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ABSTRACT ARTICLE HISTORY
Background: Over the past two decades, the use of Metaverse-enhanced simulations in medical Received 12 October
education has witnessed significant advancement. These simulations offer immersive environments 2023

and technologies, such as augmented reality, virtual reality, and artificial intelligence that have Revised 12 August 2024
the potential to revolutionize medical training by providing realistic, hands-on experiences in ';égipted 11 October
diagnosing and treating patients, practicing surgical procedures, and enhancing clinical

decision-making skills. This scoping review aimed to examine the evolution of simulation KEYWORDS

technology and the emergence of metaverse applications in medical professionals’ training,
guided by Friedman’s three dimensions in medical education: physical space, time, and content,
along with an additional dimension of assessment.

Methods: In this scoping review, we examined the related literature in six major databases
including PubMed, EMBASE, CINAHL, Scopus, Web of Science, and ERIC. A total of 173 publications

Medical education;
clinical simulation;
metaverse; emerging
technologies; eXtended
reality; virtual reality;
augmented reality; mixed

were selected for the final review and analysis. We thematically analyzed these studies by
combining Friedman’s three-dimensional framework with assessment.

Results: Our scoping review showed that Metaverse technologies, such as virtual reality simulation
and online learning modules have enabled medical education to extend beyond physical
classrooms and clinical sites by facilitating remote training. In terms of the Time dimension,
simulation technologies have made partial but meaningful progress in supplementing traditional
time-dependent curricula, helping to shorten learning curves, and improve knowledge retention.
As for the Content dimension, high-quality simulation and metaverse content require alignment
with learning objectives, interactivity, and deliberate practice that should be developmentally
integrated from basic to advanced skills. With respect to the Assessment dimension, learning
analytics and automated metrics from metaverse-enabled simulation systems have enhanced
competency evaluation and formative feedback mechanisms. However, their integration into
high-stakes testing is limited, and qualitative feedback and human observation remain crucial.
Conclusion: Our study provides an updated perspective on the achievements and limitations of
using simulation to transform medical education, offering insights that can inform development
priorities and research directions for human-centered, ethical metaverse applications that enhance
healthcare professional training.

reality

KEY MESSAGES

+ The evolution of simulation technology and the emerging metaverse applications have
significantly extended medical education beyond physical boundaries and time constraints,
enabling learners to access a wider range of learning experiences thereby preparing them for
the rapidly changing healthcare environment.

« Learning analytics and automated metrics from metaverse-enabled simulation systems have
improved competency evaluation and formative feedback mechanisms. However, integration
into high-stakes testing is limited, and qualitative feedback and human observation are still
crucial.

+ The use of technology in medical education has advanced significantly, but problems still exist
with access, content quality, and integration into high-stakes assessments. These issues call for
more innovation and research to find the best ways to incorporate learning analytics, metaverse
applications, and fair, human-centered training methods.
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Introduction
In  medical education, artificial intelligence and
eXtended Reality (XR) applications represent a

cutting-edge intersection between technology and
healthcare, offering transformative opportunities to
enhance the training of medical professionals [1,2].
Through the emergence of multimedia technologies,
World Wide Web accessibility, and widespread net-
worked computing, this transformative shift has drasti-
cally changed the teaching and learning in the entire
medical school educational system. Two decades ago,
Friedman [3] proposed a visionary concept of the ‘mar-
velous medical education machine’ while acknowledg-
ing the potential of technology and criticizing the
shortcomings of medical education. He envisioned a
system where learners could access high-quality med-
ical education content through computer-based learn-
ing, simulations, and other technological means at any
time, from anywhere. This approach would allow learn-
ers to train at their own pace, unconstrained by the
limitations of traditional classroom settings, physical
location, or rigid curricula. Thus, Friedman's perspec-
tive on medical education in the United States has
become ‘stuck’ in three dimensions: physical space,
time, and content, which was rooted in his belief that
the traditional model of medical education had not
adapted effectively to the changing needs and oppor-
tunities of the modern world. Each dimension from
Friedman’s perspective is defined as below:

1. Physical Space: Friedman argued that traditional
medical education, based on physical institutions
like medical schools and classrooms, restricted
access, especially for those in rural areas. He
believed technology, like computer-based learn-
ing and telemedicine, could make medical edu-
cation more accessible by eliminating the need
for physical presence.

2. Time: The ‘time’ dimension in medical education
pertains to rigid schedules and timelines in tra-
ditional programs, which may not suit diverse
student needs. Friedman proposed flexible
learning models, allowing students to learn at
their own pace, aided by technology for adapt-
ability in medical education.

3. Content: This dimension relates to the curricu-
lum and content covered in traditional medical
education. Friedman argued that the curriculum
could be outdated, slow to adapt to new med-
ical discoveries, and overly focused on theoreti-
cal knowledge rather than practical skills and
patient-centered care. Friedman proposed a

more dynamic and adaptable approach to
delivering content in medical education. He
believed that technology could help continu-
ously update educational materials, ensuring
students access the latest and most relevant
medical information.

The physical space of medical schools has not kept
up with the increasing demand for medical profession-
als. Many medical schools have faced challenges in
expanding their physical facilities to accommodate the
growing demand for medical education [4]. The time
required to complete a medical degree has remained
remarkably stable over the past several decades, and
the number of required courses has increased [5,6].

With the advent of the metaverse technology, the
marvelous medical education machine has now
become a reality. Metaverse is a combination of ‘meta’
and ‘universe’ which describes a parallel or virtual envi-
ronment linked to the physical world [7]. More specif-
ically, the Metaverse is an umbrella term for a network
of interconnected virtual spaces and immersive tech-
nologies, where users typically wear a head-mounted
device to explore and interact with a blended physical
and digital world. Application of Metaverse or Meta
platforms in medical education offers new promising
technological and pedagogical affordances for the
development of healthcare professionals’ competencies
ranging from patient care, medical knowledge, proce-
dural training to interprofessional teamwork, clinical
reasoning, and critical thinking.

The machine envisioned by Friedman in 2000 would
provide endless opportunities for repetitive practice of
clinical skills, exposure to a wide range of patients and
conditions, and experimentation through ‘what-if’ sce-
narios. Key capabilities of this envisioned machine
became fully or partially realized through the range of
metaverse applications in recent years, including clini-
cal representation using virtual patients (interactive
computer-based simulations of clinical encounters for
diagnosis, treatment planning, and communications
training [8]), procedural skills trainers with haptic feed-
back for practicing technical skills like laparoscopy or
robot-assisted surgery [9,10], sensory rendering of
symptoms through virtual reality [11], and multimodal
learning analytics and automated scoring models to
provide near real-time feedback on team and/or
learner performance [12-14].

Analyzing the evolution within each dimension of
Friedman’s framework offers a structured approach for
evaluating the advancement toward the envisioned
metaverse in medical education while pinpointing
existing deficiencies. A systematic understanding of



how metaverse applications or marvelous medical
education machines can leverage their unique affor-
dances to best support procedural training, sharpen
clinical decision-making skills, and fortify teamwork
mechanisms, among various other aspects, which is
currently lacking in medical education. Thus, we exam-
ined the evolution of simulation technology and the
emergence of metaverse applications in medical pro-
fessionals’ training through the lens of Friedman’s three
constraints in medical education: physical space, time,
and content, along with an additional dimension of
assessment by utilizing a scoping review methodology.

Including Assessment as a key dimension in the
framework enabled us to systematically review the
diverse methods employed to evaluate learning expe-
riences and outcomes in metaverse applications for
medical education. Our approach taken to examine
evaluation methods would fill a significant gap in the
existing literature. The following four research ques-
tions guided this scoping review:

1. In what ways have metaverse-based simulation
technologies changed the physical space aspect
of medical education, impacting learning loca-
tions and resource accessibility?

2. How have metaverse-based simulation technol-
ogies changed, if at all, the way that medical
education is delivered in terms of time, includ-
ing when lessons are taught, how flexible the
schedule is, and how feedback is provided in
real-time?

3. How has the evolution of simulation technolo-
gies and metaverse applications affected the
quality and availability of educational content
in medical training?

4. What changes have occurred in the assessment
methods in medical education due to
metaverse-based simulation technologies (e.g.
high-stakes assessments, fairness in assessment,
and competency evaluation)?

Materials and methods

This scoping review used a systematic approach to
identify, select, and synthesize relevant studies using
Friedman’s idea of the ‘marvelous medical education
machine’ in the following four domains.

« Time refers to when educational interactions
and events occur, often requiring learners and
faculty to participate simultaneously. Friedman
[3] argues that medical education is ‘stuck’ in
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time because events are bound to set sched-
ules. Additionally, the concept of ‘time’ in the
context of medical education and simulation
technology is linked to the idea of the learning
curve or proficiency gain over time. The use of
simulation technology may have a significant
impact on the learning curve by potentially
accelerating the time it takes to acquire new
skills.

«  Space refers to the learning environment where
educational experiences, interactions, and
events occur physically or virtually, often in
classrooms and healthcare delivery settings tied
to an academic medical center. Despite the fact
that delivery mechanisms have been less
restricted to specific locations in recent years,
medical education has been ‘stuck’ in space for
decades [3].

«  Content refers to the biomedical topics that are
being taught. This covers a broad spectrum of
areas, such as anatomy, physiology, diagnostics,
surgical procedures, clinical reasoning, and
patient care among others. In response to
advancements in medical knowledge and
changes in healthcare, some medical schools
have expanded their curricula to include more
courses or new areas of study [3].

