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ABSTRACT

Machine learning (ML) inference platforms are tasked with
balancing two competing goals: ensuring high throughput
given many requests, and delivering low-latency responses
to support interactive applications. Unfortunately, existing
platform knobs (e.g., batch sizes) fail to ease this fundamen-
tal tension, and instead only enable users to harshly trade
off one property for the other. This paper explores an al-
ternate strategy to taming throughput-latency tradeoffs by
changing the granularity at which inference is performed. We
present Apparate, a system that automatically applies and
manages early exits (EEs) in ML models, whereby certain
inputs can exit with results at intermediate layers. To cope
with the time-varying overhead and accuracy challenges that
EEs bring, Apparate repurposes exits to provide continual
feedback that powers several novel runtime monitoring and
adaptation strategies. Apparate lowers median response laten-
cies by 40.5-91.5% and 10.0-24.2% for diverse CV and NLP
classification workloads, and median time-per-token latencies
by 22.6-77.9% for generative scenarios, without affecting
throughputs or violating tight accuracy constraints.

1 INTRODUCTION

Machine Learning (ML) inference has become a staple for
request handling in interactive applications such as traffic
analytics, chatbots, and web services [33, 52, 54, 74]. To
manage these ever-popular workloads, applications typically
employ serving platforms [7, 8, 20, 30, 44, 51, 58, 80] that
ingest requests and schedule inference tasks with pre-trained
models across large clusters of compute resources (typically
GPUs). The overarching goals of serving platforms are to
deliver sufficiently high throughput to cope with large request
volumes — upwards of billions of requests per day [4, 50]
— while respecting the service level objectives (SLOs) that
applications specify for response times (often 10—100s of
ms).

Unfortunately, in balancing these goals, serving platforms
face a challenging tradeoff (§2.1): requests must be batched
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for high resource efficiency (and thus throughput), but larger
batch sizes inflate queuing delays (and thus per-request la-
tencies). Existing platforms navigate this latency-throughput
tension by factoring only tail latencies into batching decisions
and selecting max batch sizes that avoid SLO violations. Yet,
this trivializes the latency sensitivity of many interactive appli-
cations whose metrics of interest (e.g., user retention [28, 70],
safety in autonomous vehicles [68]) are also influenced by
how far below SLOs their response times fall.

This paper explores the role that early exits (EEs) — an
adaptation mechanism that has garnered substantial ML re-
search interest in recent years [35, 48, 69, 75-77, 84] — can
play in resolving this tension. With EEs, intermediate model
layers are augmented with ramps of computation that aim to
predict final model responses. Ramp predictions with suffi-
ciently high confidence (subject to a threshold) exit the model,
foregoing downstream layers and bringing corresponding
savings in both compute and latency. The intuition is that
models are often overparameterized (especially with recent
growth [40, 64]), and ‘easy’ inputs may not require complete
model processing for accurate results. Importantly, unlike
existing platform knobs (e.g., batch size) that simply walk the
steep latency-throughput tradeoff curve, EEs rethink the gran-
ularity of inference on a per-input basis. This provides a path
towards lowering request latencies without harming platform
throughputs. Indeed, across CV and NLP workloads, we find
that optimal use of EEs brings 24.8-94.0% improvement in
median latencies for the same accuracy and throughput.

Despite the potential benefits, EEs are plagued with prac-
tical challenges that have limited their impact (§2.3). The
primary issue is that EE proposals have solely come in the
context of specific model architectures that impose fixed ramp
designs and locations [14, 60, 69, 76]. The lack of guidance
for integrating EEs into arbitrary models is limiting, especially
given the ever-growing model offerings in the marketplace.
Worse, even existing proposals lack any policy for runtime
adaptation of EE configurations, i.e., the set of active ramps
and their thresholds. Such adaptation is crucial since dynamic
workload characteristics govern the efficacy of each ramp in
terms of exiting capabilities and added overheads (to non-
exiting inputs); failure to continually adapt configurations can
result in unacceptable accuracy drops up to 23.9% for our
workloads. However, devising adaptation policies is difficult:
the space of configurations is massive, and it is unclear how
to obtain a signal for accuracy monitoring once an input exits.

We present Apparate, the first system that automatically
(i.e., without developer effort or expertise) injects and man-
ages EEs for serving with a wide range of models. Our main
insight is that the above challenges are not fundamental to



EEs, and instead are a byproduct of what we are trying to
get out of them. Specifically, adaptation challenges largely
stem from halting execution for an input upon an exit, which
leaves uncertainty in the ‘correct’ response (as per the non-EE
model). Instead, Apparate uses EEs only to deliver latency re-
ductions; results for successful exits are immediately released,
but all inputs continue to the end of the model. The key is
in leveraging the (now) redundant computations to enable
continual and efficient adaptation, while also remaining com-
patible with proven compute efficiency optimizations such as
batching and model compression.

Guided by this philosophy, Apparate runs directly atop
existing serving platforms and begins by automatically con-
verting registered models into EE variants. Apparate’s EE
preparation strategy must strike a balance between support-
ing fine-grained runtime adaptation without burdening those
time-sensitive algorithms with (likely) unfruitful options. To
do so without developer effort, Apparate leans on guidance
from the original model design, crafting ramp locations and
architectures based on downstream model computations and
data flow for intermediates around the model. Original model
layers (and weights) are unchanged, and added ramps are
rapidly trained in parallel (for efficiency), but in a manner
that preserves their independence from other ramps.

Once deployed, Apparate continually monitors EE oper-
ation in GPUs, tracking computations and latency effects
of each ramp, as well as outputs of the original model (for
accuracy ground truth). To tackle the massive space of con-
figuration options, Apparate judiciously decouples tunable
EE knobs: thresholds for existing ramps are frequently and
quickly tuned to ensure consistently high accuracy, while
costlier changes to the set of active ramps occur only peri-
odically as a means for latency optimization. For both con-
trol loops, Apparate leverages several fundamental properties
of EEs to accelerate the tuning process. For instance, the
monotonic nature of accuracy drops (and increases in latency
savings) for higher thresholds motivates Apparate’s greedy
algorithm for threshold tuning which runs 3 orders of magni-
tude faster than grid search while sacrificing only 0-3.8% of
the potential latency wins.

We evaluated Apparate across a variety of recent CV
and NLP models (ranging from compressed to large lan-
guage models), diverse workloads (classification and genera-
tive), and several serving platforms (TensorFlow-Serving [51],
Clockwork [30], and HuggingFace Pipelines [6]). Compared
to serving without EEs, Apparate improves 25th percentile
and median classification latencies by 70.2-94.2% and 40.5—
91.5% for CV, and 16.0-37.3% and 10.0-24.2% for NLP,
while imposing negligible impact on platform throughput.
Latency wins are similar for generative scenarios: 22.6—
77.9% median time-per-token improvements. Importantly,
unlike existing EE proposals that yield accuracy dips up to
23.9%, we find that Apparate’s adaptation strategies always
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met set accuracy constraints. We open source Apparate at
https://github.com/dywsjtu/apparate.

2 BACKGROUND AND MOTIVATION

We start by overviewing existing ML serving platforms (§2.1),
highlighting the challenges they face in balancing metrics
that are important for system performance (i.e., throughput,
resource utilization) and application interactivity, i.e., per-
request latencies. We then describe the promising role that
early exits can play in alleviating those tensions (§2.2), and
the challenges in realizing those benefits in practice (§2.3).
Results follow the methodology from §4.1.
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ML models are routinely used to service requests in interac-
tive applications such as real-time video analytics [15, 65],
chatbots [71], recommendation engines [66], or speech as-
sistants [13]. To manage such workloads, especially at large
scale, applications employ serving platforms such as ONNX
runtime [8], TensorFlow-Serving [51], PyTorch Serve [11],
Triton Inference Server [7], among others [20, 30, 44, 58,
65, 80]. These platforms ingest pre-trained model(s), often in
graph exchange formats like ONNX [9] and NNEF [2], and
are granted access to a pool of compute resources (usually
with ML accelerators such as GPUs) for inference.

