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ABSTRACT

Machine learning (ML) inference platforms are tasked with

balancing two competing goals: ensuring high throughput

given many requests, and delivering low-latency responses

to support interactive applications. Unfortunately, existing

platform knobs (e.g., batch sizes) fail to ease this fundamen-

tal tension, and instead only enable users to harshly trade

off one property for the other. This paper explores an al-

ternate strategy to taming throughput-latency tradeoffs by

changing the granularity at which inference is performed. We

present Apparate, a system that automatically applies and

manages early exits (EEs) in ML models, whereby certain

inputs can exit with results at intermediate layers. To cope

with the time-varying overhead and accuracy challenges that

EEs bring, Apparate repurposes exits to provide continual

feedback that powers several novel runtime monitoring and

adaptation strategies. Apparate lowers median response laten-

cies by 40.5±91.5% and 10.0±24.2% for diverse CV and NLP

classification workloads, and median time-per-token latencies

by 22.6±77.9% for generative scenarios, without affecting

throughputs or violating tight accuracy constraints.

1 INTRODUCTION

Machine Learning (ML) inference has become a staple for

request handling in interactive applications such as traffic

analytics, chatbots, and web services [33, 52, 54, 74]. To

manage these ever-popular workloads, applications typically

employ serving platforms [7, 8, 20, 30, 44, 51, 58, 80] that

ingest requests and schedule inference tasks with pre-trained

models across large clusters of compute resources (typically

GPUs). The overarching goals of serving platforms are to

deliver sufficiently high throughput to cope with large request

volumes ± upwards of billions of requests per day [4, 50]

± while respecting the service level objectives (SLOs) that

applications specify for response times (often 10±100s of

ms).

Unfortunately, in balancing these goals, serving platforms

face a challenging tradeoff (§2.1): requests must be batched
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for high resource efficiency (and thus throughput), but larger

batch sizes inflate queuing delays (and thus per-request la-

tencies). Existing platforms navigate this latency-throughput

tension by factoring only tail latencies into batching decisions

and selecting max batch sizes that avoid SLO violations. Yet,

this trivializes the latency sensitivity of many interactive appli-

cations whose metrics of interest (e.g., user retention [28, 70],

safety in autonomous vehicles [68]) are also influenced by

how far below SLOs their response times fall.

This paper explores the role that early exits (EEs) ± an

adaptation mechanism that has garnered substantial ML re-

search interest in recent years [35, 48, 69, 75±77, 84] ± can

play in resolving this tension. With EEs, intermediate model

layers are augmented with ramps of computation that aim to

predict final model responses. Ramp predictions with suffi-

ciently high confidence (subject to a threshold) exit the model,

foregoing downstream layers and bringing corresponding

savings in both compute and latency. The intuition is that

models are often overparameterized (especially with recent

growth [40, 64]), and ‘easy’ inputs may not require complete

model processing for accurate results. Importantly, unlike

existing platform knobs (e.g., batch size) that simply walk the

steep latency-throughput tradeoff curve, EEs rethink the gran-

ularity of inference on a per-input basis. This provides a path

towards lowering request latencies without harming platform

throughputs. Indeed, across CV and NLP workloads, we find

that optimal use of EEs brings 24.8±94.0% improvement in

median latencies for the same accuracy and throughput.

Despite the potential benefits, EEs are plagued with prac-

tical challenges that have limited their impact (§2.3). The

primary issue is that EE proposals have solely come in the

context of specific model architectures that impose fixed ramp

designs and locations [14, 60, 69, 76]. The lack of guidance

for integrating EEs into arbitrary models is limiting, especially

given the ever-growing model offerings in the marketplace.

Worse, even existing proposals lack any policy for runtime

adaptation of EE configurations, i.e., the set of active ramps

and their thresholds. Such adaptation is crucial since dynamic

workload characteristics govern the efficacy of each ramp in

terms of exiting capabilities and added overheads (to non-

exiting inputs); failure to continually adapt configurations can

result in unacceptable accuracy drops up to 23.9% for our

workloads. However, devising adaptation policies is difficult:

the space of configurations is massive, and it is unclear how

to obtain a signal for accuracy monitoring once an input exits.

We present Apparate, the first system that automatically

(i.e., without developer effort or expertise) injects and man-

ages EEs for serving with a wide range of models. Our main

insight is that the above challenges are not fundamental to

607

This work is licensed under a Creative Commons Attribution‐ShareAlike International 4.0 License.



EEs, and instead are a byproduct of what we are trying to

get out of them. Specifically, adaptation challenges largely

stem from halting execution for an input upon an exit, which

leaves uncertainty in the ‘correct’ response (as per the non-EE

model). Instead, Apparate uses EEs only to deliver latency re-

ductions; results for successful exits are immediately released,

but all inputs continue to the end of the model. The key is

in leveraging the (now) redundant computations to enable

continual and efficient adaptation, while also remaining com-

patible with proven compute efficiency optimizations such as

batching and model compression.

Guided by this philosophy, Apparate runs directly atop

existing serving platforms and begins by automatically con-

verting registered models into EE variants. Apparate’s EE

preparation strategy must strike a balance between support-

ing fine-grained runtime adaptation without burdening those

time-sensitive algorithms with (likely) unfruitful options. To

do so without developer effort, Apparate leans on guidance

from the original model design, crafting ramp locations and

architectures based on downstream model computations and

data flow for intermediates around the model. Original model

layers (and weights) are unchanged, and added ramps are

rapidly trained in parallel (for efficiency), but in a manner

that preserves their independence from other ramps.

Once deployed, Apparate continually monitors EE oper-

ation in GPUs, tracking computations and latency effects

of each ramp, as well as outputs of the original model (for

accuracy ground truth). To tackle the massive space of con-

figuration options, Apparate judiciously decouples tunable

EE knobs: thresholds for existing ramps are frequently and

quickly tuned to ensure consistently high accuracy, while

costlier changes to the set of active ramps occur only peri-

odically as a means for latency optimization. For both con-

trol loops, Apparate leverages several fundamental properties

of EEs to accelerate the tuning process. For instance, the

monotonic nature of accuracy drops (and increases in latency

savings) for higher thresholds motivates Apparate’s greedy

algorithm for threshold tuning which runs 3 orders of magni-

tude faster than grid search while sacrificing only 0±3.8% of

the potential latency wins.

We evaluated Apparate across a variety of recent CV

and NLP models (ranging from compressed to large lan-

guage models), diverse workloads (classification and genera-

tive), and several serving platforms (TensorFlow-Serving [51],

Clockwork [30], and HuggingFace Pipelines [6]). Compared

to serving without EEs, Apparate improves 25th percentile

and median classification latencies by 70.2±94.2% and 40.5±

91.5% for CV, and 16.0±37.3% and 10.0±24.2% for NLP,

while imposing negligible impact on platform throughput.

Latency wins are similar for generative scenarios: 22.6±

77.9% median time-per-token improvements. Importantly,

unlike existing EE proposals that yield accuracy dips up to

23.9%, we find that Apparate’s adaptation strategies always
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Figure 1. Throughput-latency tradeoff in model serving. Results

show serving times with batch sizes of 1±16.

met set accuracy constraints. We open source Apparate at

https://github.com/dywsjtu/apparate.

2 BACKGROUND AND MOTIVATION

We start by overviewing existing ML serving platforms (§2.1),

highlighting the challenges they face in balancing metrics

that are important for system performance (i.e., throughput,

resource utilization) and application interactivity, i.e., per-

request latencies. We then describe the promising role that

early exits can play in alleviating those tensions (§2.2), and

the challenges in realizing those benefits in practice (§2.3).

Results follow the methodology from §4.1.

2.1 Model Serving Platforms

ML models are routinely used to service requests in interac-

tive applications such as real-time video analytics [15, 65],

chatbots [71], recommendation engines [66], or speech as-

sistants [13]. To manage such workloads, especially at large

scale, applications employ serving platforms such as ONNX

runtime [8], TensorFlow-Serving [51], PyTorch Serve [11],

Triton Inference Server [7], among others [20, 30, 44, 58,

65, 80]. These platforms ingest pre-trained model(s), often in

graph exchange formats like ONNX [9] and NNEF [2], and

are granted access to a pool of compute resources (usually

with ML accelerators such as GPUs) for inference.

