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Abstract: Lorentzian correlators of local operators exhibit surprising singularities in theories
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singularity dual to a bulk geodesic that winds around the black hole. Remarkably, it exhibits
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analytically, we express the two-point correlator as an infinite sum over Regge poles, and then
evaluate this sum using WKB methods. We also compute the smeared correlator numerically,
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1 Introduction

Perturbative Lorentzian correlation functions of local operators in QFT develop singularities
when operators can communicate by exchanging light-like signals [1, 2].1 A striking feature of
holographic theories is that communication can proceed via an emergent bulk and in this way
new singularities develop [4–6], through which the bulk geometry can be reconstructed [7, 8].
This emergent bulk communication channel cannot be faster than the boundary one [9]. In
this way boundary causality is preserved.

The simplest singularity arises in the two-point function ⟨O(x1)O(x2)⟩ when the points
become light-like separated, (x1−x2)2 = 0. A holographic analog of this light-cone singularity
is the bulk-cone singularity [4]. It occurs when the boundary points are connected by a null
geodesic in the bulk. In pure AdS, the two cones coincide, but they differ in non-trivial
backgrounds. The existence of a nearly null geodesic in the bulk does not always lead to
a singularity in the correlator [10–14], but for the one-sided correlators we will consider
these subtleties do not arise.2

In this paper we derive the singularities of the thermal two-point function of a holographic
CFT on S1 × Sd−1 in the black hole phase. These black hole bulk-cone singularities were first
conjectured in [4, 15] by analyzing the geodesic approximation, where the dimension of the
probe operator becomes large. They have a remarkable feature that the emerging bulk-cone
group velocity is larger than 1.3 It is controlled by the angular velocity Ω of null geodesics
at the photon sphere,4 see figure 1 and figure 2. As can be seen from figure 1 this effect is
perfectly consistent with boundary causality because it appears with some delay. We will also
see that the strength of the singularity captures the Lyapunov exponent γ of null geodesics
in the vicinity of the photon sphere. In this sense, the bulk-cone singularity represents the
encoding of the critical parameters (Ω, γ) of the photon sphere in the black hole hologram.

Surprisingly little is known about the structure of correlators close to the black hole
bulk-cone singularities. This is the problem we address in the present paper. Our work can
be viewed as the AdS analog of [17] (see also [18–20]), in which the structure of singularities
was worked out for the two-point function of massless fields on the Schwarzschild background
in four-dimensional asymptotically flat spacetime.

One important difference between the boundary-cone and bulk-cone singularities is that
the former are universal and appear in every theory, whereas the latter are present in the
strong coupling limit only.5 In particular, moving away from the strict ’t Hooft limit and
taking into account finite λ and finite N effects they are expected to become bulk-cone
bumps [6, 15]. As such they represent a simple, universal and robust feature of emergence
of black hole-like geometries in holographic systems.

1While these papers concern QFT in Minkowski space, the same statement is expected to be true in curved
space as well, see e.g. [3].

2As opposed to the situation considered in the present paper, in the two-sided case the two points cannot
exchange light-like signals.

3Similar effects of “faster than light propagation” have been observed experimentally in a variety of resonant
media [16].

4To observe this effect it is important that we consider a CFT on Sd−1, since it is absent in infinite volume
Rd−1. On the other hand, we expect the effect to be present when a holographic CFT is put on other positively
curved spatial manifolds as well.

5It has been observed that instanton corrections can sometimes mimic strong coupling singularities [6].
It would be interesting to understand this better, especially in the thermal context (see [21] for a
related discussion).
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Figure 1. The structure of bulk-cone singularities in AdS Schwarzschild. The black line LC
corresponds to the ordinary light-cone with the leading behavior controlled by the light-cone OPE

1
(tLC−t)∆ . The red line BC0 denotes a singularity due to a null geodesic in the bulk which wraps around
the photon sphere, and its functional form is computed in this paper. It is more singular than the
light-cone for ∆ > d−1

2 and is given by 1
(tBC−t)2∆− d−1

2
. The effective group velocity of the bulk-cone

singularity Ω > 1 is related to the angular velocity of null geodesics at the photon sphere. The
strength of the bulk-cone singularity decays with time as e−γt/2, where γ is the Lyapunov exponent of
geodesics at the photon sphere.

In this paper we analyze black hole bulk-cone singularities in the gravity approximation.
In particular, we analytically compute the leading form of the singularity. The key observation
is that the singularities are captured by a saddle point computation at complex spin. More
precisely, we express the correlator as a sum over Regge poles and then use WKB methods
to evaluate this sum to obtain the leading singularity.
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(a) No bounce BC0. (b) One bounce BC1. (c) Two bounces BC2.

Figure 2. Null geodesics in AdS Schwarzschild (d = 4, µ = 1). The gray shaded region corresponds
to r < rs, where rs is the Schwarzschild radius. The black dashed curve is the photon sphere. Black
points denote the beginning and the end-point of the null geodesics that we are interested in. Colored
points denote bounces. Given a bulk-cone singularity with no bounces at (t, θ), there will be an
(n− 1)-bounce bulk cone singularity at (nt, nθ).

Let us now present an overview of our final result. We consider the retarded two-point
function GR(t, θ) ≡ iθ(t)⟨[O(t, θ),O(0, 0)]⟩S1×Sd−1 . The leading singular behavior associated
with the no-bounce null bulk geodesics, see figure 2(a), is given by the formula

GR(t,θ)∝
(u(t)2−1)∆−d/2

(u(t))2∆− d−1
2
√
T ′(u(t))(sinθ) d−2

2
(1.1)

×
∞∑
j=1

(−1)jdIm

 1(
tBC(2πj+θ)−t+i0

)2∆− d−1
2

+ eiπ
d−2

2(
tBC(2πj−θ)−t+i0

)2∆− d−1
2

 ,
where π > θ > 0, and the omitted numerical pre-factor can be found in (4.27) and (4.32).

We now explain the basic elements of this formula.

• d is the dimensionality of the boundary CFT, and ∆ is the scaling dimension of
the scalar primary operator O, related to the mass of the AdS dual bulk field ϕ as
∆ = d

2 +
√

d2

4 + (mRAdS)2.

• The formula should be understood as a prediction for the leading singularities of the
correlator close to t = tBC(2πj ± θ) at fixed π > θ > 0. Away from the singularities
there are subleading corrections which we do not compute in the present paper.

• Consider a null geodesic in the bulk that starts at the boundary point (0, 0) and ends
at the boundary point (T,Θ). tBC(Θ) ≡ T is the time it takes the bulk geodesic to
traverse an angle Θ.

• The j sum is over winding geodesics that end at the same spatial point on the boundary
as a result of the periodicity θ ∼ θ + 2π. The two terms in the brackets correspond to
left and right-moving geodesics.

– 4 –
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• u(T ) = dΘ
dT is the effective angular velocity of the bulk geodesic, with 1 ≤ u ≤ Ω, where

Ω is the angular velocity of circular null geodesics at the photon sphere, see figure 9(a).

• At late times T ′(u(t)) = dT
du

∣∣∣
u=u(t)

∼ eγt effectively measures the classical Lyapunov
exponent γ at the photon sphere, see figure 9(b).

We also computed the smeared correlator GR(t, θ) numerically as in [18], see figure 11 and
figure 13, which in particular allows us to check and support our analytic predictions. In
addition, we observe singularities associated with bouncing geodesics, see figure 2(b) and
figure 2(c).

The plan of the paper is as follows:

• In section 2, we study thermal correlators at infinite volume and reproduce the expected
light-cone singularity from doubly infinite sums over Regge poles and Matsubara
frequencies. This serves as a useful example before proceeding to the more interesting
case of finite volume.

• In section 3, we turn to finite volume thermal correlators and compute the eikonal
spectrum of quasi-normal modes for both real and imaginary spin using WKB methods.
We further comment on the flat space limit where, in particular, the spectrum at
imaginary spin smoothly approaches the well-studied eikonal spectrum of black holes in
asymptotically flat spacetime.

• Section 4 contains the main results of this paper. We begin by deriving the representation
of the Euclidean thermal correlator at finite volume as a sum over Regge poles and
Matsubara frequencies in any dimension. This can be analytically continued to real
time in order to explore the singularity structure of Wightman correlators. Using the
spectrum and residues found in section 3, we obtain the light-cone singularity as well
as the bulk-cone singularities present at finite volume.

• Section 5 is devoted to numerical computations of retarded correlators in d = 3 and
d = 4. We successfully match the location of the bulk cone singularities, their shape,
and their relative strength with the analytical predictions from the previous sections.

• In section 6, following [15, 22] we comment on stringy and gravitational corrections to
our results. In particular, the singularities are smoothed out into finite width bumps.

• In section 7, we review existing bounds on ultra-compact objects (different from black
holes and possibly possessing a photon ring) in four-dimensional asymptotically flat
spacetime.

We conclude and discuss open questions in section 8. Appendix A contains bounds on
Regge poles from the wave equation. As a useful example of the methods described in this
paper, the BTZ black hole is considered in appendix B. In particular, both at infinite and
finite volume, the correlators written as sums over Regge poles and Matsubara frequencies are
explicitly shown to reproduce known results. In appendix C we derive causality constraints
on the retarded two-point function on the sphere in momentum space. In appendix D we
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discuss the structure of the leading light-cone singularity of the two-point function at finite
temperature in d > 2. In appendix F we review observational signatures of astrophysical
black holes.

Note added. Signatures of the photon sphere in the thermal two-point function in the
eikonal limit ω, ℓ≫ 1, ℓ/ω fixed were recently discussed in [23–27]. We consider this regime
in section 3.1.

2 The light cone at infinite volume

In this section, we derive a representation of the holographic thermal two-point correlator
at infinite volume as a sum over Regge poles and Matsubara frequencies. We then use it to
obtain the leading light-cone singularity of the Lorentzian thermal two-point function on
S1
β × Rd−1 in holographic theories. This section serves us a warm-up to the more interesting

case of S1
β × Sd−1, which we consider in the next section.

2.1 Holographic thermal two-point function

We consider a scalar field in the background of a (d + 1)-dimensional AdS black brane.
The metric takes the form

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dx⃗2, f(r) = r2 − 1
rd−2 . (2.1)

We have chosen to work in units in which the horizon is at r = 1 and the inverse temperature
is β = 4π/d. The AdS boundary is at r = ∞. The equation of motion (□ −m2)ϕ = 0 is
conveniently written in terms of a new field ψ defined by [28]

ϕ(t, x⃗, r) = e−iωt+ik⃗·x⃗r−
d−1

2 ψωk(r), k ≡ |⃗k|. (2.2)

The radial part of the wave equation then becomes

(−∂2z + V (z)− ω2)ψωk(z) = 0, (2.3)

where we have introduced a new coordinate z via

dz = − dr

f(r) , (2.4)

such that z = 0 corresponds to the AdS boundary and z = ∞ to the black hole horizon.
The potential V (z) is given by

V (z) = f(r)
(
k2

r2
+ ν2 − 1

4 + (d− 1)2
4rd

)
, (2.5)

c and it is a monotonically increasing function of r when k is real. The conformal dimension
of the boundary operator O(x) dual to the bulk field ϕ is

∆ = d

2 + ν. (2.6)

– 6 –
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The retarded correlator is computed by specifying ingoing boundary conditions at the
horizon [29],

ψωk(z) ∼ eiωz, z → ∞. (2.7)

Near the boundary, the solution behaves as

ψωk(z) ∼ A(ω, k)z
1
2−ν + B(ω, k)z

1
2+ν , z → 0. (2.8)

The retarded Green’s function is then given by

GR(ω, k) =
B(ω, k)
A(ω, k) , (2.9)

where we have introduced

GR(t, x⃗) ≡ iθ(t)⟨[O(t, x⃗),O(0, 0)]⟩S1×Rd−1 (2.10)

= 1
(2π)d

∫ ∞

−∞
dω dd−1k⃗ e−iωt+ik⃗·x⃗GR(ω, |⃗k|) . (2.11)

We will be interested in the leading light-cone singularity of the thermal two-point function.
This can be readily derived using WKB methods at large ω and k, see [12, 28, 30]. However,
for our purposes of understanding bulk-cone singularities at finite volume an alternative
method via re-summation of Regge poles will turn out to be more useful. We present this
method below.

2.2 Regge poles and the Wightman function

In fact, we will find it more convenient to compute the Wightman two-point function, and
then use it to compute the retarded two-point function (2.10) if necessary.

The real-time Wightman function in a finite temperature CFT on S1
β × Rd−1 is defined

as follows

GW (t, x) = 1
Z

Tr
(
e−βHO(t, x⃗)O(0)

)
, x ≡ |x⃗|. (2.12)

Recall that the Wightman function can be obtained from the Euclidean correlator by analytic
continuation,

GW (t, x) = lim
ϵ→0

GE(τ = ϵ+ it, x). (2.13)

Moreover, the Euclidean correlator admits a Fourier decomposition (see e.g. [31]),

GE(τ, x) =
1
β

∞∑
n=−∞

eiζnτ
∫

dd−1k⃗

(2π)d−1 e
ik⃗·x⃗GR (i|ζn|, k) , k ≡ |⃗k|, (2.14)

where GR is the retarded Green’s function. Here the Matsubara frequencies are given by

ζn = 2πn
β

, (2.15)

and GR(iζn, k) = GE(ζn, k). The expression above is manifestly KMS invariant,
GE(β − τ, x) = GE(τ, x).

– 7 –
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Notice that we cannot use (2.14) directly to compute the Lorentzian correlator. The
reason is that plugging (2.14) into (2.13) leads to a divergent sum over Matsubara frequencies.
To overcome this difficulty we use a trick familiar from Regge theory, and analytically
continue the representation above in k. To achieve this we first note that the potential (2.5)
is an analytic function of k2, so that the retarded two-point function computed from it is
automatically analytic in k and also obeys GR(ω, k) = GR(ω,−k). It follows that we can
extend the k integral to the full real line,∫

dd−1k⃗

(2π)d−1 e
ik⃗·x⃗GR(i|ζn|, k) =

1
(2π) d−1

2 x
d−3

2

∫ ∞

0
dk k

d−1
2 J d−3

2
(kx)GR(i|ζn|, k)

= 1
2(2π) d−1

2 x
d−3

2

∫ ∞

−∞
dk k

d−1
2 H

(1)
d−3

2
(kx)GR(i|ζn|, k), (2.16)

where Jα(x) and H(1)
α (x) are the Bessel and Hankel functions of first kind respectively. When

evaluating k d−1
2 H

(1)
d−3

2
(kx) for k < 0 the correct continuation prescription is k → k + i0.

