
1

Reconfigurable Model Predictive Control for Large
Scale Distributed Systems

Jun Chen, Senior Member, IEEE, Lei Zhang and Weinan Gao, Senior Member, IEEE

Abstract—For large scale distributed systems, centralized
model predictive control (MPC) often requires high compu-
tational resources, while distributed MPC can only achieve
suboptimal control performance if the computation resource
is limited. To address these limitations, this paper proposes a
new reconfigurable MPC framework for large scale distributed
systems, in which an optimal control problem with a time-varying
structure is formulated and solved for each control loop. More
specifically, at each time step, a subset of the control inputs
is dynamically selected to be optimized by MPC, while the
previous optimal solution is applied to the remaining control
inputs. A theoretical upper bound on the performance loss, due
to the fact that only a subset of inputs is optimized, is then
derived to guarantee the worst-case performance. To minimize
the performance loss, this upper bound is then used to guide
the reconfiguration of MPC, i.e., the selection of control inputs
for optimization. The applicability of the proposed approach
is illustrated through case studies, including battery cell-to-cell
balancing control and multi-vehicle formation control. Numerical
results confirm that the proposed approach can achieve better
control performance than distributed MPC and requires less
computation time than conventional centralized MPC.

Index Terms—Model predictive control, distributed systems,
suboptimality, reconfigurable control, battery, formation control.

I. INTRODUCTION

Control of large distributed systems is of prominent impor-
tance for many applications [1]–[6]. Among many approaches,
model predictive control (MPC) has been extensively investi-
gated [7]–[15]. For large scale systems, distributed MPC has
been widely used in [16]–[21], which can be grouped into non-
cooperative distributed MPC, cooperative distributed MPC,
and decomposed optimization approach [16]. For example, the
work [3] studies non-cooperative distributed MPC in the con-
text of vehicle platoon. In particular, the system under control
is dynamically decoupled and the only coupling is the state
constraints and desired states. In other words, each local MPC
solves its own optimization problem with local cost function

This work is supported in part by SECS Faculty Startup Fund at
Oakland University, in part by Michigan Space Grant Consortium grant
#80NSSC20M0124, and in part by National Science Foundation through
Award #2237317.

Jun Chen is with the Department of Electrical and Computer
Engineering, Oakland University, Rochester, MI 48309, USA (email:
junchen@oakland.edu).

Lei Zhang is with the National Engineering Research Center for Electric
Vehicles, Beijing Institute of Technology, Beijing 100081, China (email:
lei zhang@bit.edu.cn).

Weinan Gao is with the Department of Mechanical and Civil Engineer-
ing, Florida Institute of Technology, Melbourne, FL 32901, USA (email:
weinan.gao@nyu.edu)

Jun Chen is the corresponding author.

and local terminal constraint formulated using predicted state
trajectory from its neighbors’ previous prediction. Sufficient
condition to guarantee stability is derived and demonstrated
through simulation. The work [22] studies the cooperative
distributed MPC for systems that are dynamically coupled,
where the terminal set is used to ensure stability. Instead of
invariant terminal set, adaptivity is included by formulating
it as an optimization problem. The adaptive terminal set
avoids over restrictive terminal constraints while guaranteeing
stability. The work [21] studies the distributed MPC without
a centralized coordinator, for interconnected systems through
states coupling only. The local predicted state trajectories are
communicated to other local controllers, which are then used
to formulate optimization problem and constraints. Finally,
[23] studies the conditions under which distributed MPC can
achieve centralized-like performance, which requires a large
number of iterations before converging to the global optimum.

Despite the promising results discussed above, distributed
MPC can only achieve suboptimal control performance (when
the computation resource is limited) while requiring high
communication resources [16]. On the other hand, centralized
MPC has the advantage of achieving optimality and reducing
communication among agents, and therefore has been widely
researched [14], [15], [24]–[27]. However, centralized MPC
usually requires more significant computational resources than
distributed MPC, and hence intractable for large scale systems.
To address these issues, this paper proposes a new reconfig-
urable MPC (ReMPC) framework, in which an optimal control
problem (OCP) with time-varying structure is formulated and
solved for each control loop. In other words, at each time
step, a subset of the control inputs is dynamically selected to
be optimized by MPC, while the previous optimal solution is
applied to the remaining control inputs. Note that since the
OCP is reconfigured in real-time, the set of control inputs
to be optimized is time-varying and is chosen based on real-
time feedback and a predefined reconfiguration policy. Such
approach effectively reduces the computational requirement of
MPC, as the number of optimization variables are significantly
reduced.

On the other hand, the proposed ReMPC framework can
only achieve suboptimal control performance since control
authority is reduced. To quantify the performance loss, a
theoretical upper bound is derived to guarantee the worst
case control performance. Furthermore, this upper bound is
in turn used to guide the reconfiguration of MPC so that
the performance loss is minimized. The applicability of the
proposed approach is illustrated through practical examples,
including (i) battery cell-to-cell balancing control problem,

2

where the system has 100 inputs to be optimized and (ii)
multi-vehicle formation control problem. Numerical results
confirm that the proposed ReMPC can achieve better control
performance compared to distributed MPC and requires less
computation compared to conventional centralized MPC.

A similar concept of optimizing over a subset of the
control inputs to reduce computational requirements has been
introduced in the literature. For example, the work [28] pro-
poses channel-hopping MPC where only one control input is
optimized for each time step. However, such an approach poses
two issues. Firstly, since only one input is optimized, control
performance can be largely degraded due to a significant loss
of control authority. Secondly, the channel-hopping MPC pro-
posed in [28] requires solving multiple optimization problems,
one for each control input, and implement only the best one.
Therefore, the number of optimization problems being solved
at each time step is the same as that of control inputs, resulting
high computational requirement if the number of control inputs
is high. The proposed ReMPC framework is different from and
more general than channel-hopping MPC in [28]. In ReMPC,
at each time step, only one optimization problem will be
solved, resulting in less computation. In addition, multiple
control inputs can be simultaneously optimized at each time
step, leading to less optimality loss. The proposed ReMPC
is also different from event-triggered MPC [24], [29]–[35],
where an OCP optimizing all control inputs is formulated
and solved only when an event is triggered. Firstly, control
inputs are optimized aperiodically but synchronously in event-
triggered MPC, while the optimization of control inputs is
both aperiodic and asynchronous in ReMPC. Secondly, event-
triggered MPC can reduce the average computation time by
reducing the number of optimization instances, but the worst-
case computation remains the same. On the other hand, the
proposed ReMPC can substantially reduce both average and
worst-case computation time, since a smaller OCP is solved
for each time step.

The proposed reconfigurable MPC (ReMPC) framework is
also different from those in [36]–[38], where the notion of
“reconfigurable MPC” is used for an MPC control strategy
where the physical plant is reconfigurable. For example, [37]
considers MPC for linear systems with changeable network
topology, and proposes a novel reconfiguration control scheme
based on ADMM (alternating direction method of multipliers).
The work [38] applies MPC to multievaporator vapor compres-
sion systems, where individual evaporators can be turned on
or off. An MPC is then designed to accommodate the time
varying system configuration. In other words, the reconfig-
urable MPC considered in [36]–[38] mainly refers to the fact
that the system under control can change structures in real-
time, and therefore MPC is reconfigured accordingly. On the
other hand, in the proposed ReMPC framework, the physical
systems are assumed to be fixed, but MPC dynamically selects
a subset of the control inputs to form OCP to reduce the
required online computations. The novel contribution of this
paper can be summarized as follows.

1) A reconfigurable MPC (ReMPC) framework is pro-
posed, in which MPC optimizes over a subset of con-
trol inputs to reduce computation. As this subset is

dynamically selected in real-time, all control inputs are
still being updated based on measurement feedback, but
asynchronously with heterogeneous sampling time.

2) An upperbound on the optimality loss compared to op-
timization over all contol inputs is derived to guarantee
an acceptable worst-case performance.

3) A reconfiguration policy is developed such that the
optimality loss is minimized.

4) The effectiveness of the proposed ReMPC framework is
demonstrated through practical examples including bat-
tery cell balancing control and multi-vehicle formation
control.

