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Abstract. Shared logs offer linearizable total order across
storage shards. However, they enforce this order eagerly
upon ingestion, leading to high latencies. We observe that in
many modern shared-log applications, while linearizable or-
dering is necessary, it is not required eagerly when ingesting
data but only later when data is consumed. Further, readers
are naturally decoupled in time from writers in these appli-
cations. Based on this insight, we propose LazyLog, a novel
shared log abstraction. LazyLog lazily binds records (across
shards) to linearizable global positions and enforces this be-
fore a log position can be read. Such lazy ordering enables
low ingestion latencies. Given the time decoupling, LazyLog
can establish the order well before reads arrive, minimizing
overhead upon reads. We build two LazyLog systems that
provide linearizable total order across shards. Our experi-
ments show that LazyLog systems deliver significantly lower
latencies than conventional, eager-ordering shared logs.

1 Introduction

Shared logs [35, 36, 38, 41] have emerged as a crucial building
block for datacenter applications. At its core, a shared log is a
fault-tolerant, ordered sequence of records that many clients
can simultaneously operate on. The interface to the shared
log is simple. Applications ingest records via an append API,
upon which they are linearizably [55] ordered and durably
stored. Applications retrieve data via a read API, which takes
a position and returns the record at that position.

This simple interface and the powerful abstraction make
shared logs useful in a variety of modern applications. For
instance, shared logs are used to record and analyze web
accesses [8, 41], build databases [53], log events for debug-
ging [8, 90], communicate between microservices [10], jour-
nal state for fault-tolerance [58], and stream data [15, 52, 89].

Unfortunately, today’s shared logs incur high latencies
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(§2). The key problem is that they eagerly order records in the
critical path before acknowledging appends. That is, by the
time an append completes, the record is eagerly bound to a po-
sition in the shared log. Many shared logs [1, 12, 36, 41,51, 57]
store records on multiple storage shards and provide a lin-
earizable total order across the shards. Thus, to bind records
to positions, global coordination across the shards is neces-
sary, which leads to high latencies. For example, in Scalog,
upon appends, records are first stored and locally ordered
within the shards. Then, after batching many records, the
shards coordinate with a global ordering layer to bind records
to global positions, after which appends are acknowledged.
Thus, ingestion incurs many roundtrips and batching de-
lays. Scalog reports append latencies of 1-2 ms, even in low-
throughput regimes [41]. Corfu’s [36] append path differs
from that of Scalog, but fundamentally, it also eagerly orders
records upon ingestion, incurring high latency.
Low-latency ingestion, however, is critical for many real-
world shared-log applications. For instance, databases built
atop shared logs require quick logging for updates [5, 53];
similarly, high-availability journals [58] built atop shared
logs need low-latency ingestion. More broadly, in a recent
survey by RedPanda [18, 19], a third of 300 practitioners
rated ingestion latency as the most critical latency metric in
their shared log deployments. Today’s shared logs, due to
their high ingestion latencies, cannot satisfy the demands
of these applications. Given that such high latency is rooted
in eager ordering, this paper asks: Can a shared log avoid
eager ordering, yet also provide the linearizable ordering
guarantee that applications require from shared logs?

Insight. At first sight, it may seem like one cannot avoid es-
tablishing the order eagerly, before acknowledging appends.
However, we observe that in many shared-log applications,
while linearizable order is necessary, it is not required right
away upon ingestion but only later during reads; further,
readers and writers in these applications are naturally decou-
pled in time. This allows a shared log to establish the order
in the background after acknowledging appends but before
reads arrive. Consider distributed databases built atop shared
logs that separate readers from writers [5, 53, 74]. While
readers must process database updates in linearizable or-
der [53], updates need not be eagerly ordered when writers
log them. Further, the readers in such databases consume
updates at their own pace [53], much later than when updates
are logged. We identify several real-world applications (§3.1),



including activity logging [59], event-sourcing [75], message
queues [14], journaling [58], and log-aggregation [90], where
linearizable order is required but not eagerly upon ingestion,
and reads are naturally decoupled in time from writes.

LazyLog Abstraction. Based on the above insight, we pro-
pose LazyLog, a novel shared log abstraction. LazyLog makes
a small yet powerful change to the shared log interface: in
LazyLog, appending a record does not eagerly bind it to a log
position; it only provides durability and a guarantee that the
record will be eventually bound to its correct position that
respects linearizability [55]. While LazyLog binds records
to positions lazily, it enforces this binding before the log
positions can be read. Lazy binding hides the overhead to es-
tablish global order across shards (and the local order within
shards), reducing ingestion latency. However, LazyLog pre-
serves the ordering guarantees of the conventional shared
log abstraction and enforces the correct order before reads.

Given that reads are decoupled in time from writes in
many shared-log applications, LazyLog can comfortably es-
tablish the order in the background before reads arrive; thus,
reads do not incur overhead. Some applications, however,
can read records immediately after appends and thus incur
overhead. However, even when many reads take such a slow
path, LazyLog would preserve the overall performance of
conventional shared logs: while conventional logs incur or-
dering cost upon appends, LazyLog shifts this cost to reads.

LazyLog is inspired by the general idea of deferring work
until needed, which has been explored in different contexts [46,
717, 78]. Skyros [49] applies this idea to defer ordering re-
quired for replication within a single shard. LazyLog, like
Skyros, defers shard-internal ordering, but critically, it also
defers global ordering across shards, a key cause of high la-
tencies in shared logs. Occult [73] enforces order upon reads
across shards. However, it only provides causal ordering
across shards, a weaker model than linearizability that Lazy-
Log provides. Our work is the first to build a shared log that
offers linearizable order across shards with low latency by
deferring ordering until needed. This end is enabled by our
new observations about modern shared-log applications.
LazyLog Systems. We build two systems that implement
the LazyLog abstraction: Erwin-m (black-box) and Erwin-
st (scalable throughput). Both offer linearizable total order
across multiple shards. However, unlike conventional shared
logs, they lazily bind records to shared log positions. Further,
they avoid the cost for local ordering within a shard in the
critical path that impacts existing systems like Scalog. Thus,
appends in LazyLog systems complete in 1RTT.

The main challenge is to establish the linearizable order
after appends have been acknowledged. The key idea to solve
this, in both systems, is to write enough information about
the records on a fault-tolerant sequencing layer, using which
the order can be established in the background. Clients write
this information to the sequencing-layer replicas without
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coordination in 1RTT. The high-level intuition is that if an
append b follows another append a in real time, then b’s
information will naturally appear after a’s in all sequencing
replicas, while only information of concurrent appends will
appear in different orders. Thus, despite sequencing-replica
failures, records can be bound to their linearizable positions.
Erwin-m (§4) aims to work with unmodified shards (e.g.,
Kafka shards or standard primary-backup shards). If clients
write to such unmodified shards, they will incur the over-
head to order within the shard, preventing 1RTT appends.
Records must also be globally ordered, further increasing
latency. Erwin-m hides both these overheads by writing the
records in the critical path only to the sequencing layer,
which then orders and pushes the records to shards in the
background. This design allows one to bolt-on Erwin-m’s
sequencing layer atop existing per-shard-order systems like
Kafka and achieve low-latency total order across shards.
Erwin-m offers high throughput for small records; however,
since records pass through the sequencing layer, it quickly
becomes the bottleneck for bigger (e.g., 4KB) records.
Erwin-st (§5) alleviates this bottleneck by writing only
metadata that identifies the records to the sequencing layer
and the actual records directly to the shards. For low latency,
Erwin-st writes data and metadata in parallel. Internally,
the metadata writes happen without coordination. For data
writes, if unmodified shards are used, the writes would see
the shard-internal ordering overhead. To avoid this, Erwin-st
modifies the shards: Erwin-st realizes that since the informa-
tion (i.e., the metadata) from the sequencing layer provides
the correct order in the background, shards need to only
provide durability for record-data in the critical path. Thus,
clients perform the data writes to the shard replicas in paral-
lel without coordination. Overall, all writes — the metadata
to sequencing replicas and the data to the shard replicas -
are done without coordination, completing appends in 1RTT.
The two versions show that the LazyLog abstraction can
be implemented in disparate shared log architectures. The
two versions are architecturally different because Erwin-m
uses Corfu-style position-to-shard mapping, while Erwin-st,
like Scalog, allows clients to choose shards. As a result, like
Corfu, Erwin-m can spread data across shards evenly, while
Erwin-st, like Scalog, can seamlessly add/remove shards.