+  The ‘Assessment’ dimension was included
because, in the past two decades, assessment
has become increasingly important and wide-
spread in medical education in general and in
clinical simulation, in particular, to evaluate
trainees’ clinical competency and readiness for
practice [15,16]. As technology advances, multi-
modal data sources, such as video, audio, phys-
iological data, and user interactions, can be
collected and analyzed to examine meaningful
associations, observe trends, and provide
precision-guided feedback to each team or
learner individually for deliberate practice and
skills remediation [12,17,18].

We detailed the key steps involved in our review
process, including a protocol, search strategy, eligibility
criteria, critical appraisal for inclusion, data charting,
and analysis used to achieve our study purpose
as below.

Protocol

A protocol was developed based on the recommenda-
tions of the Prisma extension for scoping reviews
reporting guidelines (PRISMA ScR) [19,20].
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Search strategy

An experienced health sciences librarian generated
search terms based on the Friedman articles published
in Academic Medicine (1999) and Medical Teacher
(2000). Reference tracking was also performed on both
versions. The original search strategies were developed
in PubMed and translated as appropriate to the other
databases: (((Computer-Assisted Instruction[mh] OR
computer-assisted instruction[tiab] OR digital simula-
tion[tiab] OR educational innovation[tiab] OR
Educational technology[mh] OR educational technolo-
gyltiab] OR new media technolog*[tiab] OR perfor-
mance gains[tiab] OR Problem-based Learning[mh] OR
problem-based learning[tiab] OR serious games[tiab]
OR simulation-based education[tiab] OR virtual reali-
ty[mh] OR virtual reality[tiab] OR video games[mh] OR
video games[tiab]) AND (Education, Medical/trends OR
diffusion of innovation[mh]) AND (Educational
Measurement[mh] OR educational measurement*[tiab]
OR Clinical Competence[mh] OR clinical competencel-
tiab] OR Clinical Decision-Making[mh] OR clinical deci-
sion making[tiab] OR learning retention[tiab])).

The detailed search strings and Boolean operators
for each database are included in the Search Report
(Supplementary Appendix A).

A systematic search of MEDLINE (PubMed), EMBASE
(Embase.com), CINAHL (EBSCOhost), Scopus (Elsevier),
Web of Science Core Collection (Clarivate Analytics),
and ERIC (Proquest) to identify articles on the topic of
innovation in medical education, especially the idea of
it being stuck in time, space, and content, was con-
ducted. To reduce language bias, abstracts for articles
in languages other than English were evaluated during
the screening process. Findings are reported according
to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement [21], elabora-
tion, and explanation [19].

All searches were completed by 18 December 2020.
Citations were imported into EndNote X9.3.3 (Thomson
Reuters, New York, NY, USA) for deduplication, then
exported into Excel (Microsoft Office 2016) for analysis.

Screening and selection
Eligibility criteria

The initial phase of our literature screening process
was centered on three key inclusion and exclusion
criteria.

Language Inclusion: Only studies conducted in
the English-language studies were considered.

« Time Frame: Our scope included articles pub-

lished within the past two decades, in align-
ment with the original publication of Friedman’s
seminal work in 2000.
Quality Assurance: To ensure the utmost rigor,
authenticity, and quality, we focused exclusively
on peer-reviewed articles published in reputa-
ble scholarly journals.

Our subsequent screening phase entailed the select-
ing studies based on the content and focus areas.
Content and Focus Criteria:

«  Studies focus on medical education.

+  Studies involve the use of education technology,
clinical simulation, or any form of extended reality.

«  Studies explore e-learning applications.
Studies provide insights related to at least one
of Friedman’s dimensions: Time, Space, Content,
or Assessment.

Then, our focus was directed exclusively toward studies
within the field of health professions education, differenti-
ating from investigations centered on medical technology,
for instance. Our final step involved the exclusion of pub-
lications based on the following criteria:

Exclusion Criteria:

+  Studies focus on medical technology that is not
related to education.

« Studies are conducted outside of the health
professions education setting.
Studies describe problem-based learning with-
out any technology integration.

«  Studies only discuss medical school curriculum
changes without the inclusion of technology

«  Studies involve learners who are not medical
students, nurses or nursing students, residents,
or other healthcare professionals.

Critical appraisal included publications

To mitigate selection bias, we employed several strate-
gies. First, two reviewers (NM, CJ) independently
screened titles and abstracts, with a third reviewer (VP)
resolved any disagreements. The review team met reg-
ularly to discuss and resolve any ambiguities in study
selection. Second, we used a pre-defined screening
form based on our inclusion/exclusion criteria to
ensure consistent application across all potential stud-
ies. To appraise the quality, study design, and assess
the risk of bias of included studies, we utilized the
Mixed Methods Appraisal Tool (MMAT) [22] (Table 1).
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Table 1. Quality appraisal of the included studies using Mixed Methods Appraisal Tool (MMAT) [22].

Qualitative studies (15) Can't tell No Yes
1.1. Is the qualitative approach appropriate to answer the research question? 0 0 15
1.2. Are the qualitative data collection methods adequate to address the research question? 0 0 15
1.3. Are the findings adequately derived from the data? 0 0 15
1.4. Is the interpretation of results sufficiently substantiated by data? 0 0 15
1.5. Is there coherence between qualitative data sources, collection, analysis, and interpretation? 0 0 15
Randomized controlled trials (26)

2.1. Is randomization appropriately performed? 0 0 26
2.2. Are the groups comparable at baseline? 1 0 25
2.3. Are there complete outcome data? 0 0 26
2.4. Are outcome assessors blinded to the intervention provided? 10 0 16
2.5 Did the participants adhere to the assigned intervention? 0 0 26
Non-randomized studies (47)

3.1. Are the participants representative of the target population? 0 0 47
3.2. Are measurements appropriate regarding both the outcome and intervention (or exposure)? 0 0 47
3.3. Are there complete outcome data? 0 0 47
3.4. Are the confounders accounted for in the design and analysis? 7 3 37
3.5. During the study period, is the intervention administered (or exposure occurred) as intended? 0 0 47
Quantitative descriptive studies (39)

4.1. Is the sampling strategy relevant to address the research question? 1 0 38
4.2. Is the sample representative of the target population? 0 0 39
4.3. Are the measurements appropriate? 0 0 39
4.4. Is the risk of nonresponse bias low? 17 2 20
4.5. Is the statistical analysis appropriate to answer the research question? 1 0 38
Mixed method studies (15)

5.1. Is there an adequate rationale for using a mixed methods design to address the research question? 0 0 15
5.2. Are the different components of the study effectively integrated to answer the research question? 0 0 15
5.3. Are the outputs of the integration of qualitative and quantitative components adequately interpreted? 0 0 15
5.4. Are divergences and inconsistencies between quantitative and qualitative results adequately addressed? 1 2 12
5.5. Do the different components of the study adhere to the quality criteria of each tradition of the methods involved? 0 0 15

This tool was chosen for its ability to assess various
study designs, including qualitative, quantitative, and
mixed methods research.

Out of the final pool of 173 selected publications
for final analysis, most papers have been published
since 2010 (N=131, 75%) (Supplementary Appendix B).
They also have been published in a wide variety of
scholarly journals (total number of unique journals is
138) and cover a wide range of medical specialties,
including top fields: medical education and informatics
(31 journals), surgery (20 journals), ophthalmology &
ENT specializations (9 journals), obstetrics and gynecol-
ogy (7 journals), pediatrics (6 journals), emergency
medicine (6 journals), and others.

The studies were conducted in various countries
around the world, including. North America (USA,
Canada): 56% (99 studies), Europe (Germany, United
Kingdom, Netherlands, Greece, Denmark, Sweden,
Portugal, Croatia, Ireland, Italy): 32% (57 studies), Asia
and Middle East/transcontinental country (Malaysia,
Korea, Iran, Turkey): 7% (11 studies), Australia: 4% (5
study), New Zealand: 1% (1 study). Most studies were
quantitative (N=112 studies, 65%), relying primarily on
pre- and post-testing (knowledge tests, skills assess-
ments, surveys, observational checklists (rating techni-
cal skills, behaviors, etc.), performance metrics (time,
errors, efficiency, etc.), surveys and tests scores. Only a
few studies were qualitative (N=15, 9%), using inter-
views, focus groups, observations, field notes, and

reflective journals; or mixed methods (N=15, 9%),
using a combination of performance data and focus
groups, interviews, and/or observations. Thirty-one
papers (N=31, 18%) did not fall under the MMAT clas-
sification criteria. These papers were not empirical
studies, but rather case studies, case series, commen-
taries, or manuscripts describing specific simulation
scenarios. Their primary focus was on illustrating the
application of emergent technology or clinical simula-
tion and its integration into medical curricula. Although
not empirical in nature, these publications generated
novel research questions, built theories, and provided
valuable insights into one or more dimensions (space,
time, content, assessment) in the context of medical
education.

