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This paper explains the phenomenon of a dominant frequency in the spectrum of a raw response measured by a
long-range continuously scanning laser Doppler vibrometer (LCSLDV) system being symmetrically shifted into
two sharp peaks. This phenomenon is referred to as bimodal interference in this work, which gradually becomes
obvious when the scanning length is greater than 0.5 m. Bimodal interference is significant because it makes
natural frequencies unable to be estimated in LCSLDV measurements and this paper analyzes its nature. Natural
frequencies and mode shapes of a structure under white noise excitation can be estimated by analysis of its
responses measured by the LCSLDV system. The effect of bimodal interference has been ignored in previous
LCSLDV and continuously scanning laser Doppler vibrometer (CLSDV) measurement studies, but its appearance
makes the value of the dominant frequency not to be accurately identified. By deducing mathematical inter-
pretation of bimodal interference with analysis of incidence and reflection of a continuously scanning laser beam
in a tiny time interval and comparing experimental results with 21 groups of different conditions, it is concluded
that bimodal interference is caused by signal coupling between the scanning frequency of the mirror and the
vibration frequency of the measured structure. There is a positive correlation between the scanning frequency
and the magnitude of the symmetric frequency shifts centered at the dominant frequency generated by bimodal
interference. In experimental results of LCSLDV measurements with a distance of 60 m, the frequency shift ratio
compared to the dominant frequency can be reduced to 0.06% when the scanning frequency is lower than 0.01
Hz. In this case, bimodal interference is not noticeable in the spectrum. The experiment was carried out on a
cantilever beam machined based on a prescribed design. Modal parameters of the cantilever beam estimated by
white noise excitation were successfully estimated by the LCSLDV system with a distance of 60 m. The maximum
difference between the first four natural frequencies of the cantilever beam from the finite element model and the
LCSLDV system was 2.97% and the minimum difference was 1.1%.

1. Introduction

As a novel measuring instrument with high coherence and non-
contact function, a laser Doppler vibrometer (LDV) has experienced a
rapid development [1]. Yeh and Cummins [2] observed for the first-time
scattering light of particles in water flow with frequency movement,
which proved that the velocity motion of particle flow could be esti-
mated by the laser Doppler translation technology. Huang et al. [3]
designed a high-precision calibration system for an LDV to calibrate the
reference beam of the LDV. The proposed calibrating method can be
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utilized in the differential LDV and the spatial filtering vibrometer. Zhou
and Long [4] established a mathematic model of an LDV to analyze the
Doppler signal of the solid-state surface with the application of the
interference fringe model and the principle of light scattering.

When a laser spot is scanned along an arbitrary line, the LDV vi-
bration output is an amplitude-modulated sine wave and operating
deflection shapes (ODSs), defined along the scan line, can be established
by demodulation [5]. Sriram et al. [6] provided a scanning laser Doppler
vibrometer (SLDV) technique based on Chebyshev demodulation for
rapid measurement of spatially distributed velocity profiles. Doppler
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Fig. 1. (a) Schematic of long-range vibration measurement using the LCSLDV system and (b) the diagram of the measuring distance.

signals were processed in the conventional manner using a frequency
counter, from which the analog velocity output is post-processed to
obtain the velocity profile. Hariharan and Ward [7] described an
experiment that unambiguously demonstrated existence of fluctuations
in the output of an interferometer due to a frequency shift in the spec-
trum of a laser beam reflected from the moving mirror.

Many delicate applications of structural vibration measurements
require spatially dense measurements, where high spatial resolution and
measurements of vibrations of numerous points over the surface are
needed. Hence, a continuously scanning laser Doppler vibrometer
(CSLDV) is promoted to replace step-by-step scanning that needs the
vibrometer to stay at each measuring point for a period of time. A CSLDV
provides a non-contact technique for measuring vibration of a structure
by continuously moving the laser beam of an LDV along an arbitrary line
on the surface of the structure [8]. The advances in vibration mea-
surement performed by a CSLDV augmented the capability of measuring
vibrations from a grid of a few hundred measurement points on a
structure to a single scan that contains many thousands of points on the
structure [9]. Sriram et al. [10] processed a modulated CSLDV velocity
output in the spectrum and directly extracted ODSs. Stanbridge et al.
[11,12] developed two CSLDV analysis methods, the polynomial
method and the demodulation method, to obtain ODSs of a structure
under sinusoidal excitation with line, circular and area scans. Maio and
Ewins [13] compared step-by-step and continuously scanning methods
to introduce a novel approach of continuous scan and multi-tonal
excitation waveform. Chen et al. [14] compared the ODSs of beams
extracted from a CSLDV system via the polynomial method and the
demodulation method. Lyu and Zhu [15] implemented CSLDV mea-
surement on a structure under random excitation and obtained its modal
parameters by an improved demodulation method by utilizing an
extended filter.