Results. We show (§6) that when operating at the same
throughput levels, LazyLog systems reduce append latencies
by ~4x over our Corfu implementation and two orders of
magnitude over open-source Scalog [17]. We run several
experiments to show that reads rarely incur overhead in
LazyLog systems. Erwin-m offers ~1M small record append-
s/s, but its throughput flattens with big records. Erwin-st
scales throughput with shards for big records with low la-
tencies. We show Erwin-m’s black-box ability by enabling
total order across off-the-shelf Kafka shards with low la-
tency. We also demonstrate that Erwin-st can seamlessly



add shards like Scalog and that the sequencing layer can be
quickly reconfigured upon failures. We finally build three
applications (key-value store, log aggregation, and journaled
stream-processing), and demonstrate that LazyLog can de-
liver significant benefits for these end applications.

LazyLog systems are not without limitation. While Erwin-
st can scale like Corfu, it cannot match the scalability level of
Scalog. Scalog achieves scalability at the cost of latency [41];
Erwin-st trades off some scalability for low latencies. This
trade-off suits many applications that need reasonably high
throughput but at low latencies [18, 19].

Contributions. This paper makes four contributions.

e We make new observations about modern shared-log ap-
plications that present a new opportunity for a shared log
to defer ordering, enabling low-latency ingestion.

e We present LazyLog, a novel shared log abstraction that
builds upon this opportunity.

e We design two LazyLog systems, Erwin-m and Erwin-st,
that lazily establish global order, and avoid ordering cost
within shards; our work is the first to offer linearizable
total order in shared logs with low latency (specifically,
1RTT) by deferring ordering until needed.

e We show the benefits of LazyLog systems via experiments.

2 Motivation

We explain how eager ordering in shared logs leads to high
latencies and discuss the need for low-latency ingestion.

2.1 Shared Logs: Background
The shared log offers a powerful abstraction with a simple
interface [35-37, 41, 57]. Applications ingest records via an
append APIL, upon which the shared log assigns positions
for the records and stores them durably. Shared logs provide
linearizable ordering [55]: if a record append B starts in real
time after another record append A completes, then B is guar-
anteed to be ordered after A. Applications read records via
read, which takes a position and returns the record at that po-
sition. checkTail finds the log tail and trim garbage collects a
log prefix. Many applications like distributed databases [53],
streaming [89], metadata stores [37], and state machine repli-
cation (SMR) [37] can be built using the above interface.
Shared logs have gained significant attention in research
and practice alike. Prior research has built many shared
logs [36, 37, 41, 57]. On the practical front, all cloud providers
offer a shared log service (e.g., Kinesis [31], PubSub [54]);
hyper-scalers use them for metadata [35]; open-source sys-
tems like Kafka [28] and others [12, 29, 83] offer the shared
log functionality [41]. While some systems [28, 35, 83] only
offer ordering within a shard, many practical and research
implementations [1, 12, 36, 37, 41, 51, 57] offer total ordering
where records across shards are linearizably ordered.

2.2 Eager Ordering Considered Harmful

Despite years of research and the ubiquity of shared logs, all
existing shared logs today, unfortunately, suffer from high
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Figure 1. Append Path in Eager-Ordering Shared Logs.

latencies. This high latency is rooted in the eager-ordering na-
ture of shared logs. Upon an append, existing eager-ordering
shared logs replicate records to storage servers within a
shard. More importantly, they also determine the global posi-
tion for the record and confirm that order, binding the record
to that position. Both replicating the records and binding
them incur coordination overhead, leading to high latencies.

Figure 1(a) shows Scalog’s append path [41]. Clients first
write records to the primary of a shard. The primary logs and
replicates the records in FIFO order to its backup. Replication
finishes when the backup logs the records (A in Figure 1(a)).
At this point, the records are durable and locally ordered but
their global position is yet to be determined. Periodically,
all shard servers batch records and send their log lengths
to a Paxos-based global ordering layer. The ordering layer
determines the log prefix that is durable, i.e., stored on both
shard replicas. It establishes the global “cut”, i.e., global order
of durable records across shards, and makes this cut fault-
tolerant (via Paxos). The records are now bound to global
positions (B). The ordering layer sends the cut to the shard
primaries, which then acknowledges appends of records for
which global ordering has been established (C). Thus, an
append sees the replication latency within the shard*, the
batching delay, and the coordination latency in the ordering
layer to bind records to positions. Scalog reports a mean
append latency of 1-2 ms, even in low-throughput regimes.

Figure 1(b) shows Corfu’s append path [36, 37]. A client
first obtains a position from a sequencer. The client then
writes the record to the storage servers responsible for the
position via a client-driven chain protocol, where it updates
the replicas serially one after the other. When the record is
written at the tail of the chain, it is durable and is also bound
to the position obtained. Thus, appends incur multiple RTTs,
leading to high latencies. Note that merely getting a position
from the sequencer does not bind the record to the position.
Corfu’s sequencer is merely an optimization [37, §2.2]; the
record is bound to the obtained position only after the record
has been written at the position on the storage servers.

#Although the shard primary does not wait for the backup’s response,
Scalog still incurs latency to coordinate replication via the primary.



Systems that offer per-shard ordering [28, 83] eagerly or-
der as well. To reduce latency, these systems provide an op-
tion to finish appends after writing to one replica [7]. While
this reduces latency (by 10x in Kafka), it leads to undesirable
guarantees for applications: data could be lost upon failures.

2.3 Need For Low-Latency Ingestion

Low-latency ingestion is critical for many shared-log ap-
plications. For example, databases built atop shared logs
need quick durability for updates [5, 53]. Similarly, high-
availability journal [58] requires low-latency ingestion. Fur-
ther, in a 2023 survey [18, 19], a third of 300 practitioners
rated ingestion latency as the most critical latency metric
in their shared log deployments. Today’s shared logs, unfor-
tunately, cannot satisfy the demands of these applications.
Scalog’s authors note this problem [41, §7]: Scalog doesn’t
serve applications that require low append latencies well.

Summary. Low-latency ingestion is critical for applications.
Unfortunately, however, existing shared logs incur high la-
tencies. Given that eager ordering is the cause for high laten-
cies, we ask: Can a shared log avoid eager ordering, yet also
preserve the ordering guarantees of conventional shared logs?
We answer this question affirmatively in the next section.

3 LazyLog Insight and Abstraction

We explain our key insight and observations about modern
shared-log applications, and how the LazyLog abstraction
leverages the insight to realize low latencies.

