the downstream planner. If the planner cannot closely follow
the high-level policy, the end-to-end behavior will suffer. In
[67], the paper defines a high-level, discrete action space for
each AV. The action space consists of the following:

• Lane change left: Move the AV left to the adjacent lane
• Lane change right: Move the AV right to the adjacent

lane
• Accelerate: Increase the AVs speed
• Decelerate: Decrease the AVs speed
• Cruise: Do not change the AVs lane or speed
See Fig. 5 for more details. In [50], [56], the action space

consists of high-level discrete actions, such as turn left, turn
right, cruising, speed up, and slow down, that control both
lateral and longitudinal vehicle dynamics. Similarly, in [53],
high-level discrete actions, such as keep straight, turn left,
and turn right, are used. In a similar manner, Wang et al.,

[35], employed high-level discrete actions for the lane change
scenario, allowing the vehicle to choose between merging or
staying in the same lane. In [54], the authors also employ
high-level discrete actions, such as keep lane speed, change
lane left, change lane right, brake, and a specified number of
discretized throttle intervals. High level action space is also
used for platoon coordination management, [76] used a high
level action space taken by the captain AV which include
accepting/rejecting requests from AVs to join the platoon.
Lastly, in [57], [78], high-level discrete actions such as change
to the right lane, change to the left lane, accelerate, decelerate,
and idle are used. The agent in [36], has a relatively simple
action space, with only three discrete actions: stay in the
current lane, change lanes to the left, and change lanes to
the right. Low-level steering and acceleration are not directly
controllable. The agent only makes a high-level decision about
whether to stay or change lanes to the left or right. Similarly,
[75] set the action space to be a set of accelerations for
the each controlled vehicle. Which is discretized into five
values: high-decelerate, decelerate, no-decelerate, accelerate,
high accelerate. For the multi-agent setting, the Cartesian
product of the ego and traffic vehicle accelerations. The simple
discrete action space reduces the complexity of the control
problem for the DQN. In [68], the action space for the RL
agent consists of high-level maneuver decisions that specify
the operating mode for the lower-level motion planner. The
available actions are: progressive give-way, defensive give-
way, and cooperative give-way These actions correspond to
different parameterized versions of the safe give-way maneu-
ver that the model predictive control (MPC) planner executes.
The progressive option drives faster to increase chances of
merging, defensive stops more conservatively, and cooperative
cruises to gather more information. In [71], the action space
consists of discrete longitudinal and lateral actions, making
six total discrete actions. Longitudinally, the action space
consists of three different speeds {0 m/s, 3 m/s, 5 m/s}.
The longitudinal action is then converted into a continuous
acceleration using the Intelligent Driver Model (IDM). For
the lateral part, the agent chooses between staying in the lane
and changing lanes. The lateral action triggers a proportional-
derivative (PD) controller to execute the lane change.

For platoon coordination, high-level actions like gap genera-
tion and role re-assignment allow training cooperative merging
policies [33], but require efficient platoon maneuvers from the
lower-level controllers. Some works avoided low-level vehicle
control entirely, instead using actions to set parameters of car-
following models that generate controls autonomously [64].
In [64], the action taken by the DRL agent is setting the full-
speed headway parameter for each AV. In other words, rather
than directly controlling accelerations, the DRL agent sets the
headway distance parameter in the optimal velocity model
(OVM) of each AV. Lower headway parameters lead to higher
accelerations, and vice versa. The OVM model then converts
the headway parameter to a corresponding acceleration control
signal for that vehicle. So the action is a vector of continuous
headway parameter values, one for each AV. The headway
parameter values are bounded between 10-60m based on
reasonable driving headways.
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Fig. 5. High level action space.

Overall, direct continuous control enables highly flexible
policies at the cost of complex training. Discrete and high-
level actions simplify learning but constrain policies. Hybrid
action spaces help balance flexibility and tractability.

C. Safety Modules

Most of the papers focus on incorporating safety through
careful design of the reward function without using a separate
safety module. That is, when the agent chooses an unsafe
action, a negative reward is applied to decrease the likeli-
hood of choosing this action at the current state, discussed
in Section VII. Other studies handle safety through basic
constraints enforcement by the simulating the environment
during training [61], [71], or by designing and employing
a separate module to classify and override unsafe actions
[36], [38], [50], [54], [56], [58], [68], [70]. While the specific
implementations differ, some key themes emerge in how these
modules shape the action spaces of the RL agents. A common
technique is using the safety module as a filter on the policy’s
outputs before execution. Ye et al. [48] and Hwang et al.
[70] evaluate candidate actions and replace unsafe ones with
safer alternatives. Hwang et al. uses a finite-state machine
(FSM) that determines the high-level driving phase of the
AV based on the risks associated with nearby vehicles. The
FSM consists of four phases: Ready, Approach, Negotiation,
and Lane-change. Each phase has a rule-based controller that
ensures safety by calculating the minimum safe distances and
times-to-collision with the surrounding vehicles. This restricts
the action space by only allowing the subset of actions deemed
safe by the module. This study, [50], proposed a priority-based
safety supervisor approach to improve the safety of the MARL
algorithm for CAVs during highway merging operations. The
primary concept is the allocation of a priority index, denoted
as pi, to each CAV. This index is determined based on factors
such as the CAV’s position, distance from the merging point,
and headway time. The priority index of the ith CAV can be

expressed as follows:

pi = α1pm + α2pd + α3ph + wi, (2)