In long-range vibration measurement, one needs to eliminate noise

and interference before implementing modal parameter estimation
because the environment has considerable effects on the measured
response [16]. Interference signals in the long-range LDV measurements
used to be divided into speckle noise and ambient noise in physics. The
speckle noise is collected by a photodetector and depends on interfering
inputs of a random nature mostly related to the characteristics of the
measured surface [17]. It inevitably occurs when monochromatic and
coherent light is scattered from an optically rough surface. Lv et al. [18]
researched the effect of speckle noise of an LDV for long-range mea-
surement and comprehensively discussed statistical properties of dy-
namic speckles with a combination of theories and experiments.
According to experience, adjusting the focal length of LDV helps reduce
the speckle noise. Jin and Li [19] provided an algorithm that can
eliminate speckle noise for LDV measurements, but their application
haven’t been verified in LCSLDV measurements. Ambient noise is a form
of noise pollution or interference, including water waves, traffic noise,
alarms, extraneous speech, electrical noise and so on [20]. One can
utilize a smoothing algorithm and wavelet transformation to reduce the
influence of ambient noise.

The need for vibration measurements of onshore and offshore wind
turbine blades, aeroengine blades in operation and high temperature
objects has led to the development of a CSLDV system for long-range
vibration measurement. A long-range continuously scanning laser
Doppler vibrometer (LCSLDV) system uses the Doppler shift in the fre-
quency of laser to measure velocities of numerous distant points on a
scanning path in the direction of the incident laser. Modal parameters
extracted from measured responses from a close-range continuously
scanning laser Doppler vibrometer (CCSLDV) system and a LCSLDV
system can be different. Unlike CCSLDV measurement, LCSLDV mea-
surement is interfered by much noise that reduces signal-to-noise ratios
(SNRs) of vibration measurement. Signals with low SNRs contain sig-
nificant interference in raw responses, resulting in undistinguished
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Fig. 2. The (a) time domain and (b) spectrum of bimodal interference with white noise excitation, and (c) and (d) those with a 65 Hz sinusoidal excitation, where FFT

in (b) and (d) stands for fast Fourier transform.

dominant frequencies in the spectrum. The value of a dominant fre-
quency is the value of a corresponding natural frequency without non-
negligible interference. For instance, in close-range measurement in-
side a laboratory, the influence of ambient noise on measurement is
small. It means that when sinusoidal excitation is applied to a linear
time-invariant (LTI) system, the excitation frequency can be perfectly
extracted from the response measured by the CCSLDV system. Although
the methodology for the LCSLDV system would be similar to that for the
CCSLDV system, in LCSLDV measurement outside the laboratory, the
authors found that the excitation frequency cannot be obtained from the
measured response with original parameter settings of the CCSLDV
system in the laboratory. In addition, it is important to note that in past
CSLDV measurements, especially LCSLDV measurements, interference
that came from the scanning frequency of the mirror used to be ignored.

In this work, it is found that a new coupling interference signal re-
sults from scanning in the LCSLDV system. Because the measurement
range increases by orders of magnitude in LCSLDV measurement, in-
fluence of the rotation of a mirror becomes much more significant. As a
result, the dominant frequency that is supposed to center at a value in
the spectrum appears in the form of symmetrical frequency shifts. The
nature of symmetrical frequency shifts centered at the dominant fre-
quency, which is named bimodal interference in this work, is a signal
coupling of the scanning frequency of a mirror in the LCSLDV system
and the vibration frequency of the measured structure. The phenomenon
of bimodal interference in the spectrum occurs in some papers [16], but
the researchers did not concern them because rough natural frequencies
estimation was still able to proceed. However, when it comes to the
response of a structure with a very small and exactly interested fre-
quency band, such as the structure under sinusoidal excitation, the
frequency shifts caused by bimodal interference are non-negligible.
What is more, some researches require high accuracy of the spectrum

with a wide bandwidth, such as a white noise excitation signal, to
implement model updating and other improvements [21]. The apparent
symmetrical frequency shifts centered at the dominant frequency make
measured modal parameters fuzzy and the value of the dominant fre-
quency not to be estimated in the spectrum.

This paper explains the reason of bimodal interference in LCSLDV
measurement and researches the method to eliminate the influence from
bimodal interference. A schematic of the LCSLDV system in this work is
demonstrated in Fig. 1. A mathematical model was proposed to explain
bimodal interference and an improved LCSLDV system with an opti-
mized parameter setting of scanning based on control software was
demonstrated. It is the first time that an improved LCSLDV system is
developed with the long-range LDV Polytec RSV-150, which employed a
longer wavelength and higher laser power than previous instruments.
This work is carried out on a cantilever beam that is designed to be
sufficiently long so that symmetrical frequency shifts caused by bimodal
interference can clearly appear in the spectrum to achieve the experi-
mental accuracy.

