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Abstract: Optimal control techniques such as model predictive control (MPC) have been widely
studied and successfully applied across a diverse field of applications. However, large computational
requirements for these methods result in a significant challenge for embedded applications. While
event-triggered MPC (eMPC) is one solution that could address this issue by taking advantage of
the prediction horizon, one obstacle that arises with this approach is that the event-trigger policy
is complex to design to fulfill both throughput and control performance requirements. To address
this challenge, this paper proposes to design the event-trigger through training a deep Q network
reinforcement learning agent (RLeMPC) to learn the optimal event-trigger policy. This control
technique was applied to an active cell balancing controller for range extension of an electric vehicle
battery. Simulation results with MPC, eMPC, and RLeMPC control policies are presented along with
a discussion of the challenges of implementing RLeMPC.

Keywords: Model predictive control, event-triggered control, optimal control, reinforcement learning,
active cell balancing, electric vehicle range extension

1. Introduction

Model predictive control (MPC) is an advanced control technique that has been
widely studied and successfully applied in many applications, including active battery
cell balancing [1,3,4,9,49-52]. MPC determines control actions by using a model of the
system in combination with a cost function to determine the optimum sequence of control
actions that minimizes the cost function over a future time horizon. The capability of
handling constraints on the control action and state variables in the formulation of an
optimal control problem (OCP) is a key feature that distinguishes MPC as a versatile tool.
However, the large magnitude of computations required to solve the OCP at every time
step remains a drawback for MPC implementation on embedded systems. Techniques have
been investigated for reducing the computational time needed such as explicit MPC [5]
and online fast MPC [6].

Another approach, event-triggered MPC (eMPC), triggers the MPC controller to
determine a new set of control actions when the defined trigger conditions are met and
otherwise, follow the predicted optimal control sequence [7,10-14]. The stability of the
event-triggered MPC are discussed in detail in papers [47] and [46], which provide essential
insights and methodologies for ensuring the stability of event-triggered MPC. In general,
the stability of event-triggered MPC can be proven by Lyapunov stability theory where the
cost function can be selected as the Lyapunov function. However, the design and calibration
of this trigger is not trivial, so to realize the largest benefit from it, a reinforcement learning
(RL) agent has been developed and trained to trigger the MPC control action. This is
known as RLeMPC and has been applied in autonomous vehicle path-following problems
in [15,16]. It was found in [15,16] that RLeMPC can outperform threshold-based eMPC in
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key metrics related to both throughput and control performance. This work then builds on
that RLeMPC formulation by using a deep neural network (DNN) to model the Q-function
to determine the event-trigger for eMPC, with a particular focus on the application of
active cell balancing for electric vehicle (EV) batteries. Compared to existing works such
as [17] and [18] where an RL agent is used to trigger and schedule communications, this
particular formulation is unique in the objective to reduce throughput rather than to save
communication bandwidth.

On the other hand, the battery cell imbalance is a critical issue that limits the range
of electrical vehicles (EV) [19]. In battery packs with multiple cells, the individual cells
have state-of-charge (SOC) and terminal voltage variation between them that arises from
manufacturing variation and uneven aging among other factors [19-21]. Discharging an
individual cell below a minimum voltage results in accelerated degradation of the pack
capacity and safety risks, so to prevent these conditions, any individual cell must not
be discharged below a discharge voltage limit (DVL). This dynamic results in the total
usable energy of the battery pack being limited by the lowest capacity cell when this cell
reaches the DVL before any of the other cells while discharging. Similarly, this dynamic
also plays out while charging as well where any individual cell should not be charged
above a charging voltage level (CVL) to avoid cell damage and safety risks. Therefore, the
charging process is then limited to whichever cell has the lowest capacity and charges to
the CVL first.

Cell balancing is a technology that has arisen to address these issues [2,8,22,23,23-29,42,
43]. Cell balancing methods can be classified into dissipative and nondissipative methods
with the difference being whether the balancing method relies on resistive elements, ie.
energy dissipative, or charge transfer, ie. nondissipative [30]. An additional dichotomy
can be drawn between active and passive cell balancing that distinguishes methods that
require active control from those that rely on passive circuit elements. This paper focuses
on nondissipative active cell balancing with the goal of reducing the amount of capacity
loss of the battery pack by redirecting charge in cells exhibiting voltage imbalance when
discharging and charging to maximize the usable battery pack energy.

MPC-based active cell balancing has also been widely studied in the literature [1,22,
31,35-39]. In [1], an MPC controller was developed and evaluated for active cell balanc-
ing to extend the range capability of EV batteries. Multiple cost function formulations
were evaluated to determine a cost function that increases the range of the vehicle while
minimizing throughput. It was concluded in [1] that all the cost function formulations
tested resulted in high computation reduction, but the cost function based on minimizing
tracking error of each cell voltage was the most robust against model mismatch and load
disturbance. Therefore, in this paper, we focus on the development of the tracking MPC into
RLeMPC with the addition of an event trigger for the OCP driven by a deep RL agent that
determines when to trigger. This development is expected to improve upon the previous
MPC-based approach through decreasing required throughput by reducing the amount of
times the OCP must be solved while maintaining similar range extension performance. It
is also expected to improve the design of the event-trigger by replacing the conventional
threshold-based policy with a DNN.

The remainder of the paper is organized as follows. Section 2 describes the framework
of RL and MPC, while Section 3 discusses how active cell balancing can be formulated
into the RLeMPC framework. Section 4 presents simulation results from applying these
techniques to cell balancing and Section 5 concludes the paper.

2. Preliminary on RL and MPC
2.1. Reinforcement Learning

The RL paradigm [32,33] operates on a state-action framework where at time step
t, the state of the environment, s;, is observed by an agent which then selects an action
a; to take. After the action is taken, a scalar reward is given to the agent depending on
the reward function denoted r(s¢, a;). The goal of the agent is to learn an optimal policy
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7T* : s — a that maximizes the expected cumulative future rewards which can be described
as

o0
G=Ex [Z 7t,,;| 1
t=0

where 1y = r(sy,a;) and the scalar 7y € [0, 1] is the discount factor that can reduce the value
of future expected rewards. In order to learn the optimal policy 77%, the agent interacts with
the environment to learn which actions to take at given state s; in order to maximize the
expected cumulative reward G.

To measure the value of the agent being in state s, a state value function Vy(s) can be
defined as the value of the state s under the policy 7, which is the expected return starting

from s following policy 7. This can be expressed as

(o)

V7(s) = En[ 'Ytrt—l—k
k=0

s = 51 )

Alternatively, the state-action value function Q(s,a) of a state-action pair (s,a) can be
defined as the expected return starting from s followed by action a and then policy 7. This
can be expressed as

[e9)

Q"(s,a) =Ex [Z ’)’krt+k

k=0

Sy =8s,0; = a] 3)

Through agent interaction with the environment, the Q-function can be learned, and once
it is approximately known, the optimal Q-function Q*(s,a) = max,; Q" (s,a) is the Q-
function with a policy applied to maximize the Q value. This policy 7* can be defined
as

7T * (s) = argmax Q * (s, a) 4)
a
The RL agent will then be able to execute the optimal policy 7t* by selecting the action that
results in the highest Q value for a given state.