Data charting and analysis

Before data extraction, a draft extraction table was
developed in Microsoft Excel to align with the scoping
review research questions. Three authors extracted the
final data (VP, NM, and CJ), before manually assem-
bling and resolving discrepancies. A coding scheme
was developed based on Friedman’s [3] framework
with the four dimensions (Figure 1) to thematically
analyze included publications. All 173 papers included
in the final review were analyzed and coded based on
the coding scheme. This involved a rigorous process of
reading and re-reading the selected papers to identify
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Identification of studies via databases and reaisters
g Records identified from:
= PubMed (n=278)
3 Embase (n=741) N Record's removed before
E Scopus (n=103) 7| screening:
S CINAHL (n=427) Duplicate records removed
=2 WOS (n=78) (n=103)
Sentinel Article search (n=24)
Total (n=1651)
v
Records excluded
Records screened " (n=918)
(n=1548)
g Reports sought for retrieval Reports not retrieved
= (n=630) (n =25)
o
(5]
(77}
Reports assessed for eligibility
(n = 605) Reports excluded*:
Reason 1 (n =111)
Reason 2 (n =216)
Reason 3 (n =105)
) 4
Total studies included in review
= (n = 173), including
= Space (n=13)
© Time (n=21)
£ Assessment (n=37)
Content (n=102)

Figure 1. PRISMA Flow diagram of studies on innovation in medical education, especially the idea of it being stuck in time, space,
and content. *Reason 1: Studies are outside of the health professions education setting. Reason 2: Studies are not related to the
space, time, content, and assessment based on Friedman’s operationalization. Reason 3: Participants were not medical students,
nurses or nursing students, residents, other healthcare professionals.

significant patterns and trends within each dimension.
This iterative process allowed for the extraction and
coding of key ideas into themes. As themes emerged,
they were systematically categorized to help map and
interpret the study’s complex data landscape.

Results

The scoping review revealed that advancements in
simulation technology have greatly impacted medical
education in all four dimensions of physical space,
time, content, and assessment. In the original
Friedman’s model [3], the dimension of space was not
intersecting with the other dimensions because it was
‘stuck’ (see Figure 2, left). The fixed locations

(classrooms or hospitals) and predetermined times for
learning activities meant that all trainees had to prog-
ress through the material at the same rate, regardless
of their individual learning curves or prior knowledge.
The content was primarily dictated by faculty or avail-
able patients in experiential learning setting, rather
than being flexible to learner needs, meant that train-
ees could not slow down on challenging topics or
speed up through familiar ones. In the updated
‘unstuck’ medical education model (see Figure 2, right),
space is no longer isolated but converges with content
and time, illustrating the shift towards increased inde-
pendence from these dimensions in medical educa-
tion. The spatial dimension has greatly expanded due
to advances in technology, which has expanded
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beyond classrooms and hospitals to include virtual
simulations, mobile learning, and remote sites, which
allow for flexibility in the location of learning.
Temporally, on-demand access and self-paced progres-
sion become normalized in medical education nowa-
days. The proliferation of content dimension as
evidenced in this review, illustrates a wide range of
topics customizable to individual learner needs.
Furthermore, assessment in the updated model (Figure
2, right) has become more multifaceted and multi-
modal. It can occur at any point in the learning pro-
cess, using a variety of methods (quantitative,
qualitative, or mixed) and sources (faculty, self, peer,
observer, or technology), serving both formative and
summative purposes. To exemplify this updated model,
we can draw on an innovative eXtended Reality
International Grand Rounds study, which utilized XR
technology to present complex medical cases to train-
ees [23]. During bedside rounds in limited-space grand
rounds, the XR application has enabled this experience
for trainees to overcome the constraints of space and
has connected tens of trainees to the same content at
the same time to allow for a learning event to occur
at scale.

The increasing trend in the total number of papers
over the years also signifies the ongoing evolution and
importance of simulation technology in transforming
and unsticking the traditional constraints of medical
education. However, there is a clear discrepancy in the
concentration of research efforts across the key themes,
with the content being most heavily researched,

followed by assessment, time, and finally space (Figure
3). The imbalance across categories, with Content hav-
ing the most papers, reflects the literature’s emphasis
on developing new educational content and curricula
using simulation/XR technologies, while fewer studies
focused specifically on overcoming time or physical
space limitations. To be included under the Content
category, papers had to focus on novel instructional
approaches/techniques/curriculum or improvement of
existing ones with the overarching goal of fostering
innovative teaching and learning practices and improv-
ing trainees’ technical and/or nontechnical skills.
Figure 3 illustrates the number of publications per
year from 2000 to 2020, marked by an initial emphasis
on e-learning and basic virtual simulations (2000-
2005), progressing to a substantial increase in studies
on virtual patients and procedural simulators (2006-
2013), and a rapid expansion phase (2014-2020) char-
acterized by significant growth in XR research,
enhanced assessment methodologies using simulation
data, and the incorporation of Al. Importantly, more
recent empirical studies are shifting away from superi-
ority, non-inferiority, or equivalence trials comparing
XR to traditional teaching methods and are moving
toward the research paradigm surrounding how to
optimally integrate XR technologies for maximum
impact in terms of learning gains and transfer of learn-
ing from simulated experiences into clinical practice.
Clinical simulation has been increasingly incorpo-
rated into training across diverse medical and surgical
specialties over the past 20years. Studies show
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Figure 3. Number of publications in each dimension space, time, content, and assessment from 2000 to 2020.

adoption in areas like anesthesiology (e.g. simulators
for endotracheal intubation, epidural placement, fiber-
optic intubation [24,25]), radiology (e.g. VR simulation
for ultrasound-guided procedures and CT interpreta-
tion [26,27]), obstetrics (e.g. simulators for obstetric
emergencies like postpartum hemorrhage and shoul-
der dystocia [28]), pediatrics (e.g. virtual simulation for
neonatal resuscitation and pediatric trauma manage-
ment [29]). Traditionally, simulation-based training has
involved using a mannikin as a patient in a simulated
patient care setting. To improve accessibility, resource
utilization, and the learner experience, there is a grow-
ing movement towards using virtual reality (VR)-based
simulation training in healthcare [30,31].

Overall, there has been significant advancement in
simulation technology for developing technical skills in
specialties that require high levels of technical exper-
tise, such as surgery (see Figure 4). There has also
been increased use of simulation for training diagnos-
tic reasoning skills and retaining knowledge across
medical specialties, not just technical skills. For exam-
ple, virtual patients for internal medicine education
and cardiology cases [32,33], or obstetrics VR simula-
tors to improve knowledge in managing complications
[34,35]. The use of simulation technology has had a
significant impact on the ‘space’ aspect of medical
education. The number of papers focusing on the spa-
tial aspect of simulation technology in medical educa-
tion has grown gradually over the years, although this
area remains less explored compared to other aspects.
The total number of papers focusing on assessment in

simulation technology in medical education is 37, indi-
cating a steady interest in this area. Simulation tech-
nology has also affected the ‘time’ aspect of medical
education, with 21 papers focusing on this topic, espe-
cially in recent years, with a peak in 2017.

Table 2 summarizes the results of the subgroup
analysis based on specific technologies and target
populations to provide deeper insights into which
methods are most effective for different educational
goals and learner groups. In 37% of the studies (n=65),
XR-type of technologies were the most prevalent,
demonstrating particular effectiveness in surgical, ana-
tomical learning, and procedural skills development.
E-learning platforms were the second most common
at 24% (n=42), utilized across different learner groups
with reported effectiveness in knowledge acquisition
and facilitating self-paced learning. Simulation-based
training at 20% (n=35) showed strong performance
improvements in team-based scenarios and crisis man-
agement. Serious games and gamification at 10%
(n=18) approaches proved engaging for medical
students and showed effectiveness in teaching
decision-making skills and procedural knowledge.

Reported sample sizes varied widely, ranging from 12
to 287 participants, with a mean of 72 and a median of
41. The most common interventions included VR simula-
tions for immersive, risk-free practice, simulator-aided
training courses using physical or computer-based mod-
els, web-based learning modules for flexible self-paced
study, serious games to enhance decision-making and
procedural skills, and e-learning platforms for remote
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Figure 4. A comprehensive overview of 173 papers, organized by color and broken down by dimension with their corresponding
themes. The inner circle of the chart depicts four main categories: Content in blue (102 papers), assessment in yellow (37 papers),
time in green (21 papers), and space in orange (13 papers).

Table 2. Results of the subgroup analysis that maps educational technology, target learner group, and intended learning objective

and effectiveness.

Technology

*n = number of studies Example
with specific technology Target trainee populations Educational goals Effectiveness studies
eXtended Reality + Medical students +  Anatomical understanding « Improved technical skills [36-40]
(XR)-enriched +  Surgical/emergency/internal +  Surgical skills + Reduced learning curve
simulations medicine residents +  Procedural skills «  Enhanced visuospatial understanding
n =65 (37%) +  Anesthesiology trainees +  Visuospatial reasoning and
- Radiology trainees « Improved clinical performance
+  Pediatric trainees
E-learning platforms «  Medical students +  Knowledge acquisition + Improved knowledge retention [41-43]
n = 42 (24%) «  Physicians (CME) +  Self-paced learning + Increased accessibility
« Nursing students +  Remote access to content « Flexible learning schedules
«  Pharmacy students
«  Physical and occupational therapists
Simulation-based +  Emergency/internal/family + Team-based training + Improved team communication [44-46]
training medicine residents «  Crisis management skills ~ « Enhanced decision-making in critical
n = 35 (20%) +  Obstetrics and gynecology trainees « Procedural skills situations
«  Critical care teams « Increased procedural confidence
«  Anesthesiology trainees
«  Surgical trainees
+  Pediatric trainees
Serious games/ +  Medical students +  Decision-making skills + Increased motivation and engagement  [47-49]
gamification «  Surgical trainees +  Procedural knowledge » Improved retention of procedural steps
n =18 (10%) «  Pharmacy students + Engagement in learning « Enhanced clinical decision-making
Other technologies (e.g. + Medical students « Just-in-time learning + Improved access to resources [50,51]
mobile apps, « Nursing students «  Self-assessment «  Enhanced self-directed learning
web-based tools) « Allied health professionals »  Supplemental learning » Complementary to traditional methods

n =13 (8%)
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access to educational content. Researchers measured
effectiveness through various outcomes, with perfor-
mance metrics (accuracy, time to completion, procedural
efficiency) being the most common (68%), followed by
learner perceptions (e.g. usability, realism) (55%), skill
acquisition and retention (42%), knowledge gains (both
self-reported and measured knowledge increases) (39%),
and clinical applicability, such as impact on patient care
and clinical practice (30%).