The rest of this paper is organized as follows. Interpretation of
mathematical models of bimodal interference based on the cantilever
beam is presented in Sec. 2.1. Sec. 2.2 demonstrates experimental
interpretation of bimodal interference. Sec. 3 explains the signal pro-
cessing method for the extraction of mode shapes (MSs) of the cantilever
beam. The experimental setup of the LCSLDV system is described in Sec.
4.1. Results of optimized operational modal analysis (OMA) of the
cantilever beam and comparison of results from the LCSLDV system and
the finite element method (FEM) are illustrated in Sec. 4.2. Some con-
clusions of this study are presented in Sec. 5. The appendix shows results
of the traditional modal testing method of the cantilever beam through
use of an accelerometer to demonstrate the accuracy of measured nat-
ural frequencies from the LCSLDV system.
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2. Interpretation of the appearance of bimodal interference

For a LTI system excited by white noise excitation, the values of
dominant frequencies in the spectrum should be the same as the values
of natural frequencies. For a LTI system excited by a sinusoidal excita-
tion, the value of the dominant frequency in the spectrum should be the
same as the frequency of the sinusoidal excitation. When it is a CCSLDV
measurement inside the laboratory, the measurement results are
consistent with the theorem. However, in LCSLDV measurements, the
values of dominant frequencies in the spectrum of the raw response
become the values of pairs of peaks symmetrically centered on dominant
frequencies, which is the phenomenon of bimodal interference.

The phenomenon of bimodal interference of a LTI system excited by
white noise excitation is shown in Fig. 2 (a) and (b) and that of a LTI
system excited by a 65 Hz sinusoidal excitation is shown in Fig. 2 (c¢) and
(d). In Fig. 2 (a) and (b), one can find that the value of each dominant
frequencies, which ought to be equal to natural frequencies, symmetri-
cally shift into pairs of two sharp peaks. In Fig. 2 (¢) and (d), one can
find that the value of the dominant frequency should be 65 Hz, but there
are two symmetrically shifted sharp peaks around 65 Hz in the spec-
trum. These are the obvious phenomenon of bimodal interference. The
authors found that modal parameters, especially natural frequencies,
cannot be precisely estimated with bimodal interference. The value of
the frequency shifts of bimodal interference in a LTI system is an
effective standard to judge the accuracy of the LCSLDV system. If the
frequency shift of bimodal interference is too obvious in the LCSLDV
system, the control parameters of the system must be adjusted, other-
wise results from OMA must be inaccurate.

2.1. Interpretation of mathematical models of bimodal interference based
on a cantilever beam model

The mathematical interpretation of bimodal interference is based on
a long and thin cantilever beam model with respect to the experiment.
Assuring that only the vertical displacement of the beam axis of the
cantilever beam was considered and both the axial displacement and the
rotation of the cross section about the neutral axis were ignored. In
addition, the beam satisfied the plane assumption during deformation
and assuming there was no deformation caused by shear force. In a
periodic LTI system, the time domain can be expressed as

T(t) = Csin(wt + ¢) (€))

where C is a constant, @ is a frequency and ¢ is the phase of T(t). The
ODS of the cantilever beam can be expressed as

¥, 1) = Y()T(2)
= CY(x)sin(wt + @) ()
= V(x)sin(w,t)

where x; is the normalized coordinate position of a laser spot on the
surface of the structure along the scan line, w, is the excitation frequency
and V(x;) is the ODS of the structure along the scan line. The steady-state
response frequency of a LTI structure resulting from sinusoidal excita-
tion is equal to the excitation frequency.

2.1.1. Interpretation of mathematical models in terms of optics

When the LCSLDV system with its X-mirror driven by a triangular
input signal measures the steady-state response of a structure under si-
nusoidal excitation, the velocity response of the structure measured by
the system can be expressed as

v(x;, 1) = V(x))cos(w,t — 8 — &)
= Vi(x;)cos(@.t) + Vo (x;)sin(w,t) 3
= V(x))cos(8 + {)cos(w.t) + V(x)sin(6 + {)sin(w.t)

where § is the phase difference between the excitation and X-mirror
feedback signal, { adjusts amplitudes of the in-phase component V;(x;) =
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Fig. 3. The diagram of the scanning laser Doppler.

V(x;)cos(6 + ) and quadrature component Vq(x;) = V(x;)sin(6 +¢) of
the ODSs for the condition of sinusoidal excitation.