At large k, the Hankel function behaves as eikx, so for x > 0 the integrand exponentially
decays as Im k → +∞. We can therefore close the contour in the upper half plane, picking
up singularities along the way,

GE(τ, x) =
iπβ−1

(2π) d−1
2 x

d−3
2

∞∑
n=−∞

∑
m

eiζnτk
d−1

2
mn H

(1)
d−3

2
(kmnx) Res

k→kmn

GR(i|ζn|, k), (2.17)

where the sum over m runs over poles kmn of GR(i|ζn|, k) in the upper half k-plane. From (2.9),
we see that the poles of GR(ω, k) are determined by the equation A(ω, k) = 0. One familiar
way to think about this equation is to fix k, and to look for solutions ωm(k). These solutions
are the frequencies of quasi-normal modes. In the present context, we fix ω = i|ζn| and look for
solutions km(ω). We call these solutions thermal Regge poles. From (2.17), the spectrum and
residues of Regge poles are sufficient information to compute the Euclidean Green’s function.

As we will see shortly, the utility of (2.17) is that it can be directly used to analyze the
singularities of the Lorentzian correlator via the analytic continuation eiζnτ → e−ζnt.

2.3 Eikonal spectrum of thermal Regge poles

The singularities of the two-point function are controlled by the high energy and momentum
asymptotics of the sum (2.17). Therefore we need to understand the structure of thermal
Regge poles in the eikonal limit where |ζn| → ∞ and |km(i|ζn|)| → ∞.

In appendix A, we show that for positive imaginary ω, thermal Regge poles in the upper
half plane must lie in the sector π

4 < Arg(km(ω)) < 3π
4 . In fact, we found numerically that

all the Regge poles for positive imaginary ω are at imaginary k, see figure 15. Therefore,
let us define k = ip and ω = ipu and then take p → ∞. Then away from the boundary
z ≫ 1/p, the wave equation (2.3) reduces to

(∂2z + p2κ2(z))ψ(z) = 0, κ(z) =
√
−V k=ip

eik (z)− u2, (2.18)

where we have defined the eikonal potential

V k=ip
eik (z) = 1

rd
− 1. (2.19)

– 8 –
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This potential admits bound states which appear as Regge poles on the imaginary k axis,
and we wish to compute the locations of these poles and their residues.

We take 0 < u < 1, so that there is a single turning point located at rT = (1− u2)−1/d,
as depicted in figure 3. This turning point approaches the boundary as u → 1 and the
horizon as u → 0. In the WKB approximation, the ingoing solution takes the following
form near the horizon,

ψ(z) ∼ 1√
|κ(z)|

e
−p
∫ z

zT
dz′|κ(z′)|

, z > zT . (2.20)

Note that this is exponentially decaying at infinity, as is appropriate for a bound state.
Applying the WKB connection formula then gives the solution in the classically allowed region,

ψ(z) ∼ e
iπ
4 −iS(0,zT )√
κ(z)

eip
∫ z

0 dz′κ(z′) + e−
iπ
4 +iS(0,zT )√
κ(z)

e−ip
∫ z

0 dz′κ(z′), z < zT . (2.21)

Here we have defined the WKB action

S(za, zb) = p

∫ zb

za

dz′ |κ(z′)|. (2.22)

The WKB solution (2.21) does not yield the correct boundary asymptotics (2.8). The
reason is that the eikonal potential is no longer dominant at z of order 1/p. In this region
the potential (2.5) can be approximated as

V (z) ∼
ν2 − 1

4
z2

− p2, z ∼ 1
p
≪ 1. (2.23)

The solutions are Hankel functions, whose coefficients can be fixed by matching to the WKB
solution (2.21) at z ≫ 1/p. We find

ψ(z) ∼ i

√
πpz

2 e
iπν

2 −iS(0,zT )H(1)
ν (p

√
1− u2z) (2.24)

− i

√
πpz

2 e−
iπν

2 +iS(0,zT )H(2)
ν (p

√
1− u2z), z ∼ 1

p
.

The retarded Green’s function (2.9) can then be read off from the asymptotics (2.8),

GR(ω, k) =
Γ(−ν)
Γ(ν)

(
ω2 − k2

4

)ν cos (S(0, zT ) + πν
2
)

cos
(
S(0, zT )− πν

2
) . (2.25)

In deriving this formula we assumed that S(0, zT ) ≫ 1. Corrections to this formula are
suppressed by 1

S(0,zT ) .
Now let us compute the spectrum of thermal Regge poles from (2.25). The pole condition

reduces to

S(0, zT ) =
π(ν + 1 + 2m)

2 , m = 0, 1, . . . , (2.26)

– 9 –
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z

V k=ip
eik (z)

−u2

−1

zT

Figure 3. The eikonal potential (2.19) for imaginary k = ip has one real turning point zT . The
minimum of the potential is at the boundary z = 0.

where S(0, zT ) is given by

S(0, zT ) = p
√
1− u2

∫ ∞

rT

dr

√
1−

( rT
r

)d
r2 − r2−d

=
√
πp(1− u2) 1

d
+ 1

2Γ
(
1 + 1

d

)
2F1

(
1, 1d ;

3
2 + 1

d ; 1− u2
)

2Γ
(
3
2 + 1

d

) . (2.27)

As mentioned above, this calculation can be trusted for m≫ 1. The residues of GR in (2.25)
are found to be

Res
k→km

GR(ω, k) = − π

νΓ(ν)2

(
ω2 − km(ω)2

4

)ν (
∂S(0, zT )

∂k

∣∣∣
km

)−1
. (2.28)

In particular, as the turning point approaches the boundary, we have u → 1, so that we
can expand the action as

S(0, zT ) =
p
√
π2− 1

2+
1
dΓ
(
1 + 1

d

)
Γ
(
3
2 + 1

d

) (1− u)
1
2+

1
d + . . . , u→ 1. (2.29)

Plugging into (2.26), we can read off the low-lying spectrum

km(ω) = ω + i

(−iω)
d−2
d+2

√
πΓ
(
3
2 + 1

d

)
m

2 1
d
− 1

2Γ
(
1 + 1

d

)


2d
d+2

+ . . . , (2.30)

for km ∼ ω and |ω| ≫ m ≫ 1.
As mentioned above, thermal Regge poles and quasi-normal modes are equivalent de-

scriptions of the poles of GR(ω, k). We can invert the relation (2.30) to find the spectrum
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of quasi-normal modes,

ωm(k) = k − i
1

(−ik)
d−2
d+2

√
πΓ
(
3
2 + 1

d

)
m

2 1
d
− 1

2Γ
(
1 + 1

d

)


2d
d+2

+ . . . , (2.31)

for ωm ∼ k and |k| ≫ m ≫ 1.
Let us make several comments on this formula. First, note that Im ωm(k) < Im k, as

required by causality at infinite volume [32]. Second, the spectrum (2.31) precisely agrees with
the naive rotation of the real k spectrum [28] to imaginary k.6 At finite volume, we will see that
both of these properties are violated: there are modes with Im ωm(ℓ) > Im ℓ, where ℓ is the
spin, and the imaginary spin modes are not obtained by simply rotating the real spin modes.

2.4 The light-cone singularity

Next we will see how the light-cone singularity is reproduced from the Regge expansion (2.17).
To this end, let us evaluate (2.17) on the Regge poles at the Matsubara frequencies, with the
residues (2.28). Since we are interested in the singularities in position space, we approximate
the sums by integrals for ζn ∼ pm(i|ζn|) ≫ 1,

1
β

∑
n

∑
m

≃ 1
2π

∫ ∞

0
dp
dm

dp

∫ p

−p
dζ = 1

2π

∫ ∞

0
dp

∫ p

−p
dζ

i

π

dS(0, zT )
d(ip) . (2.32)

The last factor cancels the corresponding derivative in (2.28). We also use the large p

asymptotic of the Hankel function,

H
(1)
d−3

2
(ipx) →

√
2i
πpx

e−
1
4 iπde−px. (2.33)

Combining all the factors together, we get the following expression for the Euclidean
two-point function,

GE(τ, x) =
1

22ν+1π(2πx) d
2−1νΓ(ν)2

∫ ∞

0
dp

∫ p

−p
dζ eiζτ−pxp

d
2−1(p2 − ζ2)ν . (2.34)

Computing the leading light-cone singularity as t → x, we get

GW (t, x) = Γ(∆)
π

d
2 Γ
(
∆− d

2

) 1
(x2 − t2)∆ + . . . , (2.35)

which correctly reproduces the expected leading light-cone singularity of the two-point function
and serves as a consistency check for our computation. The factor Γ(∆)

π
d
2 Γ(∆− d

2 )
in front is simply

an overall normalization of the operators. Notice that in contrast to d = 2, see appendix B,
the leading light-cone singularity is the same as in the vacuum.

Equivalently, we could have used WKB methods to compute the large ω, k asymptotic
for real ω and k directly, from which the leading light-cone singularity trivially follows. The

6Here we have corrected a minor numerical typo in [28].
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result above predicts that

GW (ω, k) ≃
2π
(
ω2−k2

4

)∆−d/2

Γ
(
∆− d

2

)
Γ
(
∆+ 1− d

2

) , (2.36)

which indeed coincides with the results in [12, 28, 30], up to a factor 2∆− d which is due to
the difference in our definition of the retarded two-point function (2.9).

3 Eikonal spectrum of quasi-normal modes for complex spin

Now let us turn to finite volume. In the next section we will compute the singularity structure
of the correlator using the same method as at infinite volume. To do this we first need
to understand the poles and residues of the retarded Green’s function in the eikonal limit
ω, ℓ → ∞ with ω/ℓ fixed. In this section we will focus on the quasi-normal modes rather
than the Regge poles in order to make contact with prior work. The translation to Regge
poles is straightforward, and will be done in section 4 when discussing the singularities. For
complex spin, the answer is highly sensitive to the argument of ℓ, and we will treat the
cases of real ℓ and imaginary ℓ separately.

We consider scalar field propagation in the AdSd+1 Schwarzschild black hole with metric

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2
d−1, f(r) = r2 + 1− µ

rd−2 . (3.1)

The black hole geometry dominates the canonical ensemble above the Hawking-Page transition,
µ > 2 [33]. The Schwarzschild radius is at

r2s + 1− µ

rd−2
s

= 0. (3.2)

The equation of motion simplifies after Fourier decomposition,

ϕ(t,Ωd−1, r) = e−iωtYℓm⃗(Ωd−1)r−
d−1

2 ψωℓ(r), (3.3)

where Yℓm⃗ are spherical harmonics on Sd−1. The wave equation takes the same form (2.3)
as at infinite volume, with the potential

V (z) = f(r)
(
(ℓ+ α)2 − 1

4
r2

+ ν2 − 1
4 + (d− 1)2µ

4rd

)
, α ≡ d− 2

2 . (3.4)

3.1 Real spin and long-lived quasiparticles

Let us first review the case when the spin ℓ is large and real. The eikonal limit is defined by
taking p = ℓ+ α and ω = pu, with p→ ∞. Then for z ≫ 1/p, the wave equation becomes

(∂2z + p2κ2(z))ψ(z) = 0, κ(z) =
√
u2 − V ℓ+α=p

eik (z), (3.5)

where the eikonal potential is

V ℓ+α=p
eik (z) = 1 + 1

r2
− µ

rd
. (3.6)
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z

V ℓ+α=p
eik (z)

1

Ω2

u2

z− z+

Figure 4. The eikonal potential (3.6) for real spin has two real turning points z+ and z− when
1 < u < Ω. The height of the barrier is Ω2.

As shown in figure 4, there is a potential barrier separating the boundary from the horizon.
The maximum of the potential is at the photon sphere

rphot =
(
dµ

2

) 1
d−2

. (3.7)

The height of the barrier is

Ω2 = 1 +
(
1− 2

d

)( 2
dµ

) 2
d−2

> 1, (3.8)

which coincides with the velocity squared of null geodesics at the photon sphere.
We work in the regime 1 < u < Ω, so that there are two real turning points z± with

κ(z±) = 0 in the WKB region z ≫ 1/p, as shown in figure 4. The ingoing solution at
the horizon is

ψ(z) ∼ 1√
κ(z)

e
ip
∫ z

z+
dz′κ(z′)

, z > z+. (3.9)

Assuming that z− and z+ are sufficiently far apart, the behavior of ψ(z) for z < z− can be
computed by applying the standard WKB connection formulae twice.7 One finds

ψ(z) ∼
eS(z−,z+) + 1

4e
−S(z−,z+)√

κ(z)
e
ip
∫ z

z−
dz′κ(z′)

− i
eS(z−,z+) − 1

4e
−S(z−,z+)√

κ(z)
e
−ip
∫ z

z−
dz′κ(z′)

, z < z−. (3.10)

7When the two turning points approach each other, this procedure is no longer valid and one should use a
uniform approximation instead [34, 35].
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Ωℓℓ

ω

•
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ω

•

Ωℓℓ

ω

•

Ωℓℓ

ω

•

Ωℓℓ

ω

•

Ωℓℓ

ω

Figure 5. The spectrum of quasi-normal modes for real ℓ. For ℓ < Re ω < Ωℓ the modes are
quasiparticles with exponentially small imaginary part. For Re ω > Ωℓ the modes go off into the
complex plane at a finite angle.

The WKB solution (3.10) can now be matched to Hankel functions in the same manner
as at infinite volume,

ψ(z) ∼
√
πipz

2

(
eS(z−,z+) + 1

4e
−S(z−,z+)

)
e

iπν
2 −iS(0,z−)H(1)

ν (p
√
u2 − 1z) (3.11)

−

√
πipz

2

(
eS(z−,z+) − 1

4e
−S(z−,z+)

)
e−

iπν
2 +iS(0,z−)H(2)

ν (p
√
u2 − 1z), z ∼ 1

p
.