Given the latency-sensitive nature of interactive applica-

tions, requests are often accompanied with service level ob-

jectives (SLOs) that indicate (un)acceptable response times

for the service at hand. In particular, responses delivered af-

ter an SLO expires are typically discarded or yield severely

degraded utility. Common SLOs are in the 10±100s of mil-

liseconds, e.g., for live video analytics [52, 65].

During operation, serving platforms queue up incoming

requests that can arrive at fixed or variable rates, and continu-

ally schedule jobs across the available compute resources. An

inference task may be scheduled to run on a single node in a

cluster, or may be distributed across multiple nodes [30, 80].

Latency-Throughput tension. To support the need for high

throughput, serving platforms resort to batching, whereby

inputs are grouped into a single high-dimensional tensor that

moves through the model in lockstep, kernel by kernel, with

final per-request responses being delivered at the same time.

Larger batch sizes amortize the cost of loading a kernel into

GPU memory across more inputs, and enable more effective

use of accelerator parallelism [20, 82].
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Figure 2. Tuning platform knobs lowers latencies but harms

throughput. Results vary TF-Serve’s 𝑚𝑎𝑥_𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 from 4±16.

Gray lines show min serving time per model (batch=1). CV uses

a random corpus video; NLP uses Amazon reviews [1].
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Figure 3. Early exits enable termination of inputs at intermediate

layers, lowering both compute and latency.

Unfortunately, delivering the throughput necessary to sup-

port high request rates [32, 50] is directly at odds with per-

request latencies (Figure 1). On one hand, latency for an input

is minimized by scheduling inference as soon as the request

arrives with batch size of 1. On the other hand, throughput is

maximized by creating large batches using a queuing system

which directly inflates request latencies.

The problem. In navigating this tension, the key decision that

serving platforms face is when to drain queued requests for in-

ference. Certain platforms [20, 30, 65] take an all-or-nothing

stance on latency, with adherence to SLOs considered com-

plete success, and violations viewed as failure. Accordingly,

these platforms schedule inference jobs in a work-conserving

manner and select the max batch size that limits SLO viola-

tions for queued requests. However, many interactive applica-

tions present a more nuanced latency story where sub-SLO

responses are not equally useful, e.g., faster responses boost

conversational interactivity for chatbots [33, 79] and confi-

dence in scene perception for video analytics [15, 67].

Other platforms [7, 11, 51] provide more flexibility by

exposing tunable knobs to guide queue management, e.g.,

𝑚𝑎𝑥_𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 and 𝑏𝑎𝑡𝑐ℎ_𝑡𝑖𝑚𝑒𝑜𝑢𝑡_𝑚𝑖𝑐𝑟𝑜𝑠 parameters cap

batch sizes or inter-job scheduling durations. However, such

knobs do little to ease the throughput-latency tension, pre-

senting harsh tradeoffs (Figure 2): tuning for median latency

improvements of 17.3±39.1% brings 1.1±3.6× reductions in

average batch sizes (and proportional hits on throughput).

Platforms for serving generative models [44, 80] face sim-

ilar tensions despite the less explicit focus on SLOs (since

sequence lengths are hard to predict). Indeed, although such

platforms use continuous batching to ensure that new requests
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Figure 4. EEs can lower latencies without harming throughput.

Results modulate latencies from TF-Serve with original/vanilla

models (Figure 2) based on optimal exiting.

immediately leverage idle resources as any input’s generation

finishes, they prioritize throughput by running at the highest

possible batch size (capped by a preset max).

Takeaway. Existing platform configurations and knobs fail to

practically remediate the throughput-latency tension, and in-

stead simply navigate (often) unacceptable tradeoff points be-

tween the two goals. Given ever-growing request rates and the

need for high throughput, we ask if there is a middleground:

whereby new serving adaptations enable lower per-request

latencies (moving closer to the lower-bound serving times in

Figure 2) without harming platform throughput.

2.2 Early-Exit Models

Early (or multi) exit models [69, 76] present an alternate way

to address this tension by rethinking the granularity of infer-

ence. As shown in Figure 3, the key premise is that certain

‘easy’ inputs may not require the full predictive power of a

model to generate an accurate result. Instead, results for such

inputs may be predictable from the values at intermediate

layers. In such cases, the foregone model execution can yield

proportional reductions in both per-request latencies and com-

pute footprints. Thus, the goal with early exits (EEs) is to

determine, on a per-input basis, the earliest model layer at

which an accurate response can be generated.

To use EEs, intermediate layers in a model are augmented

with ramps of computation. These ramps ingest the values

output by the layers they are attached to and parse them to

predict the final model’s result, e.g., a classification label.

Ramps can perform arbitrary degrees of computation to arrive

at a potential result. Exiting decisions at each ramp are made

by comparing the entropy in the predicted result (or aver-

aged over the past 𝑘 ramps) to a preset threshold. Thresholds

are set to balance latency and compute wins with potential

dips in accuracy; a higher threshold implies lower required

confidence for exiting, and thus more exiting.

Potential benefits. To understand the effect that EEs can have

on the latency-throughput tension, we used off-the-shelf EE

variants for the models in Figure 2: BranchyNet [69] (CV)

and DeeBERT [76] (NLP). For each model-input pair, we

identified the optimal exit point defined as the earliest exit

ramp that predicted the correct response for the input. We

then modified the highest-throughput results in Figure 2 to

account for exiting by subtracting the time saved for each
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(a) BERT-base; Amazon reviews

(b) ResNet50; random corpus video

Figure 5. Optimal EE configurations change frequently. Work-

loads use 64-request chunks. Dot presence shows a ramp that

was part of the optimal config for a chunk, while transparencies

indicate threshold values (opaque is higher).

Strategy\Workload CV NLP

Initial Only 84.5% (74.3%) 86.8% (73.6%)

Uniformly Sampled 90.3% (64.2%) 87.7% (69.4%)

Continual Tuning 98.6% (43.5%) 98.3% (26.6%)

Table 1. Thresholds need frequent tuning to avoid accuracy loss.

Continual tuning kicks in when chunk accuracy < 99%. Results

list avg accuracy (median latency wins).

exiting input, i.e., the difference in time for passing an input

to the end of its optimal ramp versus passing it to the end of

the model (without any ramps). These results are conservative

upper bounds in that they do not reduce queuing delays or

alter job scheduling. As shown in Figure 4, without changing

queueing decisions, EEs can bring 35±54.7% and 17.9±26%

improvements in median and 95th percentile latencies.

2.3 Challenges

Despite many EE proposals from the ML community [14, 35,

48, 60, 61, 69, 76, 77, 84], and their potential benefits, multi-

ple issues complicate EE use in practice, limiting adoption.

C1: Latency and resource overheads. Although exiting can

enable certain inputs to eschew downstream model compu-

tations, exit ramps impose two new overheads on serving.

First, to be used, ramps must also be loaded into GPU mem-

ory which is an increasingly precious resource as models

grow in size [40, 64, 80] and inference spreads to resource-

constrained settings [31, 52]. For instance, DeeBERT inflates

memory requirements by 6.6% compared to BERT-base. Sec-

ond, certain inputs may be too ªhardº to accurately exit at

an intermediate ramp. In these cases, serving latency and

throughput mildly worsen as unsuccessful exiting decisions

are made, e.g., inputs that cannot exit at any ramp slow by

22.0% and 19.5% with BranchyNet and DeeBERT.

C2: Frequent and costly adaptation. As shown in Figure 5,

the evolving nature of workloads for interactive applications

brings frequent changes in the best EE configuration at any

time, i.e., the set of active ramps (and their thresholds) that

maximize latency savings without sacrificing response accu-

racy. Unfortunately, the large body of EE literature is unac-

companied by any policy for tuning ramps and thresholds

during serving. Instead, proposed EE models are equipped

with the max number of ramps, and mandate users to per-

form one-time tuning of thresholds. Such tuning is non-trivial

and fails to cope with workload dynamism. For example, Ta-

ble 1 shows how one-time tuning on sampled data brings

8.3±14.5% drops in accuracy relative to continual tuning.

Worse, the space of configurations is untenably large, with

many ramp options (i.e., at any layer, with any computation)

and a continuous space of possible threshold values for each.