3.1 Insight and Applications

Our key insight to avoid eager ordering is that although
linearizable ordering is necessary, in many shared-log appli-
cations, it is not required right away upon appends but only
later during reads. Specifically, many real-world applications
do not require to know the indexes of the appended records
immediately. Further, readers are naturally decoupled in time
from writers in these applications. This offers a shared log
an opportunity to defer ordering upon appends but establish
it before reads arrive, reducing ingestion latencies without
incurring overhead upon reads. We now present many real
applications, where the above observation holds.
Distributed DB with decoupled readers [5, 53]. Mod-
ern distributed databases separate readers from writers to
scale reads and writes independently, avoid fate sharing, and
minimize interference [5, 53]. Shared logs ease this sepa-
ration: writers ingest new updates to the log and readers
independently process them from the log. In these databases,
writers need to only achieve quick durability, while readers
must process updates in a linearizable order [5]. For exam-
ple, in Firescroll [5], a distributed database, writers expect to
durably record updates to the shared log but do not require or
use the indexes at which the records are appended [48]. Thus,
the order need not be established eagerly when logging up-
dates but only when readers consume them. Further, readers
in these databases consume at “their own pace” [53], much
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later after updates are logged. Thus, a shared log can defer
ordering upon appends, achieving low latency; it will also
have ample time to establish the order before reads arrive.
Event sourcing [9, 13, 75]. With event sourcing, data is
solely stored as a sequence of change events on a shared log,
instead of storing the objects themselves and performing in-
place updates on them. Downstream services enable queries
by building views via replaying the events. The shared log
itself also serves as audit trails [20]. While downstream ser-
vices and audits must see the events in correct order, events
need not be eagerly ordered when the data changes. Further,
event sourcing systems [33, 62] adopt a popular software
design pattern called command-query responsibility segre-
gation or CQRS [32, 74, 88] that intends to avoid write-read
interference, making readers typically lag behind writers.
Message queues [10, 14]. Components of an application
communicate or queue work through a shared log [50, 65].
Messages and work items must be stored safely and delivered
in the correct order. However, messages or items need not be
eagerly bound to positions within the queue when senders
add them. Further, consumers often are time decoupled from
producers [42, 44]: “[messages are] consumed at a later time
or at a much lower rate than it is produced” [42].
High-availability journal [58]. An application is made
fault-tolerant by logging its state changes to a shared log;
a fail-over instance can reload the changes and continue,
should the application fail [58]. State changes must appear
in linearizable order in the log so that correct state can be
reconstructed. However, ordering needs to be enforced only
when the log is read upon fail-over and not necessarily when
recording state changes. For example, Samza [16], a stream-
processing framework using Kafka for high-availability jour-
naling, does not require the order when it performs check-
pointing. Further, given that the journal is accessed only
upon fail-over, there is a long gap between writes and reads.
Activity logging [41, 59]. Applications log user activity to
a shared log for analytics. For example, marketplaces [41]
log product views and purchases for recommendations. The
ordering of activities need not be established during logging
and can be deferred until analytics engines process them. If
the analytics jobs run in an offline fashion (e.g., every hour or
so), reads will lag significantly behind writes. Even when the
analytics jobs run alongside ingestion, they still lag behind
to avoid interference between readers and writers [41]. For
instance, in marketplaces [41, §5.1], to avoid interference,
the writers append new records to active shards, while the
analytics jobs read data from finalized shards.

Log aggregation [2, 86, 90]. Components of a distributed
application record events to a shared log for postmortem
debugging and analysis. While the log must ensure correct
order of events to enable reliable debugging (e.g., after an
incident), the position of events need not be determined
eagerly during logging. For example, Log4j-Kafka [72], a
Kafka-based logging framework, does not require the order



// append to log; returns true if record is durable
bool append(record r);

// read ‘len’ records starting at ‘from’
list<record> read(logpos t from, uinté64 t len);

// returns the number of durable records in the log
uint64_t checkTail();

// trim the log upto ‘index’

bool trim(logpos_t index);

Figure 2. LazyLog APL

during logging. Further, the records are accessed much later:
after a failure or a performance anomaly that needs analysis.
Besides the above, other applications such as ETL (ex-
tract, transform, load) pipelines [4] and resynchronization
logs [60] also do not eagerly require order upon ingestion
but only upon reads, and reads are decoupled in time from
writes. Due to space constraints, we omit discussing them.

3.2 The LazyLog Abstraction

Based on our observations, we propose the LazyLog abstrac-
tion. LazyLog does not eagerly bind a record to a position
upon an append; it only makes the record durable immedi-
ately and provides a guarantee that the record will be even-
tually bound to its correct linearizable position. Although
LazyLog binds records to positions lazily, it enforces the or-
dering before the positions can be read. Lazy binding enables
LazyLog to avoid coordination in the critical path, reducing
latency. However, it binds records to their correct positions
before they can be consumed, preserving the linearizable or-
dering guarantee of the conventional shared log abstraction.

To end applications, LazyLog still provides the same ab-
straction of a fault-tolerant, linearizably ordered sequence
of records, with the only change that the order is not eagerly
determined upon appends. Figure 2 shows the LazyLog in-
terface. An append makes the record durable, but it does
not eagerly bind the record to a position. Thus, unlike the
conventional interface, append does not return a position
but only a flag denoting whether or not the record was made
durable. This modified interface suits real-world applications
because, as we discussed above, these applications do not
require or utilize the index (typically returned by conven-
tional shared logs). The read, checkTail, and trim calls are
identical to those of the conventional interface. Applications
can invoke them in the same way as they usually would.

A LazyLog system must bind a record to a position before
that position can be read. However, doing this on demand
upon every read is inefficient. A practical system would thus
keep ordering in the background. Thus, as shown in Figure 3,
the lazily ordered log has two parts: one for which the order
has been established and another for which the order is yet
to be confirmed. If a read accesses the ordered portion, it is
served quickly. Conversely, if a read accesses positions in
the unordered portion, it takes a slow path: it is served after
establishing the order at least up to the requested position.

However, reads predominantly take the fast path in the
applications we discussed, given the gap between writes and
reads. Thus, the system can comfortably order the records
in the background before a position is read, avoiding or
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Figure 3. Lazily Ordered Log. The figure shows the ordered and
unordered portions in LazyLog, and append and read latency characteristics.

minimizing slow reads. Some applications, however, can
(and do) immediately read after appending and thus incur
overhead. For instance, SMR [36, 37] appends commands
and reads them back until the tail to apply all committed
commands to the state machine; this can result in many slow
reads. However, in practice, a LazyLog system can minimize
this overhead. Specifically, if the records are ordered in large
batches (in the background), then only the first read to the
unordered portion would incur overhead; subsequent reads
will be fast. Even in cases where batching opportunities do
not exist, LazyLog would offer the same overall performance
as a conventional shared log: while the latter incurs ordering
cost upon appends, LazyLog would do so upon reads.

Summary. In many applications, eager ordering upon in-
gestion is unnecessary; thus, LazyLog fits these applications
and enables them to realize low-latency ingestion. Further,
in these applications, reads are time decoupled from writes
and thus LazyLog would not incur overhead on reads. For
applications that read immediately after appends, a LazyLog
system can minimize slow-path reads, and in the worst case,
preserve the performance of an eager-ordering shared log.

4 Erwin-m Design

Our LazyLog systems offer linearizable total order across
multiple shards. They do so with low latencies by only lazily
binding records to global positions. Further, they avoid the
cost for local ordering within a shard in the critical path,
enabling IRTT appends. This section describes how Erwin-
m achieves this goal and the next Erwin-st. For brevity, we
will sometimes refer to Erwin-m as simply Erwin. We first
provide an overview and explain the append path (§4.1). We
then explain how Erwin ensures and establishes linearizable
order (§4.2, §4.3), and serves reads (§4.4). We then describe
how Erwin handles failures correctly (§4.5).

4.1 Design Rationale, Overview, and Append Path
The practical benefit of Erwin-m (over Erwin-st) is that it
treats the shards as black boxes; internally, the shards could
use any standard replication scheme like primary-backup [39]
or Paxos [66, 70]; a shard could be even a per-shard-ordering
shared log like Kafka (as we show in §6). This section de-
scribes how Erwin works with primary-backup shards.
Erwin requires shards to support the following operations:
append an entry and read the entry at a specified index.
Additionally, during view changes (which we explain later
(8§4.5)), a shard must be able to overwrite entries at the tail
of the log portion that it stores. To change the tail, shards
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are not required to physically overwrite records; they only
need to support a logical way to do so. For example, with
Kafka shards, this can be achieved by deleting tail records
and then appending new entries.

Figure 4 shows Erwin’s architecture. Erwin has a set of
unmodified primary-backup shards and a sequencing layer.
If clients directly write records to such black-box shards
in the critical path, then they will see the coordination to
replicate within the shard, i.e., records will first be written
to the shard primary, which would then replicate to the
shard backup. In addition, records must be ordered across
shards, increasing latencies further. Erwin avoids both these
overheads by writing records only to the sequencing layer
in the critical path. The sequencing layer is fault-tolerant: it
contains a few replicas, usually f+1 to tolerate f failures. It is
coordination-free: the replicas do not coordinate among them;
clients write to the replicas in parallel without coordination.