The retarded Green’s function (2.9) can then be read off from the asymptotics (2.8),

GR(ω, ℓ) =
Γ(−ν)
Γ(ν)

(
ω2 − p2

4

)ν cos (S(0, z−) + πν
2
)
− i

4e
−2S(z−,z+) sin

(
S(0, z−) + πν

2
)

cos
(
S(0, z−)− πν

2
)
− i

4e
−2S(z−,z+) sin

(
S(0, z−)− πν

2
) ,
(3.12)

where in deriving this formula we have assumed that S(z−, z+) ≫ 1 so that the turning
points are not too close together. There are also corrections suppressed by 1/p.

Using (3.12), we can now compute the spectrum and residues. Recall that we are
working in the regime where the tunneling action S(z−, z+) is large. The pole condition
therefore reduces to

Sm(0, z−) =
π

2 (ν + 1 + 2m)− i

4e
−2Sm(z−,z+) + . . . , m = 0, 1, . . . , (3.13)

which signifies a large number of quasiparticles with exponentially small decay rate [28, 36–39].
Note that we can only trust this formula for m ≫ 1 in light of the comments above. This
structure of QNMs as a function of an overtone number for fixed large spin ℓ has recently
been discussed in [23–25]. These quasiparticles extend to ω = Ωℓ, and smoothly join onto
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a line of quasi-normal modes with order one imaginary part, as shown in figure 5. The
residues at the quasiparticles are

Res
ω→ωm

GR(ω, ℓ) = − π

νΓ(ν)2

(
ω2
m − p2

4

)ν 1
Tm(0, z−)

, (3.14)

where Tm(0, z−) is the time traversed by a null geodesic from z = 0 to z = z−,

Tm(0, z−) =
dS(0, z−)

dω

∣∣
ω=ωm

=
∫ ∞

r(z−)

dr

f(r)
1√

1− p2f(r)
ω2

mr
2

. (3.15)

The spectrum and residues simplify in the limit m≪ p, when the wavefunction is localized
near the boundary of AdS. The action S(0, z−) can be evaluated explicitly in this limit,

S(0, z−) =
πp

2 (u− 1), u ∼ 1. (3.16)

The quasi-normal mode spectrum (3.13) is then (recall that p = ℓ + α)

Re ωm(ℓ) = ℓ+∆+ 2m, 1 ≪ m≪ ℓ, (3.17)

which matches the spectrum of descendant operators in pure AdS. A more careful analysis, see
e.g. [37], implies that the formula is correct starting from m = 0. The residues (3.14) become

Res
ω→ωm

GR(ω, ℓ) = − 2
νΓ(ν)2 (ℓm)ν . (3.18)

We can compute the leading light-cone singularity from (3.18) using the results of [37]. In
particular see Formula (4.32) in that paper, noticing that the relationship between P

(d)
J (cos θ)

used there and Gegenbauer polynomials used here leads to Res
ω→ωm

GR(ω, ℓ) ℓ
d
2 −1

Γ(d/2) = −cnormcm,ℓ.

We conclude that the operators are normalized with cnorm = 2Γ(∆)
Γ(d/2)Γ(∆−d/2) , so that the

identity operator contributes as

GW (t, θ) = 2Γ(∆)
Γ(d/2)Γ(∆− d/2)

1
2∆(cos t− cos θ)∆ + . . . . (3.19)

We will reproduce the same result in the next section by doing the computation at com-
plex spin.

3.2 Imaginary spin and the photon sphere

We now turn to the case of large imaginary spin, in which we define ℓ+ α = ip and ω = ipu

and take p → ∞. The wave equation (2.3) becomes

(∂2z + p2κ2(z))ψ(z) = 0, κ(z) =
√
−V ℓ+α=ip

eik (z)− u2, (3.20)

where the eikonal potential is inverted in comparison to the real spin potential (3.6),

V ℓ+α=ip
eik (z) = −1− 1

r2
+ µ

rd
(3.21)
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z

V ℓ+α=ip
eik (z)

−1

−Ω2
−u2

z− z+

Figure 6. The potential (3.21) for imaginary spin has two real turning points when 1 < u < Ω. The
depth of the well is Ω2.

The rotation from real to imaginary spin has converted the potential barrier into a potential
well, as depicted in figure 6. This potential admits bound states which appear as quasi-normal
modes on the positive imaginary ω axis, and we wish to compute the locations of these
poles and their residues. To this end, we will repeat the analysis of the previous subsection,
pointing out several important differences along the way.

Let us first discuss the regime 0 < u < 1, where the eikonal potential (3.21) has one real
turning point zT . In this case the analysis is identical to the infinite volume computation.
The quasi-normal modes and residues are given by

S(0, zT ) =
π(ν + 1 + 2m)

2 , m = 0, 1, . . . , (3.22)

Res
ω→ωm

GR(ω, ℓ) = − π

νΓ(ν)2

(
ωm(ℓ)2 − (ℓ+ α)2

4

)ν (
∂S(0, zT )

∂ω

∣∣∣
ωm

)−1
. (3.23)

This formula captures the leading large ℓ behavior of the residues, with further corrections
suppressed by 1

ℓ . It is valid when S(0, zT ) ∼ m ≫ 1.
The more interesting regime is when u is real with 1 < u < Ω, so that there are two

turning points at z±. The wave equation is then real, and the ingoing boundary condition
translates to normalizability of the solution at the horizon. The normalizable solution is

ψ(z) = 1√
|κ(z)|

e
−p
∫ z

z+
dz′ |κ(z′)|

, z > z+. (3.24)

Next we would like to solve the connection problem from the region z > z+ to the
region z < z−. In contrast to the case of real spin, we will not assume that the two turning
points are far apart. For general z− and z+ one can use a uniform approximation involving
parabolic cylinder functions, finding [34, 35]

ψ(z) = C−√
|κ(z)|

e−p
∫ z

0 dz′ |κ(z′)| + C+√
|κ(z)|

ep
∫ z

0 dz′ |κ(z′)|, z < z−, (3.25)
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where the connection coefficients are given by

C+ = sin(S(z−, z+))e−S(0,z−) (3.26)

C− =
√

2
π

(
πe

S(z−, z+)

)S(z−,z+)/π
Γ
(
S(z−, z+)

π
+ 1

2

)
cos(S(z−, z+))eS(0,z−). (3.27)

In the limit of large S(z−, z+), this reduces to the answer obtained by applying the WKB
connection formulae at z+ and z− successively.

Finally, we must match (3.25) to the correct boundary asymptotics (2.8) as above. In
terms of modified Bessel functions, we have8

ψ(z) = C+

√
πpz

2
(
I−ν(p

√
u2 − 1z) + Iν(p

√
u2 − 1z)

)
+ C−

√
2pz
π
Kν(p

√
u2 − 1z), z ∼ 1/p. (3.28)

The retarded Green’s function (2.9) is

GR(ω, ℓ) =
Γ(−ν)
Γ(ν)

(
p2 − ω2

4

)ν
C− − C+ sin(πν)
C− + C+ sin(πν) . (3.29)

In the limit of large S(0, z−), the poles of GR are located at

Sm(z−,z+)=π

(
m+1

2

)
+
√
π

2

(
m+ 1

2
e

)m+ 1
2 sin(πν)

m! e−2Sm(0,z−), m=0,1, . . . , (3.30)

with both polynomial corrections as well as corrections of the form e−4Sm(0,z−), e−6Sm(0,z−),
. . . . We will see in the next section that including the latter leads to a correct prediction
of the locations of the bouncing singularities depicted in figures 2(b) and 2(c). However,
we were not able to match the shapes and heights of the bounces using exponentially small
corrections to (3.30), so these corrections should not be trusted.

The residues are

Res
ω→ωm

GR(ω,ℓ)=− 1
νΓ(ν)2

(
(ℓ+α)2−ω2

m

4

)ν √2π3
m!

(
m+ 1

2
e

)m+ 1
2 e−2Sm(0,z−)

dSm(z−,z+)
dω

. (3.31)

Now let us analyze the spectrum for m ≪ p, which consists of modes localized near
the photon sphere. The action integral reduces to

S(z−, z+) =
πp√

2(V ℓ+α=ip
eik )′′(zphot)

(−V ℓ+α=ip
eik (zphot)− u2), (3.32)

where zphot is the location of the photon sphere. Solving (3.30) at large p, we find

ωm = Ω(ℓ+ α)− iγ

(
m+ 1

2

)
, m≪ |ℓ|, (3.33)

8The asymptotic expansion of modified Bessel functions at large argument is subtle, due to the presence of
a Stokes line on the real axis. We refer the reader to chapter 2 of [40] for the derivation of the asymptotic
expansion of (3.28). For half-integer ν, the modified Bessel functions are elementary and it is simple to check
that (3.28) has the correct asymptotic behavior.
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Figure 7. The spectrum of quasi-normal modes for ℓ + α = ip imaginary. There is a series of
imaginary modes starting in the upper half plane at ω = iΩp, as well as two lines of complex modes
in the lower half plane.

m QNMSpectral Eikonal
0 222.79 i 222.82 i
1 221.24 i 221.23 i
2 219.70 i 219.65 i
3 218.18 i 218.07 i
4 216.69 i 216.49 i

Table 1. We compare numerical values for the photon sphere QNMs obtained with the Mathematica
package QNMSpectral [41] against the eikonal prediction (3.33). Here d = 4, p = 200, ν = 2 and µ = 1.

where we have defined the Lyapunov exponent

γ ≡

√√√√−(V ℓ+α=ip
eik )′′(zphot)

2V ℓ+α=ip
eik (zphot)

=
√
d− 2 Ω. (3.34)

In table 1, we compare the analytic prediction (3.33) to numerics, finding agreement to a
high level of accuracy. This spectrum of bound states is displayed in figure 7, along with
the rest of the quasi-normal modes in the lower half plane.

3.3 The flat space limit

It is instructive to consider the limit µ≪ 1, which describes a small black hole in AdS. For
real ℓ, the poles and residues can be computed order by order in µ using (3.13) and (3.14).
For example, in d = 4 we get

Re ωm = ω(0)
m − µ

3m2

ℓ
+ . . . (3.35)

Res
ω→ωm

GR(ω, ℓ)

Res
ω→ωm

G
(0)
R (ω, ℓ)

= 1− µ
3m((ν + 2)ℓ+ 2m(ν + 1))

2ℓ(m+ ℓ) + . . . , (3.36)
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where ω(0)
m and Resω→ωmG

(0)
R (ω, ℓ) are given by (3.17) and (3.18). On the boundary, these

quasi-normal modes correspond to the heavy-light double-twist operators [HL]mℓ in the Regge
limit m, ℓ→ ∞ with m/ℓ fixed, see e.g. [37, 42–48] for related work. The mode energies and
residues match the double-twist spectrum and OPE coefficients c[HL]HL obtained by alternative
methods. The crucial point here is that these modes are localized near the AdS boundary,
not near the black hole photon sphere. Therefore, in the flat space limit we do not recover
the eikonal spectrum of asymptotically flat black holes.

For imaginary spin the situation is different. As explained above, the highest bound
states on the imaginary axis correspond to modes localized near the photon sphere. Therefore
the eikonal spectrum (3.33) for imaginary ℓ+α smoothly approaches the eikonal spectrum in
an asymptotically flat black hole in the limit µ→ 0. Let us work in the case d = 3, which
corresponds to a small black hole in four dimensions. The spectrum becomes

ωm = 2
3
√
3rs

(
ℓ+ 1

2

)
− 2i

3
√
3rs

(
m+ 1

2

)
, m≪ |ℓ|, rs ≪ LAdS, (3.37)

which matches the standard asymptotically flat results [49–54], see appendix F for a review.

4 The bulk-cone singularity from thermal Regge poles

In the previous section we studied the spectrum of QNMs for both real and imaginary spin,
and found that in the case of imaginary spin the spectrum is controlled by the photon
sphere. In fact, the same is true for the thermal Regge poles at large imaginary frequency.
In this section, we will consider the position space correlator in special kinematics where
the two boundary points are connected by a light ray in the bulk [4, 15]. As reviewed in
the introduction, we expect a singularity in this kinematic configuration, and the role of the
Regge poles will be to precisely reproduce this singularity.

4.1 Position space and complex spin

Let us first generalize the Regge expansion of the correlator from section 2.2 to thermal
correlators on the sphere Sd−1, whose radius we set to R = 1. Recall that the Wightman
function is obtained from the Euclidean correlation function as follows,

GW (t, θ) = lim
ϵ→0

GE(τ = ϵ+ it, θ). (4.1)

On the other hand, the Euclidean correlator on Sd−1 admits the following representation9

GE(τ, θ) =
1
β

∞∑
n=−∞

eiζnτ
∞∑
ℓ=0

GR (ω = i|ζn|, ℓ)
ℓ+ α

α
C

(α)
ℓ (cos θ), (4.2)

where α = d−2
2 , C(α)

ℓ (cos θ) are the Gegenbauer polynomials, and the Matsubara frequencies
ζn = 2πn

β were introduced in (2.15). We have again used the relationship between the
Euclidean and retarded two-point functions in momentum space. In order to analytically

9The relationship between GE and GR could be modified at ω = 0, see e.g. [31]. This subtlety is not
relevant in exploring the singularities of the Lorentzian correlators so we ignore it.
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continue in spin ℓ, we first note that C(α)
ℓ (cos θ) vanishes on the negative integers between

3− d, . . . ,−1, so that we can trivially extend the summation to start at ℓ = −⌊α⌋. We now
use a Sommerfeld-Watson transform to rewrite the sum as an integral

GE(τ, θ) =
i

2β

∞∑
n=−∞

eiζnτ
∫
γ

dℓ

sin πℓ GR (i|ζn|, ℓ)
ℓ+ α

α
C

(α)
ℓ (−z), (4.3)

where γ is the sum of contours running clockwise around the integers −⌊α⌋, . . . ,∞ and
we introduced z ≡ cos θ.