where, pm, pd,and ph represent the merging lane priority,
distance priority, and time headway priority, respectively. α1,
α2, and α3 are the tuning weights of each priority metric.
The variable wi is assigned a modest random value in order
to prevent the occurrence of identical priority indices. During
each time step, the CAVs are arranged in a list denoted as
Pt based on their priority index. Beginning with the top
CAV denoted as Pt[0], its exploratory action is evaluated by
making predictions about the future movements of the CAV
itself as well as the surrounding vehicles over the subsequent
Tn time steps. In the event that a collision is detected,
the risky action is substituted with the action that ensures
the highest level of safety, determined by maximizing the
minimum anticipated safety distance. The process continues
sequentially along Pt by checking lower priority CAVs while
using updated motions for higher priority ones. By prioritizing
vehicles with lower safety margins, this scheme significantly
improves safety and learning efficiency. The prediction horizon
Tn allows foresighted decisions but should be tuned to balance
efficiency and uncertainty.

In contrast, Hu et al. [58] embed safety directly into the
policy network through masking or priority-based coordi-
nation. This paper uses masking mechanisms in the policy
network to prevent the RL agent from taking unsafe actions
that would violate kinematics constraints, speed limits, or safe
distances. Similarly, [38] uses the deceleration rate required
to avoid a crash (DRAC) to calculate the Maximum Conflict
Acceleration (MCA). If the DRAC between a CAV and its
predecessor exceeds a threshold, indicating a crash risk, the
CAV’s acceleration is limited to MCA to avoid the crash.
While more scalable without a separate execution module,
directly altering policy outputs may distort learning and con-
strain the original task. The action space representation also
impacts integration of safety. Zhou et al. [56] and Kamran et
al. [68] use discrete action spaces of high-level maneuvers,
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simplifying safety evaluations but reducing control precision.
The safety module is composed of two parts: a trajectory
planning module with hard constraints and a safety supervisor.
The trajectory planning module ensures that the AVs follow
a safe and feasible trajectory that satisfies the physical and
environmental constraints. The safety supervisor monitors the
actions of the AVs and intervenes if they violate the safety
rules or cause collisions. The safety module works together
with the policy, which is learned by reinforcement learning,
to achieve safe and comfortable driving behaviors.

Authors in [36] propose a rule-based constraint module to
ensure the safety of the lane change decisions. Specifically,
after the DQN agent chooses a high-level lane change action,
the controller predicts the trajectories of the ego vehicle and
surrounding vehicles based on this action. If the predicted
distance between the ego vehicle and a surrounding vehicle
drops below a predefined safe threshold at any time, the lane
change decision is deemed unsafe and overruled - the ego
vehicle stays in the current lane. One of the limitations is
that it relies on accurate trajectory prediction, which may be
difficult with complex real-world dynamics. In the same vein,
[78] use regret theory to model human drivers lane-changing
behavior. This model is integrated with the RL agent to assess
safety implications of the predicted actions of the agent. A
key limitation is that only one drivers behavior is used to
train and validate the model. In contrast, [54] uses a parallel
safety module based on control barrier functions (CBFs),
[102], to constrain their multi-agent A2C policy learning.
For each candidate action, the CBF safety check solves a
quadratic program to find a control input that keeps the system
safe with respect to inter-vehicle distance thresholds. If no
feasible solution exists, the action is classified unsafe. This
provides formal safety guarantees based on control theory,
avoiding reliance on accurate modeling. However, constructing
appropriate CBFs can be nontrivial for complex systems.

VI. STATE SPACE

This section discusses the state space setups adopted in
literature, which are also summarized in Table VI.

In RL, the state space plays a crucial role in determining
the behavior of agents. The state space determines what infor-
mation the agent receives about the environment to determine
its actions. The state space should be able to describe the
important properties of the environment at the current time
step. A well-designed state space in RL should be compact,
expressive, and general [103], [104]. It should be minimal and
only include the most important information needed for the
task to enable efficient learning while still containing enough
expressive detail to capture key dynamics and constraints for
good decision-making. The state representation should focus
on general features of the environment (rather than specifics)
to generalize learned behaviors to new situations. In various
studies in the field of vehicle automation, different approaches
have been taken to define the state space. The most common
design choice is to include the ego vehicle kinematics, such
as longitudinal and lateral position, velocity, acceleration, and
heading angle [38], [39], [48], [49], [64], [65]. This provides

Fig. 6. Limited vs extensive surrounding vehicle detection ranges. Where d
represents the detection range of the AV.

the most important information needed for motion planning
and control. The majority of papers also incorporate data
on surrounding vehicles, ranging from just the immediately
adjacent vehicles [39], [65], [75] to more extensive context
including multiple lead and follow vehicles [48], [49], [53],
[63], [64]. See Fig. 6. More information about the environment
makes it easier to predict and respond to other vehicles
behavior, but it also increases the complexity of the state space.

A. State Information from Surrounding Vehicles

The number of surrounding vehicles that are included into
state space differs significantly, ranging from just lead and
follow vehicles to up to eight neighbors in [39], [65], [78]
and [64], [71], respectively. More information on surrounding
vehicles enhances the environmental context for decision-
making, but exponentially expands the state space and in-
creases the training difficulty. Some studies explicitly examine
trade-offs between state vector dimensionality and learning
efficacy [63]. Another difference is the incorporation of road
geometry details, like lane curvature, to improve generalization
[34], [76].