Figure 4 shows Erwin’s append path. Erwin clients directly
write the records to the sequencing-layer replicas in parallel
without any coordination (step-1). Each replica appends in-
coming records to a local log and directly responds to clients.
Once the client gets a response from all sequencing replicas,
the append completes in 1RTT (step-2). The records are now
durable, but their global positions are yet to be determined.
Since there is no coordination, the records on the sequencing
replicas can appear in different orders. However, as we ex-
plain in next subsection, the sequencing layer can construct
the linearizable order despite this (even if f sequencing repli-
cas fail). In the background, the sequencing layer establishes
the linearizable order and pushes the records to the shards
(step-3). The shards store the records and acknowledge (step-
4). Once safe on the shards, the records are garbage collected
on the sequencing replicas (step-5).

The Erwin shared log has two distinct parts for acknowl-
edged records (as shown in Figure 4): a portion for which
order is established and another for which order is yet to
be determined. The ordered portion resides on the shards,
while the yet-to-be-ordered portion on the sequencing layer.

The sequencing replicas provide only short-term durabil-
ity: once records are safe on the shards, they are garbage
collected from the sequencing layer. Thus, the amount of
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storage required in the sequencing layer is far less than the
shards and so the records can be maintained in memory (on
multiple replicas). In contrast, storage shards must provide
long-term durability, requiring them to write eventually to
the disk. Thus, the sequencing layer can run at much higher
throughput than a single shard (whose performance is lim-
ited by the disk) and thus support multiple shards.

Erwin’s approach of writing to multiple memories in the
critical path for durability with eventually writing to disks
is a standard practice in high-performance replicated sys-
tems [70, 80, 87, 95, 96]. Similar to these systems, Erwin
can tolerate up to f simultaneous failures. In the unlikely
case where more than f replicas fail simultaneously, Erwin
correctly remains unavailable, preserving safety.

The main challenge is to correctly bind records in the yet-
to-be-ordered portion to their linearizable positions in the
background (even in the face of failures). Another challenge
is to handle reads that may access either the ordered portion
or the unordered portion of the log. The remainder of this
section describes how Erwin solves these challenges.

4.2 Ensuring Linearizable Ordering

Because there is no cross-replica coordination in the sequenc-
ing layer, records from clients could appear in different orders
across the replicas. For example, in Figure 4, records a, b,
and c (which have been acknowledged) appear in different
orders across the replicas. How does the sequencing layer
then establish the correct linearizable order?

The main intuition is that if the append for a record b
starts in real time after an append of another record a has
completed, then it is guaranteed that b will appear after a in
all the sequencing replica logs. This is true because when ap-
pend(a) completes, a will be present on all logs. If append(b)
starts after this, then b is guaranteed to appear after a in all
logs. As a result, only records that are concurrently appended
may (but not necessarily) appear in different orders across
the logs. For example, in Figure 4, the actual real-time order-
ing is: append(a) completes and then append(b) and append(c)
happen concurrently with each other. The sequencing logs
capture this ordering correctly: a appears before b and c in
all the logs, while b and c appear in different orders.

Erwin must order concurrently appended records in some
way to produce a total order. For this purpose, Erwin treats
one of the sequencing replicas as the leader and others as
followers. The leader’s log is used to establish the order in
the failure-free case. For example, in Figure 4, positions up to
3 are ordered; thus, Erwin would try to bind a to position 4,
c to 5, and b to 6 because this is the leader’s order (although
the followers have these records in different orders).

Note that the leader’s order cannot be exposed to clients
until that order is finalized. This is because if the leader
fails, then the records could be ordered differently. Upon
a leader failure, Erwin chooses any one follower’s log to
assign order for unordered records. This is safe because all



replica logs would respect the real-time dependencies and
only concurrently appended records may appear in different
orders; §4.5 expands on how Erwin handles failures.

4.3 Establishing the Order in the Background

Erwin establishes the order in the background. At a high
level, the sequencing leader assigns records to positions (ac-
cording to its local log) and pushes them to the appropriate
shards. Erwin uses a deterministic function to map positions
to shards similar to Corfu [36], where a shared log position p
is assigned to shard p mod n, where n is the number of shards".
Each shard uses standard primary-backup to replicate the
records. Once safe on the shards, the records are garbage
collected at the sequencing replicas. For performance, Er-
win does this background work in batches, ordering many
records at once. We explain these steps in detail below.

Since the sequencing leader’s log provides the required
ordering, the leader initiates the background ordering. Every
sequencing replica maintains a counter called last-ordered-gp:
the last global position in the log up to which the order has
been established that the replica knows of. Periodically, the
leader takes a batch of unordered records from its local log
and assigns them to positions starting from its last-ordered-
gp+1. It uses the deterministic function to map and push
the records to appropriate shards. Each shard replicates its
records and acknowledges the sequencing leader. Once all
shards acknowledge, the sequencing leader garbage collects
the records from its log and updates its last-ordered-gp. It
then instructs and waits for the followers to garbage collect
the records and update their last-ordered-gp .

After this, the sequencing leader sets another counter
called the stable-gp to its last-ordered-gp. Erwin maintains
the following invariant with respect to the stable-gp: records
for all positions up to the stable-gp are stable and will remain
unchanged regardless of future failures. Intuitively, when the
stable-gp is set, the binding for positions up to the stable-gp
is complete. After this, the binding for the next batch starts.
The shards are also informed about the stable-gp. The shards
can then safely serve reads to positions up to this stable-gp.
Allowing reads only up to the stable-gp is critical to ensure
correctness (as we soon discuss, §4.5).

If the sequencing leader fails, any follower’s log can be
used to determine the order for the unordered records. How-
ever, Erwin must maintain the stable-gp invariant, i.e., the
order for the log portion that was previously stabilized (and
thus could have been exposed to readers) does not change.
We soon discuss how Erwin’s recovery ensures this (§4.5).

4.4 Log Reads
Erwin clients submit reads to the shard servers. Clients use
the deterministic mapping to find from which shard they

“Like Corfu, adding shards won'’t require moving existing records [36].

TA subtle case is when a client request reaches a sequencing follower
after the leader has informed to garbage collect that record. Erwin handles
this request as a duplicate and filters it.
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must read a particular position p. Upon receiving a read,
a shard server first checks if records up to p are stable (by
checking if p < stable-gp). If yes, the shard quickly serves the
read; this is a fast-path read. Otherwise, the server waits until
the log is stable at least up to p (i.e., stable-gp advances up to
p) and then serves the record,; this is a slow-path read. This
check is critical because binding is complete only up to the
stable-gp. The order for positions greater than stable-gp could
change if the sequencing leader fails. For the same reason,
the reads cannot be served from the sequencing leader.
Usually, applications keep track of the last read position
and keep advancing this to read more records. Some appli-
cations require reading from the current position until the
tail. Such applications invoke checkTail to know how many
records are durable in the log and then read up to that point.
Erwin serves the checkTail from the sequencing leader.

4.5 Failures, Views, and Reconfiguration
Failures within a shard are masked by standard techniques.
Shards in Erwin use primary-backup; a Paxos/VR or Raft-
based ensemble could also mask the failures within a shard.
However, Erwin must carefully handle failures in the se-
quencing layer. First, intermittent failures such as network
blips are easily handled by having clients retry the operation
until they are able to write to all sequencing replicas. If the
retries result in duplicates, Erwin correctly filters them using
request-ids. Second, Erwin handles failures such as crashes
via views and a reconfiguration protocol. The sequencing
layer operates in a series of monotonically increasing views.
Upon a replica failure, the view advances and the system
moves to a new configuration. Erwin does this in a sequence
of steps: first, a control plane detects the failure, upon which
it seals the current view; then, the unordered records in the
sealed view are flushed to the shards; next, a new view starts
with a new configuration and normal processing can resume.
Detection. Erwin detects sequencing replica failures using a
standard technique used by many systems [57, 91]: a control
plane that consists of a Zookeeper instance [30] and a con-
troller. The controller itself is stateless and a new one can be
started if the current one fails. We ensure that only one active
controller exists using ZooKeeper. Each record-sequencing
replica maintains a session with Zookeeper. A failure is de-
tected when a replica’s session with Zookeeper breaks and
the controller is notified (via Zookeeper watches [21]).
Sealing the view. Once notified, the controller seals the old
view to ensure that new records cannot be appended in that
view. This sealing protocol resembles that of Delos [35] and
Boki [57]. The controller sends a seal command to all the
sequencing replicas. A sealed replica rejects new requests.
Once a replica is sealed, new records cannot commit in that
view. This is because a client waits for acknowledgments
from all sequencing replicas in the same view.
Flushing unordered records. The controller then flushes
unordered records in the sealed view. First, Erwin chooses