Given the latency-sensitive nature of interactive applica-
tions, requests are often accompanied with service level ob-
Jjectives (SLOs) that indicate (un)acceptable response times
for the service at hand. In particular, responses delivered af-
ter an SLO expires are typically discarded or yield severely
degraded utility. Common SLOs are in the 10-100s of mil-
liseconds, e.g., for live video analytics [52, 65].

During operation, serving platforms queue up incoming
requests that can arrive at fixed or variable rates, and continu-
ally schedule jobs across the available compute resources. An
inference task may be scheduled to run on a single node in a
cluster, or may be distributed across multiple nodes [30, 80].

Model Serving Platforms

Latency-Throughput tension. To support the need for high
throughput, serving platforms resort to batching, whereby
inputs are grouped into a single high-dimensional tensor that
moves through the model in lockstep, kernel by kernel, with
final per-request responses being delivered at the same time.
Larger batch sizes amortize the cost of loading a kernel into
GPU memory across more inputs, and enable more effective
use of accelerator parallelism [20, 82].
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layers, lowering both compute and latency.

Unfortunately, delivering the throughput necessary to sup-
port high request rates [32, 50] is directly at odds with per-
request latencies (Figure 1). On one hand, latency for an input
is minimized by scheduling inference as soon as the request
arrives with batch size of 1. On the other hand, throughput is
maximized by creating large batches using a queuing system
which directly inflates request latencies.

The problem. In navigating this tension, the key decision that
serving platforms face is when to drain queued requests for in-
ference. Certain platforms [20, 30, 65] take an all-or-nothing
stance on latency, with adherence to SLOs considered com-
plete success, and violations viewed as failure. Accordingly,
these platforms schedule inference jobs in a work-conserving
manner and select the max batch size that limits SLO viola-
tions for queued requests. However, many interactive applica-
tions present a more nuanced latency story where sub-SLO
responses are not equally useful, e.g., faster responses boost
conversational interactivity for chatbots [33, 79] and confi-
dence in scene perception for video analytics [15, 67].

Other platforms [7, 11, 51] provide more flexibility by
exposing tunable knobs to guide queue management, e.g.,
max_batch_size and batch_timeout_micros parameters cap
batch sizes or inter-job scheduling durations. However, such
knobs do little to ease the throughput-latency tension, pre-
senting harsh tradeoffs (Figure 2): tuning for median latency
improvements of 17.3-39.1% brings 1.1-3.6x reductions in
average batch sizes (and proportional hits on throughput).

Platforms for serving generative models [44, 80] face sim-
ilar tensions despite the less explicit focus on SLOs (since
sequence lengths are hard to predict). Indeed, although such
platforms use continuous batching to ensure that new requests
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Figure 4. EEs can lower latencies without harming throughput.
Results modulate latencies from TF-Serve with original/vanilla
models (Figure 2) based on optimal exiting.

immediately leverage idle resources as any input’s generation
finishes, they prioritize throughput by running at the highest
possible batch size (capped by a preset max).

Takeaway. Existing platform configurations and knobs fail to
practically remediate the throughput-latency tension, and in-
stead simply navigate (often) unacceptable tradeoff points be-
tween the two goals. Given ever-growing request rates and the
need for high throughput, we ask if there is a middleground:
whereby new serving adaptations enable lower per-request
latencies (moving closer to the lower-bound serving times in
Figure 2) without harming platform throughput.

2.2 Early-Exit Models

Early (or multi) exit models [69, 76] present an alternate way
to address this tension by rethinking the granularity of infer-
ence. As shown in Figure 3, the key premise is that certain
‘easy’ inputs may not require the full predictive power of a
model to generate an accurate result. Instead, results for such
inputs may be predictable from the values at intermediate
layers. In such cases, the foregone model execution can yield
proportional reductions in both per-request latencies and com-
pute footprints. Thus, the goal with early exits (EEs) is to
determine, on a per-input basis, the earliest model layer at
which an accurate response can be generated.

To use EEs, intermediate layers in a model are augmented
with ramps of computation. These ramps ingest the values
output by the layers they are attached to and parse them to
predict the final model’s result, e.g., a classification label.
Ramps can perform arbitrary degrees of computation to arrive
at a potential result. Exiting decisions at each ramp are made
by comparing the entropy in the predicted result (or aver-
aged over the past k ramps) to a preset threshold. Thresholds
are set to balance latency and compute wins with potential
dips in accuracy; a higher threshold implies lower required
confidence for exiting, and thus more exiting.

Potential benefits. To understand the effect that EEs can have
on the latency-throughput tension, we used off-the-shelf EE
variants for the models in Figure 2: BranchyNet [69] (CV)
and DeeBERT [76] (NLP). For each model-input pair, we
identified the optimal exit point defined as the earliest exit
ramp that predicted the correct response for the input. We
then modified the highest-throughput results in Figure 2 to
account for exiting by subtracting the time saved for each
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Figure 5. Optimal EE configurations change frequently. Work-
loads use 64-request chunks. Dot presence shows a ramp that
was part of the optimal config for a chunk, while transparencies
indicate threshold values (opaque is higher).

Strategy\Workload CvV NLP
Initial Only 84.5% (74.3%) | 86.8% (73.6%)
Uniformly Sampled | 90.3% (64.2%) | 87.7% (69.4%)
Continual Tuning 98.6% (43.5%) | 98.3% (26.6%)

Table 1. Thresholds need frequent tuning to avoid accuracy loss.
Continual tuning kicks in when chunk accuracy < 99%. Results
list avg accuracy (median latency wins).

exiting input, i.e., the difference in time for passing an input
to the end of its optimal ramp versus passing it to the end of
the model (without any ramps). These results are conservative
upper bounds in that they do not reduce queuing delays or
alter job scheduling. As shown in Figure 4, without changing
queueing decisions, EEs can bring 35-54.7% and 17.9-26%
improvements in median and 95th percentile latencies.

2.3 Challenges

Despite many EE proposals from the ML community [14, 35,
48, 60, 61, 69, 76, 77, 84], and their potential benefits, multi-
ple issues complicate EE use in practice, limiting adoption.

C1: Latency and resource overheads. Although exiting can
enable certain inputs to eschew downstream model compu-
tations, exit ramps impose two new overheads on serving.
First, to be used, ramps must also be loaded into GPU mem-
ory which is an increasingly precious resource as models
grow in size [40, 64, 80] and inference spreads to resource-
constrained settings [31, 52]. For instance, DeeBERT inflates
memory requirements by 6.6% compared to BERT-base. Sec-
ond, certain inputs may be too “hard” to accurately exit at
an intermediate ramp. In these cases, serving latency and
throughput mildly worsen as unsuccessful exiting decisions
are made, e.g., inputs that cannot exit at any ramp slow by
22.0% and 19.5% with BranchyNet and DeeBERT.

C2: Frequent and costly adaptation. As shown in Figure 5,
the evolving nature of workloads for interactive applications
brings frequent changes in the best EE configuration at any
time, i.e., the set of active ramps (and their thresholds) that
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maximize latency savings without sacrificing response accu-
racy. Unfortunately, the large body of EE literature is unac-
companied by any policy for tuning ramps and thresholds
during serving. Instead, proposed EE models are equipped
with the max number of ramps, and mandate users to per-
form one-time tuning of thresholds. Such tuning is non-trivial
and fails to cope with workload dynamism. For example, Ta-
ble 1 shows how one-time tuning on sampled data brings
8.3-14.5% drops in accuracy relative to continual tuning.
Worse, the space of configurations is untenably large, with
many ramp options (i.e., at any layer, with any computation)
and a continuous space of possible threshold values for each.

C3: Lack of accuracy feedback. EE ramp decisions are ulti-
mately confidence-driven and may result in accuracy degra-
dations (as shown above). In production scenarios, serving
optimizations that deliver accuracy reductions >1-2% are
generally considered unacceptable [16]. Yet, once deployed,
EE models do not provide any indication of accuracy drops;
indeed, when an exit is taken, the corresponding input does
not pass through the remaining model layers, and the original
(non-EE) model’s prediction is never revealed. Thus, with
early exiting, we lack mechanisms to determine when accu-
racy degradations are arising and EE tuning is required.