The diagram of laser incidence and reflection under continuous
scanning is shown in Fig. 3. f is the emission frequency of the laser beam,
f is the reflected frequency of the laser beam, c is the speed of laser spot,
S is the position of the light source of the laser and O is the location of the
light wave receiver. In a tiny time interval At, a point on the cantilever
beam vibrates from the position M; to the position M, while a laser spot
scans from the position M, to the position M3 on the cantilever beam at
the same time. One needs to note that M, and M; are two positions of the
same point on the surface of the cantilever beam at different times. M is
the position of this point before the time interval At and M, is that after
the time interval At. SM; and M; O are the incident and reflected light
paths of laser before At. SM3 and M3O are the incident and reflected
light paths of laser after At. 6; and 6, are the angles between the vi-
bration direction of the points M3 and M; on the cantilever beam and the
scanning path, respectively. One should pay attention that there is a time
interval At between M, and M3, and the angle of the laser beam changes
a little. Hence, M; M> and M3V are not strictly parallel. Supposing that m
is the number of light wave periods in the scanning path from the light
source to the receiver, in this laser path, the change of m is [22]

M;N, | MiN.
= )

A A

—Am

where M3N; and M3N, are perpendicular to the original optical path,
and 1 and 1 are the wavelengths of the laser beam before and after
reflection, respectively. Because of the tiny time interval At, the velocity
v of the laser spot and the vibration velocity v, of the cantilever beam
are considered to be uniform. Hence, M1My = vsAt, MoM3 = viAt.
Eq. (4) can be expressed as

_ nAtcosh, v Atcost,

—Am 7 7 %)
Because
fa=fi=c (6)
and

/ dm
Af =f —f = ~a 7

where Af is the differential frequency of the laser beam. Based on Egs.
(5) to (7), one can obtain

_ vy fcosO, i vzf/ cos0,

Af(VI,VQ) = c c (8)

Because the laser Doppler vibrometer used in the experiment emits a
wavelength of 1550 nm, both the order of f and f are 10'*. The first four
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Fig. 4. Orientation of the laser beam O;M defined by angles a(t) and f(t).

natural frequencies of the cantilever beam measured in this experiment
are less than 100 Hz so the variation among f and f is very small.
Compared with difference between v; and v,, the difference between f
and f can be ignored. Therefore, f and f can be assumed to be
approximately equal. Hence, Eq. (8) can be approximated as

Af (vi,v) :]g (vicosy + voc0s6;) ©

= A + A

where Af is the vibrational frequency of the cantilever beam and Af; is
the frequency caused by the scanning. Eq. (9) demonstrates that scan-
ning frequency is capable of affecting the reflected frequency of the laser
beam. In addition, when 65 is close to zero, the contribution of the ve-
locity v; of the laser spot, which is relative to the scanning frequency, is
much smaller than that of the vibration velocity v,. Therefore, Af, will
be very small and this is the reason why there is a critical measurement
length of obvious appearance of bimodal interference, which is
demonstrated in Fig. 9.

2.1.2. Interpretation of mathematical models in terms of dynamics

The following is the derivation of the general velocity measured at a
point by a laser Doppler vibrometer. With reference to Fig. 4, a unit
vector O1M describes the direction of the incident laser beam. O, M,
which is orientated by the angles a(t) and f(t), is given by [1]

oM = [cosp(t)cosa(t)]X + [cosp(t)sina(t)]y — [sinf(1)]Z (10)

where O;M is equal to X at the beginning, first rotates an angle f(t)
around y, then rotates an angle a(t) around 2. O;-XYZ is the global co-
ordinate and O,-xyz is the translating reference coordinate. The general
velocity measured by a laser beam, whilst undergoing an arbitrary vi-
bration, can be derived:
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Fig. 5. Straight-line scanning with X-mirror rotating only.

W(#) = cosp(f)cosa(r) {x + (ék + 9) y— (é}, —Q0, z}

+cosp(t)sina(r) |y — (0. +Q )x + (Hx + QQ.)Z

—sing(1) [z‘ - (é, + QQV) y+ (éy - Qex)x} an
—(yosing(t) + zocosp(t)sina(t)) (éx + Q€y>

+(zocosp(t)cosa(r) + xosinf(t)) (éy - Qé{,)

+(xgcosp(r)sina — ypcosp(r)cosa(t)) (9 + Q)

where x, y, z and X, y, £ are translational vibration displacements and
velocities of the translating reference origin O, 6y, 6,, 6, and O, éy, 0,
are the angular vibration displacements and velocities of the shaft
around the x, y, z axes, Q is the rotation speed of the axial O; 0, and (xo,
Yo, Zo) is the position of an arbitrary origin point on the scanning path of
the laser beam.