Next, notice that the wave equation depends on ℓ only through ℓ(ℓ + 2α). It follows
that GR(ω, ℓ) is analytic in ℓ and

GR(ω, k − α) = GR(ω,−k − α), (4.4)

where ℓ ≡ k − α. Meanwhile, the Gegenbauer polynomials satisfy the relation

C
(α)
k−α(−z) = (−1)2α+1C

(α)
−k−α(−z), (4.5)

so the full integrand in (4.3) is even around k = −α. This allows us to extend the integration
along the whole real axis as in figure 8,

GE(τ, θ) =
i

4αβ

∞∑
n=−∞

eiζnτ
∫
C++C−

k dk

sin (π(k − α))GR (i|ζn|, k − α)C(α)
k−α(−z), (4.6)

where C+ runs just above the real axis to the right and C− runs just below the real axis
to the left. Due to the symmetry under k → −k, this can be written as an integral only
over C+ above the real axis.

We then deform the contour in the upper half plane, picking up all the Regge poles
with Im k > 0. Here we used the fact that the Gegenbauer polynomials have the following
leading behavior at large imaginary k,

C
(α)
ip−α(−z) = − ieiπαpα−1

(2 sin θ)αΓ(α)e
p(π−θ)

(
1 +O

(1
p

))
, 0 < θ < π. (4.7)

The arc therefore vanishes as long as θ ≤ π thanks to the 1/ sin(π(k − α)) factor. This leads
to the Regge expansion of the Euclidean correlator,

GE(τ, θ) = − π

αβ

∞∑
n=−∞

∑
m

eiζnτ
kmnC

(α)
kmn−α(−z)

sin (π(kmn − α)) Res
k→kmn

GR (i|ζn|, k − α) , (4.8)

where kmn ≡ km(i|ζn|) are the Regge poles in the upper half plane.
In appendix E we show that the formula (4.8) can be rewritten in the following form

GE(τ, θ) =
∞∑
j=0

(
gE(τ, |θ|+ 2πj) + (−1)2αgE(τ, 2π − |θ|+ 2πj)

)
, |θ| < π, (4.9)

where

gE(τ, θ) =
41−α

(sin θ)2α−1
π

αβ

∞∑
n=−∞

eiζnτ
∑
m

Res
k→kmn

GR (i|ζn|, k − α) ei(1+kmn−α)θ

× Γ(kmn + α)
Γ(kmn)Γ(α) 2F1(1− α, 1 + kmn − α, 1 + kmn, e

2iθ). (4.10)
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Re(ℓ)

Im(ℓ)

C+

C−

×

×

×

×

×

×

Figure 8. We start with a sum over integer spins indicated by the contours in red, which we deform
to the contours C+ and C−. Because of the symmetry properties around ℓ = 2−d

2 , the contributions
from C+ and C− are equal. We can then close the contour C+ in the upper half plane, picking up the
Regge poles. The red contours around the integers come in three different classes. For ℓ ≥ 0 these
are the spins we started with, for ℓ = 3− d, . . . ,−1 the Gegenbauer polynomials vanish and give no
contribution, and finally for ℓ ≤ 2− d we get dual poles due to the symmetry of the integrand around
ℓ = 2−d

2 . In this figure we have assumed that there are no Regge poles on the real axis, see appendix A.
In figure 15 we computed Regge poles numerically using the Mathematica package QNMSpectral [41].

We will see that the sum over j in (4.9) corresponds to summing over the winding number of
bulk geodesics. Note that the formula (4.9) is manifestly KMS invariant. It is also invariant
under θ → −θ. For later reference we note the asymptotics of the hypergeometric function
at large imaginary spin,

Γ(ip+ α)
Γ(ip)Γ(α) 2F1(1− α, 1 + ip− α, 1 + ip, e2iθ)

≃ e
iπα

2
pα

Γ(α)(1− e2iθ)α−1
(
1 +O

(1
p

))
. (4.11)

4.2 The ordinary light-cone

First, let us understand how the usual light-cone emerges from the Regge expansion (4.8). In
analogy to the infinite volume case, it is natural to expect that the Regge poles that reproduce
the ordinary light cone are purely imaginary, km(i|ζn|) = ipm(i|ζn|), with pm(i|ζn|) > |ζn|.
Indeed, the modes (3.22) with one turning point are precisely of this form.

Let us now analyze the contribution of the modes (3.22) to the function gE(τ, θ) de-
fined in (4.10). The residues of these modes are given by (3.23). For τ, θ ≪ 1, we can
approximate the sums over Regge poles and Matsubara frequencies by integrals. Using the
asymptotics (4.7), the kernel in the integrand takes the following simple form at large p up to
power-law corrections,

pCαip−α(−z)
sinh(π(p+ iα)) = −2ipαe−pθ

(2 sin θ)αΓ(α)

(
1 +O

(1
p

))
, (4.12)
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where we only kept the leading large p asymptotic. For τ, θ ≪ 1, the expansion (4.8)
then becomes

GE(τ, θ) =
1

22ν+ανΓ(ν)2Γ(α+ 1)θα
∫ ∞

0
dp

∫ p

−p
dζ eiζτpαe−pθ(p2 − ζ2)ν . (4.13)

Performing the integrals in (4.13), we get for the leading light-cone asymptotic

GW (t, θ) ≃ 2Γ(∆)
Γ
(
d
2

)
Γ
(
∆− d

2

) 1
2∆θ∆(θ − t)∆ , 0 < θ ≪ 1, (4.14)

where the computation above only matches the leading θ ≪ 1 asymptotic of the leading
light-cone singularity 1

(θ−t)∆
1
θ∆ . We get the same normalization as the one obtained for

real spins after (3.18). Going beyond that requires taking into account 1
ℓ corrections both

in (3.23) and in (4.12). It would be interesting to check explicitly that the subleading terms
in the small θ expansion come out correctly.

4.3 Bulk-cone singularities

Now that we have understood the ordinary light-cone, we can address the new singularity on
the bulk light cone. Since the bulk light cone is controlled by the photon sphere at late times,
we expect that the Regge poles near the bottom of the potential in figure 6 are responsible
for reproducing the late time bulk-cone. Let us now confirm this expectation.

We consider the contribution of the modes (3.30) with ℓ+ α = ip and pm(ζn) < |ζn| <
Ωpm(ζn) to the Regge expansion (4.8). The residues are given by (3.31), with the factor
of dS(z−, z+)/dω in the denominator replaced by dS(z−, z+)/dk, since we are considering
Regge poles, not quasi-normal modes. Replacing the sums by integrals as usual and using
the asymptotic formula (4.11) then gives

gE(τ, θ) =
eiπα⌊

θ
π⌋

22ν+ανΓ(ν)2Γ(α+ 1)| sin θ|α

×
∫ ∞

0
dp

∫ Ωp

p
dζ e−iζτ−pθpα(ζ2 − p2)νe−2S(0,z−), (4.15)

where ⌊x⌋ is the floor of x, i.e. the largest integer n with n ≤ x. In this formula we have
assumed that S(z−, z+) ≫ 1. We will check this assumption later. We have also neglected
the contribution from ζ < 0 to the integral, since eiζτ can never produce a singularity under
Wick rotation τ → it.

Next let us perform the integral over p, for which it is useful to define u = ζ/p. Recall
that the action integral can be written as

2S(0, z−) = puT (u)− pΘ(u) ≥ 0, (4.16)

where T (u) and Θ(u) are twice the elapsed time and angle of a null geodesic from the
boundary to z−,

T (u) = 2
∫ ∞

r(z−)

dr

f(r)
u√

u2 − f(r)
r2

, (4.17)

Θ(u) = 2
∫ ∞

r(z−)

dr

r2
1√

u2 − f(r)
r2

. (4.18)
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The result of the p integral is then

gE(it+ϵ,θ)=
Γ(2ν+α+2)eiπα⌊

θ
π⌋

22ν+ανΓ(ν)2Γ(α+1)|sinθ|α

×
∫ Ω

1
du

(u2−1)ν
(θ−Θ(u)−u(t−T (u))+iϵ)2ν+α+2 . (4.19)

Note that the integral over p converges when

t− θ < 0, (4.20)

or in other words in the spacelike region. From there we can continue the integral to t > θ

using the iϵ prescription. We then have a candidate singularity at

u∗t = u∗T (u∗)−Θ(u∗) + θ. (4.21)

However for it to be an actual singularity the integration contour must be pinched, which
happens for

∂u(uT (u)−Θ(u))|u=u∗ = t. (4.22)

Using the fact that uT ′(u)−Θ′(u) = 0, we thus find that the condition for the pinch becomes

t = T (u) ≥ π,

θ = Θ(u) ≥ π. (4.23)

Now let us compute the functional form of the correlator near the singularity. To do
so, we expand around the pinch singularity as u = u(t) + δu, where u(t) is the solution to
T (u(t)) = t. Expanding to second order gives

θ −Θ(u)− u(t− T (u)) = θ −Θ(u(t)) + T ′(u(t))
2 δu2. (4.24)

The δu integral can then be performed as follows,

∫ ∞

−∞

dδu(
θ −Θ(u(t)) + T ′(u(t))

2 δu2 + iϵ
)2ν+α+2 =

Γ
(
2ν + α+ 3

2

)
Γ(2ν + α+ 2)

√
2π

T ′(u(t))

× 1
(θ −Θ(u(t)) + iϵ)2ν+α+ 3

2
. (4.25)

Close to the singularity we have θ − Θ(u(t)) = u(t)(tBC(θ) − t), where tBC(θ) ≡
T (u(t))|Θ(u(t))=θ is defined as the time it takes a geodesic emanating from the boundary to
return to the boundary after traversing an angle θ. In this way we get for the singularity

gE(it+ ϵ, θ) =
√
2πΓ

(
2ν + α+ 3

2

)
(u(t)2 − 1)ν(u(t))−(2ν+α+

3
2)

22ν+ανΓ(ν)2Γ(α+ 1)| sin θ|α
√
T ′(u(t))

eiπα⌊
θ
π⌋

(tBC(θ)− t+ iϵ)2ν+α+ 3
2
.

(4.26)
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The singularities of the Wightman function can now be obtained by summing gE over
the winding number j as in (4.9). Taking 0 < θ < π, we are left with the final result

GW (t, θ) ≃ 2Γ(∆)
Γ(d/2)Γ(∆− d/2) ×

2 d
2−2∆Γ

(
2∆− d−1

2

)
Γ(∆)Γ

(
∆− d−2

2

) √
2π

(sin θ) d−2
2

(4.27)

× (u(t)2 − 1)∆−d/2

(u(t))2∆− d−1
2
√
T ′(u(t))

∞∑
j=1

(−1)jd
(
X+
j (t, θ) + eiπ

d−2
2 X−

j (t, θ)
)
,

where

X±
j (t, θ) =

1(
tBC(2πj ± θ)− t+ iϵ

)2∆− d−1
2
. (4.28)

Close to the singularity the following conditions are satisfied,

t = T (u),
2πj ± θ = Θ(u). (4.29)

The solutions to these conditions satisfy 1 ≤ u(t) ≤ Ω, where u(t) → Ω corresponds to the late
time limit t→ ∞. Let us remind the reader that the formula above is written in the normaliza-
tion where the unit operator contributes to the OPE as follows, 2Γ(∆)

Γ(d/2)Γ(∆−d/2)
1

2∆(cos t−cos θ)∆ .

The pre-factor 2d/2−2∆Γ(2∆− d−1
2 )

Γ(∆)Γ(∆− d−2
2 ) is O(1) for fixed d and any ∆.

Let us now comment on the singularities corresponding to null geodesics that bounce off
the AdS boundary. These were predicted in [15], and are depicted in figures 2(b) and 2(c).
As mentioned above, the pole condition (3.30) receives exponentially small corrections, which
leads to corrections to the residues (3.31) that are proportional to e−2nS(0,z−) with n > 1.
Repeating the analysis leading to (4.27) gives new singularities at

t = nT (u)
2πj ± θ = nΘ(u). (4.30)

This is indeed the expected location of the singularity with n − 1 bounces, and we will
numerically confirm the presence of these singularities in the next section. However, we were
not able to match the predictions for the shape and size of the bounces to numerics, so we
omit the details of the computation. It would be very interesting to understand why the
naive calculation fails; perhaps more sophisticated WKB techniques are required.

4.4 Corrections

There are two types of corrections to the singularity structure above that we neglected. The
first come from powers 1

p , which enter both the expansion of the Gegenbauer polynomials
and the residues. These will produce subleading singularities.

Second, we approximated the sums over ζ and p by integrals. By the Euler-Maclaurin
formula, this is equivalent to neglecting contributions from the endpoints at ζ = p+ c1 and
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ζ = Ωp − c2, where c1 and c2 are order one constants. The leading endpoint contribution
from ζ = p + c1 yields a subleading singularity on the ordinary light-cone,

GE(it+ ϵ, θ) ∝
∫ ∞

0
dp ep(t−θ−iϵ)pα+ν ∝ 1

(θ − t+ iϵ)∆ . (4.31)

At small θ, this is suppressed compared to the light-cone asymptotic (4.14) by a power θ∆,
so it can be neglected. Further endpoint corrections involve the derivative of the integrand at
the endpoints, and it is straightforward to check that these are subleading as well.

Similarly, the endpoint at ζ = Ωp− c2 leads to a singularity of the form 1
(2πj±θ−Ωt+iϵ)∆ .

However, 2πj ± θ = Ωt is never satisfied when the saddle point conditions (4.29) hold, so this
singularity is fictitious and can be discarded. We conclude that the endpoint contributions to
the bulk-cone singularity are suppressed away from t = π and t = ∞.

4.5 Dependence of singularities on spacetime dimension

One interesting consequence of (4.27) is that the structure of the singularities depends on the
number of spacetime dimensions. We now classify the possible cases. Recall that α = d−2

2 .
Consider first the case when d ∈ 4Z>0 + 2 = 6, 10, . . .. In this case eiπα = 1 and all

singularities enter in the same way as ∑k(X+
k + X−

k ). We can say that in this case the
structure of singularities is one-fold.