3 DESIGN

Apparate is an end-to-end system that automatically integrates
early exits into models and manages their operation through-
out the inference process. Its overarching goal is to optimize
per-request latencies while adhering to tight accuracy con-
straints and throughput goals. Our key insight is in rethinking
the way that EEs are configured and the benefits they are
expected to deliver. In particular, rather than using EEs in
the traditional way — where inputs exit model inference to
provide both latency and computational benefits — Apparate
focuses solely on latency savings by allowing results to exit,
with inputs still running to completion. Foregoing true exiting
(and thus, compute savings) grants Apparate with direct and
continual feedback on EE accuracy (C3). This feedback pro-
vides the requisite signals for Apparate to continually adapt
EE configurations to maximize latency savings while catering
to resource constraints and workload dynamics (C1, C2).
Apparate’s design represents a departure from the typical
expected utility of EEs (i.e., compute savings) that has been
fraught with practical challenges. Instead, Apparate demon-
strates an alternate avenue for benefits that EEs can bring
(i.e., latency reductions), while remaining compatible with
other compute efficiency optimizations that have had substan-
tial practical traction. For instance, by foregoing true exiting,
Apparate can run alongside request batching [39]. Further, Ap-
parate supports diverse model architectures, including those
that have been compressed for efficiency (§4.2). We note that
the redundant computations in Apparate match the work that
vanilla serving perform by executing all model layers.
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Figure 6 overviews Apparate’s workflow, which runs atop
existing serving platforms. Users register inference jobs as
normal o, providing models and SLOs without needing any
awareness of or expertise about EEs. In addition, Apparate in-
troduces two parameters: (1) ramp aggression, which bounds
the number of active ramps in terms of % impact on worst-
case latency (and throughput), and (2) accuracy constraint
which indicates how much (if any) accuracy loss is acceptable
relative to running the submitted model on all inputs with-
out exiting. Apparate’s controller begins by configuring the
provided model with EEs 9, performing a graph assessment
to determine suitable positions for ramps, and training those
ramps on bootstrap data (§3.1). The resulting model is passed
to the serving platform for deployment 9 after which Ap-
parate shifts to management mode. In this phase, as requests
arrive and inference is scheduled, Apparate’s controller gath-
ers real-time feedback on the utility of each ramp (overheads
vs. latency savings) and achieved accuracies (relative to the
original model) @. This data is used to continually adapt the
EE configuration @) at different time scales: rapid threshold
tuning for accuracy preservation (§3.2) e, and less frequent
ramp adjustments for latency optimization (§3.3) @

This decoupling of EE configuration adaptation into two
tuning control loops is a key design decision that Apparate
uses to manage the untenably large search space of ramp-
threshold combinations (C1) without substantial loss in EE
efficacy. Specifically, Apparate chooses to use frequent thresh-
old tuning to preserve accuracy because it provides a finer-
grained knob for walking the accuracy-latency tradeoff, i.e.,
thresholds are continuous, whereas ramp locations are inher-
ently discretized. Thresholds also provide a mechanism to
control ramp location; at the extreme, thresholds for any ac-
tive ramps can be tuned to preclude exiting. Regardless, to
limit foregone wins from infrequent ramp tuning, Apparate
opts to employ many lightweight ramps (§3.1): even if an
optimal ramp is not present yet, a nearby ramp is likely active
and can provide much of the same wins.

Implementation details. Apparate is implemented as a layer
atop existing serving platforms (currently three [6, 30, 51],
though its techniques generalize to others), and comprises
~7500 lines of Python code for EE preparation (§3.1) and
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Figure 7. Apparate only injects ramps that make full use of
available data flows at that part of the model.

management (§3.2-3.3). Apparate runs a separate controller
per model replica (as decided by the serving platform) on
a CPU, with GPUs streaming per-ramp/batch profiling in-
formation in a non-blocking fashion. This is possible since
inputs pass to the end of models with Apparate, irrespective
of exiting decisions. Tasks associated with model handling
and serving are handled by the underlying serving platform,
e.g., loading from disk, queuing, and batching.

3.1 Preparing Models with Early Exits

Upon job registration with any DNN, Apparate’s initial task
is to automatically prepare the model to leverage EEs without
developer effort. This phase repeats any time the submitted
model changes, e.g., continual retraining [15, 42, 67]. Note
that, in the event that a developer provides an EE model,
Apparate can forego any training and instead immediately
begin managing its exit configurations (§3.2-3.3).

Ramp locations. Apparate accepts a model in the ONNX
format, a widely used IR that represents the computation as a
directed acyclic graph [9]. Once ingested, Apparate must first
identify candidate layers for ramp addition. The goal is to
maximize ramp coverage across the model (to provide more
configuration options for Apparate’s runtime management),
while avoiding ramps that are unlikely to be fruitful (but add
complexity to adaptation decisions). To balance these aspects
for diverse models, Apparate marks feasible ramp locations
as those where operators are cut vertices, i.e., a vertex whose
removal would disconnect a graph into two or more disjoint
sub-graphs. In other words, no edge can start before a ramp
and re-enter the model’s computation after the ramp.

The idea is that such ramps take advantage of all avail-
able data outputs from the original model’s processing to that
point, boosting their chance at accurate predictions. As an ex-
ample, consider families like ResNet or BERT which enable
deep models by stitching together series of residual blocks,
i.e., ResNet blocks for convolutions, or BERT encoders that
each embed multi-head attention and feed-forward network
residual blocks. To avoid performance degradations late in
the model, the output of each block is ultimately a combina-
tion of its processing results and its input. In such scenarios,
Apparate injects ramps between blocks, but not within each
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block to avoid ramps making decisions on partial data, i.e.,
ignoring block inputs. Ramps are similarly injected between
trasnformer blocks of generative models, but only for de-
coding phases (as input tokens must be fully processed for
generation). In contrast, for VGG models, ramps are feasible
at all layers since their intermediates represent the full extent
of data flow throughout the model. Figure 7 depicts examples.
Overall, this strategy results in 9.2-68.4% of layers having
ramps for the models in our corpus, which we empirically
observe is sufficient to adapt to dynamic workloads (§4.2).
However, we note that Apparate can directly support any
other ramp configuration strategy, and offers a simple API for
developers to express ramp policies or restrictions.

Ramp architectures. For each feasible ramp location, Ap-
parate must determine the style of ramp computations to use.
Recall from §2 that ramps can ultimately be composed of
arbitrary layers and computations, with the only prerequi-
site being that the final layer sufficiently mimics that of the
original model to ensure that response formats match. Deter-
mining the appropriate ramp complexity in this large space
presents a tradeoff: additional computation can improve the
exit capabilities of a ramp, but comes at the expense of (1) in-
creased ramp latency, and (2) coarser flexibility and coverage
at runtime since ramps become illogical if their computation
exceeds that in the original model up until the next ramp.

Apparate opts for the shallowest ramps that can trans-
form the intermediates at any layer into a final model pre-
diction. Specifically, ramps comprise the model’s final fully-
connected (fc) layer, prepended with a lightweight pooling
operation that reduces the dimensionality of intermediates to
ensure compatability with the fc layer. This manifests differ-
ently for various model types. For instance, for vision models
like ResNet, pooling is simply the model’s penultimate layer.
Similarly, for generative LLLMs, ramps can simply use the
final decoder head to transform intermediate hidden states.
In contrast, for BERT, only the basic operator is drawn from
the BERT pooler module, i.e., extracting the hidden state cor-
responding to the first token [23]. For all models, the input
width of the fc layer is modified to match the intermediates at
each ramp location; the output remains unchanged to preserve
result formats.

