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The observed radiation from hot gas accreting onto a black hole depends on both the details of the flow
and the spacetime geometry. The lensing behavior of a black hole produces a distinctive pattern of
autocorrelations within its photon ring that encodes its mass, spin, and inclination. In particular, the time
autocorrelation of the light curve is expected to display a series of peaks produced by light echoes of the
source, with each peak delayed by the characteristic time lapse 7 between light echoes. However, such
peaks are absent from the light curves of observed black holes. Here, we develop an analytical model for
such light curves that demonstrates how, even though light echoes always exist in the signal, they do not
produce autocorrelation peaks if the characteristic correlation timescale 1, of the source is greater than .
We validate our model against simulated light curves of a stochastic accretion model ray traced with a
general-relativistic code, and then fit the model to an observed light curve for Sgr A*. We infer that 15 > 7,
providing an explanation for the absence of light echoes in the time autocorrelations of Sgr A* light curves.
Our results highlight the importance for black hole parameter inference of spatially resolving the photon

ring via future space-based interferometry.

DOI: 10.1103/PhysRevLett.133.131402

Introduction—Light emitted from hot gases accreting
onto black holes has been observed for decades across the
electromagnetic spectrum [1-3]. This radiation depends on
both the details of the astrophysical sources and the
spacetime geometry around the black holes.

More precisely, a single source around a black hole can
produce multiple images arising from photons that circum-
navigate the event horizon a different number of times on
their way to the observer. These mirror images are lensed
into a distinctive “photon ring” that represents the stamp
imprinted on a black hole image by its strong gravity [4-7],
and which tracks a “critical curve” [8].

Successive images appearing within the photon ring are
increasingly demagnified, rotated, and time-delayed. In the
simplest case of an equatorial source viewed by a distant
observer on the black hole spin axis, these images accu-
mulate near the critical curve and may be labeled by the
number of polar half-orbits that the corresponding photons
execute around the black hole before reaching the observer.
If the nth image of a point source appears at a time ¢,,, at an
angle ¢, around the critical curve and at a perpendicular
distance d,, from it, then one can analytically prove [9] that
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the next image will appear at

LRIy, +7, Pn1 R Py +6, dn+1 ze_ydn’ (1)
where the “critical parameters” z, §, and y—controlling the
time delay, rotation, and demagnification of strongly lensed
images, respectively—are known functions of the black
hole mass and spin [9,10]. In particular, 7 &% 16M for most
values of the spin, where M denotes the black hole mass
and we work in geometric units with G = ¢ = 1.

Because of the lensing behavior (1) of the black hole, the
autocorrelation of its photon ring image intensity must
display a distinctive multipeaked structure, with the heights
and locations of successive peaks respectively demagnified
by e77 and shifted in the spatiotemporal correlation plane
(A1, A¢) by (r,6) [11] (Fig. 1 therein).

The recent horizon-scale images taken by the Event
Horizon Telescope (EHT) of the supermassive black holes
MS87* [12,13] and Sgr A* (the one at the center of our
Galaxy) [14] are unable to resolve their photon rings.
Vigorous efforts to extend the EHT array to space are now
underway [15-17], and future observations using very-
long-baseline interferometry to space could achieve the
resolution needed to measure these rings and their predicted
(ring-averaged) autocorrelations [11].

In the meantime, one can already access the black hole
light curves observed over many frequencies and for many
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sources, including active galactic nuclei, x-ray binaries, and
gamma-ray bursts [18-20]. Such light curves may be
regarded as (single-pixel) “images” that are completely
spatially averaged (over both radius and angle). Based on
the preceding discussion, one would expect the temporal
autocorrelation of many of these light curves to display
multiple peaks, with each successive one demagnified by
e’ and delayed in time by the characteristic interval z
between light echoes [11,21-25]. However, such time
autocorrelations have never been detected.

In particular, an analysis of a decade of 230 GHz light
curves of Sgr A* reported a characteristic autocorrelation
timescale of Sﬁ’ h at 95% confidence, present down to at
least a few Schwarzschild radii [26]. Assuming a mass of
4.3 x 10°M , this value corresponds in geometric units to a
timescale of 1361+§§8M , which is significantly higher than
the expected light echo time delay 7 ~ 16M. An analysis of
newer data collected during the 2017 EHT observation
campaign of Sgr A* reported a characteristic autocorrela-
tion timescale of ~1 h, or ~170M [27].

Despite being significantly lower, this timescale is still
much longer than the expected light echo time delay of
7~ 5 min. This raises the obvious question: where are the
light echo autocorrelation peaks?