Studies that demonstrated performance improve-
ments in terms of faster completion times and
increased procedural accuracy were focused on both
complex tasks like laparoscopic cholecystectomy and
simpler, repetitive procedures, such as IV insertions
[52,53]. The structured nature of training modules
and real-time feedback mechanisms were key factors
contributing to these improvements. Usability and
realism of simulation tools were highlighted in ~55%
of the studies. High-fidelity simulations were particu-
larly effective in complex, team-based environments
[54], while low-fidelity models proved beneficial for
fundamental skill acquisition [55]. In terms of knowl-
edge gains, these gains were most salient with learn-
ers from emergency medicine, critical care, and
surgical disciplines [39,44,56]. Interactive and adap-
tive learning environments tend to enhance learners’
diagnostic abilities and treatment management skills
post-simulation intervention [57,58].

We structured the study results by revisiting key pre-
dictions made by Friedman [3] and analyzing to what
extent they have come true, partially come true, or have
not yet been realized based on the evolution of simula-
tion and evidence from more recent research. Thus, we
grouped the predictions into categories of physical space,
time, content, and assessment. It is important to note the
significant heterogeneity in terms of technologies, educa-
tional contexts, learner groups, and measured outcomes
across the 173 included studies, which should be consid-
ered when interpreting the synthesized results presented
in the following sections.

Physical space: expanding medical education
beyond physical limitations through metaverse-
based simulation technologies

The Friedman paper [3] predicted simulation technol-
ogy would allow medical training to occur anytime
and anywhere, but this prediction has proven only
partially true. While web-based virtual simulations
have certainly increased accessibility and flexibility,
most simulation training still depends on dedicated
centers with specialized equipment rather than being
ubiquitously available anywhere. The studies included

in the ‘Space’ dimension describe research on how
metaverse-like technologies have allowed medical
education to overcome dependence on physical loca-
tions. The selected papers related to the ‘physical
space’ dimension fell into four categories: (1) virtual
reality, (2) content-based e-learning, (3) skills-based
e-learning, and (4) virtual patients.

Within the space domain, 8 out of the 13 studies
were focused on skill and content-based e-learning.
Web-based modules provide continuous skill practice
and content learning unconstrained by place. For
example, Guetterman et al. [59] showed virtual human
programs could effectively teach communication skills
remotely. By using a virtual patient, case-based online
modules, or modern video conferencing tools, learners
are freed from the restrictions of having to interact
with standardized patients only in person.

Another major focus was virtual and augmented
reality simulation. Based on the studies included in
this scoping review, ~60% utilized some form of
extended reality technologies like VR and AR, while
40% involved physical manikins, task trainers, or stan-
dardized patients. Historically, simulation training
employed physical manikins, limiting access. Virtual
reality simulation increases accessibility and scalability
while reducing demands on resources and facilitators
[60]. Analysis of the review studies shows a steady
upward trend in papers on ‘virtual reality’ and ‘medical
education’ since 2010, with growth acceleration around
2016-2017. Several review papers attribute the uptick
in VR medical simulation after 2010/2011 to factors
like improved graphics, haptics, AR integration, and
motion tracking [61,62]. Earlier VR simulators had more
rudimentary visual graphics and virtual anatomy.
Newer systems like the VOXEL-MAN TempoSurg [63]
and Visible Ear Simulator [64] feature enhanced 3D
rendering and physics-based lighting for ultra-realistic
illustrations of human anatomy. In surgical education,
while early VR simulators had limited force feedback,
new models incorporate advanced force-feedback hap-
tics for highly realistic feeling of tissue properties and
tool interactions during surgical tasks [65]. Overall, the
studies demonstrate expanding capabilities to repli-
cate clinical scenarios through digital environments,
3D visualizations, and immersive virtual worlds.

Unsticking medical education in time: improving
learning curves, retention, and practice
opportunities

Our analysis revealed significant developments in how
medical education has been ‘unstuck’ from traditional
time constraints over the past two decades. Friedman'’s



paper [3] discusses the dimension of ‘Time’ in medical
education and makes two predictions: the use of sim-
ulators will provide limitless practice opportunities and
will eliminate the need for regimented, lockstep curric-
ula. These predictions have become partially true. In
short, modern simulators offer repeated practice on
demand, but curricula are still fairly regimented, and
full individualization has not occurred. According to
Friedman, requiring faculty and learners to participate
in class or training simultaneously in the same place
can limit the time available to acquire new skills.
Applying new technologies in medical education offers
flexibility for developing competencies in areas like
patient care, knowledge, procedures, teamwork, collab-
orative diagnostic reasoning, and critical thinking. The
papers in this category show how increased flexibility
in the time aspect of medical education has enhanced
knowledge retention, quicker skill acquisition, and
more efficient performance feedback loops. Four key
themes emerged: (a) accelerated learning curves, (b)
improved retention, (c) increased opportunities for asyn-
chronous learning, and (d) automated precision feedback
for deliberate practice.

Twelve studies across specialties like gastroenterol-
ogy, obstetrics, orthopedics, and perfusion demon-
strate that simulation-based training can significantly
shorten the length of learning curves to attain compe-
tency for various technical skills compared to tradi-
tional clinical training alone. For instance, Loukas et al.
[66] found a VR simulator significantly accelerated
medical students’ learning curve for intravenous can-
nulation. Yudkowsky et al. [67] showed that practice
on an augmented reality/haptic simulator with a library
of virtual brains improved neurosurgery residents’ abil-
ity to successfully perform ventriculostomy cannula-
tion on the first pass in both simulated and live
procedures. In another study by Andersen et al. [68],
structured and distributed virtual reality simulation
practice before cadaveric dissection led to lower cog-
nitive load and improved performance compared to
standard practice during training for novice surgeons.

Research in the last two decades reveals that incor-
porating technology-enhanced simulation may result
in superior retention of clinical knowledge and skills
compared to traditional teaching methods alone.
Studies across medical disciplines have shown that
online learning, virtual simulation, and spaced educa-
tion enable durable retention of knowledge, technical
skills, and critical reasoning abilities for months to
years after initial training. For example, in a random-
ized trial, Maagard et al. [39] showed VR simulator
training enabled laparoscopic skills to be retained for
up to 18 months, with only some decline after 6 months.
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Four studies in this review demonstrated the value
of asynchronous online learning compared to required
synchronous lectures and training, which Friedman
criticized for inflexibility. Early studies in the 2000s
showed online discussion forums and computer-based
modules could improve critical thinking and interac-
tion beyond scheduled lectures [69-71]. Growth of
learning management systems and e-learning plat-
forms enabled increased adoption of asynchronous
online learning in medicine [72]. Methods like online
spaced education, personalized modules, and virtual
patients enhance learning outcomes for knowledge,
diagnostic skills, etc. [43,73,74]. For example, Cook
et al. [73] found that spaced education improved
long-term retention of clinical knowledge compared to
traditional methods.

Automated scoring and mobile feedback technologies
have been shown to help trainees save time,
self-monitor progress, identify focus areas, and enable
efficient deliberate practice to accelerate compe-
tency—advances that were not feasible through tradi-
tional training alone [75]. Tracking performance metrics
longitudinally and with the use of artificial neural net-
works on procedural simulators allows monitoring of
skill progression over time [76,77]. However, some
research found limitations. Andersen et al. [64] showed
VR assessment of mastoidectomy skills primarily mea-
sured efficiency rather than safe practices. Guided
facilitation and supplemental feedback mechanisms
were still needed.

These findings illustrate how technology has
enabled more flexible, efficient, and personalized tim-
ing in medical education, addressing Friedman's con-
cerns about rigid scheduling and pacing.

Content domain: skill and knowledge targets in
simulation studies

Friedman [3] predicted that simulators would enable
(a) on-demand practice of skills identified by faculty as
priorities, (b) repetitive practice with variations on
medical topics and cases, (c) recorded student perfor-
mance data to provide feedback on areas needing
work, and (d) self-paced learning and individual cus-
tomization based on performance. This has been only
partially realized, as the reviewed studies have shown
successful application of simulation across many spe-
cialties and for various clinical skills (see Figure 5), but
curriculum requirements still play a major role in guid-
ing simulation content. The content dimension con-
tains 102 papers focused on using simulation to
improve medical students’ skills and knowledge. These
papers span multiple medical specialties, including
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Figure 5. Distribution of specialties within content dimension and educational goal.

surgery, cardiology, rehabilitation, anesthesiology,
emergency medicine, obstetrics/gynecology, pediatrics,
radiology, and general clinical skills. The selected
papers were further categorized into four main catego-
ries: non-technical skills, technical skills, diagnostic rea-
soning, and knowledge retention.