Figure 8 evaluates this methodology by comparing with
two, more expensive alternatives. With ResNet, to mimic
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model operations following each ramp, we add 1-2 convo-
lution layers prior to pooling. For BERT, we consider two
approaches: (1) add two fc layers after pooling, each with re-
duced width to shrink inputs to the final fc, and (2) following
DeeBERT [76], replace the simple pooling operator with the
entire BERT pooler block and add a dropout as in the original
model. In all cases, the number of ramps is subject to the
same budget (i.e., Apparate’s default uses the most ramps),
ramps are uniformly spaced across feasible positions in each
model, and thresholds are optimally selected as in §2.2.

We observe that the added compute has minimal effect on
ramp efficacy. For example, median latencies are 1.3—1.8%
and 1.9-5.4x smaller with Apparate’s default ramps than the
complex alternatives for CV and NLP. Nonetheless, to show
Apparate’s generality, we consider other ramp styles in §4.5.

Training ramps and deploying models. To determine the ap-
propriate weights for each ramp, Apparate can automatically
label a dataset that is either developer-provided or collected
online (running the vanilla model on live inputs). Automatic
labeling is feasible since ramps aim to mimic the submit-
ted model’s behavior (not ground truth), so the submitted
model’s outputs can directly serve as labels. Regardless, dur-
ing training, Apparate freezes the original model weights to
ensure that non-EE behavior and feedback for tuning EEs is
unchanged from the user’s original intentions. Since its ramps
are lightweight (single fully-connected layers) and comprise
only 0.01-3.50% of our models’ parameters, the FLOPs re-
quired for Apparate’s ramp training is significantly lower than
whole-model pre-training or even fine-tuning. In cases where
existing (final) layers can be used as ramps, e.g. in genera-
tive scenarios, Apparate eschews training and directly reuse
the final layer for each ramp. In addition, Apparate enforces
that all inputs are used to train all ramps, i.e., exiting is pro-
hibited during training. This ensures that ramps are trained
independently of the presence (or behavior) of any upstream
ramps, which is crucial since the set of active ramps can vary
at runtime. Further, such independence and model freezing
enable loss calculations to be backwards propagated in par-
allel across ramps, rapidly speeding up training despite the
many lightweight ramps. As a result, ramp training only takes
on the order of a few minutes for our models using a single
A6000 GPU. Apparate uses the first 10% of each dataset for
training and validation (following a 1:9 split).

For initial deployment, Apparate evenly spaces the max
number of allowable ramps across the model. To avoid ac-
curacy dips due to discrepancies between training data and
the current workload, each ramp begins with a threshold of 0,
i.e., no exiting. The updated model definition (with enabled
ramps) is passed to the serving platform which runs normally.

3.2 Accuracy-Aware Threshold Tuning

To avoid accuracy drops as workload characteristics change
over time, Apparate’s controller employs frequent and fast
tuning of thresholds for already-enabled ramps. The reason is



that threshold tuning for any set of ramps is sufficient to en-
sure that user-specified accuracy constraints are not violated
— at the extreme, all thresholds could be set to zero, which
precludes any early exiting. Altering only the set of active
ramps fails to provide this property.

To enable threshold tuning, as requests pass through a
model, Apparate continually records exiting information at
each active ramp, as well as the final result that the original
model predicts. More precisely, Apparate records the highest-
confidence result for each ramp, even if the error exceeds
the ramp’s threshold (precluding exiting). Importantly, since
inputs always pass fully through models with Apparate, this
information is recorded for all inputs at each active ramp,
irrespective of upstream exiting decisions. This is paramount
since the information serves not only signals when to tune
thresholds, but also provides guidance for how to do so.

Triggering tuning. Apparate maintains an average achieved
accuracy over the past 16 samples by comparing exiting re-
sults with the deployed configuration to results of the original
model. Threshold tuning is triggered any time a window’s
accuracy falls below the user-specified accuracy constraint.
The threshold tuning process (described below) runs asyn-
chronously on a CPU, without any disruptions to ongoing
jobs. This is possible since thresholds are anyway enforced
only by Apparate’s controller; GPUs are agnostic to threshold
values, and instead simply stream ramp results to the Apparate
controller which determines exiting decisions.

Evaluating threshold configurations. Threshold tuning
needs insight into how any alterations to active ramp thresh-
olds would affect model exiting behavior (and accuracies). By
observing per-request behavior only at active ramps, Appa-
rate can rapidly evaluate any threshold configuration without
additional inference, and while accounting for inter-ramp de-
pendencies. In particular, to evaluate new threshold values,
Apparate simply identifies the earliest ramp whose top pre-
diction now has an error rate below its threshold. Comparing
these results with those of the original model indicates the
achieved accuracy for the new configuration; latency wins are
computed using the one-time profiling data described in §3.3.

Greedy search. The goal of tuning is to identify a new set
of thresholds that maximizes latency savings while adhering
to accuracy constraints for the last window of data. The chal-
lenge is that the space of thresholds to consider is massive,
precluding a grid search (especially given how frequently
adaptation is needed - §2.3). Indeed, even with discretized
threshold values in [0, 1] with a step size of S, computation
costs are O(C X (%)R), where R is the number of active ramps,
and C is the cost to evaluate a given configuration.

Instead, Apparate employs a greedy heuristic that leverages
a fundamental property of EEs when evaluated against an orig-
inal model: higher thresholds result in monotonic decreases
in accuracy and monotonic increases in latency savings. This
prunes the space of threshold values to consider by providing
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Figure 9. Threshold tuning example with two active ramps for
ResNet50 and a random video. Configurations within the bound-
ary have <1% accuracy loss; cell values list latency wins. Arrows
show the path taken by Apparate’s hill climbing algorithm.

a clear boundary in the R-dimensional space that separates
configurations that are sufficiently accurate from those that
are not. Additionally, for accurate configurations, maximum
latency savings must fall on that boundary. Figure 9 illustrates
this.

These properties inform Apparate’s hill climbing strat-
egy [63] for threshold tuning. Starting with threshold values
of 0 for each active ramp, and a step size of 0.1, threshold
tuning runs in a series of (incremental) exploration rounds. In
each round, we increase the threshold of each ramp in isola-
tion (leaving the others unchanged), and evaluate the achieved
accuracy and latency savings as described above. Apparate
then chooses the single ramp threshold change that delivered
the largest additional latency savings per unit of additional
accuracy loss. This process repeats until no ramp’s threshold
can be increased without an accuracy violation.

To enhance this process, Apparate follows a multiplicative
increase, multiplicative decrease policy on step sizes to bal-
ance search speed and granularity. Each time a step increase
results in an accuracy violation, Apparate halves that ramp’s
step size for subsequent rounds to hone in on the boundary at
fine granularity; step sizes are lower-bounded at 0.01. Con-
versely, selection of a ramp for threshold alteration suggests a
promising path of exploration; in this case, for a speedup, Ap-
parate doubles that ramp’s step size for the following round.

Overall, as shown in Figure 10, Apparate’s threshold tuning
algorithm runs up to 3 orders of magnitude faster than a pure
grid search (11.9ms vs. 3.0s on average). Note that these
results maximally parallelize grid search across a 32-core
machine. Further, selected threshold values achieve within
0-3.8% of the latency savings of the optimal configurations.

3.3 Latency-Focused Ramp Adjustments

The set of active ramps ultimately dictates where inputs can
exit, and thus provides bounds on potential latency savings.
Unlike threshold tuning which runs reactively (since accuracy
is a constraint) and uses only recent profiling data to evaluate
new configurations, ramp adjustment is used strictly as an
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Figure 10. Apparate’s tuning vs. optimal tuning on runtime and
latency of selected configurations. Bars list medians across all
model-workload pairs, with error bars for min-max.
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optimization (for latency savings) in Apparate, and requires
deployment to evaluate the impact of any new ramp. Thus,
Apparate’s ramp tuning runs periodically (every 128 samples
by default) and conservatively alters the set of active ramps to
incrementally converge on high-performing configurations.