To restate, the optimal policy 77* can be found by learning the optimal Q-function
Q*(s,a). The objective of RL training is then to learn Q* (s, a), which is also referred as as
Q-learning. With this method, the RL agent can learn the optimal Q-function exclusively by
interacting with the environment. Notably, no model of the system dynamics is required
for the agent to learn the optimal policy. However, in exchange for this benefit, ample
training time is required for the RL agent to learn Q*.

2.2. Deep Neural Network Based RL

In order to decide an action, the RL agent requires a method to generalize the state-
action value function over any state and action. For this implementation, a deep neural
network (DNN) was used with the environment state variables as inputs to the network,
and the expected, discounted cumulative future reward of each action, the Q-value, at the
given state as the output. This implementation of RL is known as Deep Q-Learning because
the DNN models the state-action value function or Q(s, a) [34,40]. Consequently, the DNN
can be more specifically described as a Deep Q Network (DQN).

To train the DQN, double Q-learning and batch update methods were used. For each
update, a batch of experiences (s;, a;,7;,5;) of size M is pulled from memory to use. For
double Q-learning, two sets of network weights and biases are used, denoted as ¢ for the
critic network parameters and ¢; for the target network parameters. Depending on the
state, ¢ is used to determine the next action with probability 1 — €. Otherwise, a random
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action is selected. After the action is taken, ¢ is updated according to a target values y;.
This target is determined with the double Q-learning and batch methods by

Amax = argmax Q(s}, a’, ¢) (5a)

a'

yi=ri+ 'YQt(S;/ Amax, 4715) (5b)

For double Q-learning, ¢ is used to select the action a,,,, that ¢; will use to determine the
target. These target values y; are then included in a loss function that compares the target
value that was observed to the current critic network estimate. Stochastic gradient descent
can be applied to this loss function to determine a new ¢ that minimizes L depending on
the gradient of the loss function and the learning rate.

L— (0 e B))2 6
= mi:l(yl —Q(si,ai;9)) (6)

The new weights and biases ¢ are then set in the behavior network for the agent to select
the next action. After a set amount of training time steps, the target network parameters ¢;
are set to the behavior network parameters ¢ in order to increase the stability of learning
and reduce overestimates of Q.

The goal of training the network is to adjust the DQN parameters to closely approxi-
mate the actual Q* function to select the action with the highest expected reward. Methods
such as epsilon greedy can be used to force the agent to explore before it has had much expe-
rience with the environment and gradually transition the agent to exploit the environment
once enough experience has be gained to consistently achieve high rewards.

2.3. Event-Triggered MPC

Generally, event-triggered MPC (eMPC) builds off a conventional time-triggered MPC
controller by adding an event-trigger layer and changing how the control command is
computed in the absence of an event. Mathematically, for a system described by the
following dynamics

Crv1 = f(Crour) (7)

where (; € R" is the system state at discrete time ¢ and u; is the controller output. The
MPC controller calculates the optimal control sequence U; and optimal state sequence {; to
minimize a cost function ;. over a defined prediction horizon p through solving an OCP
defined as

P
min k;]fnpc(zt/ ur) (8a)
st. Gr=10r (8b)
Gk = f(Qrk—1 k1), 1<k<p (8c)
Cmin < Cek < Cmax, 1<k<p (8d)
Upmin < Uprk < Umax, 1< k< p—1 (8e)
Din < thppge —Uprp1 < Dpax, 1<k<p—1 (8f)

where U; and Z; are defined as U; = {ut,ut+1,...,ut+p_1} and Z; = {Gs41, G142, Crap )
The optimization is subject to the current estimate of the state i (8b), subsequent states that
only depend on the previous state and control action taken (8c), and constraints that are
applied to the state and control action (8d-f). Conventionally, this OCP is solved at every
time step where the first control action u; is applied then the rest of the control sequence
U; is not used. eMPC in contrast only solves the OCP when the event conditions are met,
denoted by 7y, where .1 = 1 when the event conditions are met and otherwise y.,; = 0.
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When 7.1 = 0, the controller applies the predicted optimal control sequence U;, computed
at the previous trigger at time #;. This can be described as

_ JSolution of (8) if v =1 ©)
B Uy, (k+1) Otherwise.

To summarize, the primary new features that distinguish eMPC from conventional
MPC are that the trigger y.,; must be changed from a consistent periodic time trigger to
event based and that it applies the predicted optimal control sequence U; calculated until
the next event is triggered. The trigger policy then becomes the focus of the design which
can be described as

Vet = 70(Z1,, $4]0) (10)

where Z;, is the optimal state sequence computed at the last event at time t, {; is the
current state feedback, and 6 is calibration parameters for the trigger. Typically, the event
is based on the error between the optimal predicted state calculated at the last event and
the current state feedback or estimation such that if the error is large between the state
prediction {; from the prediction sequence Z;, and current actual state {;, then trigger the
MCP to use the more accurate feedback to determine a new control sequence. This type of
event-trigger condition can be described as

|| 0t — ét” >ée (11)

where @ € 0 is a calibrate-able error threshold. Details for eMPC are described in Algorithm
1 and Fig. 1.

Algorithm 1 Event-Triggered MPC [41]

1: procedure EMPC(é, k, Uy, Zt,, p)
2 k< k+1;

3 Yetrl < computing (11);

4: if v = 1 then

5: k<« 1;

6 (Zt,Uy) < Solving OCP (16);
7 u + Ui(1);

8 g — Zt1 (1),

9: Utl +— Uy

10: Ztl — Zs;

11: else

12: u <« Uy (1);

13: if k <= p then

14: ¢« Zy (k)

15: else

16: g — Zt1 (p)

17: end if

18: end if

19: return u, , I,Itl, Ztl, k
20: end procedure
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Yo € computing(11) +

Start You== 12 u«U,(1) L
Yeu= 1 g No Gy < Zy(k, p)

Yes -’Applyu—'{k:kJr]
k1

U, U,

(2, U) €Solve OCP (16) |~  Zu - (Z],) -
u<— U,

Ct] — Zr(j)

Figure 1. Flowchart for the Event-Triggered MPC (eMPC) in Algorithm 1.

