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Abstract: Optimal control techniques such as model predictive control (MPC) have been widely 12

studied and successfully applied across a diverse field of applications. However, large computational 13

requirements for these methods result in a significant challenge for embedded applications. While 14

event-triggered MPC (eMPC) is one solution that could address this issue by taking advantage of 15

the prediction horizon, one obstacle that arises with this approach is that the event-trigger policy 16

is complex to design to fulfill both throughput and control performance requirements. To address 17

this challenge, this paper proposes to design the event-trigger through training a deep Q network 18

reinforcement learning agent (RLeMPC) to learn the optimal event-trigger policy. This control 19

technique was applied to an active cell balancing controller for range extension of an electric vehicle 20

battery. Simulation results with MPC, eMPC, and RLeMPC control policies are presented along with 21

a discussion of the challenges of implementing RLeMPC. 22

Keywords: Model predictive control, event-triggered control, optimal control, reinforcement learning, 23

active cell balancing, electric vehicle range extension 24

1. Introduction 25

Model predictive control (MPC) is an advanced control technique that has been 26

widely studied and successfully applied in many applications, including active battery 27

cell balancing [1,3,4,9,49–52]. MPC determines control actions by using a model of the 28

system in combination with a cost function to determine the optimum sequence of control 29

actions that minimizes the cost function over a future time horizon. The capability of 30

handling constraints on the control action and state variables in the formulation of an 31

optimal control problem (OCP) is a key feature that distinguishes MPC as a versatile tool. 32

However, the large magnitude of computations required to solve the OCP at every time 33

step remains a drawback for MPC implementation on embedded systems. Techniques have 34

been investigated for reducing the computational time needed such as explicit MPC [5] 35

and online fast MPC [6]. 36

Another approach, event-triggered MPC (eMPC), triggers the MPC controller to 37

determine a new set of control actions when the defined trigger conditions are met and 38

otherwise, follow the predicted optimal control sequence [7,10–14]. The stability of the 39

event-triggered MPC are discussed in detail in papers [47] and [46], which provide essential 40

insights and methodologies for ensuring the stability of event-triggered MPC. In general, 41

the stability of event-triggered MPC can be proven by Lyapunov stability theory where the 42

cost function can be selected as the Lyapunov function. However, the design and calibration 43

of this trigger is not trivial, so to realize the largest benefit from it, a reinforcement learning 44

(RL) agent has been developed and trained to trigger the MPC control action. This is 45

known as RLeMPC and has been applied in autonomous vehicle path-following problems 46

in [15,16]. It was found in [15,16] that RLeMPC can outperform threshold-based eMPC in 47
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key metrics related to both throughput and control performance. This work then builds on 48

that RLeMPC formulation by using a deep neural network (DNN) to model the Q-function 49

to determine the event-trigger for eMPC, with a particular focus on the application of 50

active cell balancing for electric vehicle (EV) batteries. Compared to existing works such 51

as [17] and [18] where an RL agent is used to trigger and schedule communications, this 52

particular formulation is unique in the objective to reduce throughput rather than to save 53

communication bandwidth. 54

On the other hand, the battery cell imbalance is a critical issue that limits the range 55

of electrical vehicles (EV) [19]. In battery packs with multiple cells, the individual cells 56

have state-of-charge (SOC) and terminal voltage variation between them that arises from 57

manufacturing variation and uneven aging among other factors [19–21]. Discharging an 58

individual cell below a minimum voltage results in accelerated degradation of the pack 59

capacity and safety risks, so to prevent these conditions, any individual cell must not 60

be discharged below a discharge voltage limit (DVL). This dynamic results in the total 61

usable energy of the battery pack being limited by the lowest capacity cell when this cell 62

reaches the DVL before any of the other cells while discharging. Similarly, this dynamic 63

also plays out while charging as well where any individual cell should not be charged 64

above a charging voltage level (CVL) to avoid cell damage and safety risks. Therefore, the 65

charging process is then limited to whichever cell has the lowest capacity and charges to 66

the CVL first. 67

Cell balancing is a technology that has arisen to address these issues [2,8,22,23,23–29,42, 68

43]. Cell balancing methods can be classified into dissipative and nondissipative methods 69

with the difference being whether the balancing method relies on resistive elements, ie. 70

energy dissipative, or charge transfer, ie. nondissipative [30]. An additional dichotomy 71

can be drawn between active and passive cell balancing that distinguishes methods that 72

require active control from those that rely on passive circuit elements. This paper focuses 73

on nondissipative active cell balancing with the goal of reducing the amount of capacity 74

loss of the battery pack by redirecting charge in cells exhibiting voltage imbalance when 75

discharging and charging to maximize the usable battery pack energy. 76

MPC-based active cell balancing has also been widely studied in the literature [1,22, 77

31,35–39]. In [1], an MPC controller was developed and evaluated for active cell balanc- 78

ing to extend the range capability of EV batteries. Multiple cost function formulations 79

were evaluated to determine a cost function that increases the range of the vehicle while 80

minimizing throughput. It was concluded in [1] that all the cost function formulations 81

tested resulted in high computation reduction, but the cost function based on minimizing 82

tracking error of each cell voltage was the most robust against model mismatch and load 83

disturbance. Therefore, in this paper, we focus on the development of the tracking MPC into 84

RLeMPC with the addition of an event trigger for the OCP driven by a deep RL agent that 85

determines when to trigger. This development is expected to improve upon the previous 86