any of the available sequencing replicas from the sealed view
as the recovery replica. Then, the recovery replica flushes its
log to the shards, assigning records to positions starting
from its last-ordered-gp+1. This is the most critical step in
the recovery; we now explain why this procedure is correct.
Correctness Sketch: Choosing any replica as the recovery
replica will maintain durability of records committed in the
old view; this is because records are replicated to all replicas
during normal operation. The recovery replica may not con-
tain some records that were part of the old leader (e.g., due
to client failures); however, such records wouldn’t have been
acknowledged and thus need not be recovered. On the flip
side, it is also possible that the recovery replica may contain
records that were not part of the old leader; these wouldn’t
be acknowledged as well, but it is harmless to recover them.
Erwin must also ensure linearizable ordering of the recov-
ered records. As we discussed, any two appends that have
real-time order between them will appear in the correct order
on all the sequencing replicas; only concurrent appends may
appear in different orders. Thus, the recovery replica’s log
will correctly capture the real-time ordering dependencies.
However, to guarantee linearizability, Erwin must ensure
that any order that has been exposed to readers does not
change. That is, it must maintain the stable-gp invariant.
Not maintaining the invariant violates linearizability. Con-
sider the state in Figure 4. Suppose the sequencing leader
tries to establish the order [4 : a,5 : ¢, 6 : b] by writing a, c,
and b at log positions 4, 5, and 6, respectively on the shards.
Assume an incorrect protocol where stable-gp is advanced
before sequencing replicas garbage collect the records and
set their last-ordered-gp. Now, suppose a client reads the or-
der [4 : a,5 : ¢,6 : b] from the shards. Suppose the leader
now fails and follower-1 becomes the recovery replica. If
follower-1’s local order ([a, b, c]) is flushed starting at posi-
tion 4 (last-ordered-gp +1), a subsequent reader will see an
order ([4: a,5 : b, 6 : c]) inconsistent with the previous read.
Erwin prevents the above scenario by carefully orchestrat-
ing background ordering and reads (§4.2). Erwin allows reads
to a position p only after ensuring that the order up to p will
not change in the future. Erwin ensures this by advancing
the stable-gp only after all sequencing replicas have garbage
collected their records and advanced their last-ordered-gp *.
Two cases are possible. (i) If the leader fails after stable-
gp advances, then it is not possible for the recovery replica
to change the order, ensuring correctness. In the above ex-
ample, if the leader fails after stable-gp advances to 6, then
the followers’ logs would be empty and their last-ordered-gp
would be 6. Thus, the order [4 : a,5 : ¢, 6 : b] established
by the failed leader will prevail. (ii) If the leader fails before

T An alternate design is to advance stable-gp before garbage collection
and have the new leader flush only entries that are not on the shards yet.
However, updating stable-gp after garbage collection made the protocol
simpler and the added time for garbage collection is anyway negligible.
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advancing stable-gp, the recovery replica may overwrite the
order written by the old leader, but that is safe. In the ex-
ample, suppose the leader fails before garbage collection on
the followers and a recovery replica has [a, b, c] with its last-
ordered-gp as 3. The recovery replica will flush its records
starting at position 4 (its last-ordered-gp+1), overwriting the
old leader’s order [4 : a,5 : ¢, 6 : b]. However, this is safe
because no client could have read any position greater than
3; this is because stable-gp could have been at most 3.

Starting a new view. Once the recovery replica’s log has
been flushed, the last-ordered-gp on all replicas are set ap-
propriately and all local logs are cleared. Only replicas that
have cleared the logs from the old view and set their last-
ordered-gp will be part of the new configuration. Thus, any
failed sequencing replica will be removed from the new con-
figuration. Erwin can also add new replicas to the new con-
figuration; new replicas will start with empty logs and last-
ordered-gp set correctly. The new configuration is stamped
with the new view number and written to Zookeeper; then,
stable-gp is advanced and sent to the shards. Writing the
new configuration before advancing the stable-gp prevents
any partitioned replica from overwriting records potentially
exposed if a failure happens during reconfiguration. The
controller then sends a StartView message to replicas in the
new configuration; the system can now accept new requests.

5 Erwin-st Design

Erwin-m aims to work with unmodified shards. Thus, to avoid
incurring shard-internal coordination, it funnels records
through the sequencing layer. However, this has a downside:
the sequencing layer can become the bottleneck. For small
records (~100 bytes) which are common in practice [47],
Erwin-m can still offer high throughput. However, with big-
ger records (4KB [36, 41]), the sequencing layer can be quickly
saturated, limiting throughput. Erwin-st solves this problem.

5.1 Main Idea and Overview
Erwin-st’s main idea is to split a record into data and a piece
of metadata that identifies the record. Clients then write
record-data to the shards directly and only the metadata to
the sequencing layer. With this design, the record-data does
not pass through the sequencing layer, improving scalability.
To achieve low latency, clients write the data and metadata
in parallel. The individual metadata writes to the sequenc-
ing replicas themselves are done in parallel as well (i.e., the
sequencing layer is coordination-free). The metadata helps
establish the total linearizable order in the background. How-
ever, data writes to shards will incur coordination latency
within the shards if the shards use standard replication. To
avoid this, Erwin-st modifies the shards. Erwin-st realizes
that since the metadata from the sequencing layer provides
the ordering information, shards need to only provide dura-
bility for record-data in the critical path. Thus, clients per-
form the record-data writes to the shard replicas in parallel
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Figure 5. Erwin-st Architecture and Append Flow.

without coordination, achieving durability in 1RTT.

In summary, by lazily sequencing only metadata, Erwin-st
scales throughput even for bigger records. Further, by writ-
ing data to the shard replicas in parallel, Erwin-st achieves
durability in 1RTT. By writing metadata in the same RTT,
Erwin-st completes appends in 1RTT.

Figure 5 shows the architecture and flow of appends. A
client directly writes a record to a shard of its choice (like
Scalog). In parallel, it also writes the metadata, which is a
tuple of <record-id, shard-id>* to the sequencing replicas.
In the example, clients have appended four records a, b, c,
and d to the different shards. b and d have arrived in different
orders on the yellow shard’s primary and backup; the correct
order will be determined by the sequencing layer. Now, a
client is appending e; it writes the data to the blue-shard
replicas, and the metadata to the sequencing replicas. Once
all of them acknowledge, the append completes in 1RTT.

5.2 Background Ordering

The background ordering in Erwin-st is identical to Erwin-
m, except that only the metadata identifiers are sent to the
shards and the data already exists on the shards. Periodically,
the sequencing leader tries to establish the order of records
by assigning metadata identifiers to positions; it then pushes
the metadata along with the assigned positions to the shard
primaries. Each shard primary then processes this informa-
tion, and orders the records accordingly. For example, in
Figure 5, the yellow-shard primary receives the ordering in-
formation [1:a,2:b,3:¢,4:d,5 : e], of which only [b,d]
concern the yellow shard. Then, the shard primary assigns
and writes b to global position 2 and d to 4 (although it re-
ceived them in a different order from clients). It then informs
the shard backup to do the same. The shard primary then ac-
knowledges the sequencing leader. Once all shards complete
this process, the metadata identifiers are garbage collected
from the sequencing layer and stable-gp is advanced, after
which shards can serve reads up to the stable-gp.

5.3 Reads
In Erwin-m, records are assigned to shards in a determinis-
tic manner; thus, locating the shard to read a record from

is straightforward. However, in Erwin-st, clients write the
record to a target shard of their choice (similar to Scalog);

*record-id is a combination of client-id and request-id.
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a global position is later assigned for the record by the se-
quencer during background ordering. So, a client cannot
directly determine the shard to read given a log position.
Erwin-st solves this problem by storing the metadata log
that the sequencing leader sends during background order-
ing on the shards. A reading client can find the shard for a
position by contacting any shard server and then perform the
actual read at the target shard. Erwin-st amortizes this cost
by having the clients fetch the position-to-shard mapping for
many positions at a time and then cache it; for subsequent
reads, clients look up their local cache to find the shard and
read the record from there. Again, similar to Erwin-m, a shard
can serve reads only up to the stable-gp. If the stable-gp is
not high enough, then the read takes a slow path waiting for
stable-gp to advance at least up to the requested position.