Most of the papers reviewed here have explored state space
representations based on ego vehicle kinematics and surround-
ing vehicle information, seeking to balance compactness and
expressiveness. An emerging alternative approach encodes a
local overhead perspective of the environment surrounding
the ego vehicle in grid or image form. This representation
provides useful traffic context for decision-making while lever-
aging the power of deep learning methods like convolutional
neural networks. Wang et al., [36], designed a grid encoding
positions and speeds of nearby vehicles to support lane change
behaviors. Additionally, in [53], an occupancy matrix that
captures the spatial relationships among the vehicles and traffic
information such as volume and density are included in the
network. Meanwhile, Nishitani et al., [73], used time-series
grayscale images to capture vehicle dynamics and road geom-
etry from a first-person visual perspective. In [50], [56], the
authors took a hybrid approach, combining binary occupancy
maps with relative vehicle positions and speeds processed
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TABLE VI
STUDIES ORGANIZED BY STATE SPACE SCHEME USED

Reference Current
time step Temporal Real world

data
Extraction

module
Row sensor

data Surrounding vehicles

[48] ✓ 4 vehicles (leaders and followers at current and target lanes)
[49] ✓ 8 (all adjacent) vehicles
[39] ✓ 2 (immediately preceding and following) vehicles
[38] ✓ 2 (predecessor, and platoon leader) vehicles
[50] ✓ Nearest five Vehicles within 150 m
[52] ✓ Vehicles that are on the highway and on the merge ramp

[53] ✓
All surrounding vehicles

within 20-60 m
[54] ✓ ✓ 3-5 CAV vehicles
[56] ✓ All detected vehicles
[57] ✓ All detected vehicles
[58] ✓ All detected vehicles
[35] ✓ 3 (left, right, front)
[60] ✓ ✓ 2 (front, rear)
[34] ✓ immediate surrounding vehicles
[36] ✓ Vehicles within 60 m in front and 30 m rear

[61] ✓
3 (lead vehicle on current lane, and

(lead and lag) vehicles in target lane)
[62] ✓ ✓ Front vehicle
[63] ✓ 2 (front, rear) vehicles
[64] ✓ All vehicles within its V2V communication range
[65] ✓ Immediate preceding vehicle
[66] ✓ All vehicles within its V2V communication range
[67] ✓ All detected vehicles
[68] ✓ ✓ 16 vehicles
[37] ✓ All vehicles within 100m in front and behind
[40] ✓ ✓ 4 ( 2 front and 2 rear) vehicles
[69] ✓ 5 (2 leading, 2 following, and merging vehicle) vehicles
[70] ✓ 4 (leading, lagging, front-of-leading, and front) vehicles
[71] ✓ The 8 closest vehicles within 30m
[73] ✓ ✓ All vehicles on the on-ramp

[74] ✓ ✓
4 (front of ego, behind merge point, front and rear of ego

vehicle’s projection on main lane)
[33] ✓ 10 (destination platoon vehicles)
[75] ✓ 1 vehicle
[76] ✓ All AVs
[76] ✓ 4 (two front, two rear) vehicles

separately. Though distinct from the previous egocentric rep-
resentations, these local overhead view techniques share the
goal of supplying key environmental state information to
guide the learning agent. Both egocentric and allocentric
representations have respective strengths in enabling efficient
reinforcement learning in AVs. The state space consists of four
key observations that provide the necessary context for the ego
vehicle to learn effective driving actions in a platoon system:

• d(i−1,i),k: The actual longitudinal distance between the
ego vehicle i and its preceding vehicle i− 1 at time step
k.

• ei,k: The gap error between the desired gap distance dd
and the actual gap distance d(i−1,i),k. This lets the agent
know how far off it is from the target gap distance:

ei,k = d(i−1,i),k − L− dd, (3)

where L is the length of each vehicle.
• vi,k: The current speed of the ego vehicle i.

• vi−1,k: The current speed of the preceding vehicle i− 1.
This allows the agent to observe the velocity of the lead
vehicle it is following.

Together, these four components give the core state space
that provides the necessary observational context about gaps,
speeds and gap errors for the agent to learn effective accel-
eration actions. The gap error ei,k in particular gives a clear
feedback signal to the agent about how well it is tracking the
desired gap. The use of the preceding vehicle’s speed vi−1,k

helps the follower learn to match velocities with its leader.
While most papers choose for an egocentric representation

from the perspective of the ego vehicle, a few adopt a
more global view encoding the entire system state [33], [64]
or the relative positions of all agents [37]. This facilitates
the modeling of multi-agent interactions, but it may restrict
scalability. To explicitly model inter-agent cooperation, some
consider augmenting the state variables with non-physical data
such as priority levels [37] or collaboration indications [74].
In [74], two distinct observation areas were used. In the
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first area, the ego vehicle can only detect the longitudinal
position and speed of four adjacent vehicles. In the second
experiment, the ego vehicle, on the other hand, can completely
perceive the state of the surrounding vehicles, the distance
to the merging point, longitudinal velocity, acceleration, and
cooperation level all correspond to a vehicle’s state. The
essential distinction here is the collaboration level, denoted
as c, which is represented by a binary value. When c = 1,
the driver cooperates fully and yields to allow the merging
vehicle to enter. When c = 0, the driver fully ignores the
merging vehicle and follows conventional IDM [105].

B. End-to-end State Space

The direct use of raw sensor streams like cameras, LiDAR,
and radar as the RL state representation provides both benefits
and challenges. On the positive side, this retains maximum
real-world details about the driving environment. Sensor data
captures rich information on road users, geometry, and dy-
namics that is otherwise lost with engineered abstractions. For
instance, image frames can encode semantic entities like road
signs, lane markings, pedestrians, etc. that are not present in
simplified state variables [106].