The next simplest case is d ∈ 4Z>0 = 4, 8, 12, . . .. In this case eiπα = −1, and the
singularities enter with alternating signs, ∑k(X+

k − X−
k ). The structure of singularities

is therefore two-fold.
Let us next take the number of dimensions to be odd. In this case the structure of

singularities is four-fold, as was first pointed out in the case of asymptotically flat black holes
in d = 3 [17]. For d = 4Z>0 − 1 = 3, 7, 11, . . . we have eiπα = i. The singularity structure
then takes the form ∑

j(−1)j(X+
j + iX−

j ). Finally, for d = 4Z>0 + 1 = 5, 9, 13, . . . we have
eiπα = −i. The singularity structure then takes the form ∑

j(−1)j(X+
j − iX−

j ).
It is interesting to analyze the implications of this dimension-dependent structure for

the retarded two-point function, which is defined as

GR(t, θ) = iθ(t)
(
⟨O(t, θ)O(0)⟩ − ⟨O(0)O(t, θ)⟩

)
= −2θ(t)Im GW (t, θ). (4.32)

In the last step we used that for real operators ⟨O(0)O(t, θ)⟩ = ⟨O(t, θ)O(0)⟩∗. This formula
has interesting consequences for the structure of singularities when 2∆ + 1−d

2 is a positive
integer. The reason is that in this case Xk −X∗

k is a delta-function or its derivatives, whereas
i(Xk+X∗

k) is a power-like singularity. A simple example of this type is a massless perturbation
with ∆ = d in odd d. In the next section we will study this example numerically in d = 3
and confirm the results discussed here.

4.6 Thermalization of the bulk cone

The formula (4.27) for the leading bulk-cone singularity reveals a curious fact: the bulk-cone
singularity behaves as (tBC(θ)− t)−2∆+ d−1

2 . While this power is weaker than the Euclidean
singularity (τ2+θ2)−∆, it is actually stronger than the ordinary light-cone singularity (θ−t)−∆

when ∆ > d−1
2 . Therefore at order one times, the bulk-cone will dominate over the light cone.

On the other hand, at late times we expect that the strength of the bulk cone decays to zero,
consistent with thermalization of observables localized away from the boundary.
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(a)
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(b)

Figure 9. In (a) we plot u(t) in d = 4 for µ = 1. The dashed lines correspond to umin = 1 and
umax = Ω. At late times u(t) is seen to approach Ω. In (b) we plot 1

γt log T ′(u)
∣∣∣
u=u(t)

which approaches

1 (γ =
√
2Ω ≈ 1.58 in d = 4 and µ = 1). Equivalently, T ′(u) ∼ eγt at late times.

Let us now see this decay explicitly. The time dependence of the singularity takes the form

GW (t, θ) ∝ (u(t)2 − 1)∆−d/2

(u(t))2∆− d−1
2
√
T ′(u(t))

1
(tBC(2πj ± θ)− t+ iϵ)2∆− d−1

2
. (4.33)

At late times, u(t) approaches Ω, so the leading time-dependence comes from (T ′(u(t))− 1
2 .

For u ∼ Ω, we can approximate the formula (4.17) for T (u) as follows,

T (u) ∼ −1
γ
log(Ω− u) + constant, (4.34)

where the Lyapunov exponent γ is given by (3.34). It follows that
1√

T ′(u(t))
= constant × e−

γ
2 t, (4.35)

which decays exponentially at late times with rate γ. We plot explicitly u(t) and T ′(u(t)) as
a function of t ≥ π in figure 9. Notice that T ′(u(t)) quickly approaches eγt.

We see from (4.35) that the time scale for the decay of the bulk-cone singularity is
governed by the Lyapunov exponent associated with the instability of the photon sphere.
This fact is very familiar in astrophysics [55] and was also recently discussed in [56–58]. The
basic intuition is that a wave which is initially localized near the photon sphere quickly
spreads out away from the photon sphere region due to the instability, and can easily fall into
the black hole. Note that a similar decay of the singularity residue of the two-point function
with time controlled by the Lyapunov exponent was observed in asymptotically flat black
holes as well [17], see formula (42) in that paper, where X ∼ e−T/[2

√
27]. Using γ = 1√

27 in
the units M = 1, this indeed coincides with the expected behavior e−γt/2.
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Let us now discuss the late time behavior of the correlator. We have seen that the
bulk-cone without bounces is negligible at late times. The strength of the boundary light-cone
in d > 2, see eq. (3.19), is constant in time. This is in stark contrast with the case of d = 2,
where it decays exponentially with time, see appendix B.10 Instead, in d > 2 we expect
that the presence of the black hole horizon narrows the light-cone singularity at late times,
see appendix D. In addition to the boundary light-cone, the bouncing singularities could
potentially contribute as t→ ∞. Since we were unable to predict the size of the bounces, we
cannot compute their late time behavior. However, numerics suggest that bounce singularities
do not decay to zero, so a full understanding of the late-time structure of the correlator would
need to take bounces into account. We leave this important problem to future work.

5 Singularities from numerics

In this section we study singularities of Lorentzian two-point retarded correlators numerically
by solving the corresponding wave equations in the bulk in d = 3 and d = 4. In all examples,
we reproduce the expected location of the singularities and successfully match the relative
strength of the first winding singularities to the predictions in the previous section.

5.1 Correlator in momentum space

In order to numerically compute the retarded correlator on the sphere, we solve the wave
equation (2.3) with the potential given by (3.4). We use the NDSolve function in Mathematica,
imposing ingoing boundary conditions at the horizon (see for example [59, 60]). At the
boundary the solution looks like (e.g. d = 4 and ∆ = 4)

ψωℓ(v) = B(ω, ℓ)ψB(v) +A(ω, ℓ)ψA(v) ,

ψB(v) = v2
(
1 + b1v + b2v

2 +O(v3)
)
,

ψA(v) = haψB(v) log v + 1 + a1v + a2v
2 +O(v3),

(5.1)

in the convenient coordinate 1 ≥ v ≡ r2+/r
2 ≥ 0. Note that a2 is left as a free parameter since

the two solutions can mix from O(v2) on. We set a2 = 0, and according to (2.9) GR is given by

GR(ω, ℓ) = lim
v→0

(
ψ′′
ωℓ(v)

2ψωℓ(v)
− ha

(
log v + 3

2

))
. (5.2)

When computing GR(ω, ℓ) numerically, we introduce a finite cutoff close to the horizon
v = 1 − ϵH where we impose the purely ingoing boundary condition, and we read off the
boundary correlator from (5.2) at finite v = ϵB. Below we set ϵB = ϵH = 10−6, and we have
checked that our results are stable against changing the cutoffs. We further choose small
values of µ (µ = 1

50 in d = 4 and µ = 1
15 in d = 3) in order to cleanly separate the singularities.

However, conceptually nothing is different for µ > 2 (above the Hawking-Page transition).

10One can think of this exponential decay as a consequence of the fact that the AdS boundary at r = ∞
acts as an unstable photon sphere in the BTZ black hole.
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-π 0 ππ

2

0

π

2 π

Figure 10. Here we show the analog of figure 1 for µ = 1
50 in d = 4. The n-bounce bulk-cone

singularity BCj
n,± is defined by (4.30). The black dashed line corresponds to the slice θ = π

2 that was
used in our numerical computations and the black dots indicate the predicted bulk-cone singularities
that were shown in figure 1. The gray lines correspond to the boundary light-cone. The solid weak red
lines correspond to further windings of the no-bounce singularity, whose residues decay exponentially
with a rate determined by the Lyapunov exponent and are therefore not visible in our numerics
compared to the bouncing singularities. Note that with this value of µ the slope of the bulk-cone
singularities is small compared to 1, and therefore as time increases we see windings of the no-bounce
singularity before we hit the first bouncing singularity.

5.2 Correlator in position space

To numerically compute the Fourier transform, it is convenient to deform the contour to
Im ω = δ > 0 in order to move further away from quasi-stable orbit resonances. This is
allowed because GR is analytic in the upper half ω plane. Since GR(−ω, ℓ) = GR(ω, ℓ)∗, we
can conveniently write down the ω-integral as∫ ∞+iδ

−∞+iδ
dωGR(ω, ℓ)e−iωt =

∫ ∞+iδ

0+iδ
dω

(
GR(ω, ℓ)e−iωt +GR(ω, ℓ)∗eiω

∗t
)
. (5.3)

To numerically evaluate the integral and the sum over ℓ we discretize the contour with a
spacing δω, and introduce UV cut-offs ωmax, ℓmax and smoothing factors e−ℓ2/ℓ2ce−(Re ω)2/ω2

c
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Figure 11. GR(t, π/2) in d = 3 with ∆ = 3 and µ = 1/15. Grey dashed lines correspond to light-cone
singularities, which are present but are difficult to see at this scale. The red and blue dashed lines
correspond to the analytic predictions from (4.30) for the position of the bulk cone singularities.
Further windings are there as well, but are almost invisible at these scales. Here ωc = ℓc = 40, δ = 1/5,
and ωmax = ℓmax = 150.

Ratios Numerics Analytic prediction
BC1

0,+/BC1
0,− 0.1730 0.1865

3d BC2
0,−/BC1

0,− 0.0325 0.0310
BC2

0,+/BC1
0,− 0.0073 0.0073

BC1
0,+/BC1

0,− 0.0954 0.0946
4d BC2

0,−/BC1
0,− 0.0104 0.0102

BC2
0,+/BC1

0,− 0.0011 0.0011

Table 2. Comparison of winding bulk-cone peaks between numerics and the analytic prediction
from (4.27) in 3d and 4d. All peaks are normalized by the first bulk-cone.

following [18, 61]. We set ωmax ≫ ωc ≫ 1 and ℓmax ≫ ℓc ≫ 1. This converts the light- and
bulk-cone singularities into finite bumps and removes spurious oscillations introduced by the
UV cut-offs in the transform. Physically, the smoothing factors introduce smearing of the
correlator on the time scale δt ∼ 1

ωc
and angular scale δθ ∼ 1

ℓc
.

5.3 Results

We have implemented the scheme above in d = 3 and d = 4. We plot the outcome of the
computations in figures 11 and 13 respectively. Here we denote the (n− 1) bounce bulk-cone
singularity (4.30) by BCj

n−1,±. Given fixed (θ, n, j,±), we can solve 2πj ± θ = nΘ(u) for
u, and then insert the solution into t = nT (u) to obtain the time t of the corresponding
singularity. The prediction for the locations of the singularities on the boundary in d = 4 is
shown in figure 10, and the d = 3 case is qualitatively similar.
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Figure 12. GR(t, π/2) in 3d close to (a) BC1
0,−, (b) BC1

0,+, (c) BC2
0,−, (d) BC2

0,+. The bulk-cone
bumps exhibit the four-fold structure discussed in section 4.5. Since GR = −2θ(t)Im GW , the relative
i between BCk

0,− and BCk
0,+ coming from eiπ d−2

2 in (4.27) changes the shape of the bumps. The
shapes of BCk

0,− are consistent with the prediction ∼ Im i[tBC(2πk− π
2 )− t+ iϵ]−5 and those of BCk

0,+
with ∼ Im [tBC(2πk + π

2 )− t+ iϵ]−5. The shapes of BC1
0,± and BC2

0,± are the same up to a minus
sign. The parameters of these plots and legends for the dashed lines are the same as in figure 11.

Let us start with the correlator in d = 3. We set ∆ = 3, µ = 1/15, θ = π/2, and we
study the correlator as a function of t. We find the following results:

• The positions of light-cone and winding bulk-cone singularities are consistent with
the expected locations. For the light-cone singularities these are t = θ + 2πm and
t = 2π − θ + 2πm with m = 0, 1, . . .. For the bulk-cone singularities these are given
by (4.30).

• As shown in figure 12, the bulk-cone singularities exhibit the four-fold structure predicted
from (4.27) with d = 3, see also section 4.5.

• Bulk-cone bumps are higher then light-cone ones, consistent with the fact that GR
diverges as δt−(2∆− d−1

2 ) = δt−5 at bulk-cone points and as δt−∆ = δt−3 on the light-cone.

• The ratios of heights of winding bulk-cone peaks are always within ∼ 10% of the
prediction in (4.27). We show the comparison in table 2.

• The bumps at the dashed blue lines in figure 11 correspond to bulk-cone singularities that
include bounces from the AdS boundary. The location of these bouncing singularities is
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Figure 13. GR(t, π/2) in d = 4 with ∆ = 4 and µ = 1
50 . The grey dashed lines are the light-cone

singularities, which are present but are difficult to see at this scale in comparison to the bulk-cone
singularities. The red dashed lines correspond to the analytic predictions from (4.30) for the position
of the first four bulk cone singularities from the BC0 series. Further windings will overlap with
bouncing singularities and therefore will be difficult to distinguish., The dashed blue lines correspond
to the predictions from the first bouncing singularity and its first few windings. Here ωc = ℓc = 35,
δ = 1/5, and ωmax = ℓmax = 150. Note that the residues at the windings BC2

0,∓ are suppressed by
10−2 and 10−3, respectively, compared with the residue at BC1

0,− and are therefore difficult to see at
this scale.

consistent with (4.30) with n = 2, but our attempt to use (3.29) to reproduce the shape
and size of the bounces did not produce the expected results. Note that the height of
the first bounce is actually larger than any of the no-bounce winding singularities.

Next we repeat the same exercise in d = 4. We set ∆ = 4, µ = 1
50 , and θ = π

2 and we
study the correlator as a function of t. The results are as follows:

• We find light-cone and bulk-cone singularities at the predicted locations.

• As shown in figure 14, the bulk-cone singularities exhibit the two-fold structure predicted
in d = 4.

• GR diverges as δt−(2∆− d−1
2 ) = δt−

13
2 on the bulk-cone and only as δt−∆ = δt−4 on the

light-cone. Accordingly bulk-cone bumps are higher than light-cone ones.

• The ratios of heights of bulk cones are in good agreement with the prediction in (4.27).
The comparison is shown in table 2.

• The position of bouncing singularities is correctly predicted by including e−2nS(0,z−)

corrections to the residues. However, the shape and size of these singularities is not
correctly reproduced by (3.29).
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Figure 14. GR(t, π/2) in 4d close to (a) BC1
0,−, (b) BC1

0,+. The bulk-cone bumps exhibit the
two-fold structure discussed in section 4.5. Since in 4d eiπ d−2

2 = −1 in (4.27), shapes of BC1
0,− and

BC1
0,+ are the same up to a minus sign. The parameters of these plots and legends for the dashed

lines are the same as in figure 13. The shapes and locations are consistent with the prediction
∼ Im [tBC(2π ± π

2 )− t+ iϵ]− 13
2 .