5.4 Failure Handling and Correctness
Failures within a shard are handled by replacing the failed
replica with a new one after copying both ordered and un-
ordered records from a live node to the new one. Erwin-st
handles sequencing replica failures in a way similar to Erwin-
m. In particular, it maintains the same invariant: order estab-
lished up to stable-gp is guaranteed to remain unchanged.
All the steps (detection, sealing, etc) are identical to Erwin-
m with the only difference that when flushing unordered
records during reconfiguration, only metadata is flushed.
Additionally, Erwin-st must handle client failures that in-
troduce two problems due to data-metadata separation. First,
the sequencing leader receives the metadata, while the shard
primary does not receive the data. Second, the shard primary
receives the data but there is no corresponding metadata at
the sequencing leader. The latter is not a serious issue: it
just creates orphaned (uncommitted) records on the shards,
which can be garbage collected via periodic scrubbing. In
contrast, the former case needs more care. When the meta-
data reaches the shard during background ordering and the
record is not present, the shard primary first waits for a time-
out to receive the record from the client (in case this is due to
a network delay). If it is a client failure, then the timeout will
happen on the shard primary, upon which it sets the record
to a special no-op record. The shard primary also instructs
the backup to replace its record with a no-op. Clients ignore
no-ops during reads. Setting to no-op is correct because the
record would not have been acknowledged. The request may
arrive after the no-op has been set. Erwin-st handles this
correctly by rejecting the delayed request at the shard.

5.5 Limitations of LazyLog Systems

Our LazyLog implementations have three potential limita-
tions. First, since they require writing to all sequencing-layer
replicas, a reconfiguration is required upon failures. However,
this is not a big concern in practice and more importantly, it
is not a fundamental limitation. First, our reconfigurations
are quick (§6). Second, our implementations could adopt
an approach where clients write only to a supermajority
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of sequencing replicas that prior 1RTT replication proto-
cols [49, 82] use to recover linearizable order upon failures.
This design can tolerate more failures at the cost of increased
recovery complexity; we leave this as an avenue for future
work. Writing to all sequencing replicas can increase the
tail latencies in the presence of straggler replicas. LazyLog
implementations can deal with persistent stragglers by re-
configuring the sequencing layer to remove them. To tolerate
transient slowness, Erwin could use the above supermajority
technique, minimizing stragglers’ effects.

Second, Erwin-st scales like Corfu: both systems scale with
shards and are limited by the sequencing-layer. However,
Erwin-st cannot provide the scalability level of Scalog. Scalog
improves scalability by having shards contact the ordering
layer in a batched manner. Such improved scalability is fun-
damentally at odds with low latencies. This is because, in
Scalog, the shards must batch and contact the ordering layer
in the critical path; deferring these steps to the background
will violate append linearizability. While Scalog trades off
latency, Erwin-st forgoes some scalability for low latencies
(but is still as scalable as Corfu). This trade-off suits many
applications that need reasonably high throughput but at
lower latencies [18, 19]. Achieving Scalog’s scalability with
the low latencies of LazyLog remains an open challenge.

Finally, LazyLog systems may not suit applications where
writers need to know their records’ positions immediately.
However, this is not a fundamental limitation. LazyLog sys-
tems can be easily augmented with an appendSync interface
that eagerly orders records (albeit at the cost of latency).

5.6 Implementation

Erwin code-base is mainly composed of a client library, se-
quencing layer, and storage shard, all of which are imple-
mented in C++ (~8K LOC). Our code is publicly available [11].
The client uses eRPC [61] to issue requests to the sequenc-
ing layer and shards. On the sequencing layer, the log is
implemented as a ring buffer with a head and tail pointer.
New entries or metadata identifiers are added at the tail. For
background ordering, we run a separate process that reads
unordered log portion and pushes the entries or the metadata
identifiers to the shards. For efficiency, our implementation
runs this process separately and uses RDMA reads to access
the ring buffer without interrupting the sequencing leader’s
CPU. To garbage collect, this process uses RDMA write to
modify the head pointers on the sequencing replicas, free-
ing space in the ring buffer. Our shards use primary-backup
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replication. A shard stores its log portion across multiple
files, each with a fixed number of entries. Thus, it can easily
locate the target file to satisfy a read. Files are cached when
read and thus subsequent reads are served from memory.

6 Evaluation

In our evaluation, we ask the following questions:

e What are the latency benefits of a lazy-ordering shared
log compared to eagerly ordering shared logs? (§6.1)

o How do reads perform in a lazy-ordering shared log com-
pared to an eagerly ordering one? (§6.2)

o How does periodically reading affect latencies? (§6.3)

e How does the append rate impact read latency? (§6.4)

e How does record size impact Erwin-m’s throughput? (§6.5)

o How well does Erwin-st scale compared to Erwin-m? (§6.6)

e How do reads perform in Erwin-st? (§6.7)

e Can Erwin-m enable total order across existing per-shard-
ordering shared logs with low latencies? (§6.8)

e Can Erwin-st seamlessly add shards like Scalog? (§6.9)

e What is the impact of sequencing replica failures? (§6.10)

e Do end applications benefit from LazyLog? (§6.11)

Setup. We run our experiments on a x1170 [3] CloudLab [85]

cluster. Each machine has an Intel 10-Core E5-2640v4 CPU,

64GB DRAM, a 25Gb Mellanox ConnectX-4 NIC, and a 480GB

SATA SSD. We do not have access to many machines in this

cluster and can run only five shards at a time. However, for

the scaling experiments (§6.6), we use a different cluster,

where we have more machines. Our sequencing layer has

three replicas (one leader and two followers). Each storage

shard has one primary and one or two backups. At places,

we refer to Erwin-m as Erwin for brevity.

6.1 Benefit of Lazy Ordering

We first demonstrate the benefit of lazy ordering by compar-
ing Erwin against Corfu and Scalog. We implement Corfu
from scratch. For Scalog, we use the publicly available arti-
fact [17]. We run an append-only workload with 4KB records.
We run each shard at about 30K appends/s, and compare the
average and p99 latencies with one and five shards.
Comparison to Corfu. We run both Corfu and Erwin with
three replicas within each shard. Figure 6 shows the mean
and p99 latencies and the latency distribution. At the same
throughput (shown in the bottom), Erwin reduces latencies
significantly (by up to 3.8X). This is because Corfu eagerly or-
ders by first obtaining positions from the sequencer and then
binding records to positions via the client-driven chain pro-
tocol, incurring 4RTTs with three replicas. Erwin, in contrast,
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completes appends in 1RTT by writing to the sequencing
replicas without coordination and establishes the order in the
background. This is the fundamental benefit of lazy ordering.
Comparison to Scalog. We next compare against Scalog.
Since Scalog shards use one primary and one backup, we
run our shards also with two replicas. Scalog’s performance
depends upon interleaving interval [41], which determines
how often shards contact the ordering layer. We set this to
0.1 ms as in the Scalog paper. For correct comparison, we run
the Scalog and Erwin shards in a comparable performance
regime. When writing to the shards in isolation (without the
rest of the system involved), the performance of a shard are
almost identical in the two systems: latency (693us in Scalog
vs. 772us in Erwin shards) and throughput (34.3KOps/s in
Scalog vs. 32.3KOps/s in Erwin).

Figure 7 shows end-to-end append latencies. Erwin re-
duces mean and p99 latencies by two orders of magnitude.
Scalog incurs high latency due to eager ordering: overhead
for locally ordering within a shard, batching records before
contacting the ordering layer, and global ordering. In con-
trast, although Erwin’s shards have almost the same latency
as Scalog shards, Erwin hides shard-internal coordination
latency and also defers global ordering, offering low latency.

We note that there are implementation differences be-
tween Erwin and the Scalog artifact (e.g., Scalog uses gRPC [6],
while Erwin uses eRPC [61]). Thus, the absolute latencies in
a better Scalog implementation will be lower. However, even
such an implementation will incur Scalog’s fundamental
overheads mentioned above. Thus, Erwin will offer signifi-
cant latency benefits over such an implementation as well.