Sixty-seven of the 102 papers focused on the use of
novel simulation-based training scenarios to improve
trainees’ technical skills for specific procedures; the
majority of the papers were in surgical education.
These studies demonstrated how simulation provides a
low-risk training modality for trainees to gain profi-
ciency in techniques before working with real patients.
For example, Koch et al. [78] created a new virtual
reality endoscopy simulator to significantly improve
learners’ performance of colonoscopies compared to
baseline, with decreased procedure time and improved
insertion depth. In a similar vein, Barsuk et al. [79,80]
developed a mastery learning curriculum using
high-fidelity simulation to improve central venous
catheter insertion skills. Trainees went through an
online module and then practiced on a mannequin
until they demonstrated mastery based on a checklist.
The simulator allowed endless opportunities to prac-
tice and receive detailed feedback on technique until
reaching competency.

Fifteen studies focused on building learners’ diag-
nostic reasoning and care management abilities
through exposure to diverse clinical presentations and
simulated clinical scenarios. For example, Giuliani et al.

[81] used radiation oncology simulations of high-acuity,
low-frequency cases to give participants practice deter-
mining appropriate responses. In this study, they
selected 5 high-acuity, low-frequency clinical simula-
tion scenarios in which participants had to determine
how to manage the situation to get to the desired
outcome. Participants highly valued these opportuni-
ties to strengthen clinical decision-making skills.
Battaglia et al. [82] created an online simulation using
a virtual diabetic patient which helped improve phar-
macists’ and pharmacy students’ confidence in provid-
ing medication therapy management and their
knowledge of how to deliver it. Learners could work at
their own pace to master the delivery of medication
therapy management.

Thirteen papers investigated using simulation to
improve knowledge retention and anatomical under-
standing. For example, Vertemati et al. [83] developed
an interactive virtual reality model for 3D visualization
of patient-specific organs. This technology enhanced
students’ comprehension of organ structures. However,
researchers cautioned about existing limitations in
accurately modeling human anatomy and pathology
processes digitally.

Other papers examined using novel simulation-based
training scenarios to enhance non-technical skills like
communication and teamwork. For instance, Chheang
et al. [84] developed a multi-user virtual reality simu-
lated environment to train interprofessional communi-
cation for anesthesiologists and surgeons during



potential surgical complications in laparoscopic sur-
gery. Bracq et al. [31] used a virtual reality simulation
to train scrub nurses in error recognition and situation
awareness by immersing them in a simulated operat-
ing room with embedded errors. The study results
showed nurses who detected more errors had higher
situation awareness, detected high-risk errors faster,
and felt more immersed and satisfied with the
experience.

Assessment: clinical simulation’s bigger impact on
formative vs. high-stakes assessment

Although the Assessment dimension was not explicitly
discussed in the original paper [3], Friedman predicted
that automated metrics and tracking from simulation
technology would enable new competency-based
assessment methods. In the last two decades, this pre-
diction has proven partially true. Out of 173 studies
reviewed, 37 pertained to assessment—the second
largest category. Over the past two decades, technolo-
gies like virtual patients, learning analytics (refers to
the ‘measurement, collection, analysis and reporting of
data about learners and their contexts... [85], p. 1381),
and immersive simulations have made formative com-
petency evaluation more practical and informative, but
have not yet transformed high-stakes assessments.
Seventeen studies out of 37 measured technical
and non-technical skills using simulators and technol-
ogy. These methods enhanced assessment quality,
learning experience, and trainee proficiency [86,87].
Eleven studies provided validity evidence for specific
simulation-based assessments, like tools to evaluate
bronchoscopy skills (e.g. [88]). Nine studies examined
automated, peer- and self-assessment, finding benefits
like improved engagement and personalized feedback
(e.g. [89,90]). For example, Guetterman et al. [59]
showed that the virtual human application effectively
assessed performance-based competence in breaking
bad news to a cancer patient. Automated feedback
after team-based simulations can be provided based
on tracking non-technical skills through natural lan-
guage processing and biosensor data [14,18,91].
However, the reviewed papers suggest that exclu-
sively automated assessment lacks qualitative nuance,
and validity evidence is still needed to integrate simu-
lation into high-stakes testing [59,92,93]. Degree of
assessment automation also depends on the simula-
tion’s main function (procedural skills vs. team-based
training for interprofessional scenarios), fidelity (low or
high) and number of learner at a time (single or
multi-user scenarios). Advanced application of intelli-
gent tutoring systems in procedural training, utilizing a
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state machine approach to provide real-time, adaptive
feedback shows promising results [94]. While automa-
tion makes competency evaluation more practical,
challenges remain in scaling such systems, data inter-
pretability, trust and data privacy, infrastructure needs,
and required data science expertise, especially for
more complex, multi-user VR simulations.

Discussion

This scoping review analyzed the evolution of simula-
tion technology, and emerging metaverse applications,
over the past two decades to assess progress in trans-
forming medical education around physical space,
time, content, and assessment based on Friedman [3]
paper. The results shed light on critical aspects of
medical education, particularly in the context of simu-
lation which has made partial but meaningful progress
in expanding access beyond physical constraints, accel-
erating competency gain, and enabling more flexible
educational experiences. However, some constraints
around resources, content quality, curricular customiza-
tion, and integration into high-stakes assessment
persist.

Our findings both align with and extend those of a
recent related review. While previous literature reviews
and empirical studies on this topic have primarily
focused on comparing XR to traditional teaching
methods or educational technologies [1,95-97], our
review recognizes that the field has evolved beyond
this foundational question. Instead, our scoping review
documents the progress over 20years and pinpoints a
critical shift in the research paradigm surrounding how
to optimally integrate XR technologies across various
dimensions of medical education for maximum impact.
In addition, while few existing reviews focus on spe-
cific medical specialties, specific skills or learner groups
(e.g. clinical anatomical education by McBain et al.
[98]; intensive care unit staff training by Hill et al. [99];
surgical education [100]; cardiopulmonary resuscitation
training by Trevi et al. [101], or nontechnical skills
[102]), our study takes a broader approach and synthe-
sizes findings across diverse areas of medicine and all
levels of medical education in terms of impact on
learning, usage, and effectiveness. In contrast to the
review by Curran et al. [1] on artificial intelligence in
medical education, which focused primarily on
knowledge-based outcomes, our review highlights the
potential of these technologies for both cognitive,
behavioral, and psychomotor skill development (see
Table 2). Additionally, our review of assessment meth-
ods in metaverse applications for medical education
addresses a significant gap in the existing literature.
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We mapped the current assessment landscape, high-
lighting the potential of multi-modal training ecosys-
tems, and identified the shift toward personalized
assessment, automation, and integration into
high-stakes evaluations. The following discussion pres-
ents the implications and broader significance of the
findings of our scoping review.

Extending medical education beyond physical
boundaries

Our review’s findings revealed that, in terms of the
Space dimension, the selected articles fell into four
groups: virtual reality, content-based e-learning,
skills-based e-learning, and virtual patients. All these
learning modalities allow learners to be free from the
traditional constraints of physical classrooms and clini-
cal practice settings, embracing innovative technolo-
gies and virtual platforms to provide a dynamic and
flexible learning experience. While fewer studies
directly addressed the space dimension, reviewed
studies demonstrated how this multi-approach lever-
ages e-learning [103], telemedicine [104,105], aug-
mented reality [95,106], virtual simulations [36], and
online resources to reach a wider audience at scale. At
the same time, e-learning and metaverse-based simu-
lations can support the development of the following
six core competencies mandated by the Accreditation
Council for Graduate Medical Education (ACGME) [72].

1. Patient Care: This competency focuses on the
ability to deliver safe, evidence-based, and
patient-centered care. E-learning and
agent-based simulations have the potential to
improve clinical skills, diagnostic reasoning, and
knowledge of medical conditions. Safe practice
of diagnosis, treatment planning, and care
delivery is made possible by virtual patients
that mimic real-world clinical interactions and
react dynamically in response to learner activi-
ties [107].

2. Medical Knowledge: This competency entails the
knowledge acquisition and clinical application
of medical knowledge. E-learning tools, such as
online courses and virtual libraries, can aid in
the acquisition and retention of medical knowl-
edge. Immersive 3D visualizations of anatomy
and pathology can enhance understanding of
structural relationships and disease processes
[108].

3. Practice-Based Learning and Improvement:
Medical professionals should be dedicated to
lifelong learning and continuous improvement

of their practice. E-learning platforms can sup-
port self-assessment, reflective practice, and
quality  improvement initiatives.  Artificial
Intelligence-driven dashboards that track skills
progression across virtual and real clinical expe-
riences to identify focus areas, knowledge gaps,
and learning curves.

4. Interpersonal and Communication Skills: Effective
communication is essential when interacting
with patients, their families, and the medical
staff. E-learning modules and multi-user virtual
environments can help medical trainees develop
their communication skills, including breaking
bad news, counseling, and teamwork.

5. Professionalism: Professionalism includes ethical
behavior, integrity, @ and  accountability.
Case-based XR-enhanced scenarios can include
modules on medical ethics, cultural compe-
tency, and professionalism in healthcare.

6. Systems-Based Practice: A key component of this
competency is understanding and navigating
the healthcare system, advocating for patient
safety, and collaborating effectively with others
in the healthcare system. Virtual hospitals and
clinics that simulate coordinated care across
departments and professions to understand
system interactions and quality improvement
processes.

Overall, all modalities mentioned above can col-
lectively contribute to a comprehensive and adapt-
able medical education system, enabling all levels of
trainees to acquire both theoretical knowledge and
practical skills while accommodating various learn-
ing preferences. Moreover, by removing the barriers
of geography and limited physical resources, medi-
cal training on digital platforms allows learners to
access a diverse array of clinical cases, collaborate
with peers and experts globally, and tailor their
learning journeys to individual needs. While extend-
ing medical education beyond physical boundaries
through technology-enhanced learning modalities
offers benefits, effectively embracing flexibility and
time independence in medical education presents
challenges.