C3: Lack of accuracy feedback. EE ramp decisions are ulti-

mately confidence-driven and may result in accuracy degra-

dations (as shown above). In production scenarios, serving

optimizations that deliver accuracy reductions >1±2% are

generally considered unacceptable [16]. Yet, once deployed,

EE models do not provide any indication of accuracy drops;

indeed, when an exit is taken, the corresponding input does

not pass through the remaining model layers, and the original

(non-EE) model’s prediction is never revealed. Thus, with

early exiting, we lack mechanisms to determine when accu-

racy degradations are arising and EE tuning is required.

3 DESIGN

Apparate is an end-to-end system that automatically integrates

early exits into models and manages their operation through-

out the inference process. Its overarching goal is to optimize

per-request latencies while adhering to tight accuracy con-

straints and throughput goals. Our key insight is in rethinking

the way that EEs are configured and the benefits they are

expected to deliver. In particular, rather than using EEs in

the traditional way ± where inputs exit model inference to

provide both latency and computational benefits ± Apparate

focuses solely on latency savings by allowing results to exit,

with inputs still running to completion. Foregoing true exiting

(and thus, compute savings) grants Apparate with direct and

continual feedback on EE accuracy (C3). This feedback pro-

vides the requisite signals for Apparate to continually adapt

EE configurations to maximize latency savings while catering

to resource constraints and workload dynamics (C1, C2).

Apparate’s design represents a departure from the typical

expected utility of EEs (i.e., compute savings) that has been

fraught with practical challenges. Instead, Apparate demon-

strates an alternate avenue for benefits that EEs can bring

(i.e., latency reductions), while remaining compatible with

other compute efficiency optimizations that have had substan-

tial practical traction. For instance, by foregoing true exiting,

Apparate can run alongside request batching [39]. Further, Ap-

parate supports diverse model architectures, including those

that have been compressed for efficiency (§4.2). We note that

the redundant computations in Apparate match the work that

vanilla serving perform by executing all model layers.
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Figure 6 overviews Apparate’s workflow, which runs atop

existing serving platforms. Users register inference jobs as

normal 1 , providing models and SLOs without needing any

awareness of or expertise about EEs. In addition, Apparate in-

troduces two parameters: (1) ramp aggression, which bounds

the number of active ramps in terms of % impact on worst-

case latency (and throughput), and (2) accuracy constraint

which indicates how much (if any) accuracy loss is acceptable

relative to running the submitted model on all inputs with-

out exiting. Apparate’s controller begins by configuring the

provided model with EEs 2 , performing a graph assessment

to determine suitable positions for ramps, and training those

ramps on bootstrap data (§3.1). The resulting model is passed

to the serving platform for deployment 3 , after which Ap-

parate shifts to management mode. In this phase, as requests

arrive and inference is scheduled, Apparate’s controller gath-

ers real-time feedback on the utility of each ramp (overheads

vs. latency savings) and achieved accuracies (relative to the

original model) 4 . This data is used to continually adapt the

EE configuration 7 at different time scales: rapid threshold

tuning for accuracy preservation (§3.2) 5 , and less frequent

ramp adjustments for latency optimization (§3.3) 6 .

This decoupling of EE configuration adaptation into two

tuning control loops is a key design decision that Apparate

uses to manage the untenably large search space of ramp-

threshold combinations (C1) without substantial loss in EE

efficacy. Specifically, Apparate chooses to use frequent thresh-

old tuning to preserve accuracy because it provides a finer-

grained knob for walking the accuracy-latency tradeoff, i.e.,

thresholds are continuous, whereas ramp locations are inher-

ently discretized. Thresholds also provide a mechanism to

control ramp location; at the extreme, thresholds for any ac-

tive ramps can be tuned to preclude exiting. Regardless, to

limit foregone wins from infrequent ramp tuning, Apparate

opts to employ many lightweight ramps (§3.1): even if an

optimal ramp is not present yet, a nearby ramp is likely active

and can provide much of the same wins.

Implementation details. Apparate is implemented as a layer

atop existing serving platforms (currently three [6, 30, 51],

though its techniques generalize to others), and comprises

∼7500 lines of Python code for EE preparation (§3.1) and
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Figure 7. Apparate only injects ramps that make full use of

available data flows at that part of the model.

management (§3.2-3.3). Apparate runs a separate controller

per model replica (as decided by the serving platform) on

a CPU, with GPUs streaming per-ramp/batch profiling in-

formation in a non-blocking fashion. This is possible since

inputs pass to the end of models with Apparate, irrespective

of exiting decisions. Tasks associated with model handling

and serving are handled by the underlying serving platform,

e.g., loading from disk, queuing, and batching.

3.1 Preparing Models with Early Exits

Upon job registration with any DNN, Apparate’s initial task

is to automatically prepare the model to leverage EEs without

developer effort. This phase repeats any time the submitted

model changes, e.g., continual retraining [15, 42, 67]. Note

that, in the event that a developer provides an EE model,

Apparate can forego any training and instead immediately

begin managing its exit configurations (§3.2±3.3).

Ramp locations. Apparate accepts a model in the ONNX

format, a widely used IR that represents the computation as a

directed acyclic graph [9]. Once ingested, Apparate must first

identify candidate layers for ramp addition. The goal is to

maximize ramp coverage across the model (to provide more

configuration options for Apparate’s runtime management),

while avoiding ramps that are unlikely to be fruitful (but add

complexity to adaptation decisions). To balance these aspects

for diverse models, Apparate marks feasible ramp locations

as those where operators are cut vertices, i.e., a vertex whose

removal would disconnect a graph into two or more disjoint

sub-graphs. In other words, no edge can start before a ramp

and re-enter the model’s computation after the ramp.

The idea is that such ramps take advantage of all avail-

able data outputs from the original model’s processing to that

point, boosting their chance at accurate predictions. As an ex-

ample, consider families like ResNet or BERT which enable

deep models by stitching together series of residual blocks,

i.e., ResNet blocks for convolutions, or BERT encoders that

each embed multi-head attention and feed-forward network

residual blocks. To avoid performance degradations late in

the model, the output of each block is ultimately a combina-

tion of its processing results and its input. In such scenarios,

Apparate injects ramps between blocks, but not within each
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block to avoid ramps making decisions on partial data, i.e.,

ignoring block inputs. Ramps are similarly injected between

trasnformer blocks of generative models, but only for de-

coding phases (as input tokens must be fully processed for

generation). In contrast, for VGG models, ramps are feasible

at all layers since their intermediates represent the full extent

of data flow throughout the model. Figure 7 depicts examples.

Overall, this strategy results in 9.2±68.4% of layers having

ramps for the models in our corpus, which we empirically

observe is sufficient to adapt to dynamic workloads (§4.2).

However, we note that Apparate can directly support any

other ramp configuration strategy, and offers a simple API for

developers to express ramp policies or restrictions.

Ramp architectures. For each feasible ramp location, Ap-

parate must determine the style of ramp computations to use.

Recall from §2 that ramps can ultimately be composed of

arbitrary layers and computations, with the only prerequi-

site being that the final layer sufficiently mimics that of the

original model to ensure that response formats match. Deter-

mining the appropriate ramp complexity in this large space

presents a tradeoff: additional computation can improve the

exit capabilities of a ramp, but comes at the expense of (1) in-

creased ramp latency, and (2) coarser flexibility and coverage

at runtime since ramps become illogical if their computation

exceeds that in the original model up until the next ramp.

Apparate opts for the shallowest ramps that can trans-

form the intermediates at any layer into a final model pre-

diction. Specifically, ramps comprise the model’s final fully-

connected (fc) layer, prepended with a lightweight pooling

operation that reduces the dimensionality of intermediates to

ensure compatability with the fc layer. This manifests differ-

ently for various model types. For instance, for vision models

like ResNet, pooling is simply the model’s penultimate layer.

Similarly, for generative LLMs, ramps can simply use the

final decoder head to transform intermediate hidden states.

In contrast, for BERT, only the basic operator is drawn from

the BERT pooler module, i.e., extracting the hidden state cor-

responding to the first token [23]. For all models, the input

width of the fc layer is modified to match the intermediates at

each ramp location; the output remains unchanged to preserve

result formats.

Figure 8 evaluates this methodology by comparing with

two, more expensive alternatives. With ResNet, to mimic

model operations following each ramp, we add 1±2 convo-

lution layers prior to pooling. For BERT, we consider two

approaches: (1) add two fc layers after pooling, each with re-

duced width to shrink inputs to the final fc, and (2) following

DeeBERT [76], replace the simple pooling operator with the

entire BERT pooler block and add a dropout as in the original

model. In all cases, the number of ramps is subject to the

same budget (i.e., Apparate’s default uses the most ramps),

ramps are uniformly spaced across feasible positions in each

model, and thresholds are optimally selected as in §2.2.