6.2 Read Latencies: Lazy vs. Eager Ordering

We now compare read latencies of Erwin and Corfu under
two cases: (i) where reads lag behind appends, reflecting
many applications in §3.1 (ii) where there is no lag between
appends and reads, which is a bad case for Erwin. In both
cases, appends and reads run at the same rate. We examine

Read and Append Rate (ops/s)
Figure 9. No Lag b/w Appends and Reads.
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Figure 10. Periodicity vs Latency.

three different rates and measure append and read latencies.
With Time Lag. Figure 8 shows the results when reads
lag behind appends by a small window (3 ms) at different
rates. At all rates, Erwin offers lower append latencies than
Corfu as expected. Since reads lag behind appends, Erwin
completes the ordering in the background by the time reads
arrive. Thus, reads do not incur overhead: the read latency of
Erwin approximates Corfu’s. The small increase compared
to Corfu is because reads contend with background writes
(which happen in batches in Erwin) at the storage shards.
Overall, Erwin offers significantly lower append latencies
while providing almost the same read latencies as Corfu.

Without Lag. Figure 9 shows the result when there is no
time lag between appends and reads; readers aggressively
read as records are appended. Again, Erwin reduces append
latencies. However, since there is no lag, reads in Erwin incur
overhead: they see the cost of ordering. However, when the
append rate is moderately high (45K), Erwin has batching
opportunities: it can order many records in a big batch. Thus,
only the first read that accesses the unordered log portion
incurs overhead; subsequent reads are faster. Reads are thus
only slightly slower than in Corfu. However, with fewer
batching opportunities, more reads take the slow path. How-
ever, even in such scenarios, Erwin preserves the overall
performance of Corfu: while Corfu eagerly orders and pays
the overhead on appends, Erwin pays this cost upon reads.

6.3 Performance With Periodic Reads

We now analyze how reads perform in applications that
periodically read records up to the current tail. Here, the
application periodically does a checkTail and then reads up
to the obtained tail. We vary the period and measure read
latencies. As shown in Figure 10, with 20K rate, for longer
periods (e.g., 3 ms), latencies are very low. This is because
many appends accumulate with longer periods (with only
records near the tail being unordered). However, by the time
the application reads the tail, the background ordering or-
ders those unordered records. With short periods, not many
appends accumulate between two consecutive checkTail-s,
and therefore many reads take the slow path. A similar pat-
tern holds for the 32K rate as well, but the latencies are lower
because of more batching opportunities at this higher rate.

6.4 Impact of Append Rate
The previous two experiments showed that append rates (and

background batch sizes) affect read latencies, which we now
analyze further. To do so, we run reads alongside appends,
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and readers aggressively read whatever records are available.
A single reader can run at 37K reads/s, beyond which the
reader is unable to keep up with appends. If the append rate
(Ry) is lower than this, the read rate (R,) also matches the
append rate. Thus, as shown in Figure 11(a), there are two
regions: R; == R, and R, > R, (the gray region).

R, > R;. In this region, reads run at a lower rate behind
appends, mimicking message queues where consumers run
at a lower rate than producers [42]. Here, by the time a log
position is read, the records are already ordered. Thus, almost
all reads take the fast path, resulting in low latencies.

R, == R;. Here, reads catch up with appends. So, more reads
can be slow. But, even in this unfavorable region, Erwin’s
latencies are low at high append rates. This is because with
high append rates, the background-ordering batch sizes are
larger (see right y-axis of 11(a)). When the rate is low (5K),
the batch size is small, many reads take the slow path, result-
ing in high latencies. Figure 11(b) shows this: at 5K, almost
all reads take the slow path (compared to all reads taking the
fast path at 45K). The read latency at such low rates must ide-
ally match the append latencies of an eager-ordering system
(e.g., 70 ps that Corfu incurs in Figure 9). We see higher laten-
cies than this because our background-ordering is optimized
for bigger batches to improve throughput. However, this is
not fundamental: our implementation could be modified to
optimize for latency with small batches; thus, the absolute
read latencies (in these worst cases) would be lower.

6.5 Erwin-m: Record Size vs. Throughput

So far, we have measured latencies. We now measure the
append throughput of Erwin-m. As shown in Figure 12, with
small records, Erwin-m offers high throughput (~1M append-
s/s with 100-bytes); Erwin-m can be useful in deployments
that use small records [47]. However, because data itself
passes through the sequencing layer, it quickly becomes the
throughput bottleneck, limiting Erwin-m’s throughput with
larger records. We next show how Erwin-st solves this.

6.6 Scalability of Erwin-st over Erwin-m

To measure scaling with more than five shards, we use a
different (c6525-25g [3]) CloudLab cluster. As shown in Fig-
ure 13(a), Erwin-m’s throughput flattens quickly with large
records. In contrast, by writing only metadata to the sequenc-
ing layer, even with large records, Erwin-st scales well. With
4KB records and 10 shards, it offers ~700K appends/s. Erwin-
st can scale beyond this point; however, we do not have
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Figure 13. Scalable Throughput with Erwin-st.
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enough machines to run more than 10 shards. Erwin-st’s
throughput is limited by the sequencing layer (like Corfu).
Our sequencing layer can run at 1.34M metadata-appends/s.
More shards will enable Erwin-st to scale up to that point.
Erwin-st achieves high throughput with low latencies as
shown in Figure 13(b) because Erwin-st writes metadata and
data without any coordination in 1RTT. For instance, at 700K
appends/s, Erwin-st’s latency is 29us.

6.7 Erwin-st Reads

We now analyze reads in Erwin-st. We compare read la-
tencies with and without lag between appends and reads.
Similar to §6.2, the appends and reads run at the same rate
but the absolute rate is higher (200K). Figure 14 shows the
result. First, when reads lag by 1s (lag-1s), no reads take
the slow path, resulting in low latencies. Even in the no-lag
case, very few reads are slow, making it only slightly worse
than lag-1s. The absolute latencies are higher than in §6.2
because, here, we read 25 records at a time. When reading
one record at a time, we notice that the latency of Erwin-st
closely matches that of Erwin-m (recall that Erwin-st clients
cache the position-to-shard map to avoid a roundtrip (§5.3)).

6.8 Total Order across Kafka Shards

Erwin-m enables total order at low latencies across per-shard-
order off-the-shelf shared logs like Kafka. To demonstrate
this, we run an append-only benchmark on stand-alone
Kafka and Erwin-m with Kafka as its shards. As shown in
Figure 15, with one shard, Erwin-m reduces latency by three
orders of magnitude. With three shards, Erwin-m offers simi-
lar latency benefits while enabling linearizable total order.

6.9 Seamlessly Adding Shards in Erwin-st

Scalog can seamlessly add/remove shards (unlike Corfu) [41];
this is enabled by allowing clients to choose shards instead of
using a fixed position-to-shard mapping. Since Erwin-st also
allows clients to choose shards, it can seamlessly add/remove
shards as well. Figure 16 illustrates this: in the middle of a
workload, we add a shard without downtime; clients start
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Figure 17. Reconfiguration in Erwin.
writing to the new shard, increasing the throughput.

6.10 Sequencing-Layer Reconfiguration

We next examine how quickly Erwin reconfigures after sequencing-p - o ten cy:

replica failures. To do so, we crash a sequencing replica dur-
ing a workload. As shown in Figure 17(a), the workload is
impacted for a small period (~15 ms) after which it resumes.
However, as shown in 17(b), a big portion of the reconfigura-
tion time comes from failure detection and writing the new
view’s configuration, both of which involve ZooKeeper and
suffer from its inefficiencies. The core recovery takes only
600 ps. Using a faster alternative to ZooKeeper could cut
reconfiguration time to ~1 ms, which aligns with fail-over
times for microsecond-scale applications [26].

6.11 Applications
We now demonstrate that end applications can benefit from
LazyLog. To do so, we have built a writer-reader decoupled
key-value (KV) store, a log-aggregation application, and a
journaled stream-processing application.