MPC-based approach through decreasing required throughput by reducing the amount of 87

times the OCP must be solved while maintaining similar range extension performance. It 88

is also expected to improve the design of the event-trigger by replacing the conventional 89

threshold-based policy with a DNN. 90

The remainder of the paper is organized as follows. Section 2 describes the framework 91

of RL and MPC, while Section 3 discusses how active cell balancing can be formulated 92

into the RLeMPC framework. Section 4 presents simulation results from applying these 93

techniques to cell balancing and Section 5 concludes the paper. 94

2. Preliminary on RL and MPC 95

2.1. Reinforcement Learning 96

The RL paradigm [32,33] operates on a state-action framework where at time step 97

t, the state of the environment, st, is observed by an agent which then selects an action 98

at to take. After the action is taken, a scalar reward is given to the agent depending on 99

the reward function denoted r(st, at). The goal of the agent is to learn an optimal policy 100
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π∗ : s→ a that maximizes the expected cumulative future rewards which can be described 101

as 102

G = Eπ

[
∞

∑
t=0

γtrt

]
(1)

where rt = r(st, at) and the scalar γ ∈ [0, 1] is the discount factor that can reduce the value 103

of future expected rewards. In order to learn the optimal policy π∗, the agent interacts with 104

the environment to learn which actions to take at given state st in order to maximize the 105

expected cumulative reward G. 106

To measure the value of the agent being in state s, a state value function Vπ(s) can be 107

defined as the value of the state s under the policy π, which is the expected return starting 108

from s following policy π. This can be expressed as 109

Vπ(s) = Eπ

[
∞

∑
k=0

γtrt+k

∣∣∣∣∣ st = s

]
(2)

Alternatively, the state-action value function Qπ(s, a) of a state-action pair (s, a) can be 110

defined as the expected return starting from s followed by action a and then policy π. This 111

can be expressed as 112

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkrt+k

∣∣∣∣∣ st = s, at = a

]
(3)

Through agent interaction with the environment, the Q-function can be learned, and once 113

it is approximately known, the optimal Q-function Q∗(s, a) = maxπ Qπ(s, a) is the Q- 114

function with a policy applied to maximize the Q value. This policy π∗ can be defined 115

as 116

π ∗ (s) = arg max
a

Q ∗ (s, a) (4)

The RL agent will then be able to execute the optimal policy π∗ by selecting the action that 117

results in the highest Q value for a given state. 118

To restate, the optimal policy π∗ can be found by learning the optimal Q-function 119

Q∗(s, a). The objective of RL training is then to learn Q∗(s, a), which is also referred as as 120

Q-learning. With this method, the RL agent can learn the optimal Q-function exclusively by 121

interacting with the environment. Notably, no model of the system dynamics is required 122

for the agent to learn the optimal policy. However, in exchange for this benefit, ample 123

training time is required for the RL agent to learn Q∗. 124

2.2. Deep Neural Network Based RL 125

In order to decide an action, the RL agent requires a method to generalize the state- 126

action value function over any state and action. For this implementation, a deep neural 127

network (DNN) was used with the environment state variables as inputs to the network, 128

and the expected, discounted cumulative future reward of each action, the Q-value, at the 129

given state as the output. This implementation of RL is known as Deep Q-Learning because 130

the DNN models the state-action value function or Q(s, a) [34,40]. Consequently, the DNN 131

can be more specifically described as a Deep Q Network (DQN). 132

To train the DQN, double Q-learning and batch update methods were used. For each 133

update, a batch of experiences (si, ai, ri, s′i) of size M is pulled from memory to use. For 134

double Q-learning, two sets of network weights and biases are used, denoted as ϕ for the 135

critic network parameters and ϕt for the target network parameters. Depending on the 136

state, ϕ is used to determine the next action with probability 1− ϵ. Otherwise, a random 137
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action is selected. After the action is taken, ϕ is updated according to a target values yi. 138

This target is determined with the double Q-learning and batch methods by 139

amax = arg max
a′

Q(s′i, a′, ϕ) (5a)

140

yi = ri + γQt(s′i, amax; ϕt) (5b)

For double Q-learning, ϕ is used to select the action amax that ϕt will use to determine the 141

target. These target values yi are then included in a loss function that compares the target 142

value that was observed to the current critic network estimate. Stochastic gradient descent 143

can be applied to this loss function to determine a new ϕ that minimizes L depending on 144

the gradient of the loss function and the learning rate. 145

L =
1

2M

M

∑
i=1

(yi −Q(si, ai; ϕ))2 (6)

The new weights and biases ϕ are then set in the behavior network for the agent to select 146

the next action. After a set amount of training time steps, the target network parameters ϕt 147

are set to the behavior network parameters ϕ in order to increase the stability of learning 148

and reduce overestimates of Q. 149

The goal of training the network is to adjust the DQN parameters to closely approxi- 150

mate the actual Q∗ function to select the action with the highest expected reward. Methods 151

such as epsilon greedy can be used to force the agent to explore before it has had much expe- 152

rience with the environment and gradually transition the agent to exploit the environment 153

once enough experience has be gained to consistently achieve high rewards. 154

2.3. Event-Triggered MPC 155

Generally, event-triggered MPC (eMPC) builds off a conventional time-triggered MPC 156

controller by adding an event-trigger layer and changing how the control command is 157

computed in the absence of an event. Mathematically, for a system described by the 158

following dynamics 159

ζt+1 = f (ζt, ut) (7)

where ζt ∈ Rn is the system state at discrete time t and ut is the controller output. The
MPC controller calculates the optimal control sequence Ut and optimal state sequence ζt to
minimize a cost function Jmpc over a defined prediction horizon p through solving an OCP
defined as

min
Zt ,Ut

p

∑
k=1

Jk
mpc(Zt, Ut) (8a)

s.t. ζt = ζ̂t (8b)