Evaluating active ramps. In each round, Apparate’s con-
troller starts by computing a utility score for each active ramp
that evaluates its overall impact on workload latency. To do
so, Apparate couples per-ramp exit rates (§3.2) with two
additional inputs that are collected once per model during
bootstrapping: (1) the latency overhead per ramp, and (2) a
layer-wise breakdown of time spent during model inference
(for different batch sizes [30] and including network delays
for distributed serving). The latter is necessary since latency
characteristics vary across models but govern the impact of
exits, e.g., latency arises early in CV models [52], but more
evenly across coding blocks in transformers. Using these in-
puts, Apparate defines the utility of ramp R as savings -
overheads, where savings is the sum of raw latency that
exiting inputs avoided by using ramp R, and overheads is
the sum of latency that R added to inputs that it could not exit.

Adding new ramps. If any negative utility values exist, Ap-
parate applies a fast threshold tuning round to see if ramp
utilities become entirely positive without harming overall la-
tency savings. If not, Apparate immediately deactivates all
negative-utility ramps. From there, the key question to ad-
dress is what ramps (if any) should be added to make use of
the freed ramp budget. The main difficulty is in predicting
the utility of each potential addition. Indeed, while per-exit
latency savings for each potential ramp are known (using the
latency breakdown from above), exit rates are not.

To cope with this uncertainty, our guiding intuition is that,
subject to the same accuracy constraint, later ramps almost
always exhibit higher exit rates than earlier ones. The reason
is that late ramps have the luxury of leveraging more of an
original model’s computations when making a prediction.
Importantly, this implies that a candidate ramp’s exit rate is
bound by the exit rate of the closest downstream ramp; note
that this is not a formal guarantee [41], and Apparate uses
this for search efficiency (not correctness).

Building on this, Apparate’s controller computes an up-
per bound on the utility of candidate ramps as follows. To
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Figure 11. Computing upper-bound exit rates for candidate
ramps. Blue dots show previously active ramps (+/— indicates

positive/negative utility), while orange dots show candidates.
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avoid inter-ramp dependencies harming ramps that are al-
ready performing well, we only consider additions after the
latest positive ramp P in the model. In particular, Apparate
divides the range following P into intervals separated by any
negative ramps deactivated in this round. The first round of
candidate ramps are those in the middle of each interval.
For each candidate ramp, we compute its upper-bound
exit rate as the sum of profiled exit rates for the following
deactivated ramp and any earlier deactivations (Figure 11);
the idea is that inputs from earlier deactivations would have
reached the following deactivated ramp and might have exited
there. Utility scores are then computed as above, and the ramp
with the highest positive utility score is selected for trial. If
all ramps have negative projected utilities, Apparate repeats
this process for later candidate ramps in each interval. Once
aramp is selected for trial, Apparate adds it to the deployed
model definition, while removing deactivated ramps. Trialed
ramps start with threshold=0 to prevent inaccurate exiting,
but are soon updated in the next round of threshold tuning.
Until now, we have only discussed how Apparate handles
scenarios with at least one negative ramp utility. In the event
that all ramps exhibit positive utilities, Apparate enters a
low-risk probing phase to determine if latency savings can
grow by using earlier ramps. If ramp budget remains, we add
a ramp immediately before the existing ramp with highest
utility (while keeping that ramp to preserve its exiting wins).
If not, we shift the ramp with the lowest utility score one
position earlier, leaving the most positive ramp untouched.

3.4 Supporting Generative Large Language Models
Recent efforts have incorporated EEs into generative language
models (e.g., CALM [60] and FREE [14] for T5 [56], Lay-
erSkip [24] for Llama [71]) to enhance their response times
in interactive applications. While the general challenges with
EEs persist — lack of runtime adaptation for time-varying
accuracy and latency savings — the auto-regressive nature of
generative models poses a unique challenge for Apparate.
Unlike with classification where inputs can be processed to
completion independently, each token generated by an LLM
depends on the preceding ones in the sequence, requiring
their full key-value (KV) states. Thus, when a token T1 exits
using a ramp, the generation delay begins to accumulate for
the next token, T2; yet, T2’s forward pass through the layers
after the ramp cannot begin until T1 passes through the same
layers to generate KV states. The effect is potential harm on
time-per-token (TPT) distributions.



To regain latency savings from EEs, Apparate draws inspi-
ration from recent parallel decoding techniques [14, 24, 45].
As a token exits from a ramp, Apparate does not immedi-
ately compute the remaining model layers, and instead only
accumulates its hidden states at that ramp. The remaining
computations are executed in parallel alongside the first non-
exiting token that is encountered thereafter at that ramp. For
concreteness, consider a scenario with 2 tokens, T'1 and T2.
Assume T'1 can exit at ramp R1, while T2 must proceed later
in the model. T1 will exit at R1, and T2 will immediately
begin processing. However, once T2 fails to exit at R1, the
remaining layers for T1 are run alongside (i.e., batched with)
T2’s remaining layers. Taken together, T'1 achieves per-token
latency savings from exiting, while T2 incurs a very mild
(84.3) penalty from the higher batch size.

In addition to improved TPT latencies and compute effi-
ciency (due to batching effects on GPUs), parallel decoding
grants Apparate token-level feedback for exiting decisions
relative to the original (non-EE) model. Specifically, for each
parallel decoding instance, Apparate collects per-token feed-
back up until the first token whose exit result deviates from
the original model; feedback for subsequent tokens is dis-
carded as it may reflect cascading errors from inter-token
dependencies. This feedback guides Apparate’s threshold and
ramp tuning strategies from §3.2-3.3.

4 EVALUATION

We evaluated Apparate across a wide range of NLP and CV
workloads and serving platforms. Our key findings are:

e Apparate lowers 25th percentile and median classification
latencies by 40.5-91.5% and 70.2-94.2% for CV, and 16.0—
37.3% and 10.0-24.2% for NLP workloads, compared to
original (non-EE) models. These wins are 5.7-66.6% larger
than two-layer inference systems using compressed models
for ‘easy’ inputs [17, 73]. Median time-per-token wins are
22.6-77.9% for generative scenarios.

e Unlike existing EE models that unacceptably worsen ac-
curacies and tail latencies by up to 23.9% and 11.0% for
classification, Apparate consistently meets accuracy and
tail latency constraints. This carries to generative scenarios:
Apparate’s tail latency is 1.8-2.4% lower than existing EE
models which lower accuracies up to 5.5%.

e Apparate automatically generalizes to different model ar-
chitectures (e.g., compressed) and EE configurations (e.g.,
ramp style), and its wins gracefully shrink as accuracy or
tail-latency constraints grow.

4.1 Methodology

Models. For classification, we consider 10 models (across 4
families) that cover popular architectures and diverse sizes.
For CV, we use the ResNet{ 18, 50, 101} residual models, as
well VGG{11, 13, 16} models that follow a chained (linear)
design. All of these models are pre-trained on ImageNet and
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from the PyTorch Model Zoo [55]. For NLP, we consider 3
encoder-only transformers from the BERT family — BERT-
base, BERT-large, and Distilbert [59] (a variant of BERT-base
that was compressed via distillation) — as well as a decoder-
only LLM: GPT2-medium. These models span 66—345 mil-
lion parameters, were collected from HuggingFace [38], and
were pre-trained on Yelp reviews [10]. We also consider quan-
tized versions of these BERT models in §4.2. For generative
scenarios, we use the T5-large [56] encoder-decoder LLM
(from prior EE work [14, 60]) with 770 million parameters
and the Llama2 decoder-only LL.Ms with 7 and 13 billion
parameters, both pretrained from HuggingFace.

Workloads. CV workloads comprise real-time object classifi-
cation (people, cars) on 8 one-hour videos from recent video
analytics literature [12, 34]. The videos were sampled at 30
frames per second, and span day/night from urban scenes.