We observe that the added compute has minimal effect on

ramp efficacy. For example, median latencies are 1.3±1.8×

and 1.9±5.4× smaller with Apparate’s default ramps than the

complex alternatives for CV and NLP. Nonetheless, to show

Apparate’s generality, we consider other ramp styles in §4.5.

Training ramps and deploying models. To determine the ap-

propriate weights for each ramp, Apparate can automatically

label a dataset that is either developer-provided or collected

online (running the vanilla model on live inputs). Automatic

labeling is feasible since ramps aim to mimic the submit-

ted model’s behavior (not ground truth), so the submitted

model’s outputs can directly serve as labels. Regardless, dur-

ing training, Apparate freezes the original model weights to

ensure that non-EE behavior and feedback for tuning EEs is

unchanged from the user’s original intentions. Since its ramps

are lightweight (single fully-connected layers) and comprise

only 0.01±3.50% of our models’ parameters, the FLOPs re-

quired for Apparate’s ramp training is significantly lower than

whole-model pre-training or even fine-tuning. In cases where

existing (final) layers can be used as ramps, e.g. in genera-

tive scenarios, Apparate eschews training and directly reuse

the final layer for each ramp. In addition, Apparate enforces

that all inputs are used to train all ramps, i.e., exiting is pro-

hibited during training. This ensures that ramps are trained

independently of the presence (or behavior) of any upstream

ramps, which is crucial since the set of active ramps can vary

at runtime. Further, such independence and model freezing

enable loss calculations to be backwards propagated in par-

allel across ramps, rapidly speeding up training despite the

many lightweight ramps. As a result, ramp training only takes

on the order of a few minutes for our models using a single

A6000 GPU. Apparate uses the first 10% of each dataset for

training and validation (following a 1:9 split).

For initial deployment, Apparate evenly spaces the max

number of allowable ramps across the model. To avoid ac-

curacy dips due to discrepancies between training data and

the current workload, each ramp begins with a threshold of 0,

i.e., no exiting. The updated model definition (with enabled

ramps) is passed to the serving platform which runs normally.

3.2 Accuracy-Aware Threshold Tuning

To avoid accuracy drops as workload characteristics change

over time, Apparate’s controller employs frequent and fast

tuning of thresholds for already-enabled ramps. The reason is
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that threshold tuning for any set of ramps is sufficient to en-

sure that user-specified accuracy constraints are not violated

± at the extreme, all thresholds could be set to zero, which

precludes any early exiting. Altering only the set of active

ramps fails to provide this property.

To enable threshold tuning, as requests pass through a

model, Apparate continually records exiting information at

each active ramp, as well as the final result that the original

model predicts. More precisely, Apparate records the highest-

confidence result for each ramp, even if the error exceeds

the ramp’s threshold (precluding exiting). Importantly, since

inputs always pass fully through models with Apparate, this

information is recorded for all inputs at each active ramp,

irrespective of upstream exiting decisions. This is paramount

since the information serves not only signals when to tune

thresholds, but also provides guidance for how to do so.

Triggering tuning. Apparate maintains an average achieved

accuracy over the past 16 samples by comparing exiting re-

sults with the deployed configuration to results of the original

model. Threshold tuning is triggered any time a window’s

accuracy falls below the user-specified accuracy constraint.

The threshold tuning process (described below) runs asyn-

chronously on a CPU, without any disruptions to ongoing

jobs. This is possible since thresholds are anyway enforced

only by Apparate’s controller; GPUs are agnostic to threshold

values, and instead simply stream ramp results to the Apparate

controller which determines exiting decisions.

Evaluating threshold configurations. Threshold tuning

needs insight into how any alterations to active ramp thresh-

olds would affect model exiting behavior (and accuracies). By

observing per-request behavior only at active ramps, Appa-

rate can rapidly evaluate any threshold configuration without

additional inference, and while accounting for inter-ramp de-

pendencies. In particular, to evaluate new threshold values,

Apparate simply identifies the earliest ramp whose top pre-

diction now has an error rate below its threshold. Comparing

these results with those of the original model indicates the

achieved accuracy for the new configuration; latency wins are

computed using the one-time profiling data described in §3.3.

Greedy search. The goal of tuning is to identify a new set

of thresholds that maximizes latency savings while adhering

to accuracy constraints for the last window of data. The chal-

lenge is that the space of thresholds to consider is massive,

precluding a grid search (especially given how frequently

adaptation is needed - §2.3). Indeed, even with discretized

threshold values in [0, 1] with a step size of 𝑆 , computation

costs are𝑂 (𝐶 × ( 1
𝑆
)𝑅), where 𝑅 is the number of active ramps,

and 𝐶 is the cost to evaluate a given configuration.

Instead, Apparate employs a greedy heuristic that leverages

a fundamental property of EEs when evaluated against an orig-

inal model: higher thresholds result in monotonic decreases

in accuracy and monotonic increases in latency savings. This

prunes the space of threshold values to consider by providing

Figure 9. Threshold tuning example with two active ramps for

ResNet50 and a random video. Configurations within the bound-

ary have <1% accuracy loss; cell values list latency wins. Arrows

show the path taken by Apparate’s hill climbing algorithm.

a clear boundary in the 𝑅-dimensional space that separates

configurations that are sufficiently accurate from those that

are not. Additionally, for accurate configurations, maximum

latency savings must fall on that boundary. Figure 9 illustrates

this.

These properties inform Apparate’s hill climbing strat-

egy [63] for threshold tuning. Starting with threshold values

of 0 for each active ramp, and a step size of 0.1, threshold

tuning runs in a series of (incremental) exploration rounds. In

each round, we increase the threshold of each ramp in isola-

tion (leaving the others unchanged), and evaluate the achieved

accuracy and latency savings as described above. Apparate

then chooses the single ramp threshold change that delivered

the largest additional latency savings per unit of additional

accuracy loss. This process repeats until no ramp’s threshold

can be increased without an accuracy violation.

To enhance this process, Apparate follows a multiplicative

increase, multiplicative decrease policy on step sizes to bal-

ance search speed and granularity. Each time a step increase

results in an accuracy violation, Apparate halves that ramp’s

step size for subsequent rounds to hone in on the boundary at

fine granularity; step sizes are lower-bounded at 0.01. Con-

versely, selection of a ramp for threshold alteration suggests a

promising path of exploration; in this case, for a speedup, Ap-

parate doubles that ramp’s step size for the following round.

Overall, as shown in Figure 10, Apparate’s threshold tuning

algorithm runs up to 3 orders of magnitude faster than a pure

grid search (11.9ms vs. 3.0s on average). Note that these

results maximally parallelize grid search across a 32-core

machine. Further, selected threshold values achieve within

0±3.8% of the latency savings of the optimal configurations.

3.3 Latency-Focused Ramp Adjustments

The set of active ramps ultimately dictates where inputs can

exit, and thus provides bounds on potential latency savings.

Unlike threshold tuning which runs reactively (since accuracy

is a constraint) and uses only recent profiling data to evaluate

new configurations, ramp adjustment is used strictly as an
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Figure 10. Apparate’s tuning vs. optimal tuning on runtime and

latency of selected configurations. Bars list medians across all

model-workload pairs, with error bars for min-max.

optimization (for latency savings) in Apparate, and requires

deployment to evaluate the impact of any new ramp. Thus,

Apparate’s ramp tuning runs periodically (every 128 samples

by default) and conservatively alters the set of active ramps to

incrementally converge on high-performing configurations.

Evaluating active ramps. In each round, Apparate’s con-

troller starts by computing a utility score for each active ramp

that evaluates its overall impact on workload latency. To do

so, Apparate couples per-ramp exit rates (§3.2) with two

additional inputs that are collected once per model during

bootstrapping: (1) the latency overhead per ramp, and (2) a

layer-wise breakdown of time spent during model inference

(for different batch sizes [30] and including network delays

for distributed serving). The latter is necessary since latency

characteristics vary across models but govern the impact of

exits, e.g., latency arises early in CV models [52], but more

evenly across coding blocks in transformers. Using these in-

puts, Apparate defines the utility of ramp 𝑅 as savings -

overheads, where savings is the sum of raw latency that

exiting inputs avoided by using ramp 𝑅, and overheads is

the sum of latency that 𝑅 added to inputs that it could not exit.