ζt+k = f (ζt+k−1, ut+k−1), 1 ≤ k ≤ p (8c)

ζmin ≤ ζt+k ≤ ζmax, 1 ≤ k ≤ p (8d)

umin ≤ ut+k ≤ umax, 1 ≤ k ≤ p− 1 (8e)

∆min ≤ ut+k − ut+k−1 ≤ ∆max, 1 ≤ k ≤ p− 1 (8f)

where Ut and Zt are defined as Ut = {ut, ut+1, ..., ut+p−1} and Zt = {ζt+1, ζt+2, ..., ζt+p}. 160

The optimization is subject to the current estimate of the state ζ̂t (8b), subsequent states that 161

only depend on the previous state and control action taken (8c), and constraints that are 162

applied to the state and control action (8d-f). Conventionally, this OCP is solved at every 163

time step where the first control action ut is applied then the rest of the control sequence 164

Ut is not used. eMPC in contrast only solves the OCP when the event conditions are met, 165

denoted by γctrl where γctrl = 1 when the event conditions are met and otherwise γctrl = 0. 166
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When γctrl = 0, the controller applies the predicted optimal control sequence Ut1 computed 167

at the previous trigger at time t1. This can be described as 168

u =

{
Solution of (8) if γctrl = 1
Ut1(k + 1) Otherwise.

(9)

To summarize, the primary new features that distinguish eMPC from conventional 169

MPC are that the trigger γctrl must be changed from a consistent periodic time trigger to 170

event based and that it applies the predicted optimal control sequence Ut calculated until 171

the next event is triggered. The trigger policy then becomes the focus of the design which 172

can be described as 173

γctrl = π(Zt1 , ζ̂t|θ) (10)

where Zt1 is the optimal state sequence computed at the last event at time t1, ζ̂t is the 174

current state feedback, and θ is calibration parameters for the trigger. Typically, the event 175

is based on the error between the optimal predicted state calculated at the last event and 176

the current state feedback or estimation such that if the error is large between the state 177

prediction ζt from the prediction sequence Zt1 and current actual state ζ̂t, then trigger the 178

MCP to use the more accurate feedback to determine a new control sequence. This type of 179

event-trigger condition can be described as 180∥∥ ζt − ζ̂t
∥∥ ≥ ē (11)

where ē ∈ θ is a calibrate-able error threshold. Details for eMPC are described in Algorithm 181

1 and Fig. 1. 182

Algorithm 1 Event-Triggered MPC [41]

1: procedure EMPC(ζ̂, k, Ut1 , Zt1 , p)
2: k← k + 1;
3: γctrl ← computing (11);
4: if γctrl = 1 then
5: k← 1;
6: (Zt, Ut)← Solving OCP (16);
7: u← Ut(1);
8: ζ ← Zt1(1);
9: Ut1 ← Ut;

10: Zt1 ← Zt;
11: else
12: u← Ut1(1);
13: if k <= p then
14: ζ ← Zt1(k)
15: else
16: ζ ← Zt1(p)
17: end if
18: end if
19: return u, ζ, Ut1 , Zt1 , k
20: end procedure
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Figure 1. Flowchart for the Event-Triggered MPC (eMPC) in Algorithm 1.

However, the challenge associated with (11) is uncovered then because the analytical 183

form of the MPC closed loop system, especially for nonlinear functions and models is 184

difficult to determine. This results in event-trigger policy designs which are usually 185

problem specific and non-trivial. To solve this challenge, an RL agent with a DQN is 186

proposed to learn the optimal event-trigger policy π∗ without a model of the closed-loop 187

system dynamics. 188

3. Problem Formulation 189

3.1. Active Battery Cell Balancing Control 190

A common equivalent circuit model of a lithium ion cell can be used to model the
SOC, relaxation voltage, and terminal voltage of each cell [44,45]. The cell model can be
described as

ṡn = −ηn in

Cn (12a)

V̇n
p = −

Vn
p

Rn
pCn

p
+

in

Cn
p

(12b)

yn = Vn
oc −Vn

p − inRn
o (12c)

where the superscript n is the nth cell, sn is the cell SOC, ηn is the cell coulombic efficiency, 191

Cn is the cell capacity in amp hours, Vn
p is the relaxation voltage over Rn

p, Vn
oc is the open 192

circuit voltage, yn is the terminal voltage, and in is the cell current. Positive in indicates 193

discharging the battery while negative in indicates charging. The variables Vn
oc, Rn

o , Rn
p, and 194

Cn
p are all dependent of sn resulting in a nonlinear cell model. 195

This model can then be discretized using Euler’s method for a model that can be
implemented digitally as

sn
k+1 = sn

k − ηn Ts

Cn in
k (13a)

Vn
p,k+1 = Vn

p,k −
Ts

Rn
pCn

p
Vn

p,k +
Ts

Cn
p

in
k (13b)

yn
k = Vn

oc,k −Vn
p,k − in

k Rn
o (13c)

where Ts was set to 1 s. To simulate imbalance, a probability distribution can be used to 196

apply random variation to the Cn, Rn
o , and Cn

p terms. Table 1 lists example variations of 197

these parameters that would later be used for simulation in this paper. 198
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Table 1. Cell Imbalance Parameters at 100% SOC. Ah: Amp-hour; mΩ: milliohms; kF: kilofarads.