In this Letter, we revisit the theoretical expectations for
the time autocorrelation of a black hole light curve and
argue that the peaks caused by lensed images of the main
emission are only present if the characteristic timescale A,
of temporal correlations in the source is much shorter than
the light echo time delay 7. By contrast, if 15 = 7, then these
maxima ought to be absent, even if the lensed images are
present and contribute flux to the light curve.

To support this claim, we derive an analytical model for
the light curve of a black hole that is surrounded by an
equatorial source observed “face on” (that is, at a small
inclination €, from the spin axis). We then argue that the
model continues to hold provided the parameter a, sin 8,
remains small, where a, = J/M?€[-1,1] denotes the
black hole spin and J its angular momentum.

We validate our model against simulated light curves of a
stochastic accretion model that we ray trace using a
general-relativistic code, and then we fit the model to an
observed light curve for Sgr A*. We infer that 4y > 7,
providing an explanation for the absence of secondary
peaks in the time autocorrelations of Sgr A* light curves.

Theoretical expectations—Consider a polar observer
(@, = 0°) of equatorial emission around the black hole.
We decompose the full image into layers labeled by n,

Htyaf) =S Ly(te. ). @)
=0

n

where the nth layer corresponds to the image of the source
produced by photons that travel n half-orbits around the
black hole, described in Cartesian coordinates (a, ) on

the image plane at observation time ¢, [8]. It is sometimes
more convenient to use a polar angle ¢ and perpendicular
distance d from the critical curve as image coordinates [9].
It follows from the lensing equations (1) that
In<tov§0vd>Nln—l(to_rv(p_éveyd)? (3)
up to small corrections in 1/n that are already negligible
for n 2 2. Each image layer has a flux (“light curve”)

£4(00) = [ 1. p)dad, @)
The lensing relation (3) implies that
’Cn(to) ~ e_y‘cn—l (to - T)' (5)

Hence, the total observed light curve is approximately

o0

E(to) = Z En(to)

~ Z e Loy(ty — nt). (6)
n=0 n=0
As expected, it consists of a superposition of multiple
copies of the light curve Ly(z,) of the direct emission.
Each copy carries e less flux and is time-delayed by 7
relative to its predecessor. If the source is stationary,
then the covariance Cy(At) = (Ly(1,)Lo(t, + At)) of the
light curve for the direct emission is time-translation
invariant, and the full light curve covariance at lag At
[we use (L£;(1)L;(t+ A1) = (Lo(t — it)Lo(r + AL — jz))

from Eq. (5), and then shift (i,j) to (m,2s) = (i —J,
i+j—|m|)]is

C(Ar) = (L(1,)L(t, + A1) (7)
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which is also stationary. This expression agrees with the
conclusions arrived at by different means in Ref. [11] and
describes a train of correlation peaks separated in time by
7 and exponentially decreasing in height by e™7.

As argued in Sec. 7 of Ref. [11], even though the lens
equations (1) and (3) are modified for 8, > 0, the for-
mula (10) nevertheless remains exact to leading (linear)
order in a, sin 8, with the first correction coming in only at
subleading (quadratic) order. Thus, the only relevant time
delay at small inclinations is the orbital half-period z(7;) of
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the null geodesics trapped at the radius 7, where bound
photons have vanishing spin angular momentum. Likewise,
the Lyapunov exponent y(7,) governing their orbital
instability fully controls the demagnification [9].

For moderate inclinations, the only meaningful change
one can expect is that strongly lensed photons may skirt a
range of bound orbits at different radii 7 in the “photon
shell” of trapped null geodesics [6]. The time delay z(7)
and Lyapunov exponent y(7) are functions of this orbital
radius, so one expects a smearing of Eq. (10) over a range
of 7, which remains quite narrow up to 6, < 45°. At 7,
7= 16M for all a, as e™7 ranges from ¢ ™" ~ 4% to 10%.

Therefore, we take the expression (10) (with 7 and y
always evaluated near 7;) as our general analytical model
for the covariance of the light curve. Since e < 10%, we
expand the time autocorrelation of the light curve as

C(Ar)
C(0)
+e7[Co(At + 1) + Co(At—17)],  (11)

C(Ar) =

~ Co(AD)[1 = 2e77Cy(2)]

where Cy(At) = Co(A1)/Cy(0) is the direct light curve
time autocorrelation, and we have suppressed O(e™")
terms with n > 2, incurring only negligible errors <1%.

The prediction (11) is our main theoretical result. It is
analytically well-motivated and we numerically validate it
in the next section. Our key point is that when the direct
emission has a characteristic correlation timescale 4 2 ,
the expected peaks at Af=~ 7 in Eq. (11) vanish.