However, using raw data for RL in AVs presents a number
of challenges. First, the volume of high-dimensional signals
poses a risk of overwhelming the RL algorithm with excessive
noise and irrelevant details, which may slow down the learning
process [107]. For instance, the majority of pixel values in
LIDAR point clouds or camera frames contain no valuable in-
formation. Second, the native low-level sensor representations
require additional steps to derive the meaningful features and
abstractions required for decision making [108]. This increases
engineering time and computing costs. Thirdly, interactions
and dynamics are not explicitly modeled, so the agent must
infer them from observations [109]. Lastly, platform-specific
sensor differences complicate the transmission of policies.
Several papers, such as Nishitani et al. [73] and Zhang et
al. [54], have chosen to represent the state space using raw
sensor data. Nishitani et al. utilize grayscale images to provide
information about the road environment and the dynamics
of surrounding vehicles. These images encode the positions,
dynamics, and road shape, offering a rich state representation.
In contrast, Hu et al. [58] employ a more minimalist approach
by defining the state space using relative distances obtained
from a single LiDAR sensor. This reduced representation still
proves effective for various driving tasks, emphasizing the
adaptability of state-space design in autonomous driving.

Overall, end-to-end RL from raw data remains an open
challenge. While methods like deep CNNs show promise
for processing high-dimensional inputs [110]–[112], more re-
search is needed on efficiently learning core abstractions from
sensor streams for sample-efficient RL. Hybrid approaches that
combine learned feature extraction with structured representa-
tions may provide a promising direction.

C. Temporal Information

Some recent papers have explored encoding temporal con-
text and history into the state space for reinforcement learning

in autonomous driving. Kamran et al. [68] used a k-Markov
approximation to include previous observations over several
seconds, finding performance benefits with 2.4s of historical
data. The authors of [62], [70] tailor their state representa-
tion to different control tasks by using multiple frames of
states, providing valuable time sequence information. Other
studies [57], [66], [67] use Velocity-maps history that capture
successive observations to incorporate temporal information
into the state space. Meanwhile, Wang et al., [53], incorporate
both spatial and temporal information, including the speed
and position of CAVs and HDVs over multiple time steps. In
[73], image-based state representation was chosen to provide
the agent with sufficient information. The state input is three
grayscale images, 80 x 256 pixels, showing the road area,
including the on-ramp and first lane of the main-lane. The
images cover the current time as well as 0.5 and 1.0 seconds
in the past, which provides information on the dynamics of
the vehicles.

However, determining the optimal history length is chal-
lenging - too short loses valuable context while too long risks
overwhelming the model. Careful engineering or architecture
search is needed to balance efficiency and performance [113].
To address the complexity of temporal data, extraction mod-
ules have been proposed to distill historical information into
useful state representations. For instance, Wang et al. [60] used
a LSTM encoder trained in a supervised manner to summarize
interactive driving dynamics from raw trajectory data. Simi-
larly, in [54], a GCN-Transformer module is used to utilize ego
vehicle observation, shared observations, and infrastructure
observations to generate a spatial-temporal representation of
the environment. These learned extraction models aim to
automatically determine the most relevant temporal signals,
reducing manual feature engineering [114].

However, challenges remain in constrained training of ex-
tractors and ensuring the distilled states sufficiently capture
all critical environmental details [115]. Architectural choices
introduce implicit biases that may overlook important signals.
More research is needed into unsupervised state extraction di-
rectly optimized for downstream policy performance. Overall,
temporal representations and extraction modules show promise
but require further analysis on their impact to sample efficiency
and generalizability.

VII. REWARD

The design of the reward function is a critical component
in RL for AV applications. The summary of research papers
highlights the variety of approaches taken to formulate rewards
that balance key objectives such as safety, efficiency, comfort,
and goal achievement. This section compares and contrasts the
reward design of several papers that apply RL to autonomous
cooperative driving tasks, such as lane changing, merging,
intersection crossing, and traffic oscillation, with special atten-
tion assigned to the following four aspects: safety, efficiency,
comfort, and adaptability, as summarized in Table VII.

A. Safety
Safety is a paramount concern for AV, and it involves

avoiding collisions or near-collisions with other vehicles or
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TABLE VII
STUDIES ORGANIZED BY REWARD FUNCTIONS

Rewards References

Safety
Speed-based penalty [38], [65], [70]

Distance penalty [33], [35], [50], [54], [58], [60], [62], [78]
Action-based penalty [39], [48], [50], [53], [54], [56], [67]

Efficiency
Speed-based [33], [36], [38], [40], [48]–[50], [56], [58], [60], [63], [70], [78]
Social utility [37], [39], [53], [54], [57], [67], [74]

Position-based or maneuver-based [37], [40], [68], [69], [71], [73], [73]

Comfort

Jerk minimization [33], [38], [48], [58], [65], [68]–[70], [75]
Control inputs smoothing [34], [53], [70]
Speed/distance tracking [38], [49], [62], [78]

Supplementary techniques [68], [70]
Adaptability [57]

obstacles. Most of the papers reviewed here include some form
of safety reward or penalty in their reward functions. However,
the scale of these penalties varies. Some impose only minor
penalties for collisions [40], [69], [71], [74], while others
treat any collision as a terminating state with a large negative
reward [63]–[65]. Similarly, [49] uses a negative terminating
reward for encountering terminating events such as collisions
or leaving the road. The safety reward can be represented as
follows:

rt(a, st) = −100× (1− I(E)), (4)

where I(E) represents the indicator function of the event
E that the agent has reached at the end. I(E) of reaching
terminating event (collision) is 0 and the reward is -100.
Otherwise, if E has reached the end of the episode (without
terminating earlier), I(E) is 0 and the reward is 0. Conversely,
in [33], a large penalty is applied if the merging platoon
gets too close to the start of the road reduction but with
no termination. A more sophisticated way of calculating the
safety penalty is used in Ref. [38]. Authors uses a risk
measure based on the Deceleration Rate to Avoid a Crash
(DRAC), which penalizes the agent if it exceeds a maximum
available deceleration rate (MADR), as well as a penalty for
exceeding acceleration limits. The safety reward is represented
as follows:

r =

−
(

a
amax

)2

− 1, if gap > Lthreshold or a > aconflict

−
(

a
amax

)2

, else
,

(5)
where gap is the headway distance of the ego vehicle, and
amax is the acceleration bound.