However, the challenge associated with (11) is uncovered then because the analytical
form of the MPC closed loop system, especially for nonlinear functions and models is
difficult to determine. This results in event-trigger policy designs which are usually
problem specific and non-trivial. To solve this challenge, an RL agent with a DOQN is
proposed to learn the optimal event-trigger policy 77* without a model of the closed-loop
system dynamics.

3. Problem Formulation
3.1. Active Battery Cell Balancing Control

A common equivalent circuit model of a lithium ion cell can be used to model the
SOC, relaxation voltage, and terminal voltage of each cell [44,45]. The cell model can be
described as

Z’Tl

§" = —qnﬁ (12a)
n VF]} i"

R e (12b)
y' = Ve — Vi —i"R} (12¢)

where the superscript n is the nth cell, s is the cell SOC, ;" is the cell coulombic efficiency,
C" is the cell capacity in amp hours, V}; is the relaxation voltage over Ry, Vy: is the open
circuit voltage, y" is the terminal voltage, and i” is the cell current. Positive i indicates
discharging the battery while negative i" indicates charging. The variables Vi, Rj, R}, and
Cyp are all dependent of s" resulting in a nonlinear cell model.

This model can then be discretized using Euler’s method for a model that can be
implemented digitally as

T, .
Sk41 =Sk — Wncfillrcl (13a)
T. Ts .
Vi = Vo — Tnscn Vo + C—;z,’f (13b)
p=r P
Yk = Voek = Vpr — ik Rs (13¢)

where T; was set to 1 s. To simulate imbalance, a probability distribution can be used to
apply random variation to the C", R, and Cj, terms. Table 1 lists example variations of
these parameters that would later be used for simulation in this paper.
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Table 1. Cell Imbalance Parameters at 100% SOC. Ah: Amp-hour; mQ): milliohms; kF: kilofarads.

Parameter | Unit [n=1[n=2[n=3|n=4]n=>5

C Ah 62.87 | 60.00 | 66.61 | 56.73 | 61.66
Ry mQ) 6.40 5.66 547 6.68 6.36
Cp kF 153.7 | 177.8 | 1759 | 168.9 | 150.4
R, mQ) 1.49 1.27 1.41 1.51 1.53

Finally, the SOC and relaxation voltage states can be grouped together as (" :=
[s", V)T where .T denotes a matrix or vector transpose. The battery pack state can be

written as

Cir = [ (G ik +ug)

Yk

= &"(Cx ik + ug)

(14a)
(14b)

where 1] is the balancing current applied to the cell as shown in Fig. 2. Define { =
(71,22, ...,CN]T as the state vector for the battery pack and y to be the terminal voltage of
the battery pack, then

Ckr1 =

Zyk

(G4 ik +u})
f( Cé 1k+“%)

" (é]lc\]r ik + “1121)

2 8" (T ik +ug)

(15a)

(15b)

Power Converter

h

ul

1st cell

u2
—*lllllb

4

2nd cell

Figure 2. Battery pack configuration for active cell balancing.

For this study, a 5 cell in series pack is assumed resulting in the pack terminal voltage
equal to the sum of the cell terminal voltages. For the active cell balancing power converter,

an ideal converter with limits on each balancing current and no charge storage is assumed.

This power converter also assumes a direct cell-cell topology meaning that charge from any
cell can be directed to any other cell with the rate of charge transfer limited by balancing
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current limits. These constraints along with the cell model can be formulated as an optimal
control problem for MPC at time step k over prediction horizon p as

min ké]ﬁzpc(zt, uy) (16a)
s.t. €z+]'+l = f"(%jr Ikyj + uZ+j),
0<j<p-1,1<n<N (16b)
ylrcl-i-j =g" (él?-s-]'r ik-s—j + ”1?-5-]‘)/

1<j<p1<n<N (16¢)
Upin S U < Umax, 1<n <N (16d)
V<Y 1<j<pl<n<N (16e)

N
0=) uy (16f)

i=1

The constraints on the optimization problem begin with (16d) to set maximum and
minimum limits for each balancing current uX. Next, (16e) states that the cell terminal
voltages yj j must be greater than the DVL y. Finally, (16f) states that there is no charge
storage, only transfer with the sum of balancing currents equal to 0.

The cost function chosen for this study is based on minimizing the tracking error
between each individual cell to a nominal cell without any imbalance which was studied in
[1]. This MPC formulation can be presented mathematically as

4
2 Yi+j — ]/k+1 (1/k+j - y2+1) + uy Ruy (17)

where yy,; is defined as the vector of cell terminal voltages y;,; = [yk L yk i y}c\; j]T,
and R is a positive semi-definitive weighting matrix. The first term penalizes cell Voltages
that deviate from the nominal cell while the second term penalizes the magnitude of
balancing current to reduce resistant heating loses. The nominal cell voltge target is a scalar

which leads to needing only the R weighting matrix to tune the cost of the terms.

3.2. RLeMPC for Active Cell Balancing

The MPC controller that solves (16) periodically is then adapted to eMPC by first
integrating an event-trigger into the MPC model using the difference between the predicted
voltage of a nominal cell and the measured terminal voltage of each cell compared to a
calibrate-able threshold é as the trigger condition described in (11). When the event is not
triggered ;) = 0, the controller holds the first of the balancing commands of the previous
calculated series Uy, instead of using the subsequent elements of U;,. This modification
was used because the future driver power demand is assumed to be unknown and the
dynamics of the terminal voltage are relatively slow compared to the controller sample
rate of Ts = 1 s. This implementation of eMPC was studied to compare to a constant
time-triggered MPC baseline and an RL-based event-trigger.

After testing and evaluating the eMPC implementation, an RL agent was developed
to replace the trigger conditions. The RL agent was setup as a DQN agent described above
in Section IL.B. This agent interacts with environment (15) and observes the average and
minimum cell voltage, average cell SOC, and pack current demand as state variables as
well as the reward (18). Although each cell voltage is considered as the state in (15), only
these more general state parameters were used to reduce the number of dimensions of the
state for training. During training, the agent will select a random action with probability e
that decays exponentially over time and otherwise, will select the action with the greatest
value determined by the critic network with parameters ¢. This action is the event-trigger
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for the MCP controller to solve the OCP which then determines a new Uy, and Z;,. The
reward function for each time step was defined as the distance driven over the time step dx
subtracted by a flag representing whether or not the event-trigger was set y.,; multiplied
by a weighting factor p together as

r=dx — Y1 *p. (18)

This reward function is one of the primary design elements for the RLeMPC implementation
where the key objectives of maximizing EV range in dx and minimizing event-triggering in
Yetrr are included for the agent to pursue. This reward r is the main feedback signal that the
RL agent uses to learn an optimal policy that maximizes r over the episode. The parameter
p was tuned to achieve the proper scaling between the conflicting objectives to result in the
desired behavior of the converged policy. With these RL state and reward formulations,
many hyperparamters such as p, the structure of the DQN, learning rate, discount factor,
and epsilon decay were tuned in a simulation environment while training the agent to find
the optimum event trigger policy. Details for training the RLeMPC agent can be found in
Algorithm 2 and Fig. 3.