Embracing flexibility and time-independence in
medical education

Friedman [3] advocated for more flexible learning
models, where learners could progress at their own
pace, accessing educational materials without follow-
ing a traditional curriculum with set timelines for



completion. He believed that technology could facili-
tate this flexibility and adaptability in medical educa-
tion. The rigid schedules and fixed timelines that have
characterized medical education for generations can
be limiting or not accommodating the diverse needs
of today’s learners [109], especially those who have
family responsibilities or wish to pursue education
later in life. By embracing more flexible and asynchro-
nous learning approaches, medical institutions can
empower students and practitioners to tailor their
education to their unique needs and circumstances
[103]. Technology-enhanced asynchronous learning
modalities are well suited to help instructors meet sev-
eral challenges of medical education, including (1) the
need and desire to promote self-directed learning, (2)
providing flexible learning opportunities, (3) offering
continuous (24h/day/7days a week) availability for
learners, and (4) engaging learners through collabora-
tive learning communities to gain significant learning
and augment continuous professional development.
While time-related studies were less numerous
(n=21), they revealed important trends. The results of
our review indicated that there is a need for asynchro-
nous learning. Embracing technology, such as online
modules and virtual simulations, can further facilitate
this shift towards a more accessible and adaptive med-
ical education system. While predictions around ubig-
uitous access and individualized content have not fully
materialized, gains have occurred in offering asynchro-
nous learning opportunities that supplement tradi-
tional curricula. A key metaverse-enabled capability is
asynchronous online learning, providing flexibility
beyond physical and scheduling constraints. This is
consistent with other reviews showing online learning
as an effective supplement, rather than a replacement,
for in-person instruction [110,111]. A blended approach
balancing asynchronous modules with some synchro-
nous activities and peer interactions is ideal [112].
However, truly ubiquitous access and individualized
content envisioned for metaverse learning have yet to
fully materialize. For example, current best practices

for team-based, acute-care instruction involve
manikin-based medical simulation are limited or
unavailable in  many community, rural, and

under-resourced hospitals, leading to inequity in access
to training and contributing to disparities in care [113].
With an average headset cost of $430 [114], remote
training can be accessed by populations around the
world on learners’ own schedules for a fraction of the
cost of conventional medical simulation training. It is
crucial to acknowledge that the implementation of
this technology may still raise significant hurdles that
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must be carefully considered especially in low and
middle-income countries (LMICs) [115].

Content quality in simulation and metaverse-
based learning

For decades teaching and learning in medicine has
centered on didactic lectures along with supplemental
journal article readings. The universal usage of lectures
is considered the most effective mode of information
transfer in medical education, but this method of
learning is associated with authoritarianism, poor lec-
turers, learners’ passivity, and poor retention. Friedman’s
vision for medical education involved a more dynamic
and adaptive approach to content delivery. He believed
that technology could facilitate the continuous updat-
ing of educational materials, allowing students to
access the most current and relevant information in
the field of medicine. However, e-content develop-
ment is a considerably new field that has emerged in
response to the rapid advancements in technology
and the increasing demand for digital learning
resources [116]. This field encompasses the creation of
educational content in various digital formats, such as
e-books, online courses, interactive modules, movies,
animations, simulations, interactive tests, interactive
activities, and multimedia presentations. E-content
development also requires pedagogical expertise with
technical skills to design engaging and effective learn-
ing materials that cater to diverse learners’ needs. The
digital nature of e-content allows for flexibility in deliv-
ery, accessibility, and customization for multi-purpose.
Thus, e-content quality plays an important role since it
directly influences the success of the learning process
and learner satisfaction. In both simulations and
metaverse-based learning, content quality should align
with educational objectives, promote active learning,
and provide opportunities for learners to apply theo-
retical knowledge in practical, clinically relevant con-
texts. A study by Barsuk et al. [117] demonstrated that
a simulation-based mastery learning curriculum for
central venous catheter insertion, with online learning
modules and deliberate practice on manikins, signifi-
cantly reduced bloodstream infections compared to
traditional ward-based training. This exemplifies the
value of aligned objectives, active learning, and oppor-
tunities for deliberate practice.

Regular updates to content to reflect the latest
advancements in medicine are also essential to main-
tain content quality [116]. Moreover, content should be
designed to ensure accessibility and inclusivity to
accommodate diverse learners, including those with
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disabilities, diverse demographic backgrounds (age,
race, and gender), as well as individuals from diverse
socioeconomic or cultural backgrounds, to ensure equi-
table access to medical education [109,118]. Metaverse
environments for medical education should incorporate
accessibility features, such as flexible user interfaces
controllable through various modalities, closed caption-
ing, adjustable text options, and wheelchair representa-
tions to accommodate disabilities. From the design
perspective, the quality of simulation content depends
on its realism and fidelity that use real-life clinical sce-
narios embedding robust feedback mechanisms.
Simulations also vary in complexity, catering to learners
at different stages of their education and training.
Content should progress from basic skills to more
advanced clinical scenarios, allowing learners to build
upon their knowledge and skills incrementally.
Metaverse-based learning also requires high-quality
immersive and interactive environments that engage
learners. These environments can simulate medical sce-
narios, anatomical structures, surgeries, or patient inter-
actions within a virtual or augmented reality space.
Both simulation and metaverse-based learning
require high-quality content to ensure that healthcare
professionals receive the best possible training and
education. As technology continues to evolve,
e-content development will likely play an increasingly
significant role in shaping the future of medical educa-
tion, offering innovative ways to impart knowledge
and facilitate lifelong learning.

Assessment gap

Assessment and evaluation are vehicles for educational
improvement. For decades, educators have predomi-
nantly relied on traditional assessment approaches like
tests and examinations to gauge learners, rank them,
and deliver a final score or summary assessment.
However, the advent of technological advancements
has ushered in paradigm shifts in learners’ expecta-
tions and teaching methods, rendering these tradi-
tional assessment approaches inadequate. To achieve
valid and reliable gauges of learning process and gains
within the technology-driven educational landscape, it
is imperative to transition from traditional assessment
to performance-based evaluation. Although a wide
range of approaches are available to assess medical
trainees’ performance, such as direct observation, mul-
tisource feedback, milestones, and other appraisal
forms, these tools may be poorly designed, too com-
plicated, too long, or short and moreover, are not
appropriate in every situation [119]. In fact, no single
method can appropriately measure all aspects of

learning in a digital environment, but learning analyt-
ics can be instrumental in evaluating learners’ perfor-
mance. This learner-produced intelligent data is a
powerful analysis model to measure learners’ success,
discover information and social connections, and to
predict learning outcomes, and/or to support the
existing educational models.

The results regarding the impact of clinical simula-
tions on formative and high-stakes assessment reveal
an intriguing dimension of medical education. It
becomes evident that clinical simulations offer sub-
stantial advantages in formative assessment, enabling
students to receive feedback and improve their skills
continuously. However, their role in high-stakes assess-
ments, such as licensing exams, requires further explo-
ration. The transition to Competency-Based Medical
Education (CBME) aligns well with integrating XR tech-
nologies in high-stakes assessments. CBME system
requires learners to demonstrate competence—the
ability to independently perform tasks successfully and
efficiently—before advancing to more challenging
tasks or certification for independent practice [120]. To
effectively implement CBME and leverage metaverse
technologies for assessments, medical educators can
adopt several practical solutions. For instance, in a vir-
tual surgical simulation, the system could track met-
rics, such as hand movements, time taken for specific
steps, and accuracy of incisions. This data can be
immediately presented to the trainee post-assessment
[121]. Another significant innovation emerged during
the COVID-19 pandemic is the introduction of remote
Objective Structured Clinical Examinations (OSCEs).
These virtual examinations utilize video conferencing
and interactive tools to simulate realistic patient
encounters, allowing for assessment when in-person
exams are not possible. Studies have shown that vir-
tual OSCEs can be as effective as traditional formats in
evaluating student competencies [122,123]. XR-based
OSCEs provide standardized scenarios, enhancing
objectivity in evaluations. Also, integration of XR
assessment  platforms  with  existing Learning
Management Systems (LMS) and/or National Board of
Medical Examiners (NBME) validated assessment instru-
ments is important for streamlining operations and
automatically updating student records. For example,
NBME, a leading medical assessment organization, has
recently acquired MedVR Education, XR platform for
health care skill development.