The instantaneous laser spot M with the deformed position is iden-
tified by the position vector O,M in the translating reference coordinate,
and the instantaneous laser spot M, with the undeformed position is
defined by the position vector O;My. One can get

—

O\M = 0,0, + O0,M = 0,0, + O, My + MyM (12)

where O; M represents the position of M relative to the global coordinate
01-XYZ, 0,0, represents the instantaneous position of the translating

reference coordinate O,-xyz and MyM is the deformation. The difference

of MyM represents the deformation vibration velocity of M according to
cross-section flexibility. The velocity measured by the laser Doppler
vibrometer is v(t) in a periodical LTI system, which can be written as
[23]

v(t) = cosfcosa |:x',(P0) + xf(P)] + cosfsina [y',(Po) + yf(P)} |
(3

s 3,(P) + 5P

where x.(Po), ¥,(Po) and 2,(Py) are components of the vibration velocity
in the x, y, z directions caused by cross-section flexibility of a rigid body,
X¢(P), y;(P) and z¢(P) are components of the vibration velocity in the x, y,
z directions caused by cross-section flexibility.

For a straight-line scanning measurement, the scanning path on the
surface of the measured structure is just one dimension, as shown in
Fig. 5. Hence, a(t) is equal to zero because the scanning path is parallel
to the x-z plane. The origin of the coordinate xyz is out of the surface of
the Y-mirror because the laser spot reflected by the X-mirror is non-
stationary on the Y-mirror. The velocity of the laser spot measured
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Table 1
The relation between the scanning frequency and frequency shift of bimodal
interference.

Test Wse fy e k
1 2Hz 8.0476 Hz 12.38% 4.0238
2 1Hz 5Hz 7.69% 5
3 0.5 Hz 2 Hz 3.08% 4
4 0.1 Hz 0.4 Hz 0.62% 4
5 0.05 Hz 0.2 Hz 0.31% 4
6 0.01 Hz 0.04 Hz 0.06% 4

during a straight-line scanning can be obtained through rearranging Eq.
(13) and submitting a(t) = 0 into it:

w00 = cos(p() (7| sin(p0) 32| 14)

For uniform motion which is periodically repeated in a straight line,
the angle j(t) is expressed as a normalized trigonometric function with
coefficients k and the scanning frequency w;. of the X-mirror. The co-
efficient k describes the value of the frequency shift caused by bimodal
interference. According to the results of experiments, k is positively
correlated to the scanning frequency, as shown in Eq. (21) and Table 1.
In order to match the point-to-point analysis in Fig. 3, the periodical LTI
system is decomposed into a discrete LTI system in the following anal-
ysis. Therefore, one can obtain the discrete expression of 4(t,) in the time
domain, which is given by

cos(B(t,) ) = = cos(kmit,),

rZ
sin((1,) ) = “sin(ka1,). as

n=1,2 3, - N

where ry is the half of the scanning distance, r, is the vertical distance
between the coordinate xyz and the scanning path, ¢, is the discrete time
and n is the number of virtual measurement points got from the LCSLDV
system. By submitting Eq. (15) into Eq. (14), v(t,) can be rearranged as

V(t) = = cos(kmyt,) [xf(P)} —Z sin(kayety) {zf(P)} 16)
rZ rf
When one only considers the vibration in the x direction, the term
Z(P) can be ignored. By considering the variables of the phases § and { in
Eq. (3), the formula of the excitation generated from a sinusoidal fre-
quency signal can be expressed as

f(t,) = Agcos(w.t, — 6 — {) a7z

where f(t,) is the excitation signal and Ay is a constant. Hence, through
referring to Eq. (3), the vibration velocity component x¢(P) in the x di-
rection caused by cross-section flexibility can be written as

xf(P) = AIV(XI)COS((U(.I” —6— g) (18)

Submitting Eq. (18) into Eq. (16) and ignoring the irrelevant com-
ponents, one can obtain the velocity v(x;,t,) measured by the laser
Doppler vibrometer in the x direction:

v(xy, ) = A1V (x) ricos(kw_wt,l)cos(wetn -56-¢)
Iz (19)
= AV(x))cos(@w.t, — & — §)cos(kwy.t,)

where A = A1%. By rearranging Eq. (19) with a trigonometric identity,
the velocity response of the structure measured by the LCSLDV system,
which explains the frequency Af; and Af; in Eq. (9), can be expressed as
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v(x;, t,) =V (x))cos|(w, £ kae)t, — 8 — ]
= V' (x))cos(8 + {)cos[(w, £ ko )t, | + V' (x))sin(5 + &)sin[(w, + ko)t |
= V,(x)cos[(@, £ ko)t | + Vé(x,)sin[(a)e + k)t ],
n=1,2 3, -, N
(20)
where V(x) = AV(x), Vi(x) = V (x))cos(6+¢) and
VQ (x)) = V'(x)sin(5 + ¢) are the in-phase and quadrature components
of the ODSs with the continuously scanning measurement of the struc-
ture, respectively.

After the Fourier transform, § and { do not cause frequency shift
interference in the spectrum while the frequency w, + ko, of the in-
phase and quadrature components will form a double peak appear-
ance in the spectrum, which is the frequency shift of bimodal interfer-
ence.