252
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Algorithm 2 RL-based Event-Triggered MPC

1: procedure RLEMPC(M, T, dt, 7y, N)
2 Initialize ¢, D < @, ¢ + ¢
3 forj=0toN—1do
4 Initialize s¢, Z,, Ut,, k <= 0, u <= 0
5: while t <= T do
6 if explore then
7 Sample a; from {0,1}
8 else
9; a; < argmax, Q(s¢, a; ¢)
10: end if
11: <Simulate Environment>
12: if v, = 1 then
13: k< 0;
14: (2, Uy) <+ Solving OCP (16);
15: u <+ Uy(1);
16: U, < Uy
17: Zt1 — 7y
18: else
19: u <« U (1);
20: k< k+1,;
21: if k <= p then
22: ¢+ Zi, (k)
23: elseA
24: é «— Ztl (p)
25: end if
26: end if
27: Ct+1 < Simulate (13) using u
28: St+1 < i1
29: re < (18)
30: <End of Environment Simulation>
31 Observe 1y and sy 1
32: Update D to include (s, a, ¢, 5¢+1)
33: Sample M experiences from D
34: ¢ < Perform gradient descent on (6)
35: if Target Update Condition is True then
36: ¢t <— ¢
37 end if
38: St < St11
39: t < t+dt
40: end while
41: end for

42: end procedure
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Yew ¢+ arg max, O(s, a; ¢)
No
[ Yes
| Youl < random{0,1} Explore?
u<— U,(l)
Start u
= 17 ke—k+1
Yeul™ 1 Yol No

&« Zy(k p)

Observe r,and s,
Yes Apply u Update D and ¢
k1 e s
(T S

Us =0,

Z,—7Z

(Z, U) < Solve OCP (16 1 ‘
— 19 )
Cu—Z(D)

Figure 3. Flowchart for the Reinforcement Learning-Based Event-Triggered MPC (RLeMPC) in
Algorithm 2. The red outlines signify the primary changes from the previous eMPC Algorithm 1.

4. Simulation Results and Discussion
4.1. Simulation Environment

Simulations were executed for the training and testing of the active cell balance controls
using MATLAB and Simulink with the Reinforcement Learning Toolbox to create and train
DQON agents inside of a Simulink environment [48]. The simulations were conducted on a
computer with Intel® Core™ i5-6600K processor and 8 GB of RAM. As described above, the
system being simulated is a battery pack with 5 cells in series and an ideal power converter
that can move charge between any cells constrained by balancing current limits for each
cell of £2 A.

Repeated FTP-72 drive cycle conditions were tested over the sedan EV configuration
as used in [1]. The discharge current from the battery pack was scaled from the power
demand to assume a larger pack with additional modules in parallel, and a final scaling
factor was applied to increase the current draw and reduce simulation time. Starting with
all cells fully charged to CVL, the battery was discharged according to the scaled current
demand of the vehicle until the first cell reached DVL. The velocity profile and scaled
vehicle power demand that was applied to the 5S cell module is shown in Fig 4 where
on subsequent cycles, phase 1 of the cycle is repeated for the higher power demands to
discharge the battery faster.
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(a) Vehicle Velocity Profile
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Figure 4. Velocity profile for repeated FTP-72 drive cycles and resulting scaled power requested from
55 cell module applied for the simulations. figure updated

Finally, for all the simulations, a constant imbalance was applied across the C", R},
Cp, and R} cell parameters. To select these parameters, a series of simulations were run
that multiplied each of the nominal cell parameters by random factors that were selected
from a normal distribution with a mean of 1 and interval between 0.9 and 1.1. From
these tests, a set of imbalance factors that resulted in an average active cell balancing
range extension benefit for the configuration with the conventional MPC approach was
chosen as the constant set of imbalance parameters to use for the rest of the simulations.
This was done because the magnitude of the imbalance determines the range extension
benefit that can be realized with active cell balancing. With less realizable range extension
benefit, the sensitivity of the range extension depending on the control strategy reduces
as it changes between MPC, eMPC, and RLeMPC. Future work would include how to
generalize these approaches to any distribution of imbalance and quantify the benefit
relative to the distribution of cell imbalances, especially for the RL agent which was trained
and evaluated using only one set of imbalance parameters for this study.

4.2. Evaluation Criteria

The primary performance metrics for this study are the overall driving range and
average event-trigger frequency. The purpose of cell balancing in general is to achieve the
maximum energy output of the battery which would translate to maximizing the driving
range assuming no auxiliary loads. Moreover, average execution frequency is used as an
approximation of the computational load with the goal of minimizing it with RLeMPC.
In addition, the magnitude of the balancing currents averaged over the drive cycle is
considered to approximate the resistant heating losses and referred to as the balancing
effort in the sequel.

4.3. Results with Constant Trigger Period

Before executing simulations with varying trigger frequencies, the MPC weighting
matrix R in (17) was re-calibrated to be more robust toward infrequent triggering. For
conventional MPC or eMPC with minimal modeling errors, the weighting of R could be
decreased to tune the cost optimization toward lower voltage tracking error of the cells to
a nominal cell voltage target at the cost of higher balancing currents. However, for this
application where future driver power demand is assumed to be unknown, weighting to
prioritize aggressively tracking the reference voltage can result in reduced range extension.
The unknown future driver power demand becomes a disturbance in the model prediction
which increases as the trigger frequency reduces. Furthermore, the prediction horizon may
occasionally be much less than the trigger period resulting in prediction error even if power
demand was known ahead of time. Because of these unknown dynamics to the model,
increasing the cost of the balancing current magnitude through the weighting matrix R can

307



Electronics 2024, 1,0

13 of 24

increase the range performance of the system during infrequent triggering by reducing the
response of the controller to a model with large prediction errors.

This dynamic is shown in Fig. 5, where the cost weighting of each balancing current
magnitude R" is set to be equal, scaled appropriately, and tested to determine range
extension and balancing effort dependencies. For these tests, the value of R" was varied
for transient cycle discharge tests while having a constant trigger period of 5 s. Increasing
the R" values leads to less balancing effort which demonstrates the effect of R on the MPC
cost optimization. For R" in 800-4000, the range is extended by 0.1% as compared to when
R" is between 10 to 70. Although a small difference, this result demonstrates that with
these model assumptions, larger R" values can result in larger range extension. This result
may not be intuitive since range extension is gained with less balancing effort, but this
comes from the previously described modeling discrepancies. Once R is very large, the
range extension decreases drastically as the balancing currents are greatly reduced limiting
the optimal calibration range for R". The final R" calibration was set to 100 to avoid the
initial large amounts of balancing effort and also to avoid overly penalizing the balancing
effort. Fig. 6 shows the transient cell balancing performance for the final R calibration and
a constant trigger period of 5 s.
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Figure 5. Final EV range and balancing effort results from R weighting matrix sweep with time-
triggered MPC with constant trigger period of 5 s.
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Figure 6. Transient cell voltage and balancing current results for 5 s constant trigger MPC cell
balancing. Maximum EV range was achieved. Blue: Cell 1, Red: Cell 2, Yellow: Cell 3, Purple: Cell 4,
and Green: Cell 5.