On the other hand, [70] uses time to collision with a four
seconds threshold to determine what is considered unsafe.
Similarly, in [35], the reward design encourages CAVs to
change lanes safely. It takes into account two important
factors: the presence of other vehicles in the adjacent lane
and the availability of future driving space. If there are no
other vehicles in the same position on the adjacent lane, the
reward function assigns a positive reward, encouraging the
CAV to change lanes safely. If other vehicles are present,
a higher penalty is imposed to discourage lane changes that
would cause significant interference. The reward function also

takes into account the longitudinal distance between the target
vehicle and the vehicle in front of the selected lane, as well
as the distance traveled by the vehicle in a future time step.

Similarly, [65] penalizes unsafe speed differences between
vehicles to prevent collisions and oscillations. In [48], the
safety objective is also evaluated by the risk of collisions
or near-collisions. Ref. [39] penalizes collisions with other
vehicles or pedestrians, while [50], [56] penalize collisions
with other vehicles or lane boundaries. Frequent lane changes
is penalized in [53], [67], as they are associated with higher
risks. Ref. [54] penalizes getting too close to other vehicles,
while [58] incorporates collision avoidance and different ex-
pected lane-changing distances in its reward function. Ref.
[60] considers actions such as large acceleration/deceleration,
small distance to surrounding vehicles, and low speed under
free flow conditions as unsafe actions and therefore incur
large negative rewards. Similarly, [50], [54], [56] penalize
collisions and reward safe headway time between vehicles.
Specifically, a large weighting factor wc is applied for the
collision evaluation and a logarithmic function of the time
headway is used to measure the safety margin between ve-
hicles, where a predefined time headway threshold is used
to avoid penalizing vehicles that maintain a safe distance.
Ref. [62] employs a nonlinear function that heavily penalizes
collisions but provides an incentive for maintaining sufficient
yet not excessive headway distance. This balances the trade-
off between safety and traffic flow efficiency. Finally, in [68],
safety is handled implicitly by the lower-level motion planning
layer.

B. Efficiency

Efficiency is another important objective that is incorporated
in many reward functions for autonomous driving. Efficiency
generally refers to making progress towards the driving goal
in a timely manner without excessive delays. Some papers
directly reward higher speeds to encourage efficiency. For
example, [53], [54], [58], [60] include components in their
reward function that reward higher speeds of the ego vehicle.
[38] penalizes the agent for having low speeds to avoid
inefficient low-speed driving states. Similarly, [49], [63] uses
an immediate reward based on the difference between the
agent’s current and desired speeds.
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Other papers focus on making progress towards a predefined
goal position or completing the maneuver itself. For example,
[37], [68], [69], [71], [73] provide positive rewards for success-
fully completing the merging maneuver. Ref. [40] rewards for-
ward progress along the road, while [33] investigates rewards
based on minimizing time to complete the merge. In [73], the
reward is only provided when the ego vehicle completes the
merge onto the main lane. In other words, no intermediate
reward is given during the merging process. Some papers also
consider efficiency more holistically, looking at the traffic flow
overall [37].

For instance, [39] aims to maximize the average speed of all
vehicles at the intersection, while [54] rewards maximizing the
average speed of all CAVs. A social reward is included in [67]
that accumulates the progress of all vehicles, while [74] uses
a time penalty factor to incentivize reaching the goal position
quickly. Similarly, [53] rewards maximizing the velocity of
both CAVs and HDVs. Ref. [57] rewards optimizing social
utility, which involves cooperation among AVs to achieve
socially desirable outcomes. The reward of vehicle, i, can be
defined as

Ri(s, a) = cos(ϕ)× rego
i + sin(ϕ)× rsocial

i , (6)

where rego
i is the specific reward of the AV (egoistic) and rsocial

i

is the overall reward of other vehicles (social) in relation to
the ith. The distance traveled or time taken to reach the goal
position is also used as a measure of efficiency in some works.
Ref. [48] uses a reward function based on travel time and
distance to the target lane, and [36] rewards driving as fast as
possible down the highway. Finally, [70] rewards reducing the
time taken to approach the target lane center, while [50], [56]
reward reaching the target lane within a given time horizon.

By incorporating various efficiency-related rewards and
penalties, each formulation above aims to obtain the right
balance between making timely progress and other objectives
like safety and comfort. The weights given to the efficiency
components allow tuning this trade-off as per the needs of the
specific scenario.