More precisely, Eq. (10) predicts correlation peaks at
regular intervals At ~ mz. We now focus on the peak at
At ~ 7, expected to be produced by lensed images of the
source whose photon half-orbit numbers differ by 1. Here,
it is important to distinguish between two regimes.

The typical time autocorrelation Cy(Atr) for a source
with temporal correlations on a characteristic timescale 4,
is a monotonically decreasing function, which starts at
Co(0) =1 (by definition), slowly drops until Az ~ 4y, and
then decays exponentially for At = A,.

If 7> 1y, then Cy(r)~Cy(At+7)~0, and thus
Eq. (11) reduces to the simpler form

C(AL) ~ Co(Af) + e 7Co(AL — 1), (12)

describing a main peak at Az = 0 (corresponding to the
perfect autocorrelation of the signal with itself), followed
by the expected secondary peak at At = 7.

By contrast, if 7 < Ay, then Cy(z) ~# 1 and moreover,
Co(At £ 7) » Cy(At) for lags 7 ~ 4y, so Eq. (11) predicts

C(Ar) ETCy(Ar). (13)

Hence, there should be no secondary peak in this regime.
As reported in the Supplemental Material (SM) [28], we
observe these two behaviors in our numerical simulations.

In the intermediate regime 7~ 4y, we find that as 7
increases, the secondary peak changes from a “bump” to
an “excess” and usually disappears well before 7 = .

State-of-the-art simulations using general-relativistic
magnetohydronamics (GRMHD) typically find accretion
flows that circulate around the black hole at very slightly
sub-Keplerian velocities Q =~ £Qy, with sub-Keplerianity
& < 1[36,37]. There is also experimental evidence for such
behavior from observations with GRAVITY [38].

If the characteristic timescale of correlations tracks the
orbital period of the circularized flow, so that A, ~ 27/Q,
then A > 7 everywhere in the gas. In light of Eq. (13), this
provides an explanation for the absence of secondary peaks
in observed black hole light curve autocorrelations.

Applications—We apply our model (11) for the time
autocorrelation of light curves to (i) synthetic data and (ii) a
light curve of Sgr A* from the 2017 EHT campaign.

For (i), we use INOISY [39] to simulate an equatorial
source with stochastic fluctuations and AART [40] to ray
trace its relativistic images. More exactly, we use INOISY to
generate realizations of Gaussian random fields with a
Matérn covariance, which serve as a proxy for a hot gas that
surrounds the black hole and fluctuates with a prescribed
correlation structure. We then ray trace these realizations
using AART, a code that exploits the integrability of light
propagation in the Kerr spacetime to efficiently produce
high-resolution black hole movies.

This semianalytical approach to producing black hole
movies with an analytically known covariance function is
arguably the “optimal setup” for extracting echoes from
light curves, since this method gives us complete control
over all correlation scales and black hole parameters. See
the SM for the details of the implementation [28].

We consider a Kerr black hole with spin a, = 94%
observed from an inclination 6, = 20°, and sources with
different characteristic timescales 1,. We compare their
resulting autocorrelations C(At) to the prediction (11). The
blue line in Fig. 1 (top panel) shows the light curve (6)
corresponding to a Keplerian flow with 1, = 27/Qy, i.e.,
proportional to rf/ 2, with r, the equatorial radius in the
source. For this position-dependent correlation time, the
resulting Gaussian random field is inhomogeneous and
anisotropic (see SM for an example snapshot [28]). The
blue open crosses in Fig. 1 (bottom-left panel) plot the
corresponding time autocorrelation, which does not present
a secondary peak at At ~ 7, consistent with Eq. (13) and its
implications.

We stress that the absence of correlation peaks in these
simulations cannot be attributed to limitations in the
computation of the light curves (as we have full control
of the simulation resolution and sampling rate) or in their
analysis (we also applied high-pass filters and computed
derivatives to search for concavity changes, to no avail).

If the source has constant correlation scales, then the
light curve Ly(z,) of the direct image Iy(¢,,, ) is a
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FIG. 1. Top panel: light curves from an observation of Sgr A* with ALMA [27], from a GRMHD simulation [41], and from an INOISY