6 Stringy and gravitational corrections

Our computation so far was done in the approximation where the boundary operator is
described by free wave propagation on the fixed AdS Schwarzschild background. In the
language of the CFT dual this is a good description in the planar limit when the ’t Hooft
coupling is arbitrarily large. As we move away from this holographic limit new physical
effects arise.

Let us first discuss stringy effects, which should become important as we decrease the ’t
Hooft coupling away from infinity (in other words, we consider finite λ effects). First, there
are stringy corrections to the black hole geometry itself. However, as long as rs ≫

√
α′ we

expect that these are small. Second, there are effects related to string propagation on the
Schwarzschild background. These were analyzed in [15] (see also [62]). More precisely, to
understand stringy corrections to the singularity, we need to study string propagation along
null geodesics in the bulk. This is given by the so-called pp-wave limit [63], which is solvable.
The basic physical effect is tidal excitation of the string, which attenuates the singularity
and turns it into a finite bump of width Γ(α′, t).11

At early times t ∼ π the effective width takes the form

Γ(α′, t) ∝ α′GM(
r+(u(t))

)d , (6.1)

where r+ is the outermost turning point. The relevant physics describes propagation through
a gravitational shock wave, so that the computation mimics the one of [22], with a familiar
formula for tidal excitations Im δtidal ∼ α′Gs

bD−2 .12 For the same reason we expect this tidal
11This attenuation is clearest for the light-cone singularity in the bulk-to-bulk propagator, but there are

subtleties involved in computing the boundary two-point function, see the discussion in [15]. Here we assume
that these subtleties are unimportant.

12Here D = d + 1 is the dimensionality of the bulk.
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resolution of the singularity to be universal for any extended object that has internal
excitations, e.g. a hydrogen atom.13

At late times the effective width takes the form

Γ(α′, t) ∝ α′

(GM)
2

d−2
log 1

r+(u(t))
r−(u(t)) − 1

, (6.2)

where r+ and r− are the turning points just outside and just inside the photon sphere
respectively. Here the tidal force becomes so strong that it effectively rips the object apart
(by extending it along one transverse direction and compressing along others). This again we
expect to be quite universal and the effect kicks in when the tidal force becomes comparable
to the binding force that keeps it together. Tidal excitations in thermal CFTs were also
recently explored in [67].

Let us next briefly discuss gravitational effects (or finite N corrections). The simplest one
to consider is emission of gravity waves. Indeed, as a particle spirals around the black hole it
will emit gravity waves, and therefore we expect the exclusive amplitude which our two-point
correlator computes to be suppressed. Considering for simplicity propagation through a
gravitational shockwave in flat space, the relevant correction to the phase shift takes the form
Im δGW ∼ G3s2

b3D−10 [22]. It is an interesting question whether gravitational effects eventually
completely remove the singularity from the complex plane or not.

To conclude we expect the bulk-cone singularities to be absent at finite N and λ, but
the corresponding features, namely the bulk-cone bumps, should remain. In fact, based on
this discussion, it seems very natural that at finite coupling the only true singularities of the
thermal two-point function on the sphere are light-cone singularities.

7 Photon rings versus black holes

The fact that astrophysical black holes are surrounded by a photon shell is one of their
key properties, which is responsible for many of their observable signatures as reviewed in
appendix F. The existence of the photon shell crucially relies on the compactness of the
hole, and it is widely believed that only black holes are sufficiently compact to lie within
their photon shell, and hence capable of producing a photon ring in their image. We now
briefly review some of the evidence for this claim.

Here we consider four-dimensional black holes in asymptotically flat spacetime. Recall
that a Schwarzschild black hole has an event horizon radius of r = 2M , which is well within
its photon sphere located at r = 3M .

In 1959, Buchdahl [68] proved that, under certain mild assumptions, a static and
spherically symmetric matter configuration of total mass M must occupy a region of space
with radius R > (9/4)M , thus making precise the idea that ordinary matter cannot reach an
arbitrarily high density before collapsing into a black hole. Although Buchdahl’s theorem
does not rule out the possibility that an ultradense object (such as a neutron star) could
be sufficiently compact to lie within its photon sphere, Buchdahl’s bound has since been
greatly improved via different methods.

13It would be interesting to do the computation for the hydrogen atom explicitly, see [64–66] for related work.
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Building upon the seminal work of Hartle [69], a much stronger and rather general bound
was eventually obtained in 1984 by Lindblom [70], who used causality constraints to argue
for a compactness limit R ≳ 2.8M on neutron stars. More precisely, Hartle, Lindblom, and
others assumed the equation of state to be known (from nuclear theory and experiments) up
to some nuclear density ρ0, and then used the requirement that the speed of sound within
the star be subluminal (the causal bound dp/dρ ≤ c2) to constrain the allowed total mass
and size of the star, and hence to bound its compactness. This calculation is weakly sensitive
to the specific choice of ρ0 and the precise equation of state assumed for ρ ≤ ρ0 (which in
practice is not quite perfectly known), but the causal limit R ≳ 2.8M remains quite robust.
Though it does technically leave some region of parameter space for a neutron star to have a
photon shell, the state of the art suggests that all such models are very contrived. Indeed,
all of the modern, realistic equation-of-state calculations rule out this possibility, as can be
clearly seen in figure 7 (right panel) of the recent review [71]. This is ultimately the strongest
evidence ruling out neutron stars with a photon ring.

Once neutron stars are ruled out, the only possible remaining loopholes to the dictum that
“only black holes have a photon ring” are exotic ultracompact objects (such as boson stars)
whose existence is highly speculative. Even in that context, it seems very difficult to engineer
configurations dense enough to have a photon ring (see, e.g., [72]). More sophisticated
arguments have been developed to rule out such configurations as well, even lifting the
restriction of spherical symmetry (but still assuming stationarity and axisymmetry). For
instance, a particularly promising line of attack proceeds from the observation that “photon
spheres always come in pairs” for ultracompact objects that are not black holes, and that
moreover, an unstable photon sphere (which is needed for light to escape and produce a
photon ring) is always accompanied by another stable photon sphere [73]. This result is
significant because the instability of the bound photon orbits in the Kerr spacetime is a
necessary condition for the stability of the Kerr family of metrics under small perturbations.
Conversely, stable photon spheres have been argued to generally lead to nonlinear spacetime
instabilities, as they can keep accruing massless particles (or trapping waves) until enough
energy density has accumulated to backreact on the geometry and collapse the compact
object into a black hole. Despite some initial doubts about the onset of such instabilities [74],
more recent numerical investigations seem to suggest that ultracompact objects with an outer
photon shell are indeed unstable, either to black hole collapse or expansion to non-compact
configurations without a photon ring [75]. This line of argument may thus rule out even
exotic configurations with a photon shell.14

At any rate, discarding these exotic possibilities, there is substantial evidence that the
only compact astrophysical objects with unstably bound photon orbits — and hence a photon
ring — are black holes. If this belief indeed holds true, then it is of great empirical importance
and can help tackle the question: “How can one ascertain whether an astrophysical source
is truly a black hole?”

The photon ring provides an operational answer: it is present if (and likely, only if) the
source is a black hole. In other words, measuring a photon ring around an astrophysical
object could not only provide a consistency test, but also a smoking gun signature, for the

14It would be interesting to study the existence and stability of such configurations within AdS/CFT.
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Kerr nature of the source. In the context of this paper, it would be very interesting to
understand to what extent black holes are the only objects that possess a photon sphere
within AdS/CFT. To phrase this question in the language of CFT: what is the set of states
in the boundary theory exhibiting a bulk-cone singularity?

8 Conclusions

In this paper we analyzed singularities of the holographic real-time thermal two-point function
⟨O(t, θ)O(0)⟩S1×Sd−1 on the spatial sphere. This correlator is dual to wave propagation in an
AdS Schwarzschild black hole background. In addition to the usual light-cone singularities
it exhibits an interesting pattern of bulk-cone singularities captured by null geodesics in
the black hole geometry.

We analytically derived the leading bulk-cone singularity for the two-point function of
scalar operators. The result is pictorially summarized by figure 1, see (4.27) for the precise
formula. A striking feature of the black hole bulk-cone singularities is that they exhibit group
velocity larger than the speed of light. They originate from geodesics wrapping the photon
sphere in the bulk. Our result (4.27) exhibits several interesting features:

• For ∆ > d−1
2 it is more singular than the ordinary light-cone singularity.

• The coefficient of the singularity decays with time, with rate controlled by the Lyapunov
exponent of null geodesics around the photon sphere.

• The bulk-cone singularities exhibit an N(d)-fold structure, with N(3) = 4 and N(4) = 2,
see section 4.5.

This result extends the analysis of [4, 15] beyond the geodesic approximation. It also represents
the AdS analog of the flat space results [17–20].

We also computed the correlator numerically. In this case to get reliable results we
effectively smeared the correlator in space and time, which turns singularities into finite-
size bumps. We tested our analytic predictions numerically and confirmed them with the
available precision. We also observed singularities due to bouncing geodesics, which were
predicted in [15].

Stringy and gravitational corrections are expected to remove the bulk-cone singularities
and turn them into bumps. It would be interesting to understand if these stringy features can
be reproduced using the thermal product formula [76], or equivalently, stringy quasi-normal
modes, see e.g. [77, 78]. These black hole bulk-cone bumps provide a clear boundary signature
of the photon sphere at large but finite N and λ. In the context of the physics of gravitational
waves, the retarded two-point function enters the computation of the self-force which affects
the worldline of the inspiraling compact body, see e.g. [61, 79, 80]. It would be interesting
to explore how the change in the singularity structure of the two-point function affects the
waveform of emitted gravity waves.

There are several interesting directions in which our analysis could be extended and
improved. While in our numerical analysis we have observed bulk-cone singularities that
include bounces from the AdS boundary we have not derived analytically the form of the
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leading singularity in this case. Notice that from our numerical analysis it is clear that bounce
singularities become dominant at later times. It would be very interesting to understand
their late-time structure in more detail. A related question is how to go beyond the leading
singularity computed in this paper, which would require several technical improvements
of our analysis.

In our analytic investigation we found it useful to organize the computation in terms
of thermal Regge poles (which are poles in spin of the correlator at a given Matsubara
frequency). Regge poles with the smallest value of Im ℓ dominate the late-time behavior of
the no-bounce bulk-cone singularity. It would be interesting to understand the structure of
thermal Regge poles in a generic CFT, and if they have a clear physical interpretation.

It would be interesting to understand if techniques similar to our numerical analysis of the
smeared correlator can be used to compute real-time correlators in CFTs using the spectrum
of low-lying operators and their three-point functions. Indeed, by inserting a complete set of
states we can express ⟨O(t, θ)O(0)⟩S1×Sd−1 as a sum over three-point functions, see e.g. [81, 82].
Similarly, it would be also interesting to see if the bootstrap [83, 84], lattice [85, 86], or fuzzy
sphere approach [87–89] can be used to study the thermal correlator on the sphere at real times.

An obvious extension of our work is to consider more general backgrounds. For example
we can consider non-zero angular velocities [90]. In this case (within a certain parameter
range [91, 92]) the dual geometry becomes AdS Kerr and the structure of singularities depends
on the orientation on the sphere. For instance, right-moving and left-moving singularities
in the equatorial plane will exhibit different late-time velocities. It would be interesting to
determine whether the recently identified emergent conformal symmetry of the Kerr photon
shell [57], which must also arise in AdS Kerr, has a clearer holographic interpretation in the
context of AdS/CFT. We can also consider non-trivial chemical potential for charge, and
correspondingly explore Lorentzian singularities in large charge EFTs [93–95].

Our analysis was done for S1 × Sd−1, but similar effects are expected to be present on
more general backgrounds, as well as away from equilibrium. One well-known example of
this type is provided by the so-called Robinson-Trautman spacetimes [96, 97]. Another very
interesting setup was considered recently in [11], which in the context of the present paper
would correspond to studying the structure of the bulk-cone singularities in the presence
of shock waves. In [98] an excited thermal state was constructed using a Euclidean path
integral with a relevant deformation.

Note that to observe the effects considered in this paper it was important to consider
d > 2. We are not aware of examples of similar effects in lower-dimensional systems.15

It would of course be very interesting to compute thermal correlators on the sphere in
higher-dimensional CFTs directly, and to search for signatures of bulk-cone singularities
there. In [100, 101] this was done for the singlet sector of free large N gauge theories coupled
to vector or adjoint scalar matter, and no bulk-cone singularities were observed. This is
consistent with the expectation that the holographic dual in this case is highly nonlocal.

We lack microscopic understanding of the black hole bulk-cone singularities. For example,
in [102, 103] a ‘partonic’ picture for the behavior of the two-point function at strong coupling

15Curiously, an analog of the photon sphere has been discussed also for 2+1 dimensional acoustic black
holes [99].
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at finite temperature and infinite volume was put forward. Many qualitative features
of correlators were captured by assuming that tentative partons (quarks and gluons at
strong coupling) that capture gauge theory dynamics are copiously produced democratically
distributed across angles. Similarly, it was possible to accommodate the effects of plasma by
postulating a certain force that it exerts on partons (its microscopic origin is not understood).
Here we see that on the sphere even more peculiar effects appear. In this case some
excitations with large enough angular velocity take parameterically large time to thermalize
(these correspond to stable orbits [28, 37, 39]). There are other excitations that exhibit
anomalous dispersion and group velocity larger than one (these correspond to the bulk
cone close to the photon sphere). Finding other examples of this phenomenon in quantum
many-body systems would be very interesting.

Acknowledgments

We thank António Antunes, David Berenstein, Stefano Giusto, Alba Grassi, Nima Lashkari,
Raghu Mahajan, Vasiliy Makhalov, Andrei Parnachev, Hirosi Ooguri, Kyriakos Papadodimas,
Elli Pomoni, Marcos Riojas, Rodolfo Russo, Eva Silverstein, Hao-Yu Sun, Aron Wall, and
Zahra Zahraee for useful discussions. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement number 949077). The work of CI is partially supported by the
Swiss National Science Foundation Grant No. 185723. The work of AL is partly supported
by the National Science Foundation Grant No. 2307888.