These applications represent different points in the spec-
trum of the ratio between shared-log interaction and other
computation the application performs to satisfy an end re-
quest. In the KV store, shared-log interaction is the most
significant part in processing a user-level write request (like
in real databases such as Firescroll [48]). In log-aggregation,
the application performs other significant computation (such
as processing a transaction) in addition to interacting with
the shared log. Finally, in journaling, the computation can
be much more significant than shared-log interaction.

KYV Store. Modeled after Firescroll [5], we build a shared-
log-based key-value store, where readers and writers are
decoupled. The store supports put-s and get-s. Put-s are han-
dled by write-processing servers, which receive and validate
requests from end clients, serialize the KV pairs and append
them to the shared log, and finally acknowledge clients. A
set of read servers consume the log at their own pace, con-
struct local state, and serve reads. In KV stores that decouple
readers from writers, readers do not synchronize with the
log before every read and thus reads are typically eventually
consistent [34, 75]. Our store also follows the same design.

We run the store atop two shared logs: Corfu and Erwin.
We use three YCSB [40] workloads: Load (write-only), YCSB-
A (write-heavy: 50% updates, 50% reads), and YCSB-B (read-
heavy: 5% updates, 95% reads). We configure the store with
one writer and one reader server, and the underlying shared
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(c) shows the average record-processing latency for a journaled, streaming word-count application.

log with one shard (with three replicas). Keys are 24 bytes and
values 1KB in size. Figure 18(a) plots the average KV request
latency. For the write-only workload, all operations benefit
thus, Erwin offers the most benefit here:
3.4% lower latency than Corfu. With write-heavy workloads,
the benefits are still considerable (~2.5X). With read-heavy
workloads, Erwin does not offer much benefit because reads
incur the same cost in Corfu and Erwin. Since the most
significant part of a Put is appending to the shared log, Erwin
offers the maximum benefit for this application.

Log Aggregation. We next build audit-logging for a transaction-

processing application. The application allows clients to per-
form write operations like account creations, withdrawals,
deposits, and transfers, and read operations like balance and
transaction-status queries. The application shards accounts
across a set of servers; each server processes transactions
for accounts in its shard against a local database. Addition-
ally, the servers also log information about transactions for
audits to a shared log. Since audits are critical, logging hap-
pens synchronously [71]. Each transaction server uses a local
RocksDB [45] instance to store data and run transactions.
We run a workload with 50% read transactions and 50%
write transactions, and measure the average transaction la-
tency. Note that irrespective of transaction type, operations
on the underlying shared log is write-only. The shared log is
read in this application only in an offline fashion, which our
workload does not exercise. Figure 18(b) shows the result.
As shown, Erwin offers latency benefits over Corfu for both
application-level writes and reads. However, compared to
the KV store, the benefits are smaller because this applica-
tion performs transaction processing in addition to logging
to shared log. The benefits vary depending on the type of
operation. Specifically, the execution latency for writes is
more significant than that of reads: writes incur ~23us, while
reads only take ~4ps; thus, the logging overhead for reads is
much more significant. As a result, Erwin offers more benefit
for logging read transactions than write transactions.
Journaling for Stream Processing,. Finally, we have built
a stream-processing word-count application, where the task
workers use a shared log for checkpointing their state. In
stream processing, checkpointing is a commonly used ap-
proach to provide fault-tolerance and exactly-once seman-
tics [27, 63, 92]. In particular, before a task worker produces
arecord (e.g., for the next stage), it durably stores the pro-
duced state in a log. For example, Samza uses Kafka for this



purpose [16, 63]. Should a task worker fail, it can use the log
to recover its state without violating exactly-once semantics.

We run a word-count task with five workers. The workers
process inputs and emit word counts. Before emitting, the
workers durably store their state to the shared log. Stream-
processing frameworks (like MillWheel [27]) do this for a
batch of inputs. Our implementation also does the same. Sim-
ilar to prior systems [27], we measure the latency for records
to be processed and emitted. This latency internally consists
of reading the record from an input source, processing it,
checkpointing it to the shared log, and finally emitting.

Figure 18(c) shows the result. As shown, with big batches
(5K), the fraction of time spent in logging compared to com-
putation is smaller. Since Erwin optimizes only the check-
pointing portion, the improvement with big batches is small
(only 1.17% lower latency than with Corfu). However, with
smaller batches, logging becomes a more significant portion
and thus Erwin offers more benefits; for example, with a
batch size of 500, Erwin offers 1.66x lower latency.
Applications Summary. LazyLog offers benefits to end
applications by reducing the logging latency. The benefit
varies based on portion of time spent in interacting with the
shared log compared to the the overall execution required
to satisfy an end-application request.

7 Related Work

Shared Logs. Corfu scales throughput with shards. Scalog
improves over Corfu by providing more scalability and the
ability to seamlessly add/remove shards. Erwin-st can scale
like Corfu but cannot achieve the scalability level that Scalog
achieves via batching, which is fundamentally at odds with
low latency. Erwin-st forgoes some scalability for low laten-
cies, a trade-off that suits many applications (§5.5). However,
unlike Corfu, Erwin-st offers Scalog’s ability to seamlessly
add/remove shards (§6.9). Mason [56] is a recent system that
has many similarities to Scalog, but it additionally supports
the notion of multi-sequencing and service execution. How-
ever, it still eagerly orders records. Boki [57] and FlexLog [51]
build shared logs for serverless computing. Boki’s architec-
ture resembles Scalog’s and it introduces the idea of a meta-
log that simplifies reads compared to Scalog. However, Boki
has the same ordering overheads, incurring high latencies.
FlexLog avoids Paxos overhead in the ordering layer, but, it
still eagerly orders and further assumes reliable broadcast,
which requires coordination or programmable switches.
Kafka [28] and other systems [29, 83] offer linearizable
order only within a shard and they incur high latency due
to eager ordering. LogDevice [12] and DistributedLog [1]
provide total order. LogDevice is similar to Corfu, but it
uses a different data-placement policy [41]. DistributedLog
forwards data via a single-writer. This has similarities to
Erwin-m; however, Erwin-m makes records durable on the
sequencing layer in 1RTT, and lazily establishes the order.
Defer Until Needed. LazyLog’s idea to defer work until
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needed has similarities to deferring IO in local [78] and dis-
tributed [77] file systems, and execution in databases [46].
Skyros [49] and Occult [73] defer ordering until reads in dis-
tributed data stores. However, LazyLog differs from them in
important ways. Skyros hides the coordination for replicat-
ing within a single shard by deferring ordering and execution
of so-called nil-externalizing operations until reads. Lazy-
Log systems avoid shard-internal overheads like Skyros, but
importantly, they also hide the cost of global ordering across
shards. Occult does not enforce ordering on writes but does
so upon reads, and works with multiple shards. However, it
only provides causal ordering across shards, a weaker model
than linearizability that LazyLog provides.

Ordering. Consensus protocols like Paxos [66] and oth-
ers [70, 79] can be used to order requests in 2RT Ts. However,
they offer a different interface than shared logs. Further,
while they can order log entries in a shard, when the shared
log itself is partitioned, these protocols cannot be used to
establish a total order for log entries across shards. Specu-
lation [64, 82, 94] and network ordering [69] provide 1RTT
ordering for consensus but only within a shard. Eris [68]
uses network ordering for multi-shard transactions but re-
quires special hardware. Prior approaches that exploit com-
mutativity [76, 81] need not wait for ordering (similar to
LazyLog) when writes commute. However, log appends do
not commute, so this approach does not work for shared
logs. Kronos [43] is an event-ordering service that provides
efficient ordering; however, it only provides a partial order.
Metadata Separation. Gnothi [93], a block store, separates
the replication of data blocks and metadata; this separation
has similarities to Erwin-st. However, unlike Gnothi, Erwin-
st writes data and metadata in parallel without coordination
and lazily sequences the metadata. Such data-metadata sep-
aration has been useful in storage systems as well [67, 84].

8 Conclusion

Today’s shared logs eagerly order, leading to high latencies.
We identify that in many shared-log applications, such eager
ordering is unnecessary and order can be enforced later upon
reads; further, reads are time decoupled from writes. LazyLog
exploits this insight by deferring ordering and establishing
it upon reads. Our work shows that linearizable total order
across shards can be achieved in a shared log system with
low ingestion latencies and little to no overhead upon reads.
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