Once the weighting matrix was calibrated, the first study that was completed was
varying a constant trigger frequency. These tests were simulated to understand as a baseline,
without any event-trigger, the range extension and balancing current magnitudes with only
varying the trigger frequency of the MPC controller. For this purpose, the trigger frequency
was set to a constant value starting from 1Hz and decreased between simulations until 0
triggers occurred. This trigger frequency range demonstrates the maximum and minimum
driving ranges achievable. For these tests, the prediction horizon remained as 5 s with only
the first element of the control sequence U; being applied until another trigger occurred.
Notably, the time period between triggers can be greater than the prediction horizon as
described in Section IIL.B.

The transient cycle range extension results plotted in Fig. 7 indicate that the maximum
range of 48.66-48.67 km can be achieved with a constant trigger period of 1 to 700 s or
frequency of 1Hz to 1 mHz with varying balancing effort as the trigger period changed.
Noticeably, two discrete ranges emerge with the higher trigger frequency tests from 1
Hz down to 1 mHz resulting around this maximum range and tests with frequencies
below 1 mHz ending around a minimum range of 46.23-46.24 km. Fig. 8 shows effective
cell balancing with a constant trigger period of 1000 s and can be compared to Fig. 6 to
notice the much less busy balancing current which delivered nearly the same final driving
distance. The discrete driving range levels are attributable to the current scaling that was
applied to the transient cycle simulations which leads to these discrete windows emerging
for when the DVL is reached.
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Figure 8. Transient cell voltage and balancing current results for 1000 s constant trigger MPC cell
balancing. The infrequent event-triggers are clearly visible with the steps in the balancing currents.
Near maximum EV range is still achieved with much reduced triggering. Blue: Cell 1, Red: Cell 2,
Yellow: Cell 3, Purple: Cell 4, and Green: Cell 5.
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To expand on this, Fig. 9 shows the vehicle velocity profile along with the transient
pack current demand and minimum cell voltage for a simulation that did not reach DVL

during the time window where other simulations with poor cell balancing did reach DVL.

This occurs on the third repeated cycle where DVL is reached at a pack SOC of 33% and
current demand of 280-380 A. The simulations with higher trigger frequencies continued
for a fourth cycle until DVL was reached at a pack SOC of 29% and close to 400 A cell
current demand. Cell terminal voltages decreased significantly during these high current
discharges due to the large internal resistance of the cell. This current scaling along with
the nonlinear OCV creates these discrete final driving ranges such that the first current
peak where DVL is reached may be overcome with cell balancing but the second current
peak where the rest of the simulations reach DVL cannot be overcome. The second current
peak cannot be overcome even with perfectly balanced cells and a significant 29% SOC
remaining because of the large current demands. This effect could be smoothed out with
more realistic cell currents at the cost of simulation time. However for this study, especially
for testing RLeMPC, simulation times had to be low to train the RL agent in a reasonable
amount of time. These results are sufficient for initial concept demonstration to test if
RLeMPC can determine the optimal eMPC trigger policy to overcome the first high power
window. plot eMPC transient results
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Figure 9. Constant trigger velocity and current profiles from maximum EV range tests in the range
where DVL is reached for minimum EV range tests. The red x’s mark the vehicle velocities and large
currents where DVL is reached for those tests. Notably, after overcoming the peak current demand,
the vehicle can travel much further with lower currents and higher cell voltages. fig updated

4.4. Results with Threshold Based eMPC

For eMPC, simulations with varying the error threshold were executed to understand
if an eMPC approach could outperform the constant trigger frequency MPC controller in
terms of range extension, average trigger frequency, and balancing effort. Fig. 10 shows as
the error threshold increased, the trigger frequency decreased approximately exponentially
until saturating at 0-1 trigger per test. Between an error threshold of 1 and 1.5V, the
exponential relationship begins to break as the cell balancing fails to avoid DVL during
the first very high current peak as illustrated in the large step of the driving range around
10 mHz with Fig. 11. Compared to the constant trigger frequency results, eMPC did

not achieve as much range extension as MPC at reduced average triggering frequencies.

For example, most of the frequency range between 10 mHz and 1 mHz reached DVL at
a driving range of 46.24 km for eMPC while for constant trigger frequency MPC at this
frequency range, DVL was reached at 48.66 km. Additionally, the average balancing effort
is higher on average and more variable for eMPC. Overall, constant trigger frequency MPC
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performs better than eMPC over the evaluation criteria for this application and trigger sz
condition highlighting the challenge of implementing an optimal eMPC trigger condition. sz
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Figure 10. Average execution frequency as a function of the error threshold for eMPC calibration.



Electronics 2024, 1,0

18 of 24
49 R T T T — 11
X X «
ooo«;goéo O@OOOO(Q®®Q(>§ o 010
48.5 - 56 OX o X
X X X Xy 49 <
<
X ~—
« ; X X X =
48 - 18 &
£ x i
= 7 2
(] X )
Q 4751 x e
34}
) % 16 o
0 o
=) % X 10}
47k X X 15 %
X X q>)
14 <
46.5 ¥
13
() O 00 00O @ O
X
46 i ] ] — il 9
107 103 102 107" 10°

Average Execution Freq (Hz)

Figure 11. EV range and balancing effort depending on the average execution period for eMPC.
Notably, the switch from high EV range to low EV range occurs at a higher average execution
frequency than constant triggering MPC.

Transient results for eMCP with the lowest average event-trigger frequency that
achieved 48.66 km are plotted in Fig. 12. In this example, the benefit of eMPC is demon-
strated in the lack of event-triggers during the standstill portions between repeated cycles
when triggering is not required. This control strategy can be effective when the load is 0
or constant, but during the transient portions of the test, the actual cell voltages are much
more transient relative to the nominal voltage target computed when the OCP is solved
causing excessive triggering. Changing the target voltage to the average actual cell voltage
instead of a nominal predicted cell target may be an improvement on the event-trigger
policy to account for the modeling errors arising from unpredictable driver power request.
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Figure 12. Transient cell voltage, balancing current, and event-trigger results for eMPC with & = 1.31
V. Error threshold ¢ is set to achieve high EV range with minimal event-triggers. Blue: Cell 1, Red:
Cell 2, Yellow: Cell 3, Purple: Cell 4, and Green: Cell 5.