The rest of this paper is organized as follows. Section II
presents the proposed reconfigurable MPC, while theoretical
guarantees on performance loss and loss-based reconfiguration
strategy are discussed in Section III. Numerical simulation
results on cell-to-cell balancing control of 100 connected cells
and multi-vehicle formation control are presented in Section
IV. The paper is concluded in Section V.

Notations: Throughout the paper, we make use of the fol-
lowing notations and properties. We use ∥·∥ without subscript
to denote 2-norm of a vector or matrix. Furthermore, we
denote

∥v∥2Q = vTQv.

Property 1. For a vector v and a symmetric positive semidef-
inite matrix Q, we have

∥v∥2Q = vTQv = vT
(
Q1/2

)T

Q1/2v =
∥∥∥Q1/2v

∥∥∥2 .
Property 2. For two vectors v and u, the following inequality
holds

∥u+ v∥2 ≤ ∥u∥2 + 2 ∥u∥ ∥v∥+ ∥v∥2 = (∥u∥+ ∥v∥)2 .

II. RECONFIGURABLE MODEL PREDICTIVE CONTROL

Consider a distributed system with N subsystems, and the
nth component has the following dynamics:

xn
k+1 = Anxn

k +Bnun
k (1a)

ynk = Cnxn
k + bn, n ∈ N (1b)

where N = {1, 2, . . . , N} is the set of all distributed com-
ponents, xn, un and yn are the states, outputs and inputs
for nth subsystem. Denote nx, ny and nu as the number
of states, outputs and inputs for each distributed component,
respectively. An, Bn and Cn are system matrices and bn is
the affine term, all with proper dimension. Furthermore, the
inputs and outputs of each components are coupled through
constraints, as follows:

{u1
k, u

2
k, . . . , u

n
k} ∈ U ⊆ RNnu (2a)

{y1k, y2k, . . . , ynk } ∈ Y ⊆ RNny , (2b)

Remark 1. Though we consider nx, ny and nu are the same
for all components, the proposed work can be straightfor-
wardly extended to include case where each component can
have different dimensions.

3

At each time step, given current state estimate x̃n, n ∈ N ,
MPC solves the following optimal control problem (OCP) over
a prediction horizon p:

min
un
k ,n∈N

J =
N∑

n=1

p∑
k=1

||ynk ||2Qy
+

N∑
n=1

p−1∑
k=0

||un
k ||2Qu

(3a)

s.t. system dynamics (1), ∀n ∈ N (3b)
xn
0 = x̃n, ∀n ∈ N (3c)

input and output constraints (2), ∀k = 0, 1, . . . , p.
(3d)

Note that the weight matrixs Qy is assumed to be symmetric
and positive semidefinite and Qu is assumed to be symmetric
and positive definite. It is then trivial to see that the total
number of optimization variables is Npnu. When N is large,
solving the above OCP (3) is intractable (even for small
prediction horizon p) due to the high computational require-
ment. To address this issue, in this paper, a reconfigurable
MPC framework is proposed where a subset of components is
dynamically selected to form the OCP, while for the remaining
components, previous optimal solution is applied as control
inputs. In the sequel, we will discuss in detail the formal
formulation of such OCP with only a subset of components.

Given a subset W ⊆ N , denote its complementary set as
W = N−W . To formally present the formulation of a reduced
size OCP that only includes components in W , we first make
the following definitions and assumptions.

Definition 1. For the nth component, given an input sequence
ūn, define xn(ūn) as the state sequence that is obtained by in-
tegrating (1) using ūn. Further define yn(ūn) = Cnxn(ūn)+
bn as the corresponding output sequence.

Assumption 1. At any time step k, an input sequence ūn =[
ūn
0 ūn

1 · · · ūn
p−1

]T
is available for all n ∈ W .

Remark 2. Assumption 1 implies that there exists a control
input for components in W , which is not necessarily optimal.
This is not a restrictive assumption, since one can always set
W = N and solve the full OCP (3) at initialization. This will
make control inputs available for all components for p time
steps. More specifically, let ūn,∗ [ūn,∗

0 ūn,∗
1 · · · ūn,∗

p−1

]T
be the input sequence from the last time step, then we can set
ūn for the current time step as

ūn =
[
ūn,∗
1 ūn,∗

2 · · · ūn,∗
p−1 ūn,∗

p−1

]T
. (4)

In other words, for n ∈ W , input sequence ūn can be obtained
by shifting the previous input sequence ūn,∗ by one and apply
the zero order to the last element. Note that if nth component
was optimized in the previous time step, then ūn,∗ is in fact
given by solving the reduced size MPC, as detailed below.

Definition 2. Given W , W = N −W , and ūn and yn(ūn)
for each n ∈ W , define the set of feasible input for n ∈ W
as Û and the set of feasible output for n ∈ W as Ŷ .

Now we are ready to formulate a reduced size OCP that only
includes components in W . At each time step, given current

Algorithm 1: Reconfigurable Model Predictive Con-
trol

1 Initialize by solving MPC(N), i.e., standard OCP (3)
for all components, to get optimal solution ûn for all
n ∈ N ;

2 for n ∈ N do
3 ūn ← ûn; % Store solution
4 end
5 Apply first control move ûn

0 and move to next time
step;

6 while t ≤ T do
7 Collect current state estimate x̃n;
8 Select a new W ⊆ N ;
9 ûn ← Solve MPC(W) as formulated by (5);

10 for n ∈ W do
11 ūn ← ûn; % Store solution
12 end
13 for n ∈ W do
14 ûn

0 ← (4); % Shifting previous optimal solution
15 end
16 Apply ûn

0 for all n ∈ N and move to next time
step;

17 end

state estimate x̃n, n = 1, . . . , N , the following reduced size
OCP is formulated:

min
un
k ,n∈W

J =
∑
n∈W

p∑
k=1

||ynk ||2Qy
+

∑
n∈W

p−1∑
k=0

||un
k ||2Qu

(5a)

s.t. system dynamics (1), ∀n ∈ W (5b)
xn
0 = x̃n, ∀n ∈ W (5c)

{un
k | n ∈ W} ∈ Û , ∀k (5d)

{ynk | n ∈ W} ∈ Ŷ, ∀k. (5e)

For each control loop, the proposed reconfigurable MPC
selects W , solves OCP (5), and assembles the control vector
u(W) = {ûn

k} according to the following.

ûn =

{
solution of (5) if n ∈ W
ūn as defined in (4) if n ∈ W.

(6)

Therefore, we denote the MPC with subsetW as MPC(W).
It is then trivial to see that MPC that solves the full size OCP
(3) is equivalent to MPC(N). Algorithm 1 formally presents
the proposed ReMPC framework, where ûn

0 denotes the first
element in ûn. As can be seen, all control inputs are optimized
at initialization at Line 1 and their solution stored at Line 2–4,
fulfilling Assumption 1 for all subsequent steps. Then for each
time step, a new subset W is selected at Line 8 to form the
reduced OCP (5), which is also termed as MPC(W) and solved
at Line 9. The latest optimal control sequence for n ∈ W
is then stored in memory at Line 10–12, while for n ∈ W ,
i.e., components not selected for optimization, their previous
optimal solution (as saved in memory) is shifted to obtain ûn

at Line 13–15. Line 16 applies the first control move for each
component and move to the next time step.

4

Remark 3. Note that MPC(W) only optimizes control inputs
for components in W , while for n ∈ W , previous optimal
solution is used to implement its control, which is also used
to form the constraints in (5d) and (5e). Therefore, the number
of optimization variables of MPC(W) is reduced to |W|pnu.

Remark 4. As can be seen from Line 8 of Algorithm 1, a
new subset W is selected at each time step. The notion of W
instead of Wk is used for the simplicity of notation, i.e., we
drop the subscript k. It should also be noted that since W is
varying, its selection can guarantee that all control inputs are
updated using measurement feedback, but with heterogeneous
and aperiodic sampling time.

To ensure that OCP (5) is feasible, we make the following
assumption.

Assumption 2. Given W , W , and ūn and yn(ūn) for each
n ∈ W , we assume Û ̸= ∅ and Ŷ ̸= ∅.