Adding new ramps. If any negative utility values exist, Ap-

parate applies a fast threshold tuning round to see if ramp

utilities become entirely positive without harming overall la-

tency savings. If not, Apparate immediately deactivates all

negative-utility ramps. From there, the key question to ad-

dress is what ramps (if any) should be added to make use of

the freed ramp budget. The main difficulty is in predicting

the utility of each potential addition. Indeed, while per-exit

latency savings for each potential ramp are known (using the

latency breakdown from above), exit rates are not.

To cope with this uncertainty, our guiding intuition is that,

subject to the same accuracy constraint, later ramps almost

always exhibit higher exit rates than earlier ones. The reason

is that late ramps have the luxury of leveraging more of an

original model’s computations when making a prediction.

Importantly, this implies that a candidate ramp’s exit rate is

bound by the exit rate of the closest downstream ramp; note

that this is not a formal guarantee [41], and Apparate uses

this for search efficiency (not correctness).

Building on this, Apparate’s controller computes an up-

per bound on the utility of candidate ramps as follows. To

0 1 2 3 4 5 6 7 8 9 10 11
+ - -

Profiled Exit Rate

(Estimated Upper Bound)

10% 5% 20%10%20%

Higher Exit Rate

Higher Latency Savings

5%

Figure 11. Computing upper-bound exit rates for candidate

ramps. Blue dots show previously active ramps (+/− indicates

positive/negative utility), while orange dots show candidates.

avoid inter-ramp dependencies harming ramps that are al-

ready performing well, we only consider additions after the

latest positive ramp 𝑃 in the model. In particular, Apparate

divides the range following 𝑃 into intervals separated by any

negative ramps deactivated in this round. The first round of

candidate ramps are those in the middle of each interval.

For each candidate ramp, we compute its upper-bound

exit rate as the sum of profiled exit rates for the following

deactivated ramp and any earlier deactivations (Figure 11);

the idea is that inputs from earlier deactivations would have

reached the following deactivated ramp and might have exited

there. Utility scores are then computed as above, and the ramp

with the highest positive utility score is selected for trial. If

all ramps have negative projected utilities, Apparate repeats

this process for later candidate ramps in each interval. Once

a ramp is selected for trial, Apparate adds it to the deployed

model definition, while removing deactivated ramps. Trialed

ramps start with threshold=0 to prevent inaccurate exiting,

but are soon updated in the next round of threshold tuning.

Until now, we have only discussed how Apparate handles

scenarios with at least one negative ramp utility. In the event

that all ramps exhibit positive utilities, Apparate enters a

low-risk probing phase to determine if latency savings can

grow by using earlier ramps. If ramp budget remains, we add

a ramp immediately before the existing ramp with highest

utility (while keeping that ramp to preserve its exiting wins).

If not, we shift the ramp with the lowest utility score one

position earlier, leaving the most positive ramp untouched.

3.4 Supporting Generative Large Language Models

Recent efforts have incorporated EEs into generative language

models (e.g., CALM [60] and FREE [14] for T5 [56], Lay-

erSkip [24] for Llama [71]) to enhance their response times

in interactive applications. While the general challenges with

EEs persist ± lack of runtime adaptation for time-varying

accuracy and latency savings ± the auto-regressive nature of

generative models poses a unique challenge for Apparate.

Unlike with classification where inputs can be processed to

completion independently, each token generated by an LLM

depends on the preceding ones in the sequence, requiring

their full key-value (KV) states. Thus, when a token 𝑇 1 exits

using a ramp, the generation delay begins to accumulate for

the next token, 𝑇 2; yet, 𝑇 2’s forward pass through the layers

after the ramp cannot begin until 𝑇 1 passes through the same

layers to generate KV states. The effect is potential harm on

time-per-token (TPT) distributions.
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To regain latency savings from EEs, Apparate draws inspi-

ration from recent parallel decoding techniques [14, 24, 45].

As a token exits from a ramp, Apparate does not immedi-

ately compute the remaining model layers, and instead only

accumulates its hidden states at that ramp. The remaining

computations are executed in parallel alongside the first non-

exiting token that is encountered thereafter at that ramp. For

concreteness, consider a scenario with 2 tokens, 𝑇 1 and 𝑇 2.

Assume 𝑇 1 can exit at ramp 𝑅1, while 𝑇 2 must proceed later

in the model. 𝑇 1 will exit at 𝑅1, and 𝑇 2 will immediately

begin processing. However, once 𝑇 2 fails to exit at 𝑅1, the

remaining layers for 𝑇 1 are run alongside (i.e., batched with)

𝑇 2’s remaining layers. Taken together, 𝑇 1 achieves per-token

latency savings from exiting, while 𝑇 2 incurs a very mild

(§4.3) penalty from the higher batch size.

In addition to improved TPT latencies and compute effi-

ciency (due to batching effects on GPUs), parallel decoding

grants Apparate token-level feedback for exiting decisions

relative to the original (non-EE) model. Specifically, for each

parallel decoding instance, Apparate collects per-token feed-

back up until the first token whose exit result deviates from

the original model; feedback for subsequent tokens is dis-

carded as it may reflect cascading errors from inter-token

dependencies. This feedback guides Apparate’s threshold and

ramp tuning strategies from §3.2±3.3.

4 EVALUATION

We evaluated Apparate across a wide range of NLP and CV

workloads and serving platforms. Our key findings are:

• Apparate lowers 25th percentile and median classification

latencies by 40.5±91.5% and 70.2±94.2% for CV, and 16.0±

37.3% and 10.0±24.2% for NLP workloads, compared to

original (non-EE) models. These wins are 5.7±66.6% larger

than two-layer inference systems using compressed models

for ‘easy’ inputs [17, 73]. Median time-per-token wins are

22.6±77.9% for generative scenarios.

• Unlike existing EE models that unacceptably worsen ac-

curacies and tail latencies by up to 23.9% and 11.0% for

classification, Apparate consistently meets accuracy and

tail latency constraints. This carries to generative scenarios:

Apparate’s tail latency is 1.8±2.4% lower than existing EE

models which lower accuracies up to 5.5%.

• Apparate automatically generalizes to different model ar-

chitectures (e.g., compressed) and EE configurations (e.g.,

ramp style), and its wins gracefully shrink as accuracy or

tail-latency constraints grow.

4.1 Methodology

Models. For classification, we consider 10 models (across 4

families) that cover popular architectures and diverse sizes.

For CV, we use the ResNet{18, 50, 101} residual models, as

well VGG{11, 13, 16} models that follow a chained (linear)

design. All of these models are pre-trained on ImageNet and

from the PyTorch Model Zoo [55]. For NLP, we consider 3

encoder-only transformers from the BERT family ± BERT-

base, BERT-large, and Distilbert [59] (a variant of BERT-base

that was compressed via distillation) ± as well as a decoder-

only LLM: GPT2-medium. These models span 66±345 mil-

lion parameters, were collected from HuggingFace [38], and

were pre-trained on Yelp reviews [10]. We also consider quan-

tized versions of these BERT models in §4.2. For generative

scenarios, we use the T5-large [56] encoder-decoder LLM

(from prior EE work [14, 60]) with 770 million parameters

and the Llama2 decoder-only LLMs with 7 and 13 billion

parameters, both pretrained from HuggingFace.

Workloads. CV workloads comprise real-time object classifi-

cation (people, cars) on 8 one-hour videos from recent video

analytics literature [12, 34]. The videos were sampled at 30

frames per second, and span day/night from urban scenes.

NLP classification workloads focus on sentiment analysis

using two datasets: Amazon product reviews [1] and IMDB

movie reviews [53]. To the best of our knowledge, there do not

exist public streaming workloads for NLP classification, so

we convert these datasets into streaming workloads as follows.

For Amazon, we follow the order of product categories in the

original dataset, but within each category, we keep reviews

only from frequent users (i.e., those with >1k reviews) and

order streaming by user (250k requests in total). For IMDB,

we follow the order of reviews in the original dataset, but

stream each in sentence by sentence (180k requests in total).