2.2. Experimental interpretation of bimodal interference

In LCSLDV measurement, the appearance of bimodal interference
caused by the signal coupling of the scanning frequency w, and the si-
nusoidal excitation frequency w, is sometimes very obvious. There were
four types of experiments to illustrate the influence factor of bimodal
interference. In order to reduce and compare the effects of ambient
noise, the following experiment was carried out in a very quiet envi-
ronment. In addition, one should pay attention that the speckle noise is
one of the significant reasons that leads to the sidebands in the spectrum
during OMA [8].

The first type of comparative experiments was implemented on the
LCSLDV system with 0.1 Hz, 0.5 Hz and 1 Hz scanning frequencies at
distances of 20 m, 40 m and 60 m on the measured structure under a 65
Hz sinusoidal excitation, respectively. In addition, the sampling fre-
quency in this type was 4 Hz and the scanning length in this type was
around 1.45 m. As shown in Fig. 6, when the scanning frequency was
0.1 Hz, the frequency shift caused by bimodal interference was the same
when the measuring distance was 20 m, 40 m and 60 m. In addition,
when the scanning frequencies was 0.5 Hz and 1 Hz, the frequency shift
caused by bimodal interference was also unchanged. Therefore, the
difference of the distance between the LCSLDV system and the structure
has no noticeable effect on the elimination and decrease of bimodal
interference in the spectrum of the raw response. In addition, there is no
aliasing in the LCSLDV system because the change of the sampling fre-
quency has no noticeable effect on the frequency in the spectrum of the
raw response after the fast Fourier transform (FFT).

The second type of comparative experiments was implemented on
the LCSLDV system with 1 k Hz, 4 k Hz, 8 k Hz, 12 k Hz, 16 k Hz and 20 k
Hz sampling frequencies at the same distance of 60 m on the measured
structure under a 65 Hz sinusoidal excitation, respectively. In addition,
the scanning frequency in this type was 1 Hz and the scanning length in
this type was around 1.45 m. As shown in Fig. 7, the difference of the
sampling frequency of the LCSLDV system has no noticeable effect on
the elimination and decrease of bimodal interference in the spectrum of
raw response after the FFT.

The third type of comparative experiments was implemented on the
LCSLDV system with 2 Hz, 1 Hz, 0. 5 Hz, 0.1 Hz, 0.05 Hz and 0.01 Hz
scanning frequencies at the same distance of 60 m on the measured
structure under a 65 Hz sinusoidal excitation, respectively. In addition,
the sampling frequency in this type was 4 k Hz and the scanning length
in this type was around 1.45 m. As shown in Fig. 8, with the decrease of
scanning frequency, the interval between the two peaks decreases.
Finally, only when the distinguishability was amplified, the two peaks of
bimodal interference would appear in the spectrum. One can know that
the difference of the sampling frequency of the LCSLDV system has
significant effect on the elimination of bimodal interference in the
spectrum of the raw response after the FFT. The relation between the
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Fig. 6. Time domains of responses and their spectra with different measuring distances.

scanning frequency and the frequency shift of bimodal interference was

shown in Table 1 and the error rate e was the ratio of the frequency shift

of bimodal interference and the dominant frequency. Moreover, k in Eq.

(20) in this experiment was equal to the quotient of the frequency shift f;

of bimodal interference and the scanning frequency ws., which is
f)

k=—
Wy

(21)

It is obvious that the frequency shift of bimodal interference is

positively correlated with the scanning frequency of the mirror.

Last but not least, many LCSLDV and CSLDV measurements did not
observe bimodal interference phenomenon because the scanning lengths
in these experiments were insufficiently long. After more than 200 ex-
periments, the researchers found that the appearance of bimodal inter-
ference was relative to the scanning length in the LCSLDV
measurements. A main peak is in the form of a dominant frequency that
is supposed to be. The changes of the main peak and bimodal interfer-
ence with the increase of the scanning length were shown in Fig. 9.
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Fig. 7. Time domain responses and their spectra with different sampling frequencies.

Readers only need to pay attention to the relationship between bimodal
interference and the main peak in the term of the scanning length. The
amplitude of bimodal interference was equal to that of the main peak
when the scanning length was around 0.5 m. One can find that the main
peak relatively decreases and bimodal interference gradually rises with
the increment of the scanning length. Finally, bimodal interference
swamped the main peak. When the scanning length in this work is larger
than 0.5 m, bimodal interference becomes obvious and cannot be
ignored. According to experimental results, until now, there is no
observed obvious tendency of the critical scanning length with different
measurement distances, sampling frequencies and scanning frequencies
in this work. What is more, one should note that it is only credible to
compare bimodal interference with the main peak in the same type of
experiments because the external interference is different in each
experiment. The external interference includes the reliability of the in-
strument interface, ambient noise, the frequency of the power supply
and even vibration experiments in the surrounding laboratory. In
addition, according to experimental results, bimodal interference only
obviously appears in LCSLDV measurements and it can be observed
when the measuring distance is over 10 m.