Remark 5. Assumption 2 guarantees that the feasibility of
MPC(W) for each time step, regardless of the choice of W .
This could be a restrictive assumption if time-varying con-
straints are considered or ūn is arbitrarily selected. However,
in this paper, we only consider time invariant constraints, i.e.,
U and Y of (2) are time-invariant. By using previous optimized
control sequence for n ∈ W , as detailed in Remark 2, the
assumption that Û ̸= ∅ always holds. However, Ŷ ̸= ∅ may
not always hold. In this case, one can use soft output constraint
as often done in practice [39].

Remark 6. Comparing the proposed ReMPC as presented
in Algorithm 1 to the channel-hopping MPC discussed in
[28], the proposed ReMPC has several advantages. Firstly, in
channel-hopping MPC, only one control input is optimized at
each time step, while ReMPC can optimize multiple control in-
puts when |W| > 1. Secondly, channel-hopping MPC requires
solving multiple optimization problems, one for each control
input, while ReMPC only performs optimization solving once
for each time step, as can be seen from Line 9 of Algorithm
1.

Remark 7. The proposed ReMPC possesses several simi-
larities to event-triggered MPC [24], [30]–[33], [35], [40],
where an OCP optimizing all control inputs is formulated
and solved only when an event is triggered. Firstly, control
inputs are optimized aperiodically in both event-triggered
MPC and ReMPC. Secondly, both event-triggered MPC and
ReMPC can reduce computational requirement significantly.
However, the proposed ReMPC as presented in Algorithm 1
is substantially different from event-triggered. Though control
inputs are optimized aperiodically in event-triggered MPC,
they will be optimized all together whenever an event is
triggered. However, in ReMPC, control inputs are optimized
aperiodically and asynchronously. Furthermore, though event-
triggered MPC can save average computation time, the worst-
case computation time remains unchanged, as an OCP with
all control inputs needs to be solved whenever an event is
triggered. However, for the proposed ReMPC, both average
and worst-case computation time are substantially decreased,
since a smaller OCP is solved for each time step.

III. PERFORMANCE LOSS AND SUBSECTION SELECTION

Algorithm 1 presents the proposed ReMPC framework in
its generic form. Now we need to address the following two
questions.
(Q1) What is the performance loss by solving MPC(W)

instead of MPC(N)?
(Q2) How to select W in real-time to minimize the perfor-

mance loss?

A. Performance Loss

To answer (Q1) above, we start by assumingW is selected,
and provide an upper bound on the performance loss. Given
an input sequence u = {un}, n ∈ N , with a slight abuse of
notation, define the following performance index,

J(u) =
N∑

n=1

p∑
k=1

||ynk (un
k)||2Qy

+
N∑

n=1

p−1∑
k=0

||un
k ||2Qu

. (7)

Then the performance loss due to optimizing W can be
represented by

L(W) = J(u(W))− J(u(N)). (8)

The next lemma provides an upper bound for J(u(N)).

Lemma 1. Given system (1) and performance index (7),
J(u(N)) is upperbounded by

J(u(N)) ≤ Np ∥Qy∥ ∥∆y∥2 +Np ∥Qu∥ ∥∆u∥2 , (9)

where

∆u = max
u∈U
∥u∥ , ∆y = max

y∈Y
∥y∥ .

Proof.

J(u(N)) =
N∑

n=1

p∑
k=1

∥ynk ∥
2
Qy

+
N∑

n=1

p−1∑
k=0

∥un
k∥

2
Qu

=
N∑

n=1

p∑
k=1

∥∥∥Q1/2
y ynk

∥∥∥2 + N∑
n=1

p−1∑
k=0

∥∥∥Q1/2
u un

k

∥∥∥2
≤

N∑
n=1

p∑
k=1

∥Qy∥ ∥ynk ∥
2
+

N∑
n=1

p−1∑
k=0

∥Qu∥ ∥un
k∥

2

≤∥Qy∥
N∑

n=1

p∑
k=1

∥∆y∥2

+ ∥Qu∥
N∑

n=1

p−1∑
k=0

∥∆u∥2

=Np ∥Qy∥ ∥∆y∥2 +Np ∥Qu∥ ∥∆u∥2 .

This completes the proof.

To derive an upperbound for L(W), we first make the
following definition.

Definition 3. Given W , denote u(N) = {un
k} and u(W) =

{ûn
k} = {un

k + δnu,k}. Define the maximum difference between
un
k and ûn

k for all k and n as δu, i.e.,

δu = max
k,n

∥∥δnu,k∥∥ = max
k,n
∥un

k − ûn
k∥ . (10)

5

Given An, Bn, and Cn as in (1), define

Mn
k =

k∑
i=1

∥∥∥Cn (An)
i−1

Bn
∥∥∥ . (11)

Then the following theorem provides an upperbound for
L(W) = J(u(W)) − J(u(N)), i.e., an analytical quantifica-
tion of the performance loss for a given W , which will be
used in the next section, as a criterion to select W such that
the performance loss is minimized.

Theorem 1. Given W , the performance loss L(W) of
MPC(W) compared to MPC(N) is upperbounded by

L(W) ≤3pNδ2u ∥Qu∥+ 2δu ∥Qu∥
N∑

n=1

p−1∑
k=0

(||ûn
k ||)

+ 3δ2u ∥Qy∥
N∑

n=1

p∑
k=1

(Mn
k)

2

+ 2δu ∥Qy∥
N∑

n=1

p∑
k=1

(Mn
k ∥Cnx̂n

k + bn∥) . (12)

Proof. Denote the second term of (7) as Ju. Then we have

Lu =Ju(u(W))− Ju(u(N))

=
N∑

n=1

p−1∑
k=0

(∥∥∥Q1/2
u un

k +Q1/2
u δnu,k

∥∥∥2 − ∥∥∥Q1/2
u un

k

∥∥∥2)

≤
N∑

n=1

p−1∑
k=0

(∥∥∥Q1/2
u un

k

∥∥∥2 + ∥∥∥Q1/2
u δnu,k

∥∥∥2
+ 2

∥∥∥Q1/2
u un

k

∥∥∥ ∥∥∥Q1/2
u δnu,k

∥∥∥− ∥∥∥Q1/2
u un

k

∥∥∥2)
=

N∑
n=1

p−1∑
k=0

(∥∥∥Q1/2
u δnu,k

∥∥∥2
+ 2

∥∥∥Q1/2
u un

k

∥∥∥ ∥∥∥Q1/2
u δnu,k

∥∥∥)
=

N∑
n=1

p−1∑
k=0

(∥∥∥Q1/2
u δnu,k

∥∥∥2
+2

∥∥∥Q1/2
u ûn

k −Q1/2
u δnu,k

∥∥∥ ∥∥∥Q1/2
u δnu,k

∥∥∥)
≤

N∑
n=1

p−1∑
k=0

(∥∥∥Q1/2
u δnu,k

∥∥∥2 + 2
[∥∥∥Q1/2

u ûn
k

∥∥∥
+
∥∥∥Q1/2

u δnu,k

∥∥∥]× ∥∥∥Q1/2
u δnu,k

∥∥∥)
=

N∑
n=1

p−1∑
k=0

(
3
∥∥∥Q1/2

u δnu,k

∥∥∥2
+2

∥∥∥Q1/2
u ûn

k

∥∥∥ ∥∥∥Q1/2
u δnu,k

∥∥∥)
≤

N∑
n=1

p−1∑
k=0

(
3 ∥Qu∥

∥∥δnu,k∥∥2 + 2 ∥Qu∥ ∥ûn
k∥

∥∥δnu,k∥∥)
≤

N∑
n=1

p−1∑
k=0

(
3δ2u ∥Qu∥+ 2δu ∥Qu∥ ∥ûn

k∥
)

=3pNδ2u ∥Qu∥+ 2δu ∥Qu∥
N∑

n=1

p−1∑
k=0

(||ûn
k ||) . (13)

Next, to derive a relationship between predictive state xn
k

and the control sequence un
0 , un

1 , · · · , un
k−1, we have,

xn
k =Anxn

k−1 +Bnun
k−1 +Bn

wwk−1

=An(Anxn
k−2 +Bnun

k−2 +Bn
wwk−2)

+Bnun
k−1 +Bn

wwk−1

=(An)
2
xn
k−2 +AnBnun

k−2 +Bnun
k−1

+AnBn
wwk−2 +Bn

wwk−1

...