4.5. Results with RLeMPC

Many challenges were encountered while training the RLeMPC agent. For this prob-
lem, only a minimal amount of triggers is required to achieve the maximum reward, and
any amount of triggers below the minimum results in very little range extension bene-
fit. This feature of the dynamics leads to the RL agent learning a sub-optimal policy of
triggering very infrequently or the training can diverge to triggering excessively. Because
of the penalty of triggering in the reward function, the RL agent can learn a policy of
not triggering at all which would be the optimal policy if the first current peak could not
be overcome with cell balancing. Depending on how the RL agent is trained, the agent
can erroneously learn this as the optimal policy even after having experienced the larger
driving ranges that are achievable. While training the agent, this local optimum became
very difficult to avoid even with a low weighting factor p applied to the trigger action in
the reward function.

Two important training parameters that were explored to avoid this local optimum
were the discount factor oy and the e-decay exploration method. To start with 7, typical
values like 0.9 and 0.99 overly discounted the future delayed range extension reward from
cell balancing thousands of steps in advance. To account for these delayed rewards, 7 in
the range of 0.999-0.9999 was required, but such a high value for 7 required more training
to accurately learn which actions lead to the delayed rewards. Extended training time or a
more refined approach to addressing the delayed rewards in this problem may be required
to learn the optimal policy. This feature differentiates the active cell balancing problem
from other problems with less delayed rewards such as autonomous vehicle path following
where RLeMPC was successfully applied in [15].

The e-decay method for training was another major challenge for this problem. Typi-
cally, € is initialized around 1 and decayed to a minimum value to explore the environment
before transitioning to exploiting the environment to maximize G. For this problem, the
maximum final range can be achieved with very little triggering, so with high €, and 50%
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probability of choosing to trigger for a random action, the agent first learned the penalty
from triggering because it always achieved the maximum range at the beginning of the
training. As € decayed, the agent transitioned from random actions to following the actions
with greater learned Q value from the DQN which was initially to not trigger at all. Even-
tually, € decayed enough to where not enough triggering occurred from random actions to
achieve the maximum range, and during this transition, it was very difficult for the agent
to learn that triggering more can lead to much greater range extension. Part of this could
come from the fact that the agent could not learn any distinction in driving range extension
between triggering and no triggering at the beginning of the training. Next, once it did not
trigger enough to overcome the first high current peak, it could not learn quickly enough
that triggering could lead to larger range extension reward before falling into the local
optimum of not triggering at all with no driving range extension.

This example of training plays out in Fig. 13(a) where the reward correlates with €
from the decrease in trigger frequency until around 400 episodes, after which triggering
was not frequent enough to overcome the first high current peak. The switching observed
in the episode reward was from going between the high and low final driving ranges with
large reward weighting applied to the driving range extension. After this transition, the RL
agent settled into a policy of not triggering at all to maximize the reward with no driving
range extension.
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Figure 13. Reward and e-decay during RLeMPC training. Blue: raw episode reward; Black: moving
average of episode reward. (a) is with € initalized to 1 and agent learns to reduce triggering even after
experiencing EV range degradation. (b) and (c) start with lower initial € and also learn to minimize
triggering at the expense of EV range. (d) begins with € of 1% and learns to increase triggering even
while consistently achieving maximum range.

To attempt to overcome this challenge of learning a sub-optimal policy during the
exploration phase of the training, € was initialized to much lower values for training. These
values were chosen from the maximum episode length of around 7000 steps with only two
actions available per step which still results in a significant number of exploratory actions.
The MPC and eMPC results show around 100-1000 s per trigger or 7-70 triggers per episode
is the minimum amount of triggers required to achieve large driving range extension. This
new e-decay tuning along with random initial weights and biases for the DQN was chosen
to try to initialize the training right on the step of low to high driving range extension
so that the agent experiences the range extension difference between triggering and not
triggering right away.
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Attempts at this e-decay tuning have not improved the training performance. First,
when € is not low enough, the agent learns to not trigger falling into the local optimum of 0
triggers per episode as shown in Fig. 13(b) and (c). For these training sets, € was initialized
to 40% and 5%, and both resulted in the same policy of no triggering to maximize reward
when no driving range extension is achieved. From those training sets, € of 1-5% appears
to be the best value to begin the training since in that range is where the switching between
high and low driving distance ranges begins to be observed. However, initializing € to 1%
shown in Fig. 13(d) resulted in the training diverging and the reward decreasing with the
maximum distance was always achieved but the RL agent learning to trigger more.

Next steps that are planned for improving upon the results presented include focused
tuning of v, e-decay, and the reward weighting p around the driving range transition trigger
frequencies. The expectation is that the data efficiency of the training can be increased with
focused exploration in the key trigger frequency range. The first step is to find a proper
initial value of € as well as a more effective e-decay rate. As mentioned, an initial € value of
1-5% should be appropriate to place the initial trigger frequency around where the step of
driving range occurs, but slowing down the e-decay rate may help give the agent more time
to explore in the key € range. Additionally, varying the initial DQN weights and reward
weighting may help to avoid the diverging behavior observed in Fig. 13(d). Finally, tuning
7 in this more effective exploration range should be beneficial to ensure delayed rewards
are weighted properly to attribute the range extension benefit to the earlier triggering.

Overall, the analysis from tuning this DQN agent for active cell balancing can pro-
vide guidance for tuning <y, e-decay, and the reward function for a particular problem
when training for tens of thousands of episodes is not a viable option. These next steps
identified will be included in future work to report on their effectiveness with improving
the performance of training the RL agent. One glimmer of the potential comes from the
switching observed in rewards at low € values in Fig. 13. The high values in that switching
represent episodes where the RL agent achieved the larger range extension with very
little triggering from random actions. For example Fig. 14 shows the cell balancing and
triggering occurring during one of those episodes where only 7 random triggers resulted in
a final driving range of 48.66 km. This performance is on par with the constant infrequent
MPC triggering approach showing improvement is available if the RL agent can be trained
to learn it. Finally, adjusting the current scaling of the simulation may also help shape the Q
function to be more variable, easier to learn, and more reflective of the actual cell balancing
problem.
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Figure 14. RLeMPC training episode where learned policy is to not trigger at all, but random off-
policy triggers achieve large range extension with very infrequent event-triggers. Blue: Cell 1, Red:
Cell 2, Yellow: Cell 3, Purple: Cell 4, and Green: Cell 5.