A Bounds on the positions of Regge poles

In this appendix we explore constraints on the position of the Regge poles coming from the
wave equation. Like quasi-normal modes, these are defined by the ingoing boundary condition
at the horizon and normalizability at the boundary. This discussion follows closely similar
arguments for quasi-normal modes [104]. It is convenient to introduce Eddington-Finkelstein
coordinates v = t − z in which the metric is given by

ds2 = −f(r) dv2 + 2dv dr + r2 dΩ2
d−1. (A.1)

After the Fourier decomposition (3.3), the wave equation (□−m2)ϕ = 0 is given by

f(r)ψ′′(r) + (f ′(r)− 2iω)ψ(r)− VEF(r)ψ(r) = 0, (A.2)

where

VEF(r) = V1(r) + V2(r), (A.3)

with

V1(r) =
(d− 1)(d− 3)

4r2 f(r) + (d− 1)
2r f ′(r) + ∆(∆− d) (A.4)

V2(r) =
ℓ(ℓ+ 2α)

r2
. (A.5)

The potential is positive outside the horizon for d ≥ 3 and ∆ /∈ (d−1
2 , d+1

2 ).
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ω=1 ω=

0

Figure 15. Regge poles for a scalar field in a black hole background obtained numerically from the
Mathematica package QNMSpectral [41]. Here d = 4, µ = 1, and ∆ = 4. When ω is real, the Regge
poles sit in the first and third quadrant as predicted from (A.8). When ω is purely imaginary, the
Regge poles are purely imaginary.

We now multiply the wave equation (A.2) by ψ∗ and integrate from the horizon to
the boundary to obtain∫ ∞

r+
dr
(
f |ψ′|2 + 2iωψ∗ψ′ + (V1 + V2)|ψ|2

)
= 0, (A.6)

where we have integrated by parts and used that f(r+) = 0 and ψ∗(∞) = 0.
Defining ℓ = α + p and taking the imaginary part we get

(ω − ω∗)
∫ ∞

r+
dr ψ∗ψ′ = ω∗|ψ|2(r+)− Im(p2)

∫ ∞

r+
dr

|ψ|2

r2
. (A.7)

When ω is real and positive we find

Im(p2) = ω|ψ2|(r+)∫∞
r+
dr |ψ|2

r2

> 0. (A.8)

Therefore p must be in either the first or third quadrant, as shown in figure 15. Similarly
when ω is real and negative, p is in the second or fourth quadrant.

Secondly, for Imω > 0 let us multiply (A.6) by ω∗ and again take the imaginary part,
from which we obtain

Im(ω∗(p2 − α2)) =
Im ω

∫∞
r+
dr f |ψ′|2 + Im ω

∫∞
r+
dr V1|ψ|2 + |ω|2|ψ|2(r+)∫∞

r+
dr |ψ|2

r2

> 0. (A.9)
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The allowed sectors are then
Arg ω

2 < Arg(
√
p2 − α2) < π + Arg ω

2 , (A.10)
−2π + Arg ω

2 < Arg(
√
p2 − α2) < −π + Arg ω

2 . (A.11)

In fact, for imaginary ω a numerical computation shows that the Regge poles are purely
imaginary, see figure 15.

B BTZ

In this appendix we study BTZ both at infinite and finite volume as a pedagogical example of
how the expansion in terms of Regge poles correctly reproduces the position space correlator
and its singularities. We start with the Fourier expansion of the Euclidean correlator at
infinite volume (β = 2π)

GE(τ, x) =
∞∑

n=−∞
einτ

∫ ∞

−∞
dk eikxGR(ω = i|n|, k), (B.1)

with the retarded correlator in BTZ given by

GR(ω, k) =
Γ
(
∆
2 + i(k−ω)

2

)
Γ
(
∆
2 − i(k+ω)

2

)
4 sin(π∆)Γ(∆)2Γ

(
−∆

2 + i(k−ω)
2 + 1

)
Γ
(
−∆

2 − i(k+ω)
2 + 1

) . (B.2)

Deforming the k contour in the upper half plane, we pick up Regge poles at k = i(2m+|n|+∆)
and obtain the following representation of the Euclidean correlator,

GE(τ, x) =
∞∑

n=−∞

∞∑
m=0

einτ−x(∆+2m+|n|) Γ(m+∆)Γ(m+∆+ |n|)
Γ(∆)2Γ(m+ 1)Γ(m+ |n|+ 1) . (B.3)

Performing the sums we find the expected expression

GE(τ, x) =
1

2∆(cosh x− cos τ)∆ . (B.4)

Consider now instead the Euclidean correlator at finite volume

GE(τ, θ) =
∞∑

n, ℓ=−∞
einτ+iℓθGR(ω = i|n|, ℓ) . (B.5)

We rewrite the sum over ℓ as an integral using the contours C+ and C− as in figure 8. Then

GE(τ, θ) =
i

2

∞∑
n=−∞

einτ
∮
C++C−

dℓ

sin(πℓ)e
iℓ(θ−π)GR(i|n|, ℓ). (B.6)

Using the symmetry under ℓ → −ℓ we can write this as an integral to the right above
the real axis,

GE(τ, θ) = i
∞∑

n=−∞
einτ

∫
C+

dℓ

sin(πℓ) cos(ℓ(π − θ))GR(i|n|, ℓ). (B.7)
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We can proceed analogously to the infinite volume case by deforming in the upper half plane
and picking up the Regge poles at ℓ = i(2m + |n| + ∆),

GE(τ, θ) =
∞∑

n, s=−∞

∞∑
m=0

einτ−|2πs+θ|(∆+2m+|n|) Γ(m+∆)Γ(m+∆+ |n|)
Γ(∆)2Γ(m+ 1)Γ(m+ |n|+ 1) , (B.8)

where the sum over s comes from the kernel

cosh((∆ + 2m+ |n|)(π − θ))
sinh(π(∆ + 2m+ |n|)) =

∞∑
s=−∞

e−|θ+2πs|(∆+2m+|n|). (B.9)

It is clear in (B.8) that the sum over m,n reproduces the infinite volume expression, while
the sum over p implements periodicity in θ. Explicitly we find

GE(τ, x) =
∞∑

p=−∞

1
2∆(cosh(θ + 2πp)− cos τ)∆ . (B.10)

Analytically continuing the Euclidean correlator to real time, we reproduce the expected
singularities of the finite volume Wightman correlator starting from the Regge expansion.

C Causality on the sphere

In this appendix we analyze the constraints of causality at finite volume. We consider the
thermal retarded two-point function on the sphere,

GR(t, θ) =
∫ ∞

−∞
dω e−iωt

∞∑
ℓ=0

GR(ω, ℓ)
ℓ+ α

α
C

(α)
ℓ (cos θ). (C.1)

Let us take 0 < θ < π and set t = θ − δθ with δθ > 0. Since G(t, θ) must vanish outside
the lightcone, we have

0 = GR(θ − δθ, θ) =
∫ ∞

−∞
dω eiωδθG̃R(ω, θ), (C.2)

where

G̃R(ω, θ) =
∞∑
ℓ=0

GR(ω, ℓ)
ℓ+ α

α
C

(α)
ℓ (cos θ)e−iωθ. (C.3)

Causality is then the statement that G̃R(ω, θ) is analytic and sub-exponential for Im ω > 0.
Indeed, if this is the case then we can close the contour in (C.2) into the upper half-plane
and get zero.

We can rewrite this condition as follows

Causality :
∣∣∣ ∞∑
ℓ=0

GR(ω, ℓ)
ℓ+ α

α
C

(α)
ℓ (cos θ)

∣∣∣ ≲ e−Im(ω)θ, Im ω > 0 , (C.4)

where 0 < θ < π and ≲ means up to subexponential corrections.
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Figure 16. We plot the exponential decay rate of the residues of the Regge poles (C.15) as a
function of µ and the corresponding causality bound (C.7). As expected the gravity result is consistent
with causality.

As before we can perform the Sommerfeld-Watson transform and consider the contribution
of a given Regge pole

GR(ω, ℓ) ∼
λm(ω)

ℓ− ℓm(ω)
(C.5)

to the left hand side of (C.4). Up to non-important power-like corrections we get

λm(ω)e−|Im ℓm(ω)| ≲ e−Im(ω)θ. (C.6)

This tells us that the Regge pole residues have to satisfy the following constraint

λm(ω) ≲ e−(Im ω−|Im ℓm(ω)|)π. (C.7)

Let us now explicitly check that (C.7) is satisfied, taking the case d = 4 for simplicity.
In order to compute the residues, we need to evaluate the action integral (4.16) from the
boundary to z−,

S(0, z−) = −p2Θ(0, z−) +
pu

2 T (0, z−), (C.8)

where Θ(0, z−) and T (0, z−) are the elapsed angle and time between 0 and z−,

Θ(0, z−) =
2r−√
µ
K

(
r2−
r2+

)
(C.9)

T (0, z−) =
2ur−√
µ

r2sΠ
(
r2

s

r2
+
,
r2
−
r2

+

)
+ (1 + r2s)Π

(
−1+r2

s

r2
+
,
r2
−
r2

+

)
1 + 2r2s

. (C.10)
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Here we have defined the two turning points

r± =
√

1±
√
1− 4µ(u2 − 1)
2(u2 − 1) . (C.11)

Plugging the low-lying spectrum (3.33) into (C.8) and expanding at large p gives

Sm(0, z−) =
p

2g1(rs)−
m+ 1

2
2 log

(
g2(rs)ep
m+ 1

2

)
, (C.12)

where

g1(rs) =
ArcCot(

√
2rs)

rs
− ArcCoth(

√
2(1 + r2s))√

1 + r2s
(C.13)

g2(rs) =
16
√
2

(2r2s + 1)2 e
√

2
rs

ArcCot(
√
2rs)

(
2r2s + 1

2r2s + 2
√
2(1 + r2s) + 3

) 1√
2(1+r2

s )
. (C.14)

Converting the QNM residues (3.31) to Regge pole residues then gives

Res
ℓ→ℓm(i|ζ|)

GR(i|ζ|, ℓ) =
2
√
πi

νΓ(ν)2m!

(
|ζ|

√
Ω2 − 1
2Ω

)2ν ( |ζ|g2(rs)
Ω

)m+ 1
2
e−

g1(rs)
Ω |ζ|. (C.15)

It is straightforward to check that the exponential damping factor in this expression decays
fast enough to satisfy the constraint (C.7), see figure 16.

One peculiar feature of the bound (C.7) as opposed to the infinite volume case is that (C.7)
does not imply that all non-analyticities of the retarded two-point function have to satisfy
|Im ℓm(ω)| > Im ω, and indeed the photon sphere Regge poles (3.33) explicitly violate this
condition since Ω > 1 (see [105] for a related discussion). Instead causality allows for non-
analyticities at arbitrary positions as long as the residues decay fast enough. Because of this
there is no obvious generalization of the hydrohedron analysis [106] to the sphere case.

D Late-time light cone at finite temperature in d > 2

Let us consider the following series,

fc(t) =
∞∑
J=0

eiJt−ce
−J t. (D.1)

It mimics the sum over spinning quasi-normal modes which have exponentially small imaginary
part corresponding to the probability of an orbiting particle to tunnel into a black hole, see [37].

The sum (D.1) converges in the sense of distributions, see e.g. [107], and gives

f0(t) =
1

1− eit
, (D.2)

which models light-cone singularities at t = 2πk in the vacuum, c = 0. We would like to
understand what happens to them at finite temperature, or c ̸= 0.
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To evaluate the sum for c ̸= 0 we use the Mellin representation of the exponential

e−z = 1 + 1
2πi

∫ −0+i∞

−0−i∞
Γ(s)z−sds . (D.3)

In this way we get for the sum

fc(t) = f0(t) +
1
2πi

∫ −0+i∞

−0−i∞
ds Γ(s)

∞∑
J=0

eiJt(ce−J t)−s. (D.4)

Here we have exchanged the sum and the integral, which is justified when both are absolutely
convergent. We have |eiJt(ce−J t)−s| = (ct)−Re seJRe s. The sum over J converges for Re s < 0,
which explains our treatment of the s = 0 pole above.

Now we can trivially do the sum to get

fc(t) = f0(t) +
1
2πi

∫ −0+i∞

−0−i∞
ds Γ(s) (ct)−s

1− eit+s
. (D.5)

An interesting new feature of this expression is that it has extra poles in s at

s = −it+ 2πik, k ∈ Z . (D.6)

There are various limits we can consider. First, let us consider c → 0. In this case we
close the contour to the left and we recover (D.2). Indeed, we simply get a Taylor series in c.

Consider next the late-time limit ct ≫ 1. In this case we want to deform the contour
to the right. The leading contribution takes the form

fc(t) =
+∞∑

k=−∞
Γ(i(2πk − t))ei(t−2πk) log ct +O(e−ect), (D.7)

where O(e−ect) is the contribution of the background integral.
Notice that all the light-cone singularities and their residues stay intact, fc(t) ∼ i

t−2πk .
However, as we go away from the light-cone singularity the correlator acquires a highly oscil-
latory phase ei(t−2πk) log ct which suppresses the correlator upon smearing. The characteristic
timescale of oscillations of ei t−2πk

δT is δT ∼ 1
log ct , which slowly goes to zero at late times.

We expect that light-cone singularities of thermal correlators in d > 2 behave in a similar
fashion with some δT (t) dictated by the imaginary part of the large-spin non-analyticity of
the retarded two-point function, such that δT (t) → 0 when t→ ∞. It would be interesting
to check this explicitly.