=(An)
k
xn
0 +

k∑
i=1

(
(An)

i−1
Bnun

k−i

)
+

k∑
i=1

(
(An)

i−1
Bn

wwk−i

)
.

Denote the state sequence corresponding to N as x(N) =
{xn

k}, and x(W) = {x̂n
k} = {xn

k + δnx,k}. Then we have

δnx,k =x̂n
k − xn

k

=(An)
k
xn
0 +

k∑
i=1

(
(An)

i−1
Bnûn

k−i

)
+

k∑
i=1

(
(An)

i−1
Bn

wwk−i

)
− (An)

k
xn
0

−
k∑

i=1

(
(An)

i−1
Bnun

k−i

)
−

k∑
i=1

(
(An)

i−1
Bn

wwk−i

)
=

k∑
i=1

(
(An)

i−1
Bnûn

k−i

)
−

k∑
i=1

(
(An)

i−1
Bnun

k−i

)
=

k∑
i=1

(
(An)

i−1
Bn

[
ûn
k−i − un

k−i

])
.

Furthermore, we have

Cnδnx,k = Cn (x̂n
k − xn

k)

=
k∑

i=1

(
Cn (An)

i−1
Bn

[
ûn
k−i − un

k−i

])
and ∥∥Cnδnx,k

∥∥ =

∥∥∥∥∥
k∑

i=1

(
Cn (An)

i−1
Bn

[
ûn
k−i − un

k−i

])∥∥∥∥∥
≤

k∑
i=1

∥∥∥Cn (An)
i−1

Bn
[
ûn
k−i − un

k−i

]∥∥∥
≤

k∑
i=1

∥∥∥Cn (An)
i−1

Bn
∥∥∥ ∥∥ûn

k−i − un
k−i

∥∥
=

k∑
i=1

∥∥∥Cn (An)
i−1

Bn
∥∥∥ ∥∥δnu,k∥∥

6

≤
k∑

i=1

δu

∥∥∥Cn (An)
i−1

Bn
∥∥∥

=δu ×
k∑

i=1

∥∥∥Cn (An)
i−1

Bn
∥∥∥ = δuM

n
k .

Now denote the first term of (7) as Jy . Then we have

Ly =Jy(u(W))− Jy(u(N))

=
N∑

n=1

p∑
k=1

∥Cx̂n
k + bn∥2Qy

−
N∑

n=1

p∑
k=1

∥Cnxn
k + bn∥2Qy

=
N∑

n=1

p∑
k=1

∥∥Cn(xn
k + δnx,k) + bn

∥∥2
Qy

−
N∑

n=1

p∑
k=1

∥Cnxn
k + bn∥2Qy

=
N∑

n=1

p∑
k=1

(∥∥Cn(xn
k + δnx,k) + bn

∥∥2
Qy

−∥Cnxn
k + bn∥2Qy

)
=

N∑
n=1

p∑
k=1

(∥∥∥Q1/2
y Cn(xn

k + δnx,k) +Q1/2
y bn

∥∥∥2
−
∥∥∥Q1/2

y Cnxn
k +Q1/2

y bn
∥∥∥2)

≤
N∑

n=1

p∑
k=1

(∥∥∥Q1/2
y Cnxn

k +Q1/2
y bn

∥∥∥2
+
∥∥∥Q1/2

y Cnδnx,k

∥∥∥2 + 2
∥∥∥Q1/2

y Cnxn
k +Q1/2

y bn
∥∥∥

×
∥∥∥Q1/2

y Cnδnx,k

∥∥∥− ∥∥∥Q1/2
y Cnxn

k +Q1/2
y bn

∥∥∥2)
=

N∑
n=1

p∑
k=1

(∥∥∥Q1/2
y Cnδnx,k

∥∥∥2 + 2
∥∥∥Q1/2

y (Cnxn
k + bn)

∥∥∥
×
∥∥∥Q1/2

y Cnδnx,k

∥∥∥)
=

N∑
n=1

p∑
k=1

(∥∥∥Q1/2
y Cnδnx,k

∥∥∥2
+ 2

∥∥∥Q1/2
y

(
Cnx̂n

k − Cnδnx,k + bn
)∥∥∥

×
∥∥∥Q1/2

y Cnδnx,k

∥∥∥)
≤

N∑
n=1

p∑
k=1

(∥∥∥Q1/2
y Cnδnx,k

∥∥∥2 + 2
∥∥∥Q1/2

y Cnδnx,k

∥∥∥2
+2

∥∥∥Q1/2
y (Cnx̂n

k + bn)
∥∥∥ ∥∥∥Q1/2

y Cnδnx,k

∥∥∥)
=

N∑
n=1

p∑
k=1

(
3
∥∥∥Q1/2

y Cnδnx,k

∥∥∥2
+2

∥∥∥Q1/2
y (Cnx̂n

k + bn)
∥∥∥ ∥∥∥Q1/2

y Cnδnx,k

∥∥∥)
≤

N∑
n=1

p∑
k=1

(
3 ∥Qy∥

∥∥Cnδnx,k
∥∥2

+2 ∥Qy∥ ∥Cnx̂n
k + bn∥

∥∥Cnδnx,k
∥∥)

≤
N∑

n=1

p∑
k=1

(
3δ2u (M

n
k)

2 ∥Qy∥

+2δuM
n
k ∥Qy∥ ∥Cnx̂n

k + bn∥)

=3δ2u ∥Qy∥
N∑

n=1

p∑
k=1

(Mn
k)

2

+ 2δu ∥Qy∥
N∑

n=1

p∑
k=1

(Mn
k ∥Cnx̂n

k + bn∥) . (14)

Putting (13) and (14) together, we have

L(W) =Lu + Ly

≤3pNδ2u ∥Qu∥+ 2δu ∥Qu∥
N∑

n=1

p−1∑
k=0

(||ûn
k ||)

+ 3δ2u ∥Qy∥
N∑

n=1

p∑
k=1

(Mn
k)

2

+ 2δu ∥Qy∥
N∑

n=1

p∑
k=1

(Mn
k ∥Cnx̂n

k + bn∥) .

This completes the proof.

Remark 8. Note that comparing the upperbound (12) of
the performance loss L(W) with the upperbound (9) of the
performance index J(u(N)), it is apparent that (12) is useful
only when δu is sufficiently small. Otherwise (12) can become
overly conservative. In the sequel, we assume that a mean-
ingful δu can be determined through the input constraints.
Note that this is not a restrictive assumption, since in many
practical applications, rate constraints are often applied due
to the physical limits of actuators.

Theorem 1 provides an upperbound for the performance
loss for a given W . In the next section, we will make use of
this upperbound to select W such that the performance loss is
minimized.

B. Loss-based Reconfiguration

To answer (Q2), the goal is to develop a mechanism for
selecting W in real-time to minimize the performance loss
L(W). In other words, at each time step, we want to find W
such that

W = argmin
W

L(W). (15)

The next two lemmas states that N is the solution to (15).

Lemma 2. Given two positive integers d1 < d2 ≤ N , let

W1 = arg min
W,|W|=d1

L(W)

W2 = arg min
W,|W|=d2

L(W).

Then we have
L(W1) ≥ L(W2). (16)

Proof. Let W1 = argminW,|W|=d1
L(W). Select any W3 ⊃

W1 such that |W3| = d2, where | · | denotes the set cardinality.