Interactive e-learning modules with AR for anatomi-
cal dissections and quizzes may enhance consistency
and objectivity in high-stakes assessments [124]. They
provide standardized content, uniform learning experi-
ences, precise scoring mechanisms, and adaptable



difficulty levels while eliminating many of the variables
that can introduce bias or inconsistency in traditional
assessment methods. In addition, diagnostic reasoning
simulations with automated agents can effectively eval-
uate clinical decision-making processes through com-
plex case scenarios [107]. It is also beneficial to the
medical education community to have increased atten-
tion to assessment and use of advanced learning ana-
lytics methods because this provides trainees with
insight into their own learning and offers medical edu-
cators opportunities to make evidence-based interven-
tions for the improvement of teaching and learning.
According to the reviewed studies, types of learning
analytics and data sources can include (1) performance
metrics from simulation systems (e.g. time to complete
procedure, errors made, efficiency of motions, etc.); (2)
behavioral data tracking (e.g. communication patterns,
leadership behaviors, coordination activities); (3) inte-
grating and correlating simulation performance data
with competency assessments from faculty observations
in real clinical environments; (4) learner dashboards that
visualize progress on skills acquisition longitudinally,
revealing learning curves, strengths, and weaknesses.
For competency assessment, metaverse capabilities
allow continuous performance tracking and data-driven
feedback. However, adoption remains limited for
high-stakes examinations. Metaverse-enabled integrated
systems that blend automated scoring with human
observations could enable next-generation competency
assessment. Optimal assessment blends human obser-
vations with sensor-based performance data [17,91].
Infrastructure costs and access barriers also remain.
Within technical skills training, a key emerging
metaverse capability is the ecosystems that seamlessly
integrate different fidelity levels to optimize technical
skills gains. For instance, a technical skill like laparo-
scopic surgery in a metaverse training ecosystem could
provide (a) 2D video box trainers that build initial famil-
iarity (with anatomy, hand motions and instrument han-
dling, e.g. Simball Box, LAP Mentor [125], (b) VR that
develops core skills (e.g. spatial orientation, simulated
laparoscopic operation, camera navigation [126]), and
(c) mixed reality may overlay during actual laparoscopic
procedures in the operating room to provide guidance
and feedback [127,128]. This blend of modalities at dif-
ferent fidelity levels, enabled by metaverse connectivity,
allows each to be leveraged at the appropriate stage.
Data sharing across the ecosystem, including perfor-
mance metrics, gaze, and eye-hand coordination data,
further optimizes the training. This integrated metaverse
with multi-modal curricula may allow trainees to prog-
ress across levels, ensuring each experience effectively
builds toward mastery. In the reviewed studies

ANNALS OF MEDICINE € 17
published in recent years, we have seen these metaverse
modalities begin to form metaverse ecosystems and
training workflows in a wide range of medical special-
ties beyond surgical training.

Assessment and evaluation in clinical simulations
and metaverse technologies hold the promise of
authenticity and engagement. Learners are placed in
realistic clinical scenarios, allowing for the observation
of their clinical skills, communication, and
decision-making abilities. While these methods offer
numerous advantages in formative assessment and
engagement, aligning them with the traditional curric-
ulum poses challenges, particularly concerning
high-stakes assessments. As long as these technologies
are integrated thoughtfully, assessments are standard-
ized, faculty training is provided, and evaluations of
their effectiveness are continuously conducted, medi-
cal education can bridge the gap and harness the full
potential of these innovative tools.

Research gaps and future directions

While the full vision of personalized and ubiquitous learn-
ing has not yet been achieved, gains have occurred in
offering more flexible asynchronous opportunities that
increase  accessibility beyond physical constraints.
Thoughtful integration of metaverse applications into
training curricula is needed, evaluating their unique affor-
dances while ensuring accessibility [129]. These findings
underscore the need for continuous research and innova-
tion in medical pedagogy, with the ultimate goal of pro-
ducing highly competent and adaptable healthcare
professionals. As part of our metaverse research agenda,
we outline several key topics relating to the future of
medical education and clinical simulation in particular:

«  Establishing best practices for integrating
metaverse technologies into pedagogy. Possible
research directions may examine if virtual simu-
lations and digital twin hospitals [130] in the
metaverse enhance clinical skills and readiness
for clinical workplace transitions compared to
traditional clinical rotations alone. Develop
evidence-based guidance on how much time
learners, accounting for and accommodating
their diverse needs, should spend in metaverse
simulations vs. physical task trainers or simula-
tors to reach competency benchmarks for spe-
cific procedures or training scenarios. There is
also a need to resolve issues of virtual environ-
ment fidelity and accessibility for diverse learn-
ers. Future research should continue establishing
evidence-based pedagogical frameworks that
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guide the design and implementation of immer-
sive learning experiences in healthcare educa-
tion (e.g. [131,132]).

Leveraging the affordances of computational arti-
ficial intelligence to optimize metaverse-enabled
simulation experiences and assessment The pop-
ularity and recent emergence of multimodal
large language models (M-LLMs) marks a signif-
icant advancement in artificial intelligence
capabilities for medical education [133]. These
sophisticated Al systems, capable of processing
and generating text, images, videos, and sound,
offer unprecedented potential for enhancing
learner experiences [134]. M-LLMs could accel-
erate production of the educational content,
play a role of teaching assistant, and offer new
ways to analyze learner data and provide per-
sonalized precision feedback. M-LLMs models
could dynamically generate diverse, realistic
clinical scenarios, including visual and auditory
elements, as well as serve as personalized
teaching assistants (e.g. explain complex con-
cepts, practice breaking bad news, etc.). During
simulations, M-LLMs could offer decision sup-
port by integrating information from various
sources, such as simulated patient data, medical
imaging, and lab results to assist in diagnosis,
treatment planning, and team orchestration.
Post-simulation, they could generate compre-
hensive debriefing materials, including person-
alized learning points based on the trainee’s
biosensor and behavior data. However, as med-
ical training integrates these advanced Al sys-
tems, careful consideration must be given to
ensuring the accuracy and reliability of
Al-generated content, promoting critical think-
ing appropriate and preventing overreliance on
Al, maintaining a balance between Al-driven
and human-led instruction, addressing potential
biases, misinformation in Al systems, protecting
learner privacy and data security, and develop-
ing frameworks for explainable [135] and ethi-
cal use of Al in medical education.
Determining the utility and lasting impact of
metaverse-enabled simulators in transferring skills
learned on the simulated model to the clinical set-
ting. While many studies demonstrate immedi-
ate improvements in knowledge and procedural
skills, future research should prioritize longitudi-
nal research assessing learning gains and trans-
fer of learning to clinical practice. Future studies
should employ extended follow-up periods to
evaluate the lasting impact of immersive

learning experiences. One possible research
direction could involve tracking the progress of
trainees who utilize metaverse technologies for
simulation training. Key components may
include comparing patient outcomes before
and after the implementation of metaverse
technologies, assessing changes in the health-
care professionals’ confidence and skill levels,
and exploring how these technologies have
influenced specific aspects of patient care, such
as diagnosis accuracy, and treatment effective-
ness. Another promising research topic could
focus on the assessment of patient and pro-
vider satisfaction with metaverse-enabled tele-
medicine visits involving realistic avatars and
virtual environments compared to video visits.

«  Broadening diversity and inclusion in application
domains and learner groups. Our review found a
concentration of studies in surgery, urology, and
anatomy. While these areas have seen significant
advancements, other domains like public health
training, rural and global health training, interdis-
ciplinary teamwork, patient education remain
underexplored [95]. Importantly, our review found
limited research on how simulation and metaverse
technologies impact learners from diverse back-
grounds or with disabilities. Future research
should prioritize inclusive design and evaluation
of these technologies for all learners.

«  Prioritizing ethical considerations. As metaverse
technologies become more prevalent in medi-
cal education, ethical issues surrounding data
privacy, fairness, trust in Al, bias in assessment,
and equitable access need careful consideration
[136]. Only 2% (3/173) of studies addressed
these critical aspects, highlighting a significant
gap in the current literature.

Practical applications of metaverse technologies
for medical educators: a comparative analysis of
affordances and limitations

Table 3 presents an overview of various metaverse
technologies and their applications in medical educa-
tion. Each technology offers unique affordances and
faces distinct limitations in the context of medical
training. Educators should consider these unique char-
acteristics when selecting appropriate tools for their
specific learning objectives and institutional resources.
The choice of technology should align with the desired
learning outcomes, available infrastructure, and target
learner group to maximize educational impact.
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Table 3. Comparative analysis of metaverse technologies: learning activities, affordances, and limitations.

Unique pedagogical and Example
Technology type Learning activities technological affordances Limitations studies
Virtual reality + Immersive Anatomy Exploration: Engage «  High Immersion: Creates - High Cost: Advanced VR [36-40,
(VR) with 3D anatomical models in an immersive a sense of presence and systems and maintenance are 137,138]
environment for a deeper understanding of realism in a risk-free expensive.
complex structures. environment. Leveraging + Limited Accessibility:
+  Multi-user VR simulations: Enable smart haptic gloves for VR Requires specific hardware like
collaborative learning by providing an surgery simulation VR headsets.
immersive experience and presenting . Effective Skill Transfer: . Physical Discomfort:
standardized stimuli and infinite attempts. May facilitate the transfer Extended use may cause
» Surgical Practice Simulations: Conduct of learning to clinical motion sickness or discomfort.
surgeries in a risk-free virtual setting to practice.
improve skills and decision-making, with « Increased Engagement:
real-time feedback. Interactive and engaging,
«+ Virtual Patient Interaction: Interact with improving learning
virtual patients to practice diagnostic retention.
reasoning, communication, and empathy.
Augmented «  Enhanced Anatomical Study: Overlay virtual « Enhanced Reality: Adds - Dependence on Cameras [40,
reality (AR) images onto physical models or cadavers, digital layers to real-world and Sensors: Effectiveness 139-142]
providing extra insights during dissections. views & objects, enhancing relies on camera resolution/
+ Augmented Medical Imaging: Display 3D understanding. performance and hands/object
scans directly onto a patient’s body for better - Easily Accessible: Usable detection, eye calibration,
visualization and surgical planning. with common devices like environment lighting
«  Telestration for Remote Proctoring and smartphones and tablets, or (HoloLens).
Telementoring: Enables remote surgical HoloLens for more - Potential for Extra
mentoring through real-time visual annotations, computationally demanding Cognitive Load: Overlaid
augmented reality overlays, and live streaming tasks. information can be
of expert hands, enhancing communication and - Real-Time Guidance: overwhelming/distracting and
guidance during procedures. Offers live guidance for cause additional cognitive load.
«  Procedural Training Aids: Provide step-by- procedures, improving
step instructions overlaid onto patients or accuracy and navigational
equipment, guiding medical procedures (e.g. tasks.
medication administration or ACLS algorithm)
Mixed reality « Integrated Simulations: Merge physical « Interactive Realism: High - High Cost: Advanced MR [46,143,144]
(MR) simulators with virtual elements for complex interaction between real systems and headsets are

Simulation-based
training
(task-trainers,
high-fidelity
manikins)

E-learning
platforms

Serious games

and realistic training scenarios.