Parameter Unit n = 1 n = 2 n = 3 n = 4 n = 5
C Ah 62.87 60.00 66.61 56.73 61.66
Rp mΩ 6.40 5.66 5.47 6.68 6.36
Cp kF 153.7 177.8 175.9 168.9 150.4
Ro mΩ 1.49 1.27 1.41 1.51 1.53

Finally, the SOC and relaxation voltage states can be grouped together as ζn := 199

[sn, Vp]T where .T denotes a matrix or vector transpose. The battery pack state can be 200

written as 201

ζn
k+1 = f n(ζn

k , ik + un
k ) (14a)

202

yn
k = gn(ζn

k , ik + un
k ) (14b)

where un
k is the balancing current applied to the cell as shown in Fig. 2. Define ζ = 203

[ζ1, ζ2, ..., ζN ]T as the state vector for the battery pack and y to be the terminal voltage of 204

the battery pack, then 205

ζk+1 =


f n(ζ1

k , ik + u1
k)

f n(ζ2
k , ik + u2

k)
...

f n(ζN
k , ik + uN

k )

 (15a)

206

yk =
N

∑
m=1

yn
k =

N

∑
m=1

gn(ζn
k , ik + un

k ) (15b)

207

Figure 2. Battery pack configuration for active cell balancing.

For this study, a 5 cell in series pack is assumed resulting in the pack terminal voltage
equal to the sum of the cell terminal voltages. For the active cell balancing power converter,
an ideal converter with limits on each balancing current and no charge storage is assumed.
This power converter also assumes a direct cell-cell topology meaning that charge from any
cell can be directed to any other cell with the rate of charge transfer limited by balancing
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current limits. These constraints along with the cell model can be formulated as an optimal
control problem for MPC at time step k over prediction horizon p as

min
Zt ,Ut

p

∑
k=1

Jk
mpc(Zt, Ut) (16a)

s.t. ζn
k+j+1 = f n(ζn

k+j, ik+j + un
k+j),

0 ≤ j ≤ p− 1, 1 ≤ n ≤ N (16b)

yn
k+j = gn(ζn

k+j, ik+j + un
k+j),

1 ≤ j ≤ p, 1 ≤ n ≤ N (16c)

umin ≤ un
k ≤ umax, 1 ≤ n ≤ N (16d)

y ≤ yn
k+j, 1 ≤ j ≤ p, 1 ≤ n ≤ N (16e)

0 =
N

∑
i=1

un
k (16f)

The constraints on the optimization problem begin with (16d) to set maximum and 208

minimum limits for each balancing current uk
n. Next, (16e) states that the cell terminal 209

voltages yn
k+j must be greater than the DVL y. Finally, (16f) states that there is no charge 210

storage, only transfer with the sum of balancing currents equal to 0. 211

The cost function chosen for this study is based on minimizing the tracking error 212

between each individual cell to a nominal cell without any imbalance which was studied in 213

[1]. This MPC formulation can be presented mathematically as 214

Jy(uk) =
p

∑
j=1

(yk+j − y0
k+1)

T(yk+j − y0
k+1) + uT

k Ruk (17)

where yk+j is defined as the vector of cell terminal voltages yk+j = [y1
k+j, y2

k+j, . . . yN
k+j]

T , 215

and R is a positive semi-definitive weighting matrix. The first term penalizes cell voltages 216

that deviate from the nominal cell while the second term penalizes the magnitude of 217

balancing current to reduce resistant heating loses. The nominal cell voltge target is a scalar 218

which leads to needing only the R weighting matrix to tune the cost of the terms. 219

3.2. RLeMPC for Active Cell Balancing 220

The MPC controller that solves (16) periodically is then adapted to eMPC by first 221

integrating an event-trigger into the MPC model using the difference between the predicted 222

voltage of a nominal cell and the measured terminal voltage of each cell compared to a 223

calibrate-able threshold ē as the trigger condition described in (11). When the event is not 224

triggered γctrl = 0, the controller holds the first of the balancing commands of the previous 225

calculated series Ut1 instead of using the subsequent elements of Ut1 . This modification 226

was used because the future driver power demand is assumed to be unknown and the 227

dynamics of the terminal voltage are relatively slow compared to the controller sample 228

rate of Ts = 1 s. This implementation of eMPC was studied to compare to a constant 229

time-triggered MPC baseline and an RL-based event-trigger. 230

After testing and evaluating the eMPC implementation, an RL agent was developed 231

to replace the trigger conditions. The RL agent was setup as a DQN agent described above 232

in Section II.B. This agent interacts with environment (15) and observes the average and 233

minimum cell voltage, average cell SOC, and pack current demand as state variables as 234

well as the reward (18). Although each cell voltage is considered as the state in (15), only 235

these more general state parameters were used to reduce the number of dimensions of the 236

state for training. During training, the agent will select a random action with probability ϵ 237

that decays exponentially over time and otherwise, will select the action with the greatest 238

value determined by the critic network with parameters ϕ. This action is the event-trigger 239
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for the MCP controller to solve the OCP which then determines a new Ut1 and Zt1 . The 240

reward function for each time step was defined as the distance driven over the time step dx 241

subtracted by a flag representing whether or not the event-trigger was set γctrl multiplied 242

by a weighting factor ρ together as 243

r = dx− γctrl ∗ ρ. (18)

This reward function is one of the primary design elements for the RLeMPC implementation 244

where the key objectives of maximizing EV range in dx and minimizing event-triggering in 245

γctrl are included for the agent to pursue. This reward r is the main feedback signal that the 246

RL agent uses to learn an optimal policy that maximizes r over the episode. The parameter 247

ρ was tuned to achieve the proper scaling between the conflicting objectives to result in the 248

desired behavior of the converged policy. With these RL state and reward formulations, 249

many hyperparamters such as ρ, the structure of the DQN, learning rate, discount factor, 250

and epsilon decay were tuned in a simulation environment while training the agent to find 251

the optimum event trigger policy. Details for training the RLeMPC agent can be found in 252