We then define arrival patterns using the Microsoft Azure

Functions (MAF) as in prior work [30, 46]. To cope with the

large variation in runtime across our models, we paired each

model with a randomly selected trace snippet from the set

that met the following criteria: (1) number of requests match

that in our largest dataset, and (2) queries per second should

not result in >20% dropped requests with vanilla serving for

the given model and selected SLO (described below).

Our generative workloads use two datasets: CNN/Daily-

Mail [62] for text summarization and SQuAD [57] for ques-

tion answering. As in prior work [14, 60], we assign request

arrival times that follow a Poisson distribution, configured to

saturate our computing resources.

Parameter configurations. Given our focus on interactivity,

we cope with heterogeneity in model runtimes by setting

SLOs for classification to be 2× each model’s inference time

with batch size 1 in our main experiments. This results in

SLOs between ∼10±200 ms, which match the ranges used

in prior work [30, 52, 65]; Table 5 in §7 lists the specific

SLO values, and we study the effect of SLO on Apparate in

§4.5. Unless otherwise noted, results use 1% for Apparate’s

accuracy constraint and a ramp budget of 2% impact on worst-

case latency; we consider other parameter values in §4.5.

Setup. Experiments were conducted on dedicated servers

with NVIDIA RTX A6000 GPUs housing 48GB of mem-

ory, AMD EPYC 7543P 32-Core CPUs, and 256GB DDR4
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Figure 12. Median latency savings vs. vanilla models. Bars show

median savings across all workloads; error bars are min-max.
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Figure 13. Evaluating Apparate’s impact on tail latency (run-

ning with 2% budget) vs. vanilla serving. Bars show the median

savings across all workloads with error bars spanning min-max.

RAM. We run experiments with two serving platforms for

classification: TensorFlow-Serving [51] and Clockwork [30].

For space, we primarily present results with Clockwork, but

note that reported trends hold for both platforms; we compare

cross-platform results in §4.5. For generative workloads, we

use the HuggingFace Pipelines inference engine [6].

Metrics and baselines. For classification, our main metrics

are accuracy (% of inputs assigned correct label as per the

non-EE model) and per-request response latency (including

queuing). For generative models, sequence accuracy is mea-

sured using ROUGE-L (text summarization) and F1 (question

answering) scores. Latency is measured using time-per-token

(TPT) distributions. We compare Apparate with the follow-

ing baselines: (1) original models without EEs (vanilla), (2)

optimal EEs as defined in §2.2, i.e., assuming all inputs exit

at their earliest possible ramps, with no ramp overheads, (3)

two-layer inference systems [17, 73] that invoke full models

only when compressed ones cannot generate high-confidence

outputs, and (4) existing, non-adaptive EE strategies (§4.4).

4.2 Results for CV and NLP Classification

Figures 12±15 compare Apparate with vanilla model serving

and optimal exiting across our workloads. Overall, Apparate

significantly lowers latencies compared to serving vanilla

models, while always adhering to the imposed 1% accuracy

constraint. For instance, median speedups range from 40.5±

91.5% (2.7±30.5 ms) for CV workloads, and jump to 70.2±

94.2% (5.2±31.4 ms) at the 25th percentiles. NLP workloads

follow a similar pattern, with median and 25th percentile sav-

ings ranging from 10.0±24.2% (3.9±25.3 ms) and 16.0±37.3%

(4.8±53.2 ms). Importantly, across all workloads, Apparate’s

tail latency (and thus impact on throughput) always falls under

its 2% budget, and is most often negligible (Figure 13).

Beyond this, there are several important trends to note.

First, Apparate’s raw latency savings grow with increased

model sizes, e.g., 25th percentile wins of 53.2ms, 28.4ms,

14.3ms, 5.5ms for GPT-2, BERT-large, BERT-base, and

Distilbert-base on the Amazon Reviews. This is because only

results (not inputs) exit models with Apparate, so latency

savings pertain entirely to serving times (not queuing delays)

and grow as model size/runtime grows. Relative (%) latency

savings follow the same pattern for CV workloads, e.g., Appa-

rate’s median wins grow by 13.8% and 5.3% moving from the

smallest to the biggest models in the ResNet and VGG fami-

lies. However, relative wins remain relatively stable in NLP

models, e.g., 15.8% and 13.7% for GPT2 and BERT-large on

Amazon Reviews. The difference is due to the effectiveness of

the models in each domain. Results and task performance are

largely similar across the CV models, enabling Apparate to

inject ramps early in (even larger) models. In contrast, results

are far better with the larger models in NLP; thus, Apparate’s

ramps fall in similar (relative) positions across the models.

Second, Apparate’s wins are larger for CV workloads than

NLP workloads for two reasons. As previously noted, CV

workloads use lighter models and lower request rates (bound

by video fps), and thus incur far lower queuing delays. More

importantly, in contrast to CV where spatiotemporal similari-

ties across frames (and thus, requests) are high due to physical

constraints of object motion in a scene, NLP requests exhibit

less continuity, e.g., back-to-back reviews are not constrained

in semantic similarity. The effects on Apparate’s adaptations

are that (1) past data is less representative of future data, and

(2) the duration until subsequent adaptation is shorter.

Other compute optimizations. To further illustrate Appa-

rate’s ability to run alongside existing compute efficiency opti-

mizations ± a key goal of its design (§3) ± we ran experiments

using post-training Int8 quantized Bert-base and Bert-large.

Overall, we observe that Apparate’s speedups largely persist,

which median and 25th percentile wins of 7.3±19.4% and 6.9±

31.1%. The mild dip in speedups relative to non-quantized

Bert models (Figure 14) is a result of quantization’s reduction

in model overparameterization, which early exiting aims to

capitalize on for select inputs.

Comparisons with optimal. As shown in Figure 12, latency

savings with Apparate for CV workloads largely mirror those

of the optimal that tunes exiting decisions based on perfect

knowledge of the upcoming workload, e.g., median savings

are within 20.5% of the optimal. In contrast, the limited conti-

nuity across inputs in NLP workloads leads to a wider gap of

65.4±78.5% at the median (Figure 15). To further characterize

Apparate’s performance on these workloads, we also consider

a more realistic online optimal algorithm that relaxes the fol-

lowing elements. First, rather than per-sample adaptation of

thresholds and ramps, ramp adjustments are set to operate

only as fast as model definitions in the GPU can be updated.

Second, rather than using perfect knowledge of upcoming

inputs, decisions are made using only recent (historical) data;

we tune based on the past {20, 40, 80} batches of inputs and

select the one that performs best on the upcoming data. As
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Figure 14. Apparate (with 2% budget) vs. vanilla models (ª-Vº) on NLP classification workloads. ª-Vº curves per plot mostly overlap

since they use the same timing trace and no exiting; minor discrepancies are due to the varying number of inputs across workloads.
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workloads with the Amazon dataset.
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Figure 17. Impact of SLOs on Apparate’s wins.

shown in Figure 15, Apparate’s median latency savings are

within 4.9±17.2% of this (more) realistic optimal strategy.

Comparisons with two-layer inference. We compare Appa-

rate with in-house implementations of Tabi [73] (NLP) and

FilterForward [17] (CV), which employ compressed models

on all inputs, and pass only those inputs with low confidence

results to the base model. Acceptable confidence scores from

compressed models are configured to ensure both systems op-

erate within the same accuracy loss budget as Apparate. Note

that our evaluation is favorable to these systems: we ignore

overheads from hosting the compressed models, compute

overheads for data pruning (e.g., word pruning in Tabi), and

queuing for batch formation between compressed and base

models. As shown in Figure 16, across 3 representative work-

loads, Apparate delivers 5.7±66.6% and 20.9±42.0% lower

median and P95 latencies compared to these baselines. For

easy inputs, Apparate delivers latency wins by enabling ramps

early enough (i.e., within the first third) in the base model to

run faster than the baselines’ compressed models. For hard in-

puts, tail latencies with Apparate are capped by its 2% budget;
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Figure 18. Comparison of Apparate against T5 generative LLM

and FREE [14] (left), and against Llama generative LLM and

its optimal variant (right). Bars represent medians with 25-95th

percentiles.

in contrast, the baselines add the entire compressed model

runtime per input.

Varying SLOs. We considered SLOs for each model that

were 2× and 4× those in our default experiments (Table 5).