Note that there were more than 200 effective measurements to
support the relationship between bimodal interference and the vari-
ables. In order to better illustrate the trend of the relationship, the dis-
played measurement results are representative results.

3. Demodulation method for extraction of MSs

The OMA method used in this experiment is the demodulation
method [5,15]. The demodulation method was developed for extraction
of ODSs with a structure under sinusoidal excitation. This method can be
improved by signal processing for extraction of MSs under white noise
excitation. Before implementing the demodulation method, a band-pass
filter with a narrow bandwidth is performed on the raw response. One
should note that the center frequency of the narrow bandwidth is one of
the natural frequencies of the measured structure. In addition, the
purpose of the narrow bandwidth of the band-pass filter is making the
processed raw responses to be similar to the responses measured from a
structure under sinusoidal excitation. The bandwidth of the band-pass
filter used in this work is 4+ 0.01 Hz centered at the interested natural
frequency. After this signal processing, the demodulation method can be
utilized for OMA with white noise excitation.

For the condition that the structure is under sinusoidal or narrow
band excitation, V(x;) in Eq. (3) is an ODS. However, for the condition
that the structure is under wide band excitation such as white noise
excitation, a MS can be extracted from the demodulation method.
Therefore, V(x;) in Eq. (3) can be more accurately expressed as the MS,
which is noted as ¢.

The standard matrix form of the forced vibration equation for a LTI
system with multiple degrees of freedom is
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Fig. 8. Time domains responses and their spectra with different scanning frequencies.

M3(r) + Cx(t) + Kx(1) = F(r)

(22)
be expressed as

velocity responses extracted from the LCSLDV system, V(x;, t,) can also

where M is the mass matrix, C is the damping matrix, K is the stiffness
matrix, F(t) is a vector of white noise excitation and x(t) is a vector of
displacement response. In addition, x(t) can be written in the modal
expansion form

x(1) = ¢q(t) = 23

where ¢(t) is the generalized coordinate vector, ¢ is the MS vector and k
is the number of modes to be retained.

After change of analog signals to digital signals in experiments, the
velocity responses extracted from the LCSLDV system are transformed
into discrete time series t,,. As described in Sec. 2.1, the velocity response
of the structure measured by the system along a straight scan line is V(x;,
t,). In order to obtain MSs, the demodulation method is utilized to
multiply and filter the velocity response V(x;,t,). The band-pass filter is
applied to the velocity response V(x;, t,) to remove the response outside
the interested natural frequency w,. The filtered velocity response is
noted as Vf(x;, t,). After the band-pass filter, V¢(x;, t,) only includes the
modal parameters of the rth mode. Hence, \/(xl) in Eq. (3) without
bimodal interference contains modal information of ¢"(x;). For the

Vi(x, ta) = @ (x))cos(w,t, — 8 — §)

= ¢;(x))cos(w,1,) + ¢2, (ox7)sin(w,,) @4

where ¢} (x;) = ¢"(x;)cos(5) is the in-phase component of the rth MS and
¢(x1) = ¢"(xp)sin(8) is the quadrature component of the rth MS. Then,

Vi (%, ty) in Eq. (24) is multiplied by cos(wyt,) and sin(w;t,), which gives
Vi (1, ta)cos(w, t,) = @y (x1)cos(@,1,)cos(w,t,) + ¢y (x)sin(w,t,)cos(w,t,)

= %qﬁ;(x/) + %tﬁ;(xl)cos(Zw,tn) + %(ﬁ'Q(x,)sin(Zw,tn)

(25)
Vi (1, ta)sin(@,1,) = @ (xi)cos(@,t,)sin(@,1,) + ¢y (x)sin(w,1,)sin(w,1,)
:%‘I’ (%) + ¢](xl)Sln(2wr t,) — %(l) (x1)cos(2w, ,)
(26)

respectively. Second and third terms on the second lines of Eq. (25) and
Eq. (26) can be eliminated by applying a low-pass filter to
@ (x))cos(2wrty) and p(x;)sin(2w,t,) to yield ¢7(x;) and gf(x),
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Fig. 9. Changes of the main peak and bimodal interference with the increase of the scanning length.
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Fig. 11. Pictures of (a) the cantilever beam and (b) the shaker.

respectively. After that, ¢ (x;) and ¢, (x;) can be obtained by multiplying
corresponding filtered signals by two. During the estimation process of
MSs, one of ¢j(x;) and ¢, (x;) is the real part of the rth MS, and the other
one is the imaginary part of that. The real parts of MSs are objects to be
estimated, which completes the demodulation method.