7

Denote the solution of MPC(W1) as {ûn
1,k}, and the solution

of MPC(W3) as {ûn
3,k}. Then we have

J(u(W3)) =
N∑

n=1

p∑
k=1

||ynk (ûn
3,k)||2Qy

+
N∑

n=1

p−1∑
k=0

||ûn
3,k||2Qu

=
∑

n∈W1

p∑
k=1

||ynk (ûn
3,k)||2Qy

+
∑

n∈W1

p−1∑
k=0

||ûn
3,k||2Qu

+
∑

n∈W3−W1

p∑
k=1

||ynk (ûn
3,k)||2Qy

+
∑

n∈W3−W1

p−1∑
k=0

||ûn
3,k||2Qu

+
∑

n̸∈W3

p∑
k=1

||ynk (ûn
3,k)||2Qy

+
∑

n̸∈W3

p−1∑
k=0

||ûn
3,k||2Qu

=
∑

n∈W1

p∑
k=1

||ynk (ûn
3,k)||2Qy

+
∑

n∈W1

p−1∑
k=0

||ûn
3,k||2Qu

+
∑

n∈W3−W1

p∑
k=1

||ynk (ûn
3,k)||2Qy

+
∑

n∈W3−W1

p−1∑
k=0

||ûn
3,k||2Qu

+
∑

n̸∈W3

p∑
k=1

||ynk (un)||2Qy
+

∑
n̸∈W3

p−1∑
k=0

||un||2Qu

≤
∑

n∈W1

p∑
k=1

||ynk (ûn
1,k)||2Qy

+
∑

n∈W1

p−1∑
k=0

||ûn
1,k||2Qu

+
∑

n∈W3−W1

p∑
k=1

||ynk (un)||2Qy

+
∑

n∈W3−W1

p−1∑
k=0

||un||2Qu

+
∑

n̸∈W3

p∑
k=1

||ynk (un)||2Qy
+

∑
n̸∈W3

p−1∑
k=0

||un||2Qu

=J(u(W1)).

Now we have

L(W1) =J(u(W1))− J(u(N))

≥J(u(W3))− J(u(N)))

=L(W3). (17)

By the definition of W2, we have

L(W2) = min
W,|W|=d2

L(W) ≤ L(W3).

Putting both inequalities together, we have

L(W1) ≥ L(W3) ≥ L(W2).

This completes the proof.

The following Lemma is a direct result of Lemma 2.

Lemma 3. Given W1 and W2 such that W1 ⊂ W2, then
L(W1) ≥ L(W2).

According to Lemma 2 or Lemma 3, it is obvious that

argmin
W

L(W) = arg min
W,|W|=N

L(W) = N , (18)

i.e., N is the solution to (15), making (15) a trivial criteria
for selecting a set W . Note that setting W = N is equiv-
alent to solving the full size MPC, and hence providing no
computational benefit. Therefore, at each time step, instead of
selecting W from the power set of N , we fixed the size of W
by a pre-selected integer d. In other words,

W = arg min
W,|W|=d

L(W), (19)

where d is predefined to balance control performance and
computation. Note that at each time step, we want to selectW
prior to solving any OCP. However, utilizing (19) to select W
requires solving MPC(W) for all potentialW such that |W| =
d. Fortunately, Theorem 1 provides some useful information
regarding W that does not require solving any optimization
problem. We first define δu,∅ according to Definition 3 with
W = ∅. In other words, δu,∅ is the maximum change on
control inputs if all inputs are selected for optimization, and
therefore δu ≤ δu,∅ for all W . Note that calculating δu,∅
requires solving MPC(N). However, in practice, δu,∅ can also
be relaxed to be the rate constraints on control inputs, which
can be a constant value in many applications. Define

LW =2δu ∥Qu∥
∑
n∈W

p−1∑
k=0

(||ûn
k ||)

+ 3δ2u ∥Qy∥
∑
n∈W

p∑
k=1

(Mn
k)

2

+ 2δu ∥Qy∥
∑
n∈W

p∑
k=1

(Mn
k ∥Cnx̂n

k + bn∥)

LW =2δu,∅ ∥Qu∥
∑
n∈W

p−1∑
k=0

(||ūn
k ||)

+ 3δ2u,∅ ∥Qy∥
∑
n∈W

p∑
k=1

(Mn
k)

2

+ 2δu,∅ ∥Qy∥
∑
n∈W

p∑
k=1

(Mn
k ∥Cnx̄n

k + bn∥) .

Then the upper bound given in (12) on performance loss L(W)
can be relaxed to

L(W) ≤ 3pNδ2u,∅ ∥Qu∥+ LW + LW . (20)

Here the first term on the right side of (20) is constant
regardless of the selection of W , while the second and third
terms are dependent on the selection of W . Furthermore,
the computation of the second term LW requires solving
MPC(W), while the third term LW can be computed prior
to solving any optimization problem. Therefore, in this paper,

8

we use LW to select W . More specifically, at each time step,
given d, W is selected as

W = arg min
W,|W|=d

LW . (21)

To solve (21), we first rewrite LW as

LW =
∑
n∈W

Ln,

where

Ln =2δu,∅ ∥Qu∥
p−1∑
k=0

(||ūn
k ||) + 3δ2u,∅ ∥Qy∥

p∑
k=1

(Mn
k)

2

+ 2δu,∅ ∥Qy∥
p∑

k=1

(Mn
k ∥Cnx̄n

k + bn∥) . (22)

Given {Ln} where n ∈ N , define the set of d largest elements
of {Ln} as max_d({Ln}). Utilizing the fact that Ln for each
n is independent of each other, we have

W = {n ∈ W|Ln ∈ max_d({Ln})} . (23)

Remark 9. The equation (19) selects W that minimizes the
control performance loss. However, this would require solving
MPC(W) prior to its selection. To avoid such requirement,
(21) or equivalently (23), which is an approximation of (19),
then selects W such that LW is minimized. Though there is
no guarantee that such a reconfiguration policy will lead to
minimal performance loss, the numerical analysis presented
in the sequel demonstrates that such a compromise does
yield satisfactory control performance. Moreover, since the
computation of Ln only depends on the current control input
sequence, (23) can be solved by computing (22) for each
n ∈ N and then picking the d number of components whose
corresponding Ln values are the largest.

Putting everything together, the proposed loss-based re-
configurable MPC, or loss-based ReMPC, is summarized in
Algorithm 2. Note that Algorithm 2 summarized the required
computation for each time step.

IV. PRACTICAL APPLICATIONS

This section presents two practical applications of the
proposed ReMPC to demonstrate its effectiveness of reducing
computation requirement while at the same time maintaining
control performance.

A. Battery Cell Balancing Control

Consider the battery cell balancing system in [41], which
consists of N battery cells connected in series. The system
can be modeled as a distributed system with the dynamics of
cell n (or component n) being modeled as [42]:

snk+1 = snk −
Ik + un

k

3600Cn
Ts (24a)

vnk+1 = vnk −
Ts

Rn
pC

n
p

vnk +
Ik + un

k

Cn
p

Ts (24b)

vno,k = V n
oc,k − vnk+1 − (Ik + un

k)R
n
o , (24c)

Algorithm 2: Loss-based ReMPC
Input: Mn

k , t, ūn, d, x̃n, dynamics (1)
Output: u, ūn

1 if t = 0 then
2 W ← N ;
3 else
4 for n = 1 to N do
5 {x̄n

k} ← Integrating (1) using ūn and x̃n;
6 Ln ← (22);
7 end
8 Rank Ln from highest to the lowest;
9 W ← (23); % Choose W such that corresponding

components have largest Ln value
10 end
11 Solve MPC(W) as formulated by (5);
12 for n ∈ W do
13 ûn ← Solution of (5);
14 ūn ← ûn;
15 end
16 for n ∈ W do
17 ûn ← ūn;
18 end
19 u← {ûn

0}

where sn is the state-of-charge (SOC) of cell n, vn is the
relaxation voltage, vno is the terminal voltage, Cn is the cell
capacity, Rn

p is the relaxation resistance, Cn
p is the relaxation

capacitor, V n
oc is the open circuit voltage and is SOC depen-

dent, Ro is the output resistance, Ik is the current of the string,
and un

k is the balancing current.
Due to cell variation and degradation, the cell capacity of

Cn of each cell can be different, resulting in different SOC
levels among cells. During battery operation, whenever one
cell’s SOC falls below 0 or its terminal voltage vno falls
below certain lower bound, the whole battery operation is
halted due to safety reason, though by that time there can
be other cells with higher SOC. To alleviate this issue, cell
balancing control has been studied in literature [41], [43]–[47]
to actively transport charge from cell to cell, through balancing
current un, to maintain a balanced SOC and terminal voltages
among cells. The aforementioned work has shown promising
potential of extending battery operating range through active
balancing. However, due to high computational load, existing
study often simulates a battery string with a few cells. In this
work, we apply the proposed ReMPC discussed and analyzed
in previous sections to active cell balancing control problem,
considering a large number of connected cells, e.g. N = 100.