Algorithm 2 and Fig. 3. 253
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Algorithm 2 RL-based Event-Triggered MPC

1: procedure RLEMPC(M, T, dt, γ, N)
2: Initialize ϕ, D ← ∅, ϕt ← ϕ
3: for j = 0 to N − 1 do
4: Initialize st, Zt1 , Ut1 , k← 0, u← 0
5: while t <= T do
6: if explore then
7: Sample at from {0, 1}
8: else
9: at ← arg maxa Q(st, a; ϕ)

10: end if
11: <Simulate Environment>
12: if γctrl = 1 then
13: k← 0;
14: (Zt, Ut)← Solving OCP (16);
15: u← Ut(1);
16: Ut1 ← Ut;
17: Zt1 ← Zt;
18: else
19: u← Ut1(1);
20: k← k + 1;
21: if k <= p then
22: ζ̂ ← Zt1(k)
23: else
24: ζ̂ ← Zt1(p)
25: end if
26: end if
27: ζt+1 ← Simulate (13) using u
28: st+1 ← ζt+1
29: rt ← (18)
30: <End of Environment Simulation>
31: Observe rt and st+1
32: Update D to include (st, at, rt, st+1)
33: Sample M experiences from D
34: ϕ← Perform gradient descent on (6)
35: if Target Update Condition is True then
36: ϕt ← ϕ
37: end if
38: st ← st+1
39: t← t + dt
40: end while
41: end for
42: end procedure



Electronics 2024, 1, 0 11 of 24

Figure 3. Flowchart for the Reinforcement Learning-Based Event-Triggered MPC (RLeMPC) in
Algorithm 2. The red outlines signify the primary changes from the previous eMPC Algorithm 1.

4. Simulation Results and Discussion 254

4.1. Simulation Environment 255

Simulations were executed for the training and testing of the active cell balance controls 256

using MATLAB and Simulink with the Reinforcement Learning Toolbox to create and train 257

DQN agents inside of a Simulink environment [48]. The simulations were conducted on a 258

computer with Intel® Core™ i5-6600K processor and 8 GB of RAM. As described above, the 259

system being simulated is a battery pack with 5 cells in series and an ideal power converter 260

that can move charge between any cells constrained by balancing current limits for each 261

cell of ±2 A. 262

Repeated FTP-72 drive cycle conditions were tested over the sedan EV configuration 263

as used in [1]. The discharge current from the battery pack was scaled from the power 264

demand to assume a larger pack with additional modules in parallel, and a final scaling 265

factor was applied to increase the current draw and reduce simulation time. Starting with 266

all cells fully charged to CVL, the battery was discharged according to the scaled current 267

demand of the vehicle until the first cell reached DVL. The velocity profile and scaled 268

vehicle power demand that was applied to the 5S cell module is shown in Fig 4 where 269

on subsequent cycles, phase 1 of the cycle is repeated for the higher power demands to 270

discharge the battery faster. 271
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Figure 4. Velocity profile for repeated FTP-72 drive cycles and resulting scaled power requested from
5S cell module applied for the simulations. figure updated

Finally, for all the simulations, a constant imbalance was applied across the Cn, Rn
o , 272

Cn
p , and Rn

p cell parameters. To select these parameters, a series of simulations were run 273

that multiplied each of the nominal cell parameters by random factors that were selected 274

from a normal distribution with a mean of 1 and interval between 0.9 and 1.1. From 275

these tests, a set of imbalance factors that resulted in an average active cell balancing 276

range extension benefit for the configuration with the conventional MPC approach was 277

chosen as the constant set of imbalance parameters to use for the rest of the simulations. 278

This was done because the magnitude of the imbalance determines the range extension 279

benefit that can be realized with active cell balancing. With less realizable range extension 280

benefit, the sensitivity of the range extension depending on the control strategy reduces 281

as it changes between MPC, eMPC, and RLeMPC. Future work would include how to 282

generalize these approaches to any distribution of imbalance and quantify the benefit 283

relative to the distribution of cell imbalances, especially for the RL agent which was trained 284

and evaluated using only one set of imbalance parameters for this study. 285

4.2. Evaluation Criteria 286

The primary performance metrics for this study are the overall driving range and 287

average event-trigger frequency. The purpose of cell balancing in general is to achieve the 288

maximum energy output of the battery which would translate to maximizing the driving 289

range assuming no auxiliary loads. Moreover, average execution frequency is used as an 290

approximation of the computational load with the goal of minimizing it with RLeMPC. 291

In addition, the magnitude of the balancing currents averaged over the drive cycle is 292

considered to approximate the resistant heating losses and referred to as the balancing 293

effort in the sequel. 294

4.3. Results with Constant Trigger Period 295

Before executing simulations with varying trigger frequencies, the MPC weighting 296

matrix R in (17) was re-calibrated to be more robust toward infrequent triggering. For 297

conventional MPC or eMPC with minimal modeling errors, the weighting of R could be 298

decreased to tune the cost optimization toward lower voltage tracking error of the cells to 299

a nominal cell voltage target at the cost of higher balancing currents. However, for this 300

application where future driver power demand is assumed to be unknown, weighting to 301

prioritize aggressively tracking the reference voltage can result in reduced range extension. 302