NLP classification workloads focus on sentiment analysis
using two datasets: Amazon product reviews [1] and IMDB
movie reviews [53]. To the best of our knowledge, there do not
exist public streaming workloads for NLP classification, so
we convert these datasets into streaming workloads as follows.
For Amazon, we follow the order of product categories in the
original dataset, but within each category, we keep reviews
only from frequent users (i.e., those with >1k reviews) and
order streaming by user (250k requests in total). For IMDB,
we follow the order of reviews in the original dataset, but
stream each in sentence by sentence (180k requests in total).
We then define arrival patterns using the Microsoft Azure
Functions (MAF) as in prior work [30, 46]. To cope with the
large variation in runtime across our models, we paired each
model with a randomly selected trace snippet from the set
that met the following criteria: (1) number of requests match
that in our largest dataset, and (2) queries per second should
not result in >20% dropped requests with vanilla serving for
the given model and selected SLO (described below).

Our generative workloads use two datasets: CNN/Daily-
Mail [62] for text summarization and SQuAD [57] for ques-
tion answering. As in prior work [14, 60], we assign request
arrival times that follow a Poisson distribution, configured to
saturate our computing resources.

Parameter configurations. Given our focus on interactivity,
we cope with heterogeneity in model runtimes by setting
SLOs for classification to be 2x each model’s inference time
with batch size 1 in our main experiments. This results in
SLOs between ~10-200 ms, which match the ranges used
in prior work [30, 52, 65]; Table 5 in §7 lists the specific
SLO values, and we study the effect of SLO on Apparate in
§4.5. Unless otherwise noted, results use 1% for Apparate’s
accuracy constraint and a ramp budget of 2% impact on worst-
case latency; we consider other parameter values in §4.5.

Setup. Experiments were conducted on dedicated servers
with NVIDIA RTX A6000 GPUs housing 48GB of mem-
ory, AMD EPYC 7543P 32-Core CPUs, and 256GB DDR4



[ Apparate I Optimal

A O ®
S o
-

vs. Vanilla (%)
o

Med. Latency Wins

N
o o
L

7 ResNet18 ResNet50ResNet101 VGG1l VGG13  VGG16

Figure 12. Median latency savings vs. vanilla models. Bars show
median savings across all workloads: error bars are min-max.

[ Apparate B Vanilla

s)

m
N w
o o
L

-
o
L

P95 Latency (
o

ResNet18 ResNet50ResNet1l01 VGGll VGG13 VGG16
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ning with 2% budget) vs. vanilla serving. Bars show the median
savings across all workloads with error bars spanning min-max.
RAM. We run experiments with two serving platforms for
classification: TensorFlow-Serving [51] and Clockwork [30].
For space, we primarily present results with Clockwork, but
note that reported trends hold for both platforms; we compare
cross-platform results in §4.5. For generative workloads, we
use the HuggingFace Pipelines inference engine [6].

Metrics and baselines. For classification, our main metrics
are accuracy (% of inputs assigned correct label as per the
non-EE model) and per-request response latency (including
queuing). For generative models, sequence accuracy is mea-
sured using ROUGE-L (text summarization) and F1 (question
answering) scores. Latency is measured using time-per-token
(TPT) distributions. We compare Apparate with the follow-
ing baselines: (1) original models without EEs (vanilla), (2)
optimal EEs as defined in §2.2, i.e., assuming all inputs exit
at their earliest possible ramps, with no ramp overheads, (3)
two-layer inference systems [17, 73] that invoke full models
only when compressed ones cannot generate high-confidence
outputs, and (4) existing, non-adaptive EE strategies (§4.4).

4.2 Results for CV and NLP Classification
Figures 12—15 compare Apparate with vanilla model serving
and optimal exiting across our workloads. Overall, Apparate
significantly lowers latencies compared to serving vanilla
models, while always adhering to the imposed 1% accuracy
constraint. For instance, median speedups range from 40.5—
91.5% (2.7-30.5 ms) for CV workloads, and jump to 70.2—
94.2% (5.2-31.4 ms) at the 25th percentiles. NLP workloads
follow a similar pattern, with median and 25th percentile sav-
ings ranging from 10.0-24.2% (3.9-25.3 ms) and 16.0-37.3%
(4.8-53.2 ms). Importantly, across all workloads, Apparate’s
tail latency (and thus impact on throughput) always falls under
its 2% budget, and is most often negligible (Figure 13).
Beyond this, there are several important trends to note.
First, Apparate’s raw latency savings grow with increased
model sizes, e.g., 25th percentile wins of 53.2ms, 28.4ms,
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14.3ms, 5.5ms for GPT-2, BERT-large, BERT-base, and
Distilbert-base on the Amazon Reviews. This is because only
results (not inputs) exit models with Apparate, so latency
savings pertain entirely to serving times (not queuing delays)
and grow as model size/runtime grows. Relative (%) latency
savings follow the same pattern for CV workloads, e.g., Appa-
rate’s median wins grow by 13.8% and 5.3% moving from the
smallest to the biggest models in the ResNet and VGG fami-
lies. However, relative wins remain relatively stable in NLP
models, e.g., 15.8% and 13.7% for GPT2 and BERT-large on
Amazon Reviews. The difference is due to the effectiveness of
the models in each domain. Results and task performance are
largely similar across the CV models, enabling Apparate to
inject ramps early in (even larger) models. In contrast, results
are far better with the larger models in NLP; thus, Apparate’s
ramps fall in similar (relative) positions across the models.

Second, Apparate’s wins are larger for CV workloads than
NLP workloads for two reasons. As previously noted, CV
workloads use lighter models and lower request rates (bound
by video fps), and thus incur far lower queuing delays. More
importantly, in contrast to CV where spatiotemporal similari-
ties across frames (and thus, requests) are high due to physical
constraints of object motion in a scene, NLP requests exhibit
less continuity, e.g., back-to-back reviews are not constrained
in semantic similarity. The effects on Apparate’s adaptations
are that (1) past data is less representative of future data, and
(2) the duration until subsequent adaptation is shorter.

Other compute optimizations. To further illustrate Appa-
rate’s ability to run alongside existing compute efficiency opti-
mizations — a key goal of its design (§3) — we ran experiments
using post-training Int8 quantized Bert-base and Bert-large.
Overall, we observe that Apparate’s speedups largely persist,
which median and 25th percentile wins of 7.3—19.4% and 6.9—
31.1%. The mild dip in speedups relative to non-quantized
Bert models (Figure 14) is a result of quantization’s reduction
in model overparameterization, which early exiting aims to
capitalize on for select inputs.

Comparisons with optimal. As shown in Figure 12, latency
savings with Apparate for CV workloads largely mirror those
of the optimal that tunes exiting decisions based on perfect
knowledge of the upcoming workload, e.g., median savings
are within 20.5% of the optimal. In contrast, the limited conti-
nuity across inputs in NLP workloads leads to a wider gap of
65.4-78.5% at the median (Figure 15). To further characterize
Apparate’s performance on these workloads, we also consider
a more realistic online optimal algorithm that relaxes the fol-
lowing elements. First, rather than per-sample adaptation of
thresholds and ramps, ramp adjustments are set to operate
only as fast as model definitions in the GPU can be updated.
Second, rather than using perfect knowledge of upcoming
inputs, decisions are made using only recent (historical) data;
we tune based on the past {20, 40, 80} batches of inputs and
select the one that performs best on the upcoming data. As
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Figure 17. Impact of SLOs on Apparate’s wins.

shown in Figure 15, Apparate’s median latency savings are
within 4.9-17.2% of this (more) realistic optimal strategy.

Comparisons with two-layer inference. We compare Appa-
rate with in-house implementations of Tabi [73] (NLP) and
FilterForward [17] (CV), which employ compressed models
on all inputs, and pass only those inputs with low confidence
results to the base model. Acceptable confidence scores from
compressed models are configured to ensure both systems op-
erate within the same accuracy loss budget as Apparate. Note
that our evaluation is favorable to these systems: we ignore
overheads from hosting the compressed models, compute
overheads for data pruning (e.g., word pruning in Tabi), and
queuing for batch formation between compressed and base
models. As shown in Figure 16, across 3 representative work-
loads, Apparate delivers 5.7-66.6% and 20.9-42.0% lower
median and P95 latencies compared to these baselines. For
easy inputs, Apparate delivers latency wins by enabling ramps
early enough (i.e., within the first third) in the base model to
run faster than the baselines’ compressed models. For hard in-
puts, tail latencies with Apparate are capped by its 2% budget;

617

7<1J T5 =3 Apparate
[ZZ] FREE BEE Optimal

i 301
4 204
54 104
0 0 T T
13B

CNN/DM SQUAD 78
(@) T5 (b) Llama2

7 Llama [EEN Apparate BB Optimal
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in contrast, the baselines add the entire compressed model
runtime per input.