C. Comfort

Comfort is a key criterion that needs to be optimized in
AV to provide a smooth and pleasant riding experience for
passengers. Several papers approach this in different ways
through their reward function formulation, as detailed below.

a) Jerk minimization: A common technique is to
penalize large jerks and sudden changes in accelera-
tions/decelerations. This helps avoid abrupt starts and stops
that reduce comfort. For example, [33], [38], [48], [65], [68]–
[70] impose absolute or squared penalties on the magnitude
of jerk. In particular, [68] filters out jerks above a threshold
so only large uncomfortable jerks are penalized, while [38]
penalizes exceeding acceleration limits. [48] uses a comfort
objective evaluated by the jerk in lateral and longitudinal
directions, while, Ref. [58] penalizes minimizing the angular
velocity of the steering wheel and jerk, represented as:

Rcomfort = kw × θ̇w + ka × j, (7)

where j represents the jerk, θ̇w is the angular velocity of the
steering wheel of the agent, and kw and ka are the weight
coefficients.

b) Smooth control inputs: Maintaining smooth steering
and throttle/braking control is also important. In this regard,
[34] punishes large yaw rate and yaw acceleration for smooth
lane changes,

rs = −w1 × |ωyaw| − w2 × |alat|, (8)

where ωyaw represents the yaw rate, the alat is the yaw
acceleration, and w1 and w2 are the weight coefficients. while
[70] penalizes large angular speeds of the steering wheel.
Finally, [53] also penalizes acceleration, deceleration, and jerk
that exceed a threshold.

c) Speed and distance regulation: Comfortable speed
control and maintaining safe distances from other vehicles
helps avoid sudden braking scenarios. To achieve this goal,
[49] rewards speed tracking accuracy, while [38] penalizes
going slower than acceptable speeds. Similarly, [62] rewards
matching lead vehicle speed when headway is large. It also
uses a nonlinear headway reward that incentivizes sufficient
but not excessive distance between vehicles. The reward can
be described as follows:

Rewardheadway =


−100, if x ≤ 0,

−100(1−
√
(1− (x− 1)2)), 0 < x ≤ 1,

0, x > 1.
(9)

where x represent the time gap between the front and ego
vehicle. It is limited to a maximum of 100 to prevent very
large headway values from degrading the training.

d) Supplementary techniques: Some papers use supple-
mentary techniques in addition to reward design to improve
comfort. For instance, [68] handles collisions at a lower level
so comfort can be prioritized in the reward, while [70] adapts
weights based on proximity to the mandated lane change point.

D. Adaptability

Adaptability is another aspect of AV that involves adjust-
ing to different behaviors and traffic conditions. It involves
learning from experience and generalizing to new situations.
Among all the papers reviewed here, only one paper [57]
explicitly includes an adaptability component in its reward
function. In particular, rewards AVs for adjusting to different
behaviors and traffic conditions using an implicit learning
approach. Valiente et al. define an adaptation error (Aerror)
that explicitly rewards adaptability of the trained AVs to new
scenarios. This is calculated as:

Aerror = ws × (C) + we ×
(
1− DT

DTmax

)
, (10)

where:
• C is the percentage of episodes with a crash when tested

in the new scenario
• DT is the average distance traveled by AVs in the new

scenario
• DTmax is the maximum possible distance in that scenario
• ws and we are weights for the safety and efficiency terms
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Lower adaptation error indicates the AVs are adjusting well
to the new conditions. The safety term penalizes crashes more
heavily with a higher weight ws. The AVs are trained using
decentralized multi-agent reinforcement learning, with each
AV, i, optimizing its own reward function:

Ri(s, a) = Rego +Rsocial, (11)

where the ego reward is defined as:

Rego(s, a) = cos(ϕi) ri(s, a), (12)

where the ego reward ri(s, a) encourages progress of the
ego vehicle based on traffic metrics like speed. The angle ϕi

controls the weight on the ego vs social reward. The social
reward contains terms for both cooperation with other AVs
and sympathy for the human drivers:

Rsocial = sin(ϕi)

[∑
j

rAV
i,j (s, a) +

∑
k

rHV
i,k (s, a)

+
∑
k

rMi,k(s, a)

] (13)

The rM term accounts for completing the assigned mission
(merging, exiting), while rAV and rHV reward altruistic con-
sideration of other AVs and humans respectively.

E. Summary

In summary, we have compared and contrasted the reward
design of several papers that apply RL to autonomous driving
tasks. We have focused on four aspects: safety, efficiency,
comfort, and adaptability. We have found that most of the
papers include some form of safety and efficiency reward or
penalty in their reward functions, while fewer papers include
comfort and adaptability components. We have also found that
different papers use different metrics and methods to evaluate
and optimize these aspects. This shows that reward design
is a challenging and diverse problem that requires careful
consideration of the goals and constraints of the task at hand.

VIII. ADDITIONAL DISCUSSION AND FUTURE WORK

A. Intersection Control

This review has focused on RL techniques for automated
driving behaviors related to highways, such as lane chang-
ing, merging, and platooning. However, its worth noting
that similar approaches can also be extended to intersection
scenarios. Efficient intersection management remains an open
challenge for autonomous vehicles [116], [117], though initial
RL research shows promise [118]–[120]. Similar to highway
ramp merging, intersections require safe coordination between
multiple vehicles with potential conflicts. However, intersec-
tions introduce additional complexities such as complying with
traffic priorities and avoiding deadlocks. Additionally, state
representations must also capture different road features like
stop lines and crossing routes.

Despite these differences, core RL components analyzed
in this review like reward design, action spaces, and safety
mechanisms remain highly relevant.