simulation with Ay = 27/Qy ray traced with AART. We assumed a mass M = 4.3 x 10°M, for Sgr A* to convert time to units of M.
Bottom left: the autocorrelation of synthetic light curves produced with INOISY using different correlation times and ray traced with AART
assuming a black hole with spin a, = 94% observed from an inclination 8, = 20°. For this geometry, the Lyapunov exponent y(7)
ranges over [2.34, 2.79] and the time delay 7(7)/M ranges over [15.20, 15.85], where the lower and upper bounds correspond to the
innermost radius 7_ and outermost radius 7, respectively, within the photon shell. We have used their mean values (written in the plots)
for the analytical predictions presented with lines. The transparent lines represent all the possible predictions when using the whole set of
values of y and 7. The gray and pink open circles correspond to underlying correlation timescales 4y = 1.5M and 4, = 3.0M,
respectively. The blue crosses correspond to the autocorrelation of the light curve shown in the top panel computed from an INOISY and
AART simulation. Bottom right: the autocorrelations of the light curves presented in the top figure. For the observed light curve of Sgr A%,
we computed the autocorrelation using the LNDCEF algorithm directly (orange dots), and after interpolating it with two different kernels
for a Gaussian process regression (purple pluses, for Matérn, and blue crosses, for rational quadratic). The solid line corresponds to the
best fit to Eq. (14) presented in the bottom-left panel. For comparison, as in Ref. [27], we include as a dashed line an exponential decay
with a 1 h timescale. From these results, we infer that 1, > 7, providing an explanation for the absence of light echoes in the time
autocorrelation of Sgr A* light curves.

Matérn field with d = 1, v = 3/2 and correlation length
Ao [28]. Its autocorrelation is

ol = (14158 )exp(-121).

We emphasize that this is not a numerical fit to INOISY
simulations, but rather the analytical formula describing the
autocorrelation of the underlying stochastic model. This
autocorrelation is also in agreement with our ray traced
light curves, even when the observer is inclined and the
black hole rotates rapidly, as shown in Fig. 1 (bottom-left
panel) for two different values of A,. The case with

(14)

Ao = 1.5M < 7 displays a clear secondary peak (or
“bump”) while the case with 4y = 3.0M < 7 leads only
to a milder “excess” in the autocorrelation.

When the correlation timescale A, varies across the
source, we cannot provide an analytical expression for
the resulting autocorrelation like the one in Eq. (14). We
can, however, use Eq. (14) to derive an effective 4, by
fitting it to the autocorrelation data. For the Keplerian flow
with 4y = 27/CQk, we obtain a good fit with an effective
Ao = 54.0M, as shown with the solid blue line in Fig. 1.

For (ii), we compute the autocorrelation of an observed
intensity light curve for Sgr A* and call upon the intuition
built from our model to interpret the results. Specifically,
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we use the April 7, 2017 data from the 229.1 GHz (HI)
ALMA (A1) band [27]. In Fig. 1 (top panel), we show the
observed Sgr A* light curve (orange points), as well as a
simulated light curve computed from an MS87*-like
GRMHD simulation (green triangles) of a magnetically
arrested disk (MAD) with rpe, = 40 around a black hole
with a, = 85% and 6, = 163° [41]; see Refs. [41,42] for
more details. To obtain an autocorrelation from the
observed Sgr A* light curve, we must account for its gaps.
As in Ref. [27], we compute a locally normalized discrete
correlation function (LNDCF) [43,44] and use Gaussian
process regression (GPR) [45] to interpolate the data. This
then allows us to apply the same procedure used for the
synthetic light curves. See the SM for details of these
implementations [28]. The resulting autocorrelations are
similar regardless of the method used to obtain them.

Although the GRMHD and INOISY + AART light
curves in Fig. 1 (top panel) are produced from very
different models, their time autocorrelations (bottom-right
panel) are remarkably similar to each other and also to the
ones computed from the observed light curve of Sgr A*.

Consistent with Ref. [27], Fig. 1 (bottom-right panel)
shows no clear signs of a correlation peak at lag At ~ 7 that
could be interpreted as an effect of lensing by Sgr A*.

We plot the complete autocorrelation in the SM [28].
Since C(z) ~ 1, the plot strongly suggests that 25* > 7
that is, the characteristic timescale of correlations in the
plasma around Sgr A* appears to exceed the time delay
between light echoes. Hence, in accordance with Eq. (13),
we should not expect to see secondary correlation peaks,
explaining their absence from observations.

In passing, we note that the Sgr A* autocorrelation is
well-approximated by the simulated autocorrelation (14) of
a Keplerian flow with effective Ay = 54.0M > 7 (solid blue
lines in the bottom panels of Fig. 1).

Discussion—We have developed a simple analytical
model for the autocorrelation of black hole light curves
that offers insight into some of the challenges involved in
separating the effects of the plasma from those of the
spacetime geometry. When applied to an observed light
curve of Sgr A*, our model suggests that the temporal
correlations inherent in its surrounding plasma suppress the
autocorrelation peaks expected from lensing around the
black hole, explaining the absence of such signatures.

These results indicate that the inference of black hole
parameters from strong lensing effects will be difficult via
light curve autocorrelations alone, and likely require future
space very-long-baseline interferometry observations that
spatially resolve the photon ring. Planning for such
observations is underway.
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