5. Conclusions

Three model predictive control (MPC) strategies, namely time-triggered MPC, event-
triggered MPC (eMPC), and reinforcement learning-based MPC (RLeMPC), for active
cell balancing, were formulated and tested in a simulation environment to reduce com-
putational requirements relative to a baseline MPC controller while maintaining the EV
range extension benefit. MPC with reduced constant period triggering and eMPC control
methods demonstrated significant computational load reduction with an average trigger
period increase to 1000 s and 187 s respectively compared to the 1 s trigger period of
the baseline MPC. Only a negligible decrease of EV range extension of 0.03% from the
maximum achievable range was the penalty for this significant decrease in throughput.
From scaling of the current demand for more efficient simulation, the discharge voltage
limit was met at very high cell current demands between 280-380 A and 33% state of charge

remaining in the battery pack shaping the EV range extension results. Challenges of train-

ing the RLeMPC agent were presented such as the discrete and delayed range extension
rewards as well as an ineffective exploration method. Overall, the converged RLeMPC
policy was very sensitive to training which will be further improved with hyper-parameter
tuning, but occasional training episodes were promising with greater than 1000 s average
trigger period. Future steps to address these challenges, to learn more optimal event-trigger
policies, and to improve the robustness of the proposed approach, were discussed and are
planned as future work. Real-world implementation in microcontroller is another future
work direction.

Author Contributions: Conceptualization, D.F. and ].C.; methodology, ].C; software, D.F.; validation,
D.E, ]J.C. and G.X,; formal analysis, D.F..; data curation, D.F,; writing—original draft preparation,
D.E; writing—review and editing, D.F,, ].C., and G.X; visualization, D.F.; supervision, J.C.; project
administration, J.C.; funding acquisition, J.C. All authors have read and agreed to the published
version of the manuscript.



Electronics 2024, 1,0 23 of 24

Funding: This work is supported in part by Oakland University through SECS Faculty Startup Fund
and URC Faculty Research Fellowship and in party by National Science Foundation through Award
#2237317.

Data Availability Statement: The data is available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. J.Chen, A. Behal, and C. Li, “Active battery cell balancing by real time model predictive control for extending electric vehicle
driving range,” IEEE Transactions on Automation Science and Engineering, accepted June 2023.

2. Daowd, M., Omar, N., Van Den Bossche, P. & Van Mierlo, J. Passive and active battery balancing comparison based on MATLAB
simulation. 2011 IEEE Vehicle Power And Propulsion Conference. pp. 1-7 (2011)

3. M. Preind], “A battery balancing auxiliary power module with predictive control for electrified transportation,” IEEE Transactions
on Industrial Electronics, vol. 65, no. 8, pp. 65526559, 2017.

4. J.Liu, Y. Chen, and H. K. Fathy, “Nonlinear model-predictive optimal control of an active cell-to-cell lithiumion battery pack
balancing circuit,” IFAC PapersOnlLine, vol. 50, no. 1, pp. 14 483-14 488, 2017.

5. P Tendel, T. A. Johansen, and A. Bemporad, “An algorithm for multi-parametric quadratic programming and explicit mpc
solutions,” Automatica, vol. 39, no. 3, pp. 489-497, 2003.

6. Y. Wang and S. Boyd, “Fast model predictive control using online optimization,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 2, pp. 267-278, 2010.

7. R.Badawi and J. Chen, “Performance evaluation of event-triggered model predictive control for boost converter,” in 2022 IEEE
Vehicle Power and Propulsion Conference, Merced, CA, November 1-4, 2022.

8. Karnehm, D., Bliemetsrieder, W., Pohlmann, S. & Neve, A. Controlling Algorithm of Reconfigurable Battery for State of Charge
Balancing using Amortized Q-Learning. (Preprints,2024)

9. Razmjooei, H., Palli, G., Abdi, E., Terzo, M. & Strano, S. Design and experimental validation of an adaptive fast-finite-time
observer on uncertain electro-hydraulic systems. Control Engineering Practice. 131 pp. 105391 (2023)

10. H. Liand Y. Shi, “Event-triggered robust model predictive control of continuous-time nonlinear systems,” Automatica, vol. 50,
no. 5, pp. 1507-1513, 2014.

11.  F. D. Brunner, W. Heemels, and F. Allgéwer, “Robust event-triggered MPC with guaranteed asymptotic bound and average
sampling rate,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5694-5709, 2017.

12.  Z. Zhou, C. Rother, and J. Chen, “Event-triggered model predictive control for autonomous vehicle path tracking: Validation
using CARLA simulator,” IEEE Transactions on Intelligent Vehicles, accepted for publication April 2023.

13.  J. Yoo and K. H. Johansson, “Event-triggered model predictive control with a statistical learning,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 51, no. 4, pp. 2571-2581, 2021.

14. R.Badawi and ]J. Chen, “Enhancing enumeration-based model predictive control for de-dc boost converter with event-triggered
control,” in 2022 European Control Conference, London, UK, July 12-15, 2022.

15. J. Chen, X. Meng, and Z. Li, “Reinforcement learning-based event-triggered model predictive control for autonomous vehicle
path following,” in American Control Conf., Atlanta, GA, June 8-10, 2022.

16. F Dang, D. Chen, ]. Chen, and Z. Li, “Event-triggered model predictive control with deep reinforcement learning,” IEEE
Transactions on Intelligent Vehicles, accepted for Publication, October 2023.

17.  D. Baumann, J.-J. Zhu, G. Martius, and S. Trimpe, “Deep reinforcement learning for event-triggered control,” in 2018 IEEE
Conference on Decision and Control (CDC), 2018, pp. 943-950.

18. A.S.Leong, A. Ramaswamy, D. E. Quevedo, H. Karl, and L. Shi, “Deep reinforcement learning for wireless sensor scheduling in
cyber—physical systems,” Automatica, vol. 113, p. 108759, 2020.

19. J. Chen and Z. Zhou, “Battery cell imbalance and electric vehicles range: Correlation and NMPC-based balancing control,” in
2023 IEEE International Conference on Electro Information Technology, Romeoville, IL, May 18-20, 2023.

20. M. Dubarry, N. Vuillaume, and B. Y. Liaw, “Origins and accommodation of cell variations in li-ion battery pack modeling,”
International Journal of Energy Research, vol. 34, no. 2, pp. 216-231, 2010.

21. J.Chen, Z. Zhou, Z. Zhou, X. Wang, and B. Liaw, “Impact of battery cell imbalance on electric vehicle range,” Green Energy and
Intelligent Transportation, vol. 1, no. 3, pp. 1-8, December 2022.

22. E.S.].Hoekstra, H.]J. Bergveld, and M. Donkers, “Range maximisation of electric vehicles through active cell balancing using
reachability analysis,” in 2019 American Control Conference (ACC). IEEE, 2019, pp. 1567-1572.