The unknown future driver power demand becomes a disturbance in the model prediction 303

which increases as the trigger frequency reduces. Furthermore, the prediction horizon may 304

occasionally be much less than the trigger period resulting in prediction error even if power 305

demand was known ahead of time. Because of these unknown dynamics to the model, 306

increasing the cost of the balancing current magnitude through the weighting matrix R can 307
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increase the range performance of the system during infrequent triggering by reducing the 308

response of the controller to a model with large prediction errors. 309

This dynamic is shown in Fig. 5, where the cost weighting of each balancing current 310

magnitude Rn is set to be equal, scaled appropriately, and tested to determine range 311

extension and balancing effort dependencies. For these tests, the value of Rn was varied 312

for transient cycle discharge tests while having a constant trigger period of 5 s. Increasing 313

the Rn values leads to less balancing effort which demonstrates the effect of R on the MPC 314

cost optimization. For Rn in 800-4000, the range is extended by 0.1% as compared to when 315

Rn is between 10 to 70. Although a small difference, this result demonstrates that with 316

these model assumptions, larger Rn values can result in larger range extension. This result 317

may not be intuitive since range extension is gained with less balancing effort, but this 318

comes from the previously described modeling discrepancies. Once R is very large, the 319

range extension decreases drastically as the balancing currents are greatly reduced limiting 320

the optimal calibration range for Rn. The final Rn calibration was set to 100 to avoid the 321

initial large amounts of balancing effort and also to avoid overly penalizing the balancing 322

effort. Fig. 6 shows the transient cell balancing performance for the final R calibration and 323

a constant trigger period of 5 s. 324

101 102 103 104

Weighting in R matrix Diagnoal

48.6

48.62

48.64

48.66

48.68

48.7

48.72

48.74

48.76

D
is

ta
n

c
e

 (
k
m

)

0

2

4

6

8

10

12

A
v
e

ra
g

e
 B

a
la

n
c
in

g
 E

ff
o

rt
 (

A
2
)

Figure 5. Final EV range and balancing effort results from R weighting matrix sweep with time-
triggered MPC with constant trigger period of 5 s.
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Figure 6. Transient cell voltage and balancing current results for 5 s constant trigger MPC cell
balancing. Maximum EV range was achieved. Blue: Cell 1, Red: Cell 2, Yellow: Cell 3, Purple: Cell 4,
and Green: Cell 5.

Once the weighting matrix was calibrated, the first study that was completed was 325

varying a constant trigger frequency. These tests were simulated to understand as a baseline, 326

without any event-trigger, the range extension and balancing current magnitudes with only 327

varying the trigger frequency of the MPC controller. For this purpose, the trigger frequency 328

was set to a constant value starting from 1Hz and decreased between simulations until 0 329

triggers occurred. This trigger frequency range demonstrates the maximum and minimum 330

driving ranges achievable. For these tests, the prediction horizon remained as 5 s with only 331

the first element of the control sequence Ut being applied until another trigger occurred. 332

Notably, the time period between triggers can be greater than the prediction horizon as 333

described in Section III.B. 334

The transient cycle range extension results plotted in Fig. 7 indicate that the maximum 335

range of 48.66-48.67 km can be achieved with a constant trigger period of 1 to 700 s or 336

frequency of 1Hz to 1 mHz with varying balancing effort as the trigger period changed. 337

Noticeably, two discrete ranges emerge with the higher trigger frequency tests from 1 338

Hz down to 1 mHz resulting around this maximum range and tests with frequencies 339

below 1 mHz ending around a minimum range of 46.23-46.24 km. Fig. 8 shows effective 340

cell balancing with a constant trigger period of 1000 s and can be compared to Fig. 6 to 341

notice the much less busy balancing current which delivered nearly the same final driving 342

distance. The discrete driving range levels are attributable to the current scaling that was 343

applied to the transient cycle simulations which leads to these discrete windows emerging 344

for when the DVL is reached. 345
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Figure 7. EV range and balancing effort results from varying the constant trigger period of conven-
tional MPC.
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Figure 8. Transient cell voltage and balancing current results for 1000 s constant trigger MPC cell
balancing. The infrequent event-triggers are clearly visible with the steps in the balancing currents.
Near maximum EV range is still achieved with much reduced triggering. Blue: Cell 1, Red: Cell 2,
Yellow: Cell 3, Purple: Cell 4, and Green: Cell 5.
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To expand on this, Fig. 9 shows the vehicle velocity profile along with the transient 346

pack current demand and minimum cell voltage for a simulation that did not reach DVL 347

during the time window where other simulations with poor cell balancing did reach DVL. 348

This occurs on the third repeated cycle where DVL is reached at a pack SOC of 33% and 349

current demand of 280-380 A. The simulations with higher trigger frequencies continued 350

for a fourth cycle until DVL was reached at a pack SOC of 29% and close to 400 A cell 351

current demand. Cell terminal voltages decreased significantly during these high current 352

discharges due to the large internal resistance of the cell. This current scaling along with 353

the nonlinear OCV creates these discrete final driving ranges such that the first current 354

peak where DVL is reached may be overcome with cell balancing but the second current 355

peak where the rest of the simulations reach DVL cannot be overcome. The second current 356

peak cannot be overcome even with perfectly balanced cells and a significant 29% SOC 357

remaining because of the large current demands. This effect could be smoothed out with 358

more realistic cell currents at the cost of simulation time. However for this study, especially 359

for testing RLeMPC, simulation times had to be low to train the RL agent in a reasonable 360

amount of time. These results are sufficient for initial concept demonstration to test if 361

RLeMPC can determine the optimal eMPC trigger policy to overcome the first high power 362

window. plot eMPC transient results 363
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Figure 9. Constant trigger velocity and current profiles from maximum EV range tests in the range
where DVL is reached for minimum EV range tests. The red x’s mark the vehicle velocities and large
currents where DVL is reached for those tests. Notably, after overcoming the peak current demand,
the vehicle can travel much further with lower currents and higher cell voltages. fig updated