E Deriving the representation (4.9)

Our starting point is the sum over Regge poles (4.8),

GE(τ, θ) = − π

αβ

∞∑
n=−∞

∑
m

eiζnτ
kmnC

(α)
kmn−α(−z)

sin (π(kmn − α)) Res
k→kmn

GR (i|ζn|, k − α) .
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We can use the following representation for Gegenbauer polynomials valid for 0 < θ < π

C
(α)
k−α(−z) =

i(2 sin θ)1−2αΓ(k + α)
Γ(α)Γ(k + 1)

(
e−i(1+k−α)(π−θ)f(k, θ)− ei(1+k−α)(π−θ)f(k, π − θ)

)
,

(E.1)

where

f(k, θ) =2 F1(1− α, 1 + k − α, 1 + k, e2iθ). (E.2)

Since the sum over Regge poles runs over Im k > 0, we can also expand

1
sin π(k − α) = −2i

∞∑
j=0

eiπ(2j+1)(k−α). (E.3)

In this way we get the following representation for the correlator

GE(τ, θ) =
∞∑
j=0

(
gE(τ, θ + 2πj) + (−1)2αgE(τ, 2π − θ + 2πj)

)
, (E.4)

where

gE(τ, θ) =
41−α

(sin θ)2α−1
π

αβ

∞∑
n=−∞

eiζnτ
∑
m

Res
k→kmn

GR (i|ζn|, k − α) ei(1+kmn−α)θ

× Γ(kmn + α)
Γ(kmn)Γ(α) 2F1(1− α, 1 + kmn − α, 1 + kmn, e

2iθ) . (E.5)

In writing the formula above we implicitly used that f(k, θ) = f(k, θ + 2πj). Given that
θ = 0 is a branch point of the hypergeometric function, periodicity of f(k, θ) in θ is only
true given a particular prescription for going around this branch point, namely f(k, θ + iϵ).
This prescription is understood in (E.4).

F Astrophysical black holes

Astrophysical black holes are typically described by the Kerr family of asymptotically flat
metrics, which is parameterized by the mass M and angular momentum J of the hole.
Following the 2019 release by the Event Horizon Telescope (EHT) of the first image of a
supermassive black hole in our sky [108], it was soon realized that such black hole images
ought to display a “photon ring” consisting of multiple mirror images of the main emission
surrounding the hole: this is a generic prediction of general relativity, which follows directly
from the observation that a Kerr black hole possesses a “photon shell” of (unstably) bound
photon orbits outside its event horizon, in which light can orbit the black hole (possibly
multiple times) before escaping to a distant observer [109–111]. Whilst this theoretically
predicted feature has not yet been resolved with the ground-based EHT, detecting the
photon ring will be a key target for future spaceborne interferometric observations of the
supermassive black holes M87* and Sgr A* [112–115].
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F.1 Observational signatures of a Schwarzschild black hole

Black holes predict a very specific shape and structure for the photon ring, which we
will now briefly describe, and which can be used to answer the question: “How can one
ascertain whether an astrophysical source is truly a Kerr black hole, as predicted by the
Kerr hypothesis in general relativity?”

We begin with a discussion of the non-rotating Schwarzschild black hole of mass M , both
due to its relative simplicity and because it can be recovered from its AdS counterpart — the
subject of this paper — in the limit RAdS/M → ∞ (see section 3.3). Consider an observer
at a large distance D ≫M from the black hole in asymptotically flat spacetime. A photon
received with energy E = −pt and total angular momentum L2 = p2θ+p2ϕ csc2 θ appears in the
image plane of the observer at impact parameter b = L/E. As is now well-known, a photon
shot back from the observer with critical energy-rescaled angular momentum b̃ = 3

√
3M will

asymptote to an unstable planar orbit on the photon sphere at r = 3M .16 Photons traced
backwards into the geometry with b < b̃ must fall into the black hole, while those with b > b̃

are merely deflected and eventually escape back out to infinity. Thus, the image b = b̃ of
the photon sphere — which is also known as the “critical curve” and is depicted in red in
figure 17 (left panel)—is the boundary delineating the region of photon capture from that
of photon escape. Photons shot back from the vicinity of the critical curve (i.e., with small
δb = b− b̃) will describe multiple orbits skirting the photon sphere before eventually falling
into the black hole (if δb < 0) or escaping back out to infinity (if δb > 0). The number n
of half-orbits executed around the black hole diverges logarithmically in the perpendicular
distance from the curve [110, 111],

n ≈ − 1
γo

log
∣∣∣∣δbb̃
∣∣∣∣ , (F.1)

where γo = π is the Lyapunov exponent governing the orbital instability of nearly bound rays
near the Schwarzschild photon sphere. The upshot is that a light ray appearing at a distance
|δb| from the critical curve must be aimed exponentially closer to it by e−γo = e−π ≈ 4.3% in
order to execute an additional half-orbit around the black hole.17

In particular, if a black hole is surrounded by an astrophysical source — such as an
equatorial disk of emission, for instance — then multiple images of the source will appear
in the vicinity of the critical curve [110]. More precisely, there could in principle be a
whole infinite sequence of images of the main emission, with each successive one appearing
smaller (and closer to the critical curve) than its predecessor by a factor of e−γo . These
images would thus be lensed into a “photon ring” with an intricate substructure consisting
of self-similar subrings stacked on top of one another, and with relative widths decreasing
by a demagnification factor of e−γo .

In the idealized configuration (first studied by Falcke et al. [118] and then revisited by
Narayan et al. [119]) of a black hole that is fully immersed within a spherically symmetric

16Remarkably, the critical image radius b̃ = 3
√

3M was already published (by David Hilbert) in 1917 [116],
immediately following Einstein’s publication of his general theory of relativity in 1915, and mere months after
Schwarzschild found his eponymous solution to Einstein’s field equations in 1916.

17The δb > 0 version of these statements was already known to Luminet in 1979 [117].
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Axis of rotation

Figure 17. Left: image plane of a distant observer in the Schwarzschild spacetime. A photon
with total angular momentum L and energy E appears at impact parameter b = L/E. Photons
whose energy-rescaled angular momentum takes the critical value b̃ = 3

√
3M can be trapped on the

photon sphere of unstably bound light orbits at r = 3M , whose image is the “critical curve” C (red).
Middle: when a black hole spins, its photon sphere thickens into a shell bounded by circular-equatorial
photon orbits, with the innermost prograde orbit at r = r+ and the outermost retrograde orbit
at r = r−. As the black hole spins up to extremality (|J | → M2), the shell reaches its maximal
size (r+, r−) → (M, 4M). In Kerr, only one orbital radius r = r0 ∈ (r+, r−), which corresponds to
zero-angular-momentum orbits with pϕ = 0, allows for light to pass over the poles (white photon sphere,
located at r = 3M in Schwarzschild). Bound orbits inside/outside the sphere are prograde/retrograde
with pϕ ≷ 0. Right: image plane of a distant, equatorial observer (θo = π/2) in the Kerr spacetime
with spin J/M2 = 99.9%, parameterized by Bardeen’s Cartesian coordinates (α, β) [121]. The critical
curve C (red) is now parameterized by the photon shell radius r that a light ray traced backwards
into the geometry ends up orbiting at. The Lyapunov exponent γ(r) governing the instability of the
bound orbit at radius r also controls the width of the photon ring (red annulus) at the corresponding
angle around the critical curve (for the non-rotating black hole, γ = π). Measuring the size, shape,
and radial profile of the photon ring can yield information on the parameters of the black hole.

accretion flow of hot, radiating gas, the event horizon casts a “shadow” on the surrounding
emission, and the black hole image displays a darkness depression whose edge precisely
coincides with the critical curve. Moreover, in that case, the observed intensity near the edge
of the shadow scales like I ∝ n, and therefore diverges logarithmically according to (F.1)
(though, in practice, absorption effects cut off the divergence after some finite number of
orbits). As a result, the critical impact parameter b̃ is precisely the radius of the observed
shadow, and the Lyapunov exponent can in principle be read off from the intensity profile
near its edge. In the currently favored scenario of near-equatorial emission [120], the image
decomposes into discrete subrings labeled by half-orbit index n, whose asymptotic radius as
n→ ∞ again approaches b̃, and whose relative widths scale with a factor of wn+1/wn

n≫1≈ e−γo ,
such that the critical parameters b̃ and γo are both still measurable.

Although no photon ring has been measured so far, this GR-predicted structure is in
principle observable; moreover, it is universal (i.e., very weakly dependent on the nature of
the source), as it follows purely from the lensing behavior of the black hole, which is in turn
determined by the geometry of its spacetime (in particular, of its photon sphere). State-
of-the-art simulations numerically confirm this behavior [110, 120], so future observations
may well measure the photon sphere critical parameters.
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Finally, the photon sphere also controls the spectrum ω
(s)
ℓmn of quasi-normal modes in the

eikonal regime of high-frequency ω ≫ 1/M . In that limit, one can apply the geometric-optics
approximation and use congruences of null geodesics to describe massless waves (of any spin
s, whose effect is subleading). Moreover, it turns out that the quasi-normal mode boundary
conditions correspond to light rays that are asymptotically bound in the photon sphere, so
it should come as no surprise that the eikonal QNM spectrum is controlled by the critical
parameters of the photon sphere [49–54],

ω
(s)
ℓmn

ℓ≫|s|
≈

(
ℓ+ 1

2

)
Ω− i

(
n+ 1

2

)
γ, Ω = γ = 1

b̃
= 1

3
√
3M

, (F.2)

where Ω is the angular velocity of bound photon orbits, while the Lyapunov-exponent-in-time
γ ≈ dr/dt is equal to the Lyapunov-exponent-per-orbit γo = π ≈ dr/dn, divided by the time
elapsed per half-orbit, τo ≡ (∆t)half-orbit = 3

√
3πM ≈ dt/dn.

F.2 Observational signatures of a Kerr black hole

We continue our discussion of how to ascertain whether an astrophysical source is truly
a black hole, now extending it to the general case of a rotating (Kerr) black hole. Here
we sketch only the main ideas, which are essentially the same as in the previous section,
and omit most explicit formulas.

In the presence of rotation, the photon sphere thickens into a shell (figure 17, middle
panel) containing multiple orbital radii r+ < r < r−, where r± denote the radii of the
prograde/retrograde circular-equatorial orbits bounding the shell. Only light trapped at the
radius r0 ∈ (r+, r−) of the zero-angular-momentum orbits can pass over the poles. The sphere
r = r0 generalizes the Schwarzschild photon sphere, and indeed r0 → 3M as J → 0. Orbits
with radius r ∈ (r+, r0) within this photon sphere all have positive angular momentum and
are corotating with the black hole (prograde), while those with radius r ∈ (r0, r−) outside
the photon sphere all have negative angular momentum and are counter-rotating relative
to the black hole (retrograde). These orbits describe librations (polar oscillations) up to
some angle θ̃(r), which equals π/2 at the edges r± of the shell and vanishes at r0. One may
assign a unique “signed inclination” µo(r) = ± sin θ̃(r) to each orbit, where the sign ± is
that of the orbital angular momentum: thus, µo(r) decreases monotonically from µo(r+) = 1
through µo(r0) = 0 to µo(r−) = −1, resulting in a 1-1 correspondence between photon shell
radii r ∈ [r+, r−] and signed inclinations µo ∈ [−1, 1].

In the absence of spherical symmetry, the lensing behavior of the black hole depends on the
polar inclination θo of the distant observer relative to the spin axis. Following Bardeen [121],
it is convenient to parameterize the image plane of the observer using Cartesian coordinates
(α, β) defined such that a photon received with four-momentum pµ appears at a position
α = −pϕ/(pt sin θo) and β = −pθ/pt. The critical curve is then defined as the image of
the photon shell, that is, the set of image-plane directions corresponding to light rays that
are asymptotically bound in the photon shell. Bardeen [121] provides a simple analytic
expression for this curve. The key difference with the non-rotating case is that the curve
is now parameterized by photon shell radius, with each point (α̃(r), β̃(r)) on (half of) the
critical curve corresponding to a light ray that is trapped at a different orbital radius r in
the photon shell (figure 17, right panel).
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The (energy-rescaled) azimuthal angular momentum λ = −pϕ/pt of a critical ray with
horizontal impact parameter α̃(r) takes the value λo(r) = −α̃(r) sin θo, which is thus a
measurable quantity. Each bound photon orbit has a different rate of orbital instability
governed by its own Lyapunov exponent γo(r), and a different half-orbit time lapse τo(r) =
(∆t)half-orbit. Explicit forms for these critical parameters of the Kerr black hole are given
in terms of elliptic integrals in [110, 111].

The half-orbit number still diverges logarithmically as one approaches the critical curve,
so (F.1) still holds, except that γo(r) now varies around the curve. Still, each Lyapunov expo-
nent γo(r) can in principle be read off from the radial intensity profile near the corresponding
position (α̃(r), β̃(r)) around the photon ring: depending on the precise astrophysical scenario,
this could be done either by comparing the angle-dependent demagnification e−γo(r) across
successive subrings (when the emission is near-equatorial), or from the log-divergence in the
intensity (when the emission is spherical). Likewise, λo(r) can in principle be read off from the
horizontal impact parameter of light in the photon ring, so both λo(r) and γo(r) are observ-
able, as is τo(r), which can for instance be inferred from the time delay of light echoes [122].
Thus, precise measurements of the photon ring (its GR-predicted substructure and critical
exponents) could in principle be used to test whether a source is indeed a Kerr black hole.

Finally, one expects the eikonal QNM spectrum to still be described by the Kerr photon
shell, as in the Schwarzschild case. Though this was indeed a widely held picture since the
seminal work of Ferrari & Mashhoon [50] and Iyer & Wald [53] in the 1980s, their work
did not in fact apply to Kerr, as the class of potentials they considered did not include
the Kerr radial geodesic potential. Thus, this lore was only verified to hold in 2012 [123],
using indirect formulas for the form of the spectrum. Following the explicit derivation of
photon shell critical exponents, the analogue of (F.2) was finally derived last year [57]: as
ℓ,m → ∞ with µ̃ = m/ℓ held fixed,

ω
(s)
ℓmn

ℓ≫|s|
≈

(
ℓ+ 1

2

)
Ω(µ̃)− i

(
n+ 1

2

)
γ(µ̃), Ω(µ̃) = µ̃

λo(r)
, γ(µ̃) = γo(r)

τo(r)
, (F.3)

where µ̃ = m/ℓ ∈ [−1, 1] and the photon shell radius r ∈ [r+, r−] are bijectively related by
identifying µ̃(r) ≡ µo(r) with the signed inclination µo(r) = ± sin θ̃(r) defined above.
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