Coordinated Team Training: Simulate
scenarios requiring coordination among
medical teams, enhancing teamwork and
communication skills.

Interactive Procedural Training: Interact with
both real and virtual objects to practice
complex medical procedures (e.g. peripheral
intravenous catheter placement).

Clinical Skills Enhancement(e.g.,: Use lifelike
simulations to practice clinical skills in a
controlled environment.

Critical Care Scenarios: Simulate emergency
scenarios to improve technical and
nontechnical skills.

Procedural Proficiency using Task-Trainers:
Practice procedures repeatedly to achieve
proficiency (e.g. laparoscopic manual tasks)

Self-Paced Learning: Access course materials
and lectures at anywhere, any time and pace.
Continuing Medical Education: Online
modules for continual skill and knowledge
updates.

Cognitive Skill Development: Interactive
assessments to test and reinforce
understanding.

Gamified Learning: Use game-based methods
to teach clinical decision-making, diagnostic
reasoning, and procedural knowledge.
Interactive Scenarios: Engage with interactive
scenarios to solve medical cases.
Motivational Learning: Increased motivation
through competitive elements and rewards.

and digital objects provides
comprehensive training.
Team Coordination:
Enables realistic team
training scenarios.
Versatile Applications:
Combines the best of VR
and AR for diverse
applications.

Realistic Training:
Provides high-fidelity
simulations that mimic
real-life scenarios.
Repeatability: Allows for
repeated practice to build
proficiency.

Immediate Feedback:
Offers instant feedback to
correct mistakes and
improve techniques.
Flexible Access: Learn any
time anywhere.
Self-Directed: Allows
learners to regulate their
own learning pace.
Updated Content: Easily
update content for latest
practices and guidelines.

Active Learning: Engages
learners actively, improving
retention.

Leveraging Intelligent
Tutoring Strategies:
combining finite state
machines to model different
phases in the diagnostic
process or offering
personalized feedback

expensive.

Complexity: Requires
sophisticated integration of real
and virtual elements.

Limited Field of View: Users
may experience a restricted
field of view.

Resource Intensive: High [41,42,44,45]
setup and maintenance costs.
Time-Consuming: Requires

dedicated time slots and

simulation center capacity.

Limited Scalability: typically

relies on expert human

facilitation, which limits

implementation at scale.

Reduced Interaction:
Limited face-to-face interaction
with educators and peers.
Engagement Issues: May be
less engaging without
in-person motivation.

Limited to mainly cognitive
task practice: Primarily
suitable for self-practice on
cognitive tasks

Quality Variability: Quality
and educational value can vary
widely.

Accessibility: May require
specific gaming hardware or
software as well as
programming abilities.

[42,43,145]

[47-49]
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While the potential for innovative learning experi-
ences is immense, it is crucial to acknowledge that the
implementation of this technology may raise signifi-
cant hurdles universal in nature and that must be
carefully considered specific to low and middle-income
countries (LMICs) [115]. On a global scale, technical
challenges, ethical considerations, potential barriers for
learners with disabilities are universal and equally
pressing, with concerns about privacy, data security,
and equitable access at the forefront. In LMICs, these
universal challenges have an additional layer of com-
plexity. Specifically, financial barriers driven by the
high costs of equipment, maintenance, and infrastruc-
ture may be prohibitive for many institutions [115].
Connectivity issues, including unreliable internet and
frequent outages, my disrupt learning flow. New tech-
nologies may also prove challenging in regions where
digital literacy and familiarity with advanced systems
are limited. Furthermore, cultural adaptation is essen-
tial to ensure that the metaverse aligns with local cus-
toms and healthcare needs [146]. To address these
issues of equity and accessibility across diverse learner
populations, in our prior work we suggested a range
of potential solutions and considerations (see [115] for
details).

To integrate metaverse applications powered by Al
effectively into medical curricula, a comprehensive
approach involving careful planning, stakeholder col-
laboration, and ongoing evaluation is essential. The
detailed guidance with successful implementation
examples is provided in our earlier work (see [147] for
review). In brief, implementation should follow a struc-
tured process. This begins with comprehensive readi-
ness and needs assessments, involving evaluation of the
current technological infrastructure, identifying gaps in
the curriculum that these technologies could address,
and assessing the readiness of faculty and students to
adopt these new tools. Second, professional develop-
ment for faculty and trainees that includes proper ori-
entation to navigate XR-enriched environments and
practice movements (teleportation) and interactions
with XR objects and associate their function with con-
cepts from the real-world. Before full-scale adoption,
pilot programs are crucial to identify and address
potential issues related to technology or pedagogy.
Third, continuous evaluation and quality improvement
are vital to the success of these technological integra-
tions. This involves collecting data on student engage-
ment and performance as well as surveying both
students and faculty about their experiences with
XR-enhanced learning materials.

Further research should continue elucidating best
practices for integrating metaverse applications into

medical education, ensuring training innovations are
equitable, human-centered, and drive mastery.

Limitations of the study

This scoping review has some limitations. Our review
focused on publications between 2000 and 18
December 2020, a period we believed captured the
rise and influence of metaverse technologies in medi-
cal education. However, this timeframe may not
encompass all relevant developments. First, some
innovative extended reality-based educational meth-
ods were documented before 2000. For instance,
Hoffman and Vu [148] paper examined several virtual
reality applications as teaching tools of the twenty-first
century. Second, there are hundreds of new papers
published since 2021. Consequently, the conclusions
drawn from this study are specifically applicable to the
chosen timeframe. To gain a more comprehensive
understanding, future research should explore publica-
tions from other time periods, potentially uncovering
additional insights on the most recent innovations that
were not captured in this review.

Despite comprehensive searches across major data-
bases, some relevant studies may have been missed.
The quality of the studies included in this scoping
review may vary, which could impact the overall reli-
ability and validity of the synthesized findings. Some
studies may have inherent methodological limitations
that could affect the conclusions drawn. The process
of thematically coding articles into dimensions involved
subjective judgments by researchers and alternative
classifications could be justified. However, the rigorous
process of constant comparison and consensus build-
ing amongst coders adds validity. There is also poten-
tial for expanding the search strategy with an increased
set of keywords and synonyms and additional data-
bases, such as IEEE Xplore to include a broader range
of immersive technologies. We also note that a scop-
ing review primarily provides a broad map of the liter-
ature landscape on a topic rather than an exhaustive
systematic analysis. Our aim was to analyze high-level
trends over the past two decades, which this method-
ology achieved. Additionally, while we analyzed publi-
cation trends over time, more sophisticated bibliometric
analyses could reveal deeper insights into research
patterns. Our findings are best interpreted as identify-
ing dominant themes and trajectories to date, which
can inform future research directions.

While Friedman’s framework provided a valuable
structure for our analysis, it is important to acknowl-
edge its limitations as an analytical lens. The predeter-
mined categories of space, time, content, and



assessment may have limited our ability to identify
emerging themes or innovations that fall outside these
dimensions. Additionally, the framework’s focus on
‘unsticking’ medical education from traditional con-
straints may not fully capture the nuances of how
technology integration occurs in practice. Future
reviews could benefit from employing multiple theo-
retical frameworks, such as (a) focusing on adoption,
implementation, and trends of educational technolo-
gies, and/or (b) examining learning processes and out-
comes. For adoption, implementation, and trends,
future studies could utilize the Diffusion of Innovations
theory [149] to analyze technology spread,
Normalization Process Theory [150], or the Gartner
Hype Cycle [151] to examine institutional integration
over time. To investigate learning processes and out-
comes, researchers could employ the Cognitive
Affective Model of Immersive Learning (CAMIL) [152]
for immersive technologies or the Technology
Acceptance Model [153] to understand educators’ inte-
gration of technology with pedagogy and content.

Conclusion

Medical education is undergoing a profound transfor-
mation driven by advancements in technology. This
transformation is not fundamentally about adopting
new technologies, but rather about improving educa-
tional design, standardization, scale, and assessment.
Traditional methods of teaching and learning are giv-
ing way to innovative approaches that harness the
power of clinical simulations and metaverse technolo-
gies to enhance learning. The last two decades have
witnessed promising innovative teaching and learning
approaches. However, this shift poses significant ques-
tions about ‘unsticking’ medical education across key
dimensions, including the alignment of assessment
techniques with the traditional curriculum. Our study
findings can inform simulation development and
research priorities going forward. Realizing the full
vision of the ‘Marvelous Medical Education Machine’
proposed by Friedman [3] will require metaverse eco-
systems integrating virtual patients, procedural simula-
tors, collaborative environments, multimodal learning
analytics, and competency dashboards into an accessi-

ble, personalized, flexible, and validated training
ecosystem.
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