4.4. Results with Threshold Based eMPC 364

For eMPC, simulations with varying the error threshold were executed to understand 365

if an eMPC approach could outperform the constant trigger frequency MPC controller in 366

terms of range extension, average trigger frequency, and balancing effort. Fig. 10 shows as 367

the error threshold increased, the trigger frequency decreased approximately exponentially 368

until saturating at 0-1 trigger per test. Between an error threshold of 1 and 1.5 V, the 369

exponential relationship begins to break as the cell balancing fails to avoid DVL during 370

the first very high current peak as illustrated in the large step of the driving range around 371

10 mHz with Fig. 11. Compared to the constant trigger frequency results, eMPC did 372

not achieve as much range extension as MPC at reduced average triggering frequencies. 373

For example, most of the frequency range between 10 mHz and 1 mHz reached DVL at 374

a driving range of 46.24 km for eMPC while for constant trigger frequency MPC at this 375

frequency range, DVL was reached at 48.66 km. Additionally, the average balancing effort 376

is higher on average and more variable for eMPC. Overall, constant trigger frequency MPC 377
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performs better than eMPC over the evaluation criteria for this application and trigger 378

condition highlighting the challenge of implementing an optimal eMPC trigger condition. 379
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Figure 10. Average execution frequency as a function of the error threshold for eMPC calibration.
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Figure 11. EV range and balancing effort depending on the average execution period for eMPC.
Notably, the switch from high EV range to low EV range occurs at a higher average execution
frequency than constant triggering MPC.

Transient results for eMCP with the lowest average event-trigger frequency that 380

achieved 48.66 km are plotted in Fig. 12. In this example, the benefit of eMPC is demon- 381

strated in the lack of event-triggers during the standstill portions between repeated cycles 382

when triggering is not required. This control strategy can be effective when the load is 0 383

or constant, but during the transient portions of the test, the actual cell voltages are much 384

more transient relative to the nominal voltage target computed when the OCP is solved 385

causing excessive triggering. Changing the target voltage to the average actual cell voltage 386

instead of a nominal predicted cell target may be an improvement on the event-trigger 387

policy to account for the modeling errors arising from unpredictable driver power request. 388
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Figure 12. Transient cell voltage, balancing current, and event-trigger results for eMPC with ē = 1.31
V. Error threshold ē is set to achieve high EV range with minimal event-triggers. Blue: Cell 1, Red:
Cell 2, Yellow: Cell 3, Purple: Cell 4, and Green: Cell 5.

4.5. Results with RLeMPC 389

Many challenges were encountered while training the RLeMPC agent. For this prob- 390

lem, only a minimal amount of triggers is required to achieve the maximum reward, and 391

any amount of triggers below the minimum results in very little range extension bene- 392

fit. This feature of the dynamics leads to the RL agent learning a sub-optimal policy of 393

triggering very infrequently or the training can diverge to triggering excessively. Because 394

of the penalty of triggering in the reward function, the RL agent can learn a policy of 395

not triggering at all which would be the optimal policy if the first current peak could not 396

be overcome with cell balancing. Depending on how the RL agent is trained, the agent 397

can erroneously learn this as the optimal policy even after having experienced the larger 398

driving ranges that are achievable. While training the agent, this local optimum became 399

very difficult to avoid even with a low weighting factor ρ applied to the trigger action in 400

the reward function. 401

Two important training parameters that were explored to avoid this local optimum 402

were the discount factor γ and the ϵ-decay exploration method. To start with γ, typical 403

values like 0.9 and 0.99 overly discounted the future delayed range extension reward from 404

cell balancing thousands of steps in advance. To account for these delayed rewards, γ in 405

the range of 0.999-0.9999 was required, but such a high value for γ required more training 406

to accurately learn which actions lead to the delayed rewards. Extended training time or a 407

more refined approach to addressing the delayed rewards in this problem may be required 408

to learn the optimal policy. This feature differentiates the active cell balancing problem 409

from other problems with less delayed rewards such as autonomous vehicle path following 410

where RLeMPC was successfully applied in [15]. 411

The ϵ-decay method for training was another major challenge for this problem. Typi- 412

cally, ϵ is initialized around 1 and decayed to a minimum value to explore the environment 413

before transitioning to exploiting the environment to maximize G. For this problem, the 414

maximum final range can be achieved with very little triggering, so with high ϵ, and 50% 415
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probability of choosing to trigger for a random action, the agent first learned the penalty 416

from triggering because it always achieved the maximum range at the beginning of the 417

training. As ϵ decayed, the agent transitioned from random actions to following the actions 418

with greater learned Q value from the DQN which was initially to not trigger at all. Even- 419

tually, ϵ decayed enough to where not enough triggering occurred from random actions to 420

achieve the maximum range, and during this transition, it was very difficult for the agent 421

to learn that triggering more can lead to much greater range extension. Part of this could 422

come from the fact that the agent could not learn any distinction in driving range extension 423

between triggering and no triggering at the beginning of the training. Next, once it did not 424

trigger enough to overcome the first high current peak, it could not learn quickly enough 425

that triggering could lead to larger range extension reward before falling into the local 426

optimum of not triggering at all with no driving range extension. 427

This example of training plays out in Fig. 13(a) where the reward correlates with ϵ 428

from the decrease in trigger frequency until around 400 episodes, after which triggering 429

was not frequent enough to overcome the first high current peak. The switching observed 430

in the episode reward was from going between the high and low final driving ranges with 431

large reward weighting applied to the driving range extension. After this transition, the RL 432

agent settled into a policy of not triggering at all to maximize the reward with no driving 433

range extension. 434
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Figure 13. Reward and ϵ-decay during RLeMPC training. Blue: raw episode reward; Black: moving
average of episode reward. (a) is with ϵ initalized to 1 and agent learns to reduce triggering even after
experiencing EV range degradation. (b) and (c) start with lower initial ϵ and also learn to minimize
triggering at the expense of EV range. (d) begins with ϵ of 1% and learns to increase triggering even
while consistently achieving maximum range.