23. Y. Shang, N. Cui, and C. Zhang, “An optimized any-cell-to-any-cell equalizer based on coupled half-bridge converters for
series-connected battery strings,” IEEE Transactions on Power Electronics, vol. 34, no. 9, pp. 8831-8841, 2018.

24. C.Wang, G.Yin, E. Lin, M. P. Polis, C. Zhang, ]. Jiang et al., “Balanced control strategies for interconnected heterogeneous battery
systems,” IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 189-199, 2015.

25. M. Evzelman, M. M. U. Rehman, K. Hathaway, R. Zane, D. Costinett, and D. Maksimovic, “Active balancing system for electric

vehicles with incorporated low-voltage bus,” IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7887-7895, 2015.

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551



Electronics 2024, 1,0 24 of 24

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

J. Xu, B. Cao, S. Li, B. Wang, and B. Ning, “A hybrid criterion based balancing strategy for battery energy storage systems,” Energy
Procedia, vol. 103, pp. 225-230, 2016.

Z. Gao, C. Chin, W. Toh, J. Chiew, and ]. Jia, “State-of-charge estimation and active cell pack balancing design of lithium battery
power system for smart electric vehicle,” Journal of Advanced Transportation, vol. 2017, no. Article ID 6510747, 2017.

S. Narayanaswamy, S. Park, S. Steinhorst, and S. Chakraborty, “Multi-pattern active cell balancing architecture and equalization
strategy for battery packs,” in Proc. of the International Symposium on Low Power Electronics and Design, Seattle, WA, July 23-25,
2018, pp. 1-6.

M. Kauer, S. Narayanaswamy, S. Steinhorst, M. Lukasiewycz, and S. Chakraborty, “Many-to-many active cell balancing strategy
design,” in The 20th Asia and South Pacific Design Automation Conference, Chiba, Japan, 2015, pp. 267-272.

M. Einhorn, W. Roessler, and J. Fleig, “Improved performance of serially connected li-ion batteries with active cell balancing in
electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 60, no. 6, pp. 2448-2457, 2011.

F. S. Hoekstra, L. W. Ribelles, H. J. Bergveld, and M. Donkers, “Real-time range maximisation of electric vehicles through active
cell balancing using model-predictive control,” in 2020 American Control Conference, Denver, CO, July 1-3, 2020, pp. 2219-2224.
R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction. MIT Press, 2018.

C.]. C. H. Watkins, “Learning from delayed rewards,” 1989.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep
reinforcement learning,” 2013.

Preindl, M. A battery balancing auxiliary power module with predictive control for electrified transportation. IEEE Transactions
On Industrial Electronics. 65, 6552-6559 (2017)

Pinto, C., Barreras, J., Schaltz, E. & Araujo, R. Evaluation of advanced control for li-ion battery balancing systems using convex
optimization. IEEE Transactions On Sustainable Energy. 7, 1703-1717 (2016)

McCurlie, L., Preindl, M. & Emadi, A. Fast model predictive control for redistributive lithium-ion battery balancing. IEEE
Transactions On Industrial Electronics. 64, 1350-1357 (2016)

Altaf, F., Egardt, B. & Mérdh, L. Load management of modular battery using model predictive control: Thermal and state-of-charge
balancing. IEEE Transactions On Control Systems Technology. 25, 47-62 (2016)

Liu, J., Chen, Y. & Fathy, H. Nonlinear model-predictive optimal control of an active cell-to-cell lithium-ion battery pack balancing
circuit. IFAC-PapersOnLine. 50, 14483-14488 (2017)

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double g-learning,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 30, no. 1, 2016.

J. Chen and Z. Yi, “Comparison of event-triggered model predictive control for autonomous vehicle path tracking,” in IEEE Conf.
Control Technology and Applications, San Diego, CA, August 8-11, 2021.

Mestrallet, F., Kerachev, L., Crebier, ]. & Collet, A. Multiphase interleaved converter for lithium battery active balancing. IEEE
Transactions On Power Electronics. 29, 2874-2881 (2013)

Mabharjan, L., Inoue, S., Akagi, H. & Asakura, J. State-of-charge (SOC)-balancing control of a battery energy storage system based
on a cascade PWM converter. IEEE Transactions On Power Electronics. 24, 1628-1636 (2009)

Z.Pei, X. Zhao, H. Yuan, Z. Peng, and L. Wu, “An equivalent circuit model for lithium battery of electric vehicle considering
self-healing characteristic,” Journal of Control Science and Engineering, vol. 2018, 2018.

J. Wehbe and N. Karami, “Battery equivalent circuits and brief summary of components value determination of lithium ion: A
review,” in 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE),
Beirut, Lebanon, 2015, pp. 45—49.

Yu, L., Xia, Y. & Sun, Z. Robust event-triggered model predictive control for constrained linear continuous system. International
Journal Of Robust And Nonlinear Control. 29 (2018,12)

Li, H. & Shi, Y. Event-triggered robust model predictive control of continuous-time nonlinear systems. Automatica. 50, 1507-1513
(2014), https:/ /www.sciencedirect.com/science/article/pii/S0005109814001071

The MathWorks Inc., “Deep Q-Network (DQN) Agents,” Natick, Massachusetts, United States, accessed: 2024-01-29. [Online].
Available: https:/ /www.mathworks.com/help/reinforcement-learning /ug/dqn-agents.html#d126e7212

Shibata, K., Jimbo, T. & Matsubara, T. Deep reinforcement learning of event-triggered communication and consensus-based
control for distributed cooperative transport. Robotics And Autonomous Systems. 159 pp. 104307 (2023)

Abbasimoshaei, A., Chinnakkonda Ravi, A. & Kern, T. Development of a new control system for a rehabilitation robot using
electrical impedance tomography and artificial intelligence. Biomimetics. 8, 420 (2023)

Zhang, Y., Huang, Y., Chen, Z., Li, G. & Liu, Y. A novel learning-based model predictive control strategy for plug-in hybrid
electric vehicle. IEEE Transactions On Transportation Electrification. 8, 23-35 (2021)

Rostam, M. & Abbasi, A. A framework for identifying the appropriate quantitative indicators to objectively optimize the building
energy consumption considering sustainability and resilience aspects. Journal Of Building Engineering. 44 pp. 102974 (2021)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

615

616

617


https://www.mathworks.com/help/reinforcement-learning/ug/dqn-agents.html#d126e7212

	Introduction
	Preliminary on RL and MPC
	Reinforcement Learning
	Deep Neural Network Based RL
	Event-Triggered MPC

	Problem Formulation
	Active Battery Cell Balancing Control
	RLeMPC for Active Cell Balancing

	Simulation Results and Discussion
	Simulation Environment
	Evaluation Criteria
	Results with Constant Trigger Period
	Results with Threshold Based eMPC
	Results with RLeMPC

	Conclusions
	References