For time step k, let s̄k be the balanced SOC level that we
want all cells to track, then the output of the prediction model
can be written as

ynk =

[
snk
vno,k

]
−
[
s̄k
0

]
.

The constraints are defined as

U =

{
u1
k, . . . , u

N
k |

∑
n

un
k = 0, |un

k − un
k−1| ≤ δu

}

9

0 50 100 150 200 250 300 350 400

Time [s]

0

10

20

30

40

50

60

70

80

90

100

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

 L
o

s
s
 [

%
]

ReMPC(70)

ReMPC(40)

ReMPC(10)

Fig. 1. Normalized performance loss L for different d for battery cell
balancing control example.

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

0

0.5

1

M
in

im
u

m
 S

O
C

 [
-]

No Balancing

CMPC

NCDMPC

CDMPC

ReMPC(40)

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

Time [s]

0

2

4

6

M
in

im
u

m
 S

O
C

 [
-]

10
-3

CMPC

ReMPC(70)

ReMPC(40)

ReMPC(10)

Fig. 2. Top: Comparison of minimum SOC for different controllers. Bottom:
Comparison of minimum SOC for ReMPC with different d.

Y =
{
y1k, . . . , y

N
k | snk ≥ 0, vno,k ≥ vmin

}
,

where vmin is the minimum voltage bound below which the
battery operation is halted.

Three variants of the proposed ReMPC, i.e., ReMPC with
d = 10, d = 40, and d = 70, are implemented and denoted
as ReMPC(10), ReMPC(40), and ReMPC(70), respectively.
Fig. 1 plots the normalized performance loss compared to a
centralized MPC (denoted as CMPC). As can be seen, despite
the large percentage of performance loss in the beginning, the
performance loss is dropped below 10% quickly. Furthermore,
as d increases, the performance loss decreases as well. In
particular, ReMPC(70) can achieve almost 0% performance
loss, as time increases.

To further compare the effectiveness of the proposed
ReMPC, we also implement non-cooperative distributed MPC
and cooperative distributed MPC as presented in [16], which
are denoted as NCDMPC and CDMPC, respectively. Fig. 2
compares the minimum SOC among all cells for different
controllers. As can be seen, without balancing control, the
minimum SOC drops below 0 at time 1,626 seconds, while
with NCDMPC the battery operation is extended to 1,735

TABLE I
COMPARISON OF BATTERY BALANCING RESULTS

Controller Range [s] Extension Relative Solver Time

No balancing 1,626 - -

CMPC 1,799 10.701% 100%

ReMPC(10) 1,799 10.701% 4.77%

ReMPC(40) 1,799 10.701% 20.00%

ReMPC(70) 1,799 10.701% 53.57%

NCDMPC 1,735 6.704% 24.95%

CDMPC 1,799 10.701% 48.25%

TABLE II
PARAMETERS FOR MULTI-VEHICLE FORMATION CONTROL

umin -1 umax 1

dumin -0.05 dumax 0.05

d1x,ref 0.1 d1y,ref -0.2

d2x,ref -0.1 d2y,ref -0.2

d3x,ref -0.1 d3y,ref 0.2

d4x,ref 0.1 d4y,ref 0.2

Qu [1, 0; 01] Qy diag([1, 1, 1, 0.7])

x1
0 [0.4;−0.1; 0.4; 0] x2

0 [0.5;−0.1; 0.1; 0]

x3
0 [0.4;−0.1;−0.4; 0] x4

0 [0.3;−0.1;−0.1; 0]

seconds. Finally, CMPC, CDMPC, ReMPC(10), ReMPC(40)
and ReMPC(70) can all achieve 1,799 seconds of battery oper-
ation. Note that from Fig. 2 it appears that CMPC can achieve
longer battery operation compared to ReMPC. However, the
extension is less than the control sampling time Ts = 1, and
hence it is ignored in the subsequent discussion.

Finally, Table I summarizes the battery balancing results
for all controllers, together with the relative computation
compared to CMPC. It is worth noting that the proposed
ReMPC does not incur any major control performance degra-
dation, while at the same time reduced significant amount of
computation compared to CMPC. In particular, the last column
of Table I summarizes the relative solver time of each con-
troller, where the average computation time to solve an CMPC
instance is used as baseline, i.e., denoted as 100% in Table I.
As can be seen, solving the OCP for ReMPC(10) requires
only 4.77% of solver time compared to CMPC, ReMPC(40)
requires 20%, while ReMPC(50) requires 53.57%. Compared
to distributed MPC approach, ReMPC can achieve better
control performance compared to NCDMPC, while requires
less computation compared to CDMPC.

B. Multi-Vehicle Formation Control

Consider the multi-vehicle formation control problem stud-
ied in [40], [48], [49], where there are a total number of N = 4
vehicles. The dynamics of vehicle n can be modeled as

pnx,k+1 = pnx,k + Tsv
n
x,k +

T 2
s

2mn
un
x,k (25a)

10

vnx,k+1 = vnx,k +
Ts

mn
un
x,k (25b)

pny,k+1 = pny,k + Tsv
n
y,k +

T 2
s

2mn
un
y,k (25c)

vny,k+1 = vny,k +
Ts

mn
un
y,k, (25d)

where pnx,k and vnx,k denote the horizontal position and veloc-
ity, respectively, and pny,k and vny,k denote the vertical position
and velocity, respectively. Control input are the horizontal
force un

x,k and vertical force un
y,k. Sampling time T = 0.1s

and the mass of vehicle n is mn = 0.1kg.
Define the following variables for inter-vehicle distance:

d1x,k = p2x,k − p1x,k, d1y,k = p2y,k − p1y,k

d2x,k = p3x,k − p2x,k, d2y,k = p3y,k − p2y,k

d3x,k = p4x,k − p3x,k, d3y,k = p4y,k − p3y,k

d4x,k = p1x,k − p4x,k, d4y,k = p1y,k − p4y,k,

and the output for vehicle n can be defined as

ynk =


dnx,k
vnx,k
dny,k
vny,k

−

dnx,ref

0
dny,ref
0

 .

In this case, regulating ynk towards 0 will effectively regulate
both horizontal and vertical velocities to 0 and at the same
time maintain the desired inter-vehicle distances as specified
by dnx,ref and dny,ref . The constraints are defined as

umin ≤ un
x,k ≤ umax

umin ≤ un
y,k ≤ umax

dumin ≤ un
x,k+1 − un

x,k ≤ dumax

dumin ≤ un
y,k+1 − un

y,k ≤ dumax.

The proposed ReMPC with d = 2 is implemented, i.e., only
2 vehicles are optimized at each given time step, and com-
pared to the performances of (i) a centralized MPC (CMPC)
where all vehicles are optimized at every single time step by
solving (3) and (ii) a cooperative distributed MPC (DMPC)
as discussed in [16]. The parameters used in the simulation
are listed in Table II, where xn

0 is the initial condition for
vehicle n. The results are plotted in Figs. 3 and 4. Comparing
ReMPC and CMPC, it can be seen that the closed-loop system
with ReMPC can effectively converge with a settling time
comparable to CMPC, despite the fact that there are small
overshoots during the transient. It is worth noting that ReMPC
and DMPC experience similar transient behavior. In terms
of computation time, since ReMPC solves smaller OCP at
eath time step, it only consumes 22.71% computation time
compared to CMPC and 55.78% computation compared to
DMPC, making it suitable for real-time embedded control. It
is worth pointing out that, ReMPC can result in a slightly
degraded transient behavior compared to CMPC. However,
such slight degradation is offset by the computation saving,
as discussed above.