To attempt to overcome this challenge of learning a sub-optimal policy during the 435

exploration phase of the training, ϵ was initialized to much lower values for training. These 436

values were chosen from the maximum episode length of around 7000 steps with only two 437

actions available per step which still results in a significant number of exploratory actions. 438

The MPC and eMPC results show around 100-1000 s per trigger or 7-70 triggers per episode 439

is the minimum amount of triggers required to achieve large driving range extension. This 440

new ϵ-decay tuning along with random initial weights and biases for the DQN was chosen 441

to try to initialize the training right on the step of low to high driving range extension 442

so that the agent experiences the range extension difference between triggering and not 443

triggering right away. 444
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Attempts at this ϵ-decay tuning have not improved the training performance. First, 445

when ϵ is not low enough, the agent learns to not trigger falling into the local optimum of 0 446

triggers per episode as shown in Fig. 13(b) and (c). For these training sets, ϵ was initialized 447

to 40% and 5%, and both resulted in the same policy of no triggering to maximize reward 448

when no driving range extension is achieved. From those training sets, ϵ of 1-5% appears 449

to be the best value to begin the training since in that range is where the switching between 450

high and low driving distance ranges begins to be observed. However, initializing ϵ to 1% 451

shown in Fig. 13(d) resulted in the training diverging and the reward decreasing with the 452

maximum distance was always achieved but the RL agent learning to trigger more. 453

Next steps that are planned for improving upon the results presented include focused 454

tuning of γ, ϵ-decay, and the reward weighting ρ around the driving range transition trigger 455

frequencies. The expectation is that the data efficiency of the training can be increased with 456

focused exploration in the key trigger frequency range. The first step is to find a proper 457

initial value of ϵ as well as a more effective ϵ-decay rate. As mentioned, an initial ϵ value of 458

1-5% should be appropriate to place the initial trigger frequency around where the step of 459

driving range occurs, but slowing down the ϵ-decay rate may help give the agent more time 460

to explore in the key ϵ range. Additionally, varying the initial DQN weights and reward 461

weighting may help to avoid the diverging behavior observed in Fig. 13(d). Finally, tuning 462

γ in this more effective exploration range should be beneficial to ensure delayed rewards 463

are weighted properly to attribute the range extension benefit to the earlier triggering. 464

Overall, the analysis from tuning this DQN agent for active cell balancing can pro- 465

vide guidance for tuning γ, ϵ-decay, and the reward function for a particular problem 466

when training for tens of thousands of episodes is not a viable option. These next steps 467

identified will be included in future work to report on their effectiveness with improving 468

the performance of training the RL agent. One glimmer of the potential comes from the 469

switching observed in rewards at low ϵ values in Fig. 13. The high values in that switching 470

represent episodes where the RL agent achieved the larger range extension with very 471

little triggering from random actions. For example Fig. 14 shows the cell balancing and 472

triggering occurring during one of those episodes where only 7 random triggers resulted in 473

a final driving range of 48.66 km. This performance is on par with the constant infrequent 474

MPC triggering approach showing improvement is available if the RL agent can be trained 475

to learn it. Finally, adjusting the current scaling of the simulation may also help shape the Q 476

function to be more variable, easier to learn, and more reflective of the actual cell balancing 477

problem. 478
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Figure 14. RLeMPC training episode where learned policy is to not trigger at all, but random off-
policy triggers achieve large range extension with very infrequent event-triggers. Blue: Cell 1, Red:
Cell 2, Yellow: Cell 3, Purple: Cell 4, and Green: Cell 5.

5. Conclusions 479

Three model predictive control (MPC) strategies, namely time-triggered MPC, event- 480

triggered MPC (eMPC), and reinforcement learning-based MPC (RLeMPC), for active 481

cell balancing, were formulated and tested in a simulation environment to reduce com- 482

putational requirements relative to a baseline MPC controller while maintaining the EV 483

range extension benefit. MPC with reduced constant period triggering and eMPC control 484

methods demonstrated significant computational load reduction with an average trigger 485

period increase to 1000 s and 187 s respectively compared to the 1 s trigger period of 486

the baseline MPC. Only a negligible decrease of EV range extension of 0.03% from the 487

maximum achievable range was the penalty for this significant decrease in throughput. 488

From scaling of the current demand for more efficient simulation, the discharge voltage 489

limit was met at very high cell current demands between 280-380 A and 33% state of charge 490

remaining in the battery pack shaping the EV range extension results. Challenges of train- 491

ing the RLeMPC agent were presented such as the discrete and delayed range extension 492

rewards as well as an ineffective exploration method. Overall, the converged RLeMPC 493

policy was very sensitive to training which will be further improved with hyper-parameter 494

tuning, but occasional training episodes were promising with greater than 1000 s average 495

trigger period. Future steps to address these challenges, to learn more optimal event-trigger 496

policies, and to improve the robustness of the proposed approach, were discussed and are 497

planned as future work. Real-world implementation in microcontroller is another future 498

work direction. 499
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