Generally, higher SLOs induce larger serving batch sizes and

higher per-request queuing delays; this dampens Apparate’s

relative latency savings (Figure 17) which target model run-

times, but not queuing delays. For instance, median latency

savings for GPT-2 drop from 13.2% to 6.8% as SLO grows

by 4×. Note that, to illustrate this trend for CV workloads,

we upsampled each video to 120 fps. The reason is that our

serving platforms are work-conserving and, at 30 fps, they

are able to consistently schedule jobs with batch size 1 and

low queuing delays given the low model runtimes.

4.3 Results for Generative Scenarios

Figure 18 compares Apparate with the vanilla T5-large LLM

across our workloads. As shown, Apparate lowers median

and 25th percentile TPT by 70.4±77.9% and 74.6±78.0%,

respectively. However, at the 95th percentile, Apparate incurs

2.6±8.4% higher TPT due to ramp overheads and (more so)

added delay from parallel decoding (non-exiting tokens run

alongside the remaining computation for previously-exited

tokens). Unlike with classification, formally bounding tail

overheads online is hard because variable sequence lengths

make TPT values unpredictable in vanilla generative serv-

ing. We also evaluated Apparate on the larger Llama models

for question answering. Figure 18 shows that Apparate re-

duces the median and 25th percentile TPT by 22.6±37.4%

and 25.4±40.3%. Notably, the latency wins increase as model

size grows.

Comparison to optimal. Similar to classification, we define

the optimal EE strategy as exiting each token at the earliest

possible ramp that generates the correct value (ignoring delays
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Avg Acc Median Wins P95 Wins

Apparate (ResNet50) 99.0±99.2% 46.6±88.6% -1.6±0.0%

BranchyNet 85.8±99.8% -11.0±88.3% -11.0%

BranchyNet+ 76.1±99.9% -11.0±88.3% -11.0%

BranchyNet-opt 99.0±99.7% -11.0±74.5% -11.0%

Apparate (BERT-base) 99.1±99.3% 13.7±14.7% 2.1±3.0%

DeeBERT 91.7±97.1% 13.2±36.1% -1.3±6.4%

DeeBERT+ 82.2±90.3% 31.7±36.1% 5.9±6.4%

DeeBERT-opt 99.0% 9.8±36.1% -1.4±6.4%

Table 2. Comparison with existing EE models. Results list ac-

curacies and latency wins for all CV (top) or NLP (bottom)

workloads. ‘+’ and ‘opt’ use the optimized tuning from §4.4.

for generating the remaining KV states). Apparate’s median

TPT for T5 and Llama is within 9.0±16.2% and 2.1%±7.7%

of the optimal, respectively. The smaller gap relative to NLP

classification stems from two elements. First, accuracy here is

measured at the sequence level, granting more flexibility for

exiting decisions at individual tokens. Further, auto-regressive

generation (with shared state across tokens) grants more con-

tinuity than between requests in NLP classification, boosting

adaptation benefits.

4.4 Comparison with Existing EE Strategies

Classification. We compare Apparate with two off-the-shelf

EE models: BranchyNet [69] and DeeBERT [76]. BranchyNet

extends ResNet models with ramps of the same style as Appa-

rate, while DeeBERT extends BERT-base with deeper ramps

(using the entire BERT pooler - §3.1). For each, we follow

their prescribed architectures, with always-on ramps after

every layer. We perform one-time tuning of thresholds as

recommended by both works, and consider two variants: the

default recommendation where all ramps use the same thresh-

old, and a version that removes this restriction (+).

Table 2 presents our results. The main takeaway is that

existing EE approaches, even when favorably tuned, yield un-

acceptable drops in average accuracy up to 23.9% and 17.8%

for CV and NLP. In contrast, Apparate consistently meets the

imposed accuracy constraint (1% in this experiment) for both

workloads. Further, even with such accuracy violations, tail

latencies are 0.9±9.4% lower with Apparate than these sys-

tems. The reason is lack of adaptation: all ramps are always

active despite current efficacy, yielding undue overheads for

non-exiting inputs. In contrast, throughout these experiments,

despite having a full ramp budget (for fair comparison), Ap-

parate maintained only 9.1±27.2% of all possible ramps.

For fair median latency comparison, we consider an

optimally-tuned (opt) version of existing EE models that per-

form one-time tuning on the actual test dataset, picking the

best (latency-wise) thresholds that ensure <1% accuracy drop.

As shown, due to its regular and less-constrained adaptation,

Apparate outperforms even this oracle version of existing EEs

with up to 14.1% higher median latency savings.

Generative. We compare Apparate with FREE [14], a

state-of-the-art EE solution for T5-large that succeeded
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Figure 19. Apparate’s wins for different accuracy constraints.

Ramp Budget ResNet50 GPT2

2% 48.9% 18.5%

5% 49.6% 22.2%

10% 50.4% 24.9%

Table 3. Apparate’s median latency wins vs. ramp budget.

CALM [60]. FREE relies on a single, fixed ramp and fine-

tunes the entire model to cater to that ramp. The ramp location

and weights are selected once to maximize latency savings

subject to a 1% accuracy constraint on a representative dataset

(default to the first 3% of samples). Both FREE and Apparate

use T5’s final decode head as the ramp architecture. Moreover,

to manage tail latencies, Apparate (like FREE) uses a ramp

budget of 1. The main difference is that Apparate dynamically

adjusts the ramp position (and threshold) to maximize latency

savings and preserve accuracy; FREE’s omission of runtime

adaptation yields 5.5% accuracy losses in these experiments.

Despite FREE’s accuracy violations, Apparate brings me-

dian and 25th percentile TPT savings of 28.0±71.0% and

15.7±28.0% over FREE (Figure 18). 95th percentile latencies

with Apparate are 1.8±2.4% lower than with FREE because

Apparate regularly flushes a batch decoding once the ramp

accumulates a pre-specified number of exited tokens.

4.5 Microbenchmarks

Results here use ResNet50 and GPT2-medium running on

a random video and Amazon reviews for classification. Re-

ported trends hold for all our workloads.

Parameter sensitivity. Recall that Apparate ingests values

for two key parameters: ramp aggression/budget and accuracy

constraint. Figure 19 and Table 3 studies the effect that these

parameters have on Apparate’s latency wins. The findings

are intuitive: Apparate’s latency savings over vanilla mod-

els decrease as ramp budgets shrink or accuracy constraints

tighten. Both trends are a result of Apparate being granted

less flexibility for adaptation. Importantly, accuracy constraint

has a larger impact on Apparate’s wins. The reason is that

inter-ramp dependencies result in overlap in the set of inputs

that can exit at any ramp when run in isolation; thus, wins

from using more ramps eventually hits diminishing returns.

Ramp architectures. Although Apparate opts for using many

lightweight ramps, it’s adaptation algorithms can support any

ramp architecture. To illustrate this, we ran Apparate with

DeeBERT’s more expensive ramps (§4.4). Overall, we find

that these costlier ramps dampen Apparate’s latency savings

by 4% since they constrain Apparate’s runtime adaptation in

terms of feasible configurations, i.e., fewer active ramps at
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System\Workload ResNet50 GPT2

Clockwork (20.2, 37.8) (689.2, 779.4)

TF-Serve (24.5, 37.8) (709.3, 793.1)

Table 4. Apparate on different serving platforms. Results show

(median, p95) latency over vanilla models in ms.

any time. Crucially, we note that accuracy constraints were

still entirely met due to Apparate’s frequent threshold tuning.

Impact of serving platform. Apparate runs atop existing

serving platforms, responding to serving and exiting patterns

rather than altering platform decisions, e.g., queue manage-

ment. Table 4 shows that, despite platform discrepancies,

Apparate’s performance wins are largely insensitive to the

underlying platform when CV or NLP workloads are config-

ured with the same SLO goal. For example, median latency

savings for the Amazon workload and GPT-2 are within 2.9%

when using Clockwork or TF-Serving.

Profiling Apparate. Figure 10 analyzes the run time and opti-

mality of Apparate’s threshold tuning algorithm. Beyond that,

Apparate includes two other overheads while running: ramp

adjustment and communication between its CPU controller

and GPUs for runtime monitoring. Ramp adjustment rounds

take an average of 0.5 ms. Coordination overheads are also

low (and non-blocking for serving - §3) because of Apparate’s

small ramp sizes (definitions and weights consume ∼10KB)

and profiling data (simply a top-predicted result with an error

score, collectively ∼1KB). In total, CPU-GPU coordination

delays take an average of 0.5ms per communication, 0.4ms

of which comes from fixed PCIe latencies in our setup.