To analyze the scalability of the proposed ReMPC frame-
work, the number of vehicles is extended to 10, 20, 30, and
40, and for each case, the centralized MPC, distributed MPC,

0 5 10

Time [s]

-0.4

-0.2

0

d
y1

ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.4

-0.2

0

d
y2

ReMPC

CMPC

DMPC

0 5 10

Time [s]

0

0.2

0.4

d
y3

ReMPC

CMPC

DMPC

0 5 10

Time [s]

0

0.2

0.4
d

y4
ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.4

-0.2

0

0.2

v
y1

ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.4

-0.2

0

0.2

v
y2

ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.4

-0.2

0

0.2

v
y3

ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.4

-0.2

0

0.2

v
y4

ReMPC

CMPC

DMPC

Fig. 3. Lateral formation and lateral speed of each vehicle.

and the proposed ReMPC are simulated. In addition, two
different values for d are simulated, namely, d1 = ⌊0.25N⌋,
d2 = ⌊0.75N⌋, where recall that N is the number of vehicles.
Table III lists the terminal cost of each controller, where all the
controllers can effectively stabilize the system with a terminal
cost of essentially 0. Using the computational time required
by centralized MPC for the case of N = 10 as a baseline,
the relative computational time required for each controller
is listed in Table IV, where the unit is %. Note that the
computational time required by CMPC grows exponentially as
N increases. Both ReMPC and DMPC require computational
time that is linear with respect to the number of vehicles.
Depending on the value of d, ReMPC requires similar or
even less computational time than DMPC, while at the same
time achieving comparable control performance to CMPC and
DMPC, as demonstrated in Table III.

Note that in both battery balancing control and multi-vehicle
formation control examples, d is fixed to a predefined value
for numerical study. In the future, we will explore the dynamic
selection of d so that a larger problem is formulated during the
transient conditions while a smaller value for d can be used
for steady-state conditions.

V. CONCLUSION

This paper presents a new reconfigurable model predic-
tive control (MPC) framework, or ReMPC, for large scale

11

TABLE III
TERMINAL COST FOR FORMATION CONTROL

N 10 20 30 40

CMPC 1.06× 10−6 3.18× 10−4 6.42× 10−4 7.13× 10−4

ReMPC(d1) 1.17× 10−3 3.03× 10−4 2.34× 10−3 3.08× 10−3

ReMPC(d2) 1.73× 10−7 2.93× 10−4 2.09× 10−3 3.05× 10−3

DMPC 1.85× 10−7 2.94× 10−4 2.12× 10−3 3.04× 10−3

0 5 10

Time [s]

0

0.2

0.4

d
x1

ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.2

0

0.2

d
x2

ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.3

-0.2

-0.1

0

0.1

d
x3

ReMPC

CMPC

DMPC

0 5 10

Time [s]

0

0.2

0.4

d
x4

ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.1

-0.05

0

0.05

v
x1

ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.1

-0.05

0

0.05

v
x2 ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.1

-0.05

0

0.05

v
x3

ReMPC

CMPC

DMPC

0 5 10

Time [s]

-0.1

-0.05

0

0.05

v
x4

ReMPC

CMPC

DMPC

Fig. 4. Longitudinal formation and longitudinal speed of each vehicle.

TABLE IV
RELATIVE COMPUTATIONAL TIME FOR FORMATION CONTROL. UNIT [%].

N 10 20 30 40

CMPC 100 724.7 2558 64040

ReMPC(d1) 1.73 3.36 8.39 20.82

ReMPC(d2) 7.33 11.13 24.41 45.28

DMPC 4.49 9.56 11.11 20.72

distributed systems, in which an optimal control problem
with time-varying structure is formulated and solved for each
control loop. More specifically, at each time step, a subset
of the control inputs is dynamically selected to be optimized
by MPC, while the previous optimal solution is applied to
the remaining control inputs. A theoretical upper bound on
performance loss is then derived to guarantee the worst-case
performance, which is later used to guide the selection of
control inputs to be optimized. Advantage over conventional
centralized MPC and distributed MPC is clearly validated
through two numerical examples, one on the battery cell-
to-cell balancing control with 100 cells and the other on
multi-vehicle formation control. It is demonstrated that the
proposed ReMPC can achieve better control performance
compared to distributed MPC while requiring less computation
time compared to centralized MPC. Future work includes
(i) the calculation of d to balance performance loss and
computation time explicitly, (ii) further improvement for a
tighter upperbound on the performance loss by considering
the solution cone for MPC(W), (iii) analysis on recursive
feasibility without Assumption 2 and stability analysis, (iv) the
design of state observer and the inclusion of state estimation
covariance as part of the selection criteria to determineW , and
(v) demonstration of the proposed ReMPC in other application
domains such as energy systems [50].

REFERENCES

[1] D. Görges, “Distributed adaptive linear quadratic control using dis-
tributed reinforcement learning,” IFAC-PapersOnLine, vol. 52, no. 11,
pp. 218–223, 2019.

[2] Z. Gong, B. A. van de Ven, K. M. Gupta, C. da Silva, C. H. Amon, H. J.
Bergveld, M. T. Donkers, and O. Trescases, “Distributed control of active
cell balancing and low-voltage bus regulation in electric vehicles using
hierarchical model-predictive control,” IEEE Transactions on Industrial
Electronics, vol. 67, no. 12, pp. 10 464–10 473, 2019.

[3] Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Dis-
tributed model predictive control for heterogeneous vehicle platoons
under unidirectional topologies,” IEEE Transactions on Control Systems
Technology, vol. 25, no. 3, pp. 899–910, 2016.

[4] Y. Yang, H.-G. Yeh, and R. Nguyen, “A robust model predictive
control-based scheduling approach for electric vehicle charging with
photovoltaic systems,” IEEE Systems Journal, 2022.

[5] M. R. C. Qazani, H. Asadi, and S. Nahavandi, “A motion cueing
algorithm based on model predictive control using terminal conditions
in urban driving scenario,” IEEE Systems Journal, vol. 15, no. 1, pp.
445–453, 2020.

[6] T. A. Johansen, “Toward dependable embedded model predictive con-
trol,” IEEE Systems Journal, vol. 11, no. 2, pp. 1208–1219, 2014.

[7] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

12

[8] J. Chen and Z. Yi, “Comparison of event-triggered model predictive
control for autonomous vehicle path tracking,” in IEEE Conference on
Control Technology and Applications, San Diego, CA, August 8–11,
2021.

[9] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
theory, computation, and design. Nob Hill Publishing Madison, WI,
2017, vol. 2.

[10] E. Henriksson, D. E. Quevedo, E. G. Peters, H. Sandberg, and K. H.
Johansson, “Multiple-loop self-triggered model predictive control for
network scheduling and control,” IEEE Transactions on Control Systems
Technology, vol. 23, no. 6, pp. 2167–2181, 2015.

[11] F. D. Brunner, W. Heemels, and F. Allgöwer, “Robust event-triggered
MPC with guaranteed asymptotic bound and average sampling rate,”
IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 5694–
5709, 2017.

[12] T. Marcucci and R. Tedrake, “Warm start of mixed-integer programs
for model predictive control of hybrid systems,” IEEE Transactions on
Automatic Control, vol. 66, no. 6, pp. 2433–2448, June 2021.

[13] L. Schwenkel, M. Gharbi, S. Trimpe, and C. Ebenbauer, “Online
learning with stability guarantees: A memory-based warm starting for
real-time MPC,” Automatica, vol. 122, p. 109247, 2020.

[14] M. N. Zeilinger, C. N. Jones, and M. Morari, “Real-time suboptimal
model predictive control using a combination of explicit MPC and online
optimization,” IEEE Transactions on Automatic Control, vol. 56, no. 7,
pp. 1524–1534, 2011.

[15] D. Liao-McPherson, M. M. Nicotra, A. L. Dontchev, I. V. Kolmanovsky,
and V. Veliov, “Sensitivity-based warmstarting for nonlinear model
predictive control with polyhedral state and control constraints,” IEEE
Transactions on Automatic Control, 2019.

[16] P. D. Christofides, R. Scattolini, D. M. de la Pena, and J. Liu, “Dis-
tributed model predictive control: A tutorial review and future research
directions,” Computers & Chemical Engineering, vol. 51, pp. 21–41,
2013.