B. Real World Data

The incorporation of real-world driving data provides
greater realism and captures interactive dynamics that are
hard to simulate [40], [60]. Real-world trajectories better
represent complex road user behaviors and edge cases that
agents may encounter in deployment [121], [122]. This ap-
proach helps overcome the reality gap compared to purely
simulated training data. However, significant challenges exist
with leveraging real-world data for RL. First, collecting and
annotating large-scale driving datasets is hugely expensive and
time-consuming, restricting availability [123]. Second, there is
a risk of overfitting to the distributions and scenarios present in
the finite dataset. This could harm the model’s generalizability
[124]. Third, static offline datasets cannot cover all possible
events, lacking richness and adaptivity [125]. Finally, data
balancing and biases in collection impact the learned policies
[126]. Overall, further research is needed to unlock the full
potential of real-world data for more robust RL policies.

C. Future Directions

Based on the review of the relevant papers in the field of
RL-based highway AV control, the following key directions
for future research include:

• Multi-agent reinforcement learning (MARL) algorithms
that can handle varying numbers of agents. Current
MARL implementations assume a fixed number of AVs
during training and execution. Developing more flexi-
ble approaches that can train agents for scenarios with
dynamic vehicles entering and exiting could improve
scalability.

• Increase testing in diverse and realistic traffic conditions.
Most studies use simulated environments with limited re-
alism. Leveraging large-scale real-world driving datasets
and traffic simulators with sophisticated driver models
would help evaluate generalization.

• Development of standardized benchmarks for compara-
tive evaluation. Currently, there is a lack of common
benchmarks that can systematically validate and compare
different RL driving policies. Each work uses distinct
simulation setups and metrics, preventing standardized
assessments. Constructing benchmark suites with scenar-
ios sampled from real-world distributions could better
analyze generalization. Shared benchmarks would also
facilitate reproducible comparisons between algorithmic
innovations and measure progress.

• More sophisticated human driver models that capture
complex interactive behaviors. Most papers assume
human-driven vehicles will follow simple car-following
rules along fixed trajectories, rather than responding
realistically to the actions of learning agents. Developing
better human driver models that cover the diversity of
human behaviors could significantly enhance RL learning
and policy evaluation.

• Handling imperfect state observations from real-world
sensors. Most works assume perfect knowledge of sur-
rounding vehicle states used in the RL input represen-
tation. However, accurately perceiving complex noisy
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traffic scenes poses major challenges for real AV sensor
suites. Testing how learned policies degrade with noisy
detections and exploring sensor fusion to improve state
estimates are vital.

IX. CONCLUSION

This paper reviewed the state-of-the-art reinforcement learn-
ing (RL) techniques for autonomous vehicle (AV) control in
various scenarios, such as lane changing, ramp merging, and
platooning. Existing problem formulations, RL algorithms,
simulations, and metrics studies have been analyzed in terms
of their design choices, benefits, and challenges. RL-based
AV control, especially in highway conditions, has significant
benefits to improve our society, such as enabling cooperative
and altruistic behaviors, handling complicated dynamics and
uncertainties. In addition, the limitations and gaps of current
methods are discussed, including balancing state-space dimen-
sionality and expressiveness, assuring safety and robustness,
and testing under realistic traffic conditions. This survey’s
findings can guide future research toward the development of
more effective and generalizable RL solutions for automated
driving in complex environments.

REFERENCES

[1] J. Deichmann, Autonomous Driving’s Future: Convenient and Con-
nected. McKinsey, 2023.

[2] Environmental and E. S. I. (EESI), “Issue brief: Autonomous vehicles:
State of the technology and potential role as a climate solution,”
Jun 2021. [Online]. Available: https://www.eesi.org/papers/view/
issue-brief-autonomous-vehicles-state-of-the-technology-and-potential-role-as-a-climate-solution

[3] Y. Fan, N. Wexler, F. Douma, G. Ryan, C. Hong, Y. Li, and Z.-L.
Zhang, “Advancing social equity with shared autonomous vehicles: Lit-
erature review, practitioner interviews, and stated preference surveys,”
2022.

[4] T. Qie, W. Wang, C. Yang, Y. Li, W. Liu, and C. Xiang, “A path
planning algorithm for autonomous flying vehicles in cross-country
environments with a novel TF-RRT* method,” Green Energy and
Intelligent Transportation, vol. 1, no. 3, p. 100026, 2022.

[5] Z. Zhou, C. Rother, and J. Chen, “Event-triggered model predictive
control for autonomous vehicle path tracking: Validation using CARLA
simulator,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 6, pp.
3547–3555, June 2023.

[6] Z. Zhou, J. Chen, M. Tao, P. Zhang, and M. Xu, “Experimental
validation of event-triggered model predictive control for autonomous
vehicle path tracking,” in 2023 IEEE International Conference on
Electro Information Technology, Romeoville, IL, May 18–20, 2023.

[7] M. R. Hajidavalloo, J. Chen, Q. Hu, and Z. Li, “Study on the benefits
of integrated battery and cabin thermal management in cold weather
conditions,” in American Control Conference, San Diego, CA, May
31–June 2, 2023.

[8] L. Yang, C. Lu, G. Xiong, Y. Xing, and J. Gong, “A hybrid motion
planning framework for autonomous driving in mixed traffic flow,”
Green Energy and Intelligent Transportation, vol. 1, no. 3, p. 100022,
2022.

[9] J. Chen and Z. Yi, “Comparison of event-triggered model predictive
control for autonomous vehicle path tracking,” in IEEE Conference on
Control Technology and Applications, San Diego, CA, August 8–11,
2021.

[10] F. Poinsignon, L. Chen, S. Jiang, K. Gao, H. Badia, and E. Jenelius,
“Autonomous vehicle fleets for public transport: scenarios and com-
parisons,” Green Energy and Intelligent Transportation, vol. 1, no. 3,
p. 100019, 2022.