Varying SLOs. We considered SLOs for each model that
were 2X and 4x those in our default experiments (Table 5).
Generally, higher SLOs induce larger serving batch sizes and
higher per-request queuing delays; this dampens Apparate’s
relative latency savings (Figure 17) which target model run-
times, but not queuing delays. For instance, median latency
savings for GPT-2 drop from 13.2% to 6.8% as SLO grows
by 4X. Note that, to illustrate this trend for CV workloads,
we upsampled each video to 120 fps. The reason is that our
serving platforms are work-conserving and, at 30 fps, they
are able to consistently schedule jobs with batch size 1 and
low queuing delays given the low model runtimes.

4.3 Results for Generative Scenarios

Figure 18 compares Apparate with the vanilla T5-large LLM
across our workloads. As shown, Apparate lowers median
and 25th percentile TPT by 70.4-77.9% and 74.6-78.0%,
respectively. However, at the 95th percentile, Apparate incurs
2.6-8.4% higher TPT due to ramp overheads and (more so)
added delay from parallel decoding (non-exiting tokens run
alongside the remaining computation for previously-exited
tokens). Unlike with classification, formally bounding tail
overheads online is hard because variable sequence lengths
make TPT values unpredictable in vanilla generative serv-
ing. We also evaluated Apparate on the larger Llama models
for question answering. Figure 18 shows that Apparate re-
duces the median and 25th percentile TPT by 22.6-37.4%
and 25.4-40.3%. Notably, the latency wins increase as model
size grows.

Comparison to optimal. Similar to classification, we define
the optimal EE strategy as exiting each token at the earliest
possible ramp that generates the correct value (ignoring delays



Avg Acc Median Wins | P95 Wins

Apparate (ResNet50) | 99.0-99.2% 46.6-88.6% -1.6-0.0%
BranchyNet 85.8-99.8% | -11.0-88.3% -11.0%
BranchyNet+ 76.1-99.9% | -11.0-88.3% -11.0%
BranchyNet-opt 99.0-99.7% | -11.0-74.5% -11.0%

Apparate (BERT-base) | 99.1-99.3% 13.7-14.7% 2.1-3.0%

DeeBERT 91.7-97.1% 13.2-36.1% | -1.3-6.4%

DeeBERT+ 82.2-90.3% | 31.7-36.1% 5.9-6.4%

DeeBERT-opt 99.0% 9.8-36.1% -1.4-6.4%

Table 2. Comparison with existing EE models. Results list ac-
curacies and latency wins for all CV (top) or NLP (bottom)
workloads. ‘+’ and ‘opt’ use the optimized tuning from §4.4.

for generating the remaining KV states). Apparate’s median
TPT for T5 and Llama is within 9.0-16.2% and 2.1%—7.7%
of the optimal, respectively. The smaller gap relative to NLP
classification stems from two elements. First, accuracy here is
measured at the sequence level, granting more flexibility for
exiting decisions at individual tokens. Further, auto-regressive
generation (with shared state across tokens) grants more con-
tinuity than between requests in NLP classification, boosting
adaptation benefits.

4.4 Comparison with Existing EE Strategies

Classification. We compare Apparate with two off-the-shelf
EE models: BranchyNet [69] and DeeBERT [76]. BranchyNet
extends ResNet models with ramps of the same style as Appa-
rate, while DeeBERT extends BERT-base with deeper ramps
(using the entire BERT pooler - §3.1). For each, we follow
their prescribed architectures, with always-on ramps after
every layer. We perform one-time tuning of thresholds as
recommended by both works, and consider two variants: the
default recommendation where all ramps use the same thresh-
old, and a version that removes this restriction (+).

Table 2 presents our results. The main takeaway is that
existing EE approaches, even when favorably tuned, yield un-
acceptable drops in average accuracy up to 23.9% and 17.8%
for CV and NLP. In contrast, Apparate consistently meets the
imposed accuracy constraint (1% in this experiment) for both
workloads. Further, even with such accuracy violations, tail
latencies are 0.9-9.4% lower with Apparate than these sys-
tems. The reason is lack of adaptation: all ramps are always
active despite current efficacy, yielding undue overheads for
non-exiting inputs. In contrast, throughout these experiments,
despite having a full ramp budget (for fair comparison), Ap-
parate maintained only 9.1-27.2% of all possible ramps.

For fair median latency comparison, we consider an
optimally-tuned (opt) version of existing EE models that per-
form one-time tuning on the actual test dataset, picking the
best (latency-wise) thresholds that ensure <1% accuracy drop.
As shown, due to its regular and less-constrained adaptation,
Apparate outperforms even this oracle version of existing EEs
with up to 14.1% higher median latency savings.

Generative. We compare Apparate with FREE [14], a
state-of-the-art EE solution for T5-large that succeeded
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Figure 19. Apparate’s wins for different accuracy constraints.

Median Latency
Savings (%)
5

Ramp Budget | ResNet50 | GPT2
2% 48.9% 18.5%
5% 49.6% 22.2%
10% 50.4% 24.9%

Table 3. Apparate’s median latency wins vs. ramp budget.

CALM [60]. FREE relies on a single, fixed ramp and fine-
tunes the entire model to cater to that ramp. The ramp location
and weights are selected once to maximize latency savings
subject to a 1% accuracy constraint on a representative dataset
(default to the first 3% of samples). Both FREE and Apparate
use T5’s final decode head as the ramp architecture. Moreover,
to manage tail latencies, Apparate (like FREE) uses a ramp
budget of 1. The main difference is that Apparate dynamically
adjusts the ramp position (and threshold) to maximize latency
savings and preserve accuracy; FREE’s omission of runtime
adaptation yields 5.5% accuracy losses in these experiments.
Despite FREE'’s accuracy violations, Apparate brings me-
dian and 25th percentile TPT savings of 28.0-71.0% and
15.7-28.0% over FREE (Figure 18). 95th percentile latencies
with Apparate are 1.8-2.4% lower than with FREE because
Apparate regularly flushes a batch decoding once the ramp
accumulates a pre-specified number of exited tokens.

4.5 Microbenchmarks

Results here use ResNet50 and GPT2-medium running on
a random video and Amazon reviews for classification. Re-
ported trends hold for all our workloads.

Parameter sensitivity. Recall that Apparate ingests values
for two key parameters: ramp aggression/budget and accuracy
constraint. Figure 19 and Table 3 studies the effect that these
parameters have on Apparate’s latency wins. The findings
are intuitive: Apparate’s latency savings over vanilla mod-
els decrease as ramp budgets shrink or accuracy constraints
tighten. Both trends are a result of Apparate being granted
less flexibility for adaptation. Importantly, accuracy constraint
has a larger impact on Apparate’s wins. The reason is that
inter-ramp dependencies result in overlap in the set of inputs
that can exit at any ramp when run in isolation; thus, wins
from using more ramps eventually hits diminishing returns.

Ramp architectures. Although Apparate opts for using many
lightweight ramps, it’s adaptation algorithms can support any
ramp architecture. To illustrate this, we ran Apparate with
DeeBERT’s more expensive ramps (§4.4). Overall, we find
that these costlier ramps dampen Apparate’s latency savings
by 4% since they constrain Apparate’s runtime adaptation in
terms of feasible configurations, i.e., fewer active ramps at



System\Workload | ResNetS0 GPT2
Clockwork (20.2,37.8) | (689.2,779.4)
TF-Serve (24.5,37.8) | (709.3,793.1)

Table 4. Apparate on different serving platforms. Results show
(median, p95) latency over vanilla models in ms.

any time. Crucially, we note that accuracy constraints were
still entirely met due to Apparate’s frequent threshold tuning.