[17] M. Kordestani, A. A. Safavi, N. Sharafi, and M. Saif, “Novel multiagent
model-predictive control performance indices for monitoring of a large-
scale distributed water system,” IEEE Systems Journal, vol. 12, no. 2,
pp. 1286–1294, 2016.

[18] R. Negenborn and J. Maestre, “On 35 approaches for distributed
MPC made easy,” in Distributed model predictive control made easy.
Springer, 2014, pp. 1–37.

[19] R. R. Negenborn and J. M. Maestre, “Distributed model predictive
control: An overview and roadmap of future research opportunities,”
IEEE Control Systems Magazine, vol. 34, no. 4, pp. 87–97, 2014.

[20] A. Ferrara, A. N. Oleari, S. Sacone, and S. Siri, “Freeways as systems of
systems: A distributed model predictive control scheme,” IEEE Systems
Journal, vol. 9, no. 1, pp. 312–323, 2014.

[21] D. Jia and B. H. Krogh, “Distributed model predictive control,” in
Proceedings of the 2001 American Control Conference, Arlington, VA,
June 25-27, 2001, pp. 2767–2772.

[22] G. Darivianakis, A. Eichler, and J. Lygeros, “Distributed model pre-
dictive control for linear systems with adaptive terminal sets,” IEEE
Transactions on Automatic Control, vol. 65, no. 3, pp. 1044–1056, 2019.

[23] A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright,
“Distributed mpc strategies with application to power system automatic
generation control,” IEEE transactions on control systems technology,
vol. 16, no. 6, pp. 1192–1206, 2008.

[24] J. Chen, X. Meng, and Z. Li, “Reinforcement learning-based event-
triggered model predictive control for autonomous vehicle path follow-
ing,” in 2022 American Control Conference, Atlanta, GA, June 8–10,
2022.

[25] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in
2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 2015,
pp. 1094–1099.

[26] M. Ostadijafari and A. Dubey, “Tube-based model predictive controller
for building’s heating ventilation and air conditioning (hvac) system,”
IEEE Systems Journal, vol. 15, no. 4, pp. 4735–4744, 2020.

[27] A. Dutta, S. Ganguly, and C. Kumar, “Coordinated volt/var control of
PV and EV interfaced active distribution networks based on dual-stage
model predictive control,” IEEE Systems Journal, vol. 16, no. 3, pp.
4291–4300, 2021.

[28] K.-V. Ling, J. Maciejowski, J. Guo, and E. Siva, “Channel-hopping
model predictive control,” IFAC Proceedings Volumes, vol. 44, no. 1,
pp. 11 417–11 422, 2011.

[29] Z. Zhou, C. Rother, and J. Chen, “Event-triggered model predictive
control for autonomous vehicle path tracking: Validation using CARLA

simulator,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 6, pp.
3547–3555, June 2023.

[30] H. Li and Y. Shi, “Event-triggered robust model predictive control of
continuous-time nonlinear systems,” Automatica, vol. 50, no. 5, pp.
1507–1513, 2014.

[31] H. Li, W. Yan, and Y. Shi, “Triggering and control codesign in self-
triggered model predictive control of constrained systems: With guar-
anteed performance,” IEEE Transactions on Automatic Control, vol. 63,
no. 11, pp. 4008–4015, 2018.

[32] C. Liu, H. Li, Y. Shi, and D. Xu, “Codesign of event trigger and
feedback policy in robust model predictive control,” IEEE Transactions
on Automatic Control, vol. 65, no. 1, pp. 302–309, 2019.

[33] K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Self-triggered
model predictive control for nonlinear input-affine dynamical systems
via adaptive control samples selection,” IEEE Transactions on Automatic
Control, vol. 62, no. 1, pp. 177–189, 2016.

[34] F. Dang, D. Chen, J. Chen, and Z. Li, “Event-triggered model predic-
tive control with deep reinforcement learning,” IEEE Transactions on
Intelligent Vehicles, accepted for Publication, October 2023.

[35] F. D. Brunner, M. Heemels, and F. Allgöwer, “Robust self-triggered
MPC for constrained linear systems: A tube-based approach,” Automat-
ica, vol. 72, pp. 73–83, 2016.

[36] M. Kale and A. Chipperfield, “Stabilized MPC formulations for robust
reconfigurable flight control,” Control Engineering Practice, vol. 13,
no. 6, pp. 771–788, 2005.

[37] T. Bai, S. Li, and Y. Zou, “Distributed MPC for reconfigurable architec-
ture systems via alternating direction method of multipliers,” IEEE/CAA
Journal of Automatica Sinica, vol. 8, no. 7, pp. 1336–1344, July 2021.

[38] D. J. Burns, C. Danielson, J. Zhou, and S. Di Cairano, “Reconfigurable
model predictive control for multievaporator vapor compression sys-
tems,” IEEE Trans. Control Syst. Techn., vol. 26, no. 3, pp. 984–1000,
2017.

[39] A. Alessio and A. Bemporad, “A survey on explicit model predictive
control,” in Nonlinear model predictive control. Springer, 2009, pp.
345–369.

[40] Y. Zou, X. Su, S. Li, Y. Niu, and D. Li, “Event-triggered distributed pre-
dictive control for asynchronous coordination of multi-agent systems,”
Automatica, vol. 99, pp. 92–98, 2019.

[41] J. Chen, A. Behal, and C. Li, “Active cell balancing by model predictive
control for real time range extension,” in 2021 IEEE Conference on
Decision and Control, Austin, TX, USA, December 13–15, 2021.

[42] X. Lin, H. E. Perez, S. Mohan, J. B. Siegel, A. G. Stefanopoulou,
Y. Ding, and M. P. Castanier, “A lumped-parameter electro-thermal
model for cylindrical batteries,” Journal of Power Sources, vol. 257,
pp. 1–11, 2014.

[43] C. Wang, G. Yin, F. Lin, M. P. Polis, C. Zhang, J. Jiang et al., “Balanced
control strategies for interconnected heterogeneous battery systems,”
IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 189–199,
2015.

[44] J. Xu, B. Cao, S. Li, B. Wang, and B. Ning, “A hybrid criterion based
balancing strategy for battery energy storage systems,” Energy Procedia,
vol. 103, pp. 225–230, 2016.

[45] Z. Gao, C. Chin, W. Toh, J. Chiew, and J. Jia, “State-of-charge estimation
and active cell pack balancing design of lithium battery power system
for smart electric vehicle,” Journal of Advanced Transportation, vol.
2017, no. Article ID 6510747, 2017.

[46] S. Narayanaswamy, S. Park, S. Steinhorst, and S. Chakraborty, “Multi-
pattern active cell balancing architecture and equalization strategy for
battery packs,” in Proc. of the International Symposium on Low Power
Electronics and Design, Seattle, WA, July 23–25, 2018, pp. 1–6.

[47] J. Chen, A. Behal, and C. Li, “Active battery cell balancing by real time
model predictive control for extending electric vehicle driving range,”
IEEE Transactions on Automation Science and Engineering, accepted
June 2023.

[48] C. Wang and C.-J. Ong, “Distributed model predictive control of
dynamically decoupled systems with coupled cost,” Automatica, vol. 46,
no. 12, pp. 2053–2058, 2010.

[49] B. Ding, L. Xie, and W. Cai, “Distributed model predictive control
for constrained linear systems,” International Journal of Robust and
Nonlinear Control, vol. 20, no. 11, pp. 1285–1298, 2010.

[50] K. Deng, Y. Sun, S. Li, Y. Lu, J. Brouwer, P. G. Mehta, M. Zhou, and
A. Chakraborty, “Model predictive control of central chiller plant with
thermal energy storage via dynamic programming and mixed-integer
linear programming,” IEEE Transactions on Automation Science and
Engineering, vol. 12, no. 2, pp. 565–579, April 2015.

	Introduction
	Reconfigurable Model Predictive Control
	Performance Loss and Subsection Selection
	Performance Loss
	Loss-based Reconfiguration

	Practical Applications
	Battery Cell Balancing Control
	Multi-Vehicle Formation Control

	Conclusion
	References