[11] C. Rother, Z. Zhou, and J. Chen, “Development of a four-wheel steering
scale vehicle for research and education on autonomous vehicle motion
control,” IEEE Robotics and Automation Letters, vol. 8, no. 8, pp.
5015–5022, August 2023.

[12] J. Chen, M. Liang, and X. Ma, “Probabilistic analysis of electric vehicle
energy consumption using MPC speed control and nonlinear battery
model,” in 2021 IEEE Green Technologies Conference, Denver, CO,
April 7–9, 2021.

[13] J. M. Anderson, K. Nidhi, K. D. Stanley, P. Sorensen, C. Samaras,
and O. A. Oluwatola, Autonomous vehicle technology: A guide for
policymakers. Rand Corporation, 2014.

[14] L. Gomes, “Hidden obstacles for google’s self-driving cars,” MIT
Technology Review. Retrieved November, vol. 13, p. 2020, 2014.

[15] G. De La Torre, P. Rad, and K.-K. R. Choo, “Driverless vehicle secu-
rity: Challenges and future research opportunities,” Future Generation
Computer Systems, vol. 108, pp. 1092–1111, 2020.

[16] D. Sadigh, K. Driggs-Campbell, A. Puggelli, W. Li, V. Shia, R. Ba-
jcsy, A. L. Sangiovanni-Vincentelli, S. S. Sastry, and S. A. Seshia,
“Data-driven probabilistic modeling and verification of human driver
behavior,” in AAAI Spring Symposium-Technical Report, 2014, pp. 56–
61.

[17] T. Gindele, S. Brechtel, and R. Dillmann, “Learning driver behavior
models from traffic observations for decision making and planning,”
IEEE Intelligent Transportation Systems Magazine, vol. 7, no. 1, pp.
69–79, 2015.

[18] Y. Chen, N. Sohani, and H. Peng, “Modelling of uncertain reactive
human driving behavior: a classification approach,” in 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 2018, pp. 3615–
3621.

[19] J. Wu, Y. Wang, Z. Shen, L. Wang, H. Du, and C. Yin, “Distributed
multilane merging for connected autonomous vehicle platooning,”
Science China Information Sciences, vol. 64, no. 11, pp. 1–16, 2021.

[20] J. Hourdakis and P. G. Michalopoulos, “Evaluation of ramp control
effectiveness in two twin cities freeways,” Transportation Research
Record, vol. 1811, no. 1, pp. 21–29, 2002.

[21] R. Scarinci and B. Heydecker, “Control concepts for facilitating mo-
torway on-ramp merging using intelligent vehicles,” Transport reviews,
vol. 34, no. 6, pp. 775–797, 2014.

[22] X.-m. Chen, M. Jin, C.-Y. Chan, Y.-s. Miao, and J.-w. Gong, “Bionic
decision-making analysis during urban expressway ramp merging for
autonomous vehicle,” Tech. Rep., 2017.

[23] J. Wei, J. M. Dolan, and B. Litkouhi, “Autonomous vehicle social
behavior for highway entrance ramp management,” in 2013 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2013, pp. 201–207.

[24] M. Karimi, C. Roncoli, C. Alecsandru, and M. Papageorgiou, “Coop-
erative merging control via trajectory optimization in mixed vehicular
traffic,” Transportation Research Part C: Emerging Technologies, vol.
116, p. 102663, 2020.

[25] M. Aramrattana, T. Larsson, C. Englund, J. Jansson, and A. Nåbo, “A
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gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, 2021.

[45] B. B. Elallid, N. Benamar, A. S. Hafid, T. Rachidi, and N. Mrani, “A
comprehensive survey on the application of deep and reinforcement
learning approaches in autonomous driving,” Journal of King Saud
University-Computer and Information Sciences, vol. 34, no. 9, pp.
7366–7390, 2022.

[46] P. Yadav, A. Mishra, and S. Kim, “A comprehensive survey on multi-
agent reinforcement learning for connected and automated vehicles,”
Sensors, vol. 23, no. 10, p. 4710, 2023.

[47] J. Zhu, S. Easa, and K. Gao, “Merging control strategies of connected
and autonomous vehicles at freeway on-ramps: a comprehensive re-
view,” Journal of Intelligent and Connected Vehicles, vol. 5, no. 2, pp.
99–111, 2022.

[48] F. Ye, X. Cheng, P. Wang, C.-Y. Chan, and J. Zhang, “Automated
lane change strategy using proximal policy optimization-based deep
reinforcement learning,” in 2020 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2020, pp. 1746–1752.
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[125] R. Raileanu and T. Rocktäschel, “Ride: Rewarding impact-driven

exploration for procedurally-generated environments,” arXiv preprint
arXiv:2002.12292, 2020.

[126] Z. Yu, “Fair balance: Mitigating machine learning bias against multiple
protected attributes with data balancing,” 2021.


	Introduction
	Preliminary on Reinforcement Learning
	Scenarios for RL-based Control
	Highway Lane Change
	Highway Ramp Merging
	Platooning

	RL Algorithms
	Deep Reinforcement Learning Algorithms
	Multi-agent reinforcement learning
	Curriculum Learning
	Representation Learning

	Action Space
	Continuous Action Spaces
	Discrete Action Space
	Safety Modules

	State Space
	State Information from Surrounding Vehicles
	End-to-end State Space
	Temporal Information

	Reward
	Safety
	Efficiency
	Comfort
	Adaptability
	Summary

	Additional Discussion and Future Work
	Intersection Control
	Real World Data
	Future Directions

	Conclusion
	References