Impact of serving platform. Apparate runs atop existing
serving platforms, responding to serving and exiting patterns
rather than altering platform decisions, e.g., queue manage-
ment. Table 4 shows that, despite platform discrepancies,
Apparate’s performance wins are largely insensitive to the
underlying platform when CV or NLP workloads are config-
ured with the same SLO goal. For example, median latency
savings for the Amazon workload and GPT-2 are within 2.9%
when using Clockwork or TF-Serving.

Profiling Apparate. Figure 10 analyzes the run time and opti-
mality of Apparate’s threshold tuning algorithm. Beyond that,
Apparate includes two other overheads while running: ramp
adjustment and communication between its CPU controller
and GPUs for runtime monitoring. Ramp adjustment rounds
take an average of 0.5 ms. Coordination overheads are also
low (and non-blocking for serving - §3) because of Apparate’s
small ramp sizes (definitions and weights consume ~10KB)
and profiling data (simply a top-predicted result with an error
score, collectively ~1KB). In total, CPU-GPU coordination
delays take an average of 0.5ms per communication, 0.4ms
of which comes from fixed PCle latencies in our setup.

Importance of Apparate’s techniques. Apparate’s runtime
adaptation considers frequent (accuracy-guided) threshold
tuning, with periodic ramp adjustments. Table 2 shows the
importance of threshold tuning on average accuracies. We
also evaluate the importance of ramp adjustment on Appa-
rate’s latency wins by comparing versions with and without
it. Overall, disabling ramp adjustment results in 20.8-33.4%
lower median latency wins, though worst-case latency (and
throughput) and accuracy constraints remain continually met.

5 ADDITIONAL RELATED WORK

Early exit networks. Existing proposals focus on exit ramp
architecture and exit strategy [14, 35, 48, 60, 61, 69, 76,
77, 84] for specific models. Ramp architectures are domain-
specific, but replicating the last (few) layers is the common
practice [76, 77]; Apparate builds on this and prefers shallow
ramps (§3). Existing exit strategies consider confidence of the
labels [48], entropy of the prediction [76], or more sophisti-
cated elements such as counters across ramps [84]. Apparate
is agnostic to EE technique, and instead focuses on bringing
EEs to arbitrary models and providing runtime management
to maximize latency savings and accuracy preservation.

Model optimizations. Much work has focused on creating
variants of ML models to optimize serving. Some employ
compiler techniques to analyze (and optimize) execution at
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a graph or operator level for lower latency [3, 5]. Other tech-
niques compress models into versions with fewer layers or
less weight specificity while adhering to accuracy objectives,
e.g., quantization [27, 43, 47], distillation [37, 59], and model
pruning [26, 49]. These efforts are complementary to Appa-
rate, which would bring input-level compute adaptation to
their outputs, i.e., on optimized or compressed models. More-
over, unlike many of these techniques, Apparate does not
alter the original model’s weights and instead preserves its
full predictive power for hard inputs and constant feedback.

Inference optimizations. Recent work optimizes model serv-
ing objectives based on workload characteristics [18, 19, 29,
58, 65, 82, 83]. For instance, Inferline [19] optimizes serving
cost while adhering to strict latency constraints using intel-
ligent provisioning and management. Shepherd [83] maxi-
mizes goodput and resource utilization by leveraging cross-
workload predictability. Despite their impressive results, these
works optimize their metric of choice at the expense of latency
and do not resolve the latency-throughput tension, which is
the focus of our (complementary) work. Mystify [31] and
INFaaS [58] generate and choose model variants based on
their intent and constraints (including performance). As noted
above, Apparate operates on the output of such tools, bringing
latency wins to compressed models (§4.2).

Dynamic neural networks. Other techniques boost inference
efficiency by adapting model execution [22, 25, 36, 72, 78]
at different granularities, e.g., sample-wise, spatial-wise, and
temporal-wise. As with exiting, their modulations to serv-
ing risk accuracy violations and foregone latency wins with
dynamic workloads. We hope that Apparate can motivate
and guide adaptation systems to navigate accuracy-latency-
throughput tradeoffs for such techniques, but leave that to fu-
ture work. Other low-level (e.g., GPU kernel level) techniques
that optimize execution of dynamic neural networks [21, 81]
can benefit Apparate and improve its performance.

6 CONCLUSION

We present Apparate, the first system that automatically in-
jects and manages early exiting for ML inference. Key to
Apparate’s ability to alleviate latency-throughput tensions in
serving is its use of exiting only for fast results (not compute
savings). This provides continual feedback on exits, and pow-
ers Apparate’s novel adaptation strategies for EE ramps and
thresholds. Apparate lowers median latencies by 40.5-91.5%
and 10.0-24.2% for diverse CV and NLP workloads, and
reduces median time-per-token latencies by 22.6-77.9% for
generative workloads, all while meeting accuracy constraints
and preserving platform throughputs.
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7 APPENDIX

The appendix was not peer-reviewed.

We list the SLOs for each model in the classification experi-
ments (Figures 12—14). The default SLOs for classification
models are 2X each model’s inference time with batch size 1.

Model Latency w/ bs=1 (ms) | Default SLO (ms)
ResNet18 6.5 13.0
ResNet50 16.4 32.8

ResNet101 33.3 66.6

VGG11 3.3 10.0

VGG13 3.8 10.0

VGGl16 4.5 10.0

Distilbert-base 15.5 31.0
BERT-Base 294 58.8
BERT-Large 63.2 126.4

GPT2-medium 103.0 206.0

Table 5. Different SLOs used in §4.2 and Figure 17. All numbers
are measured on the A6000.

We also list the pseudocode for our threshold tuning and ramp
adjustment algorithms described in the design section.

Algorithm 1: Threshold tuning algorithm

Input: ramps, list of ordered active ramp IDs

Input: acc_loss_budget, max accuracy loss tolerable

Input: smallest_step_size, smallest step size for
incrementing thresholds

Output: thresholds, thresholds associated with each ramp

Output: latency_savings, latency savings with searched

thresholds

/* all thresholds start at 0, i.e. no EE */

thresholds « [0.0] * len(ramps)

/* each ramp has its own step size x/

step_sizes « [smallest_step_size] * len(ramps)

while True do

4 best_ramp, overstepped_ramps, latency_savings <

pick_ramp(ramps, thresholds, acc_loss_budget)

/* find next ramp to update thresholds

-

[B N

*/
5 if best_ramp is valid then

/+ increment threshold of the selected

ramp */
6 thresholds[best_ramp] + =
step_sizes[best_ramp)

/* double step_size %/
7 step_sizes[best_ramp] *= 2
8 else
9 if step_sizes.all() < smallest_step_size then
10 L return thresholds, latency_savings

/* half step_size for overstepped ramps,

double step_size for the rest */
11 for ramp in overstepped ramps do
12 L step_sizes[ramp] /=2
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Algorithm 2: Ramp adjustment algorithm

B W N =

o »

11
12

13

14
15
16

22

Input: P, latest positive ramp
Input: ramps, list of ramp ids
/* Initialize ramp settings x/
/* Check whether negative ramps exist x/
if negative utility ramps exist then
Try fast threshold tuning
if still negative then
L Deactivate all negative-utility ramps

else
Update thresholds
return

/+ Determine candidate ramps located at
the middle of each interval after P
(see Figure 11) */

candidates < pick_candidates(P, ramp_ids)

/* Compute utilities and select ramp with
best upper-bound utility (see
Figure 11) */

foreach candidate in candidates do
Compute upper-bound exit rate
Calculate utility using upper-bound exit rate
if utility is positive and utility >

selectedRamp.utility then
L selectedRamp «— candidate

/* Update EE configuration */
Remove all deactivated ramps

Add selectedRamp with initial threshold=0

Update thresholds in future tuning rounds

/* If all ramps have positive utilities,
explore the possibility of higher latency
savings */

if all utilities positive then
if ramp budget allows then

L Add a ramp before the highest utility ramp

else
L Shift the lowest utility ramp one position earlier

return
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