Importance of Apparate’s techniques. Apparate’s runtime

adaptation considers frequent (accuracy-guided) threshold

tuning, with periodic ramp adjustments. Table 2 shows the

importance of threshold tuning on average accuracies. We

also evaluate the importance of ramp adjustment on Appa-

rate’s latency wins by comparing versions with and without

it. Overall, disabling ramp adjustment results in 20.8±33.4%

lower median latency wins, though worst-case latency (and

throughput) and accuracy constraints remain continually met.

5 ADDITIONAL RELATED WORK

Early exit networks. Existing proposals focus on exit ramp

architecture and exit strategy [14, 35, 48, 60, 61, 69, 76,

77, 84] for specific models. Ramp architectures are domain-

specific, but replicating the last (few) layers is the common

practice [76, 77]; Apparate builds on this and prefers shallow

ramps (§3). Existing exit strategies consider confidence of the

labels [48], entropy of the prediction [76], or more sophisti-

cated elements such as counters across ramps [84]. Apparate

is agnostic to EE technique, and instead focuses on bringing

EEs to arbitrary models and providing runtime management

to maximize latency savings and accuracy preservation.

Model optimizations. Much work has focused on creating

variants of ML models to optimize serving. Some employ

compiler techniques to analyze (and optimize) execution at

a graph or operator level for lower latency [3, 5]. Other tech-

niques compress models into versions with fewer layers or

less weight specificity while adhering to accuracy objectives,

e.g., quantization [27, 43, 47], distillation [37, 59], and model

pruning [26, 49]. These efforts are complementary to Appa-

rate, which would bring input-level compute adaptation to

their outputs, i.e., on optimized or compressed models. More-

over, unlike many of these techniques, Apparate does not

alter the original model’s weights and instead preserves its

full predictive power for hard inputs and constant feedback.

Inference optimizations. Recent work optimizes model serv-

ing objectives based on workload characteristics [18, 19, 29,

58, 65, 82, 83]. For instance, Inferline [19] optimizes serving

cost while adhering to strict latency constraints using intel-

ligent provisioning and management. Shepherd [83] maxi-

mizes goodput and resource utilization by leveraging cross-

workload predictability. Despite their impressive results, these

works optimize their metric of choice at the expense of latency

and do not resolve the latency-throughput tension, which is

the focus of our (complementary) work. Mystify [31] and

INFaaS [58] generate and choose model variants based on

their intent and constraints (including performance). As noted

above, Apparate operates on the output of such tools, bringing

latency wins to compressed models (§4.2).

Dynamic neural networks. Other techniques boost inference

efficiency by adapting model execution [22, 25, 36, 72, 78]

at different granularities, e.g., sample-wise, spatial-wise, and

temporal-wise. As with exiting, their modulations to serv-

ing risk accuracy violations and foregone latency wins with

dynamic workloads. We hope that Apparate can motivate

and guide adaptation systems to navigate accuracy-latency-

throughput tradeoffs for such techniques, but leave that to fu-

ture work. Other low-level (e.g., GPU kernel level) techniques

that optimize execution of dynamic neural networks [21, 81]

can benefit Apparate and improve its performance.

6 CONCLUSION

We present Apparate, the first system that automatically in-

jects and manages early exiting for ML inference. Key to

Apparate’s ability to alleviate latency-throughput tensions in

serving is its use of exiting only for fast results (not compute

savings). This provides continual feedback on exits, and pow-

ers Apparate’s novel adaptation strategies for EE ramps and

thresholds. Apparate lowers median latencies by 40.5±91.5%

and 10.0±24.2% for diverse CV and NLP workloads, and

reduces median time-per-token latencies by 22.6±77.9% for

generative workloads, all while meeting accuracy constraints

and preserving platform throughputs.
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7 APPENDIX

The appendix was not peer-reviewed.

We list the SLOs for each model in the classification experi-

ments (Figures 12±14). The default SLOs for classification

models are 2× each model’s inference time with batch size 1.

Model Latency w/ bs=1 (ms) Default SLO (ms)

ResNet18 6.5 13.0

ResNet50 16.4 32.8

ResNet101 33.3 66.6

VGG11 3.3 10.0

VGG13 3.8 10.0

VGG16 4.5 10.0

Distilbert-base 15.5 31.0

BERT-Base 29.4 58.8

BERT-Large 63.2 126.4

GPT2-medium 103.0 206.0

Table 5. Different SLOs used in §4.2 and Figure 17. All numbers

are measured on the A6000.

We also list the pseudocode for our threshold tuning and ramp

adjustment algorithms described in the design section.

Algorithm 1: Threshold tuning algorithm

Input: 𝑟𝑎𝑚𝑝𝑠, list of ordered active ramp IDs

Input: 𝑎𝑐𝑐_𝑙𝑜𝑠𝑠_𝑏𝑢𝑑𝑔𝑒𝑡 , max accuracy loss tolerable

Input: 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒, smallest step size for

incrementing thresholds

Output: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, thresholds associated with each ramp

Output: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑠𝑎𝑣𝑖𝑛𝑔𝑠, latency savings with searched

thresholds

/* all thresholds start at 0, i.e. no EE */

1 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 ← [0.0] ∗ 𝑙𝑒𝑛(𝑟𝑎𝑚𝑝𝑠)

/* each ramp has its own step size */

2 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒𝑠 ← [𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒] ∗ 𝑙𝑒𝑛(𝑟𝑎𝑚𝑝𝑠)

3 while True do

4 𝑏𝑒𝑠𝑡_𝑟𝑎𝑚𝑝, 𝑜𝑣𝑒𝑟𝑠𝑡𝑒𝑝𝑝𝑒𝑑_𝑟𝑎𝑚𝑝𝑠, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑠𝑎𝑣𝑖𝑛𝑔𝑠 ←

𝑝𝑖𝑐𝑘_𝑟𝑎𝑚𝑝 (𝑟𝑎𝑚𝑝𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝑎𝑐𝑐_𝑙𝑜𝑠𝑠_𝑏𝑢𝑑𝑔𝑒𝑡)

/* find next ramp to update thresholds

*/

5 if 𝑏𝑒𝑠𝑡_𝑟𝑎𝑚𝑝 is valid then

/* increment threshold of the selected

ramp */

6 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 [𝑏𝑒𝑠𝑡_𝑟𝑎𝑚𝑝] + =

𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒𝑠 [𝑏𝑒𝑠𝑡_𝑟𝑎𝑚𝑝]

/* double step_size */

7 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒𝑠 [𝑏𝑒𝑠𝑡_𝑟𝑎𝑚𝑝] ∗= 2

8 else

9 if 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒𝑠.𝑎𝑙𝑙 () ≤ 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 then

10 return 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑠𝑎𝑣𝑖𝑛𝑔𝑠

/* half step_size for overstepped ramps,

double step_size for the rest */

11 for 𝑟𝑎𝑚𝑝 in overstepped ramps do

12 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒𝑠 [𝑟𝑎𝑚𝑝] /= 2

Algorithm 2: Ramp adjustment algorithm

Input: 𝑃 , latest positive ramp

Input: 𝑟𝑎𝑚𝑝𝑠, list of ramp ids

/* Initialize ramp settings */

/* Check whether negative ramps exist */

1 if negative utility ramps exist then

2 Try fast threshold tuning

3 if still negative then

4 Deactivate all negative-utility ramps

5 else

6 Update thresholds

7 return

/* Determine candidate ramps located at

the middle of each interval after 𝑃

(see Figure 11) */

8 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑝𝑖𝑐𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (𝑃, 𝑟𝑎𝑚𝑝_𝑖𝑑𝑠)

/* Compute utilities and select ramp with

best upper-bound utility (see

Figure 11) */

9 foreach 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do

10 Compute upper-bound exit rate

11 Calculate utility using upper-bound exit rate

12 if utility is positive and utility >

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑅𝑎𝑚𝑝.utility then

13 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑅𝑎𝑚𝑝 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

/* Update EE configuration */

14 Remove all deactivated ramps

15 Add 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑅𝑎𝑚𝑝 with initial threshold=0

16 Update thresholds in future tuning rounds

/* If all ramps have positive utilities,

explore the possibility of higher latency

savings */

17 if all utilities positive then

18 if ramp budget allows then

19 Add a ramp before the highest utility ramp

20 else

21 Shift the lowest utility ramp one position earlier

22 return
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