4. Experimental investigation
4.1. Experimental setup

The bimodal interference phenomenon only evidently appears when
the scanning length is more than 0.5 m. Considering that the maximum
excitation force of the shaker in the laboratory was 50 N. Therefore, a
cantilever beam with a length of 1500 mm, a width of 150 mm and a
thickness of 3 mm was designed to verify the effectiveness and accuracy
of the system [24,25]. The cantilever beam was machined according to
the designed natural frequencies. In this way, the reliability of the
LCSLDV system can be verified by comparing the calculated natural
frequency with the measured natural frequency.

The LCSLDV system was developed in this work for measuring vi-
bration of a distant structure, as shown in Fig. 10. The LCSLDV system
includes a Polytec RSV-150 laser Doppler vibrometer, a Cambridge
6240H scanner with an NI 9082 controller and an outdoor power supply.
The scanner was connected to the controller to control rotation angles of
two orthogonal mirrors (X- and Y-mirrors) of the scanner. Since the laser
beam of the vibrometer was reflected by the mirrors, horizontal and

Raw response of the beam at
60 m distance
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(a)

vertical positions of the laser spot on the structure could be controlled by
changing rotation angles of the two mirrors, respectively. The laser
Doppler vibrometer emitted a laser beam and it could measure the
surface velocity of a point on the cantilever beam where the laser spot
was located. The X- and Y-mirrors reflected the laser beam so that the
laser beam was pointed at the long-range surface of the cantilever beam.
A control scheme was programmed in a commercial software LabVIEW
so that various scan paths of the laser spot could be designed by sending
control signals to the scanner. The Y-mirror was fixed and the laser spot
moved on the surface of the cantilever beam from one end of the scan
path to its other end with the rotation of the X-mirror. Since the canti-
lever beam was sufficiently far away from the LCSLDV system and the
rotation angle of the X-mirror was sufficiently small, horizontal and
vertical positions of the laser spot could be considered to be linearly
related to rotation angle of the X-mirror, respectively [26]. The feedback
signal of the scanner that was registered in the form of voltage was used
to indicate the rotation angle of the X-mirror.

This experiment was set up to estimate modal parameters and MSs of
the designed cantilever beam using the OMA method described in Sec
3.1. The distance between the LCSLDV system and the scanned canti-
lever beam was 60 m. The shaker excites the cantilever beam at the
cantilever end and a strip of a reflective tape was attached to the surface
of the cantilever beam to enhance the signal-to-noise ratio of long-range
measurement, as shown in Fig. 11. The scan path ranged from x;/L = 0
to x;/L = 1, as shown in Fig. 4, where x was the distance between the
laser spot and the end point of the scan path close to the rotation center,
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Fig. 12. (a) The raw response of the cantilever beam under 65 Hz sinusoidal excitation and (b) its spectrum.
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Fig. 13. (a) The raw response of the cantilever beam under white noise excitation, (b) itsspectrum and (c) the signal of the X-mirror.

and L was the length of the scan path.

4.2. Optimized OMA results

First, before the white noise excitation measurement, the cantilever
beam was excited by sinusoidal excitation to check whether the system
has eliminated bimodal interference. Control parameters of the LCSLDV
system were set as follows: the scanning frequency of the X-mirror was
0.01 Hz and the sampling frequency was 1 k Hz. The distance between
the measured cantilever beam and the LCSLDV system was 60 m and the
speed of the laser spot sweeping on the surface of the cantilever beam
was around 30 cm per second. As shown in Fig. 12, the raw response of
the excited cantilever beam had some high amplitude time domain
noises. However, in the spectrum, these noises had no effect on fre-
quency recognition. It was obvious to identify that the accurate 65 Hz
response measured by the LCSLDV system from the cantilever beam
under a 65 Hz sinusoidal excitation, without any bimodal interference.
Therefore, one can be sure that the measurement results of control pa-
rameters of the LCSLDV system were accurate and correct in the long-
range measurement at a distance of 60 m.

Second, after determining that the LCSLDV system was accurate, the
shaker generated white noise excitation to excite the cantilever beam.
The LCSLDV system was located directly in front of the geometric center
of the cantilever beam so that the LCSLDV system could measure the
transverse vibration of the cantilever beam and the raw response could
be processes to estimate modal parameters of cantilever beam bending
modes. The control parameters of the LCSLDV system were the same in
the whole measurement. The LCSLDV system measurement was per-
formed to estimate the MSs of the cantilever beam. Because bimodal
interference caused by the scanning frequency coupling was eliminated,
dominant frequencies in the spectrum after the FFT were very legible
and could be accurately identified, although there were other interfer-
ence signals in the measured response. As shown in Fig. 13, dominant
frequencies of the first four natural frequencies of the cantilever beam in
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the spectrum were measured. The first cantilever beam bending mode
was identified at 0.94333 Hz and the mode at 5.99667 Hz was found to
be the second bending mode of the cantilever beam. The value of the
third and fourth frequencies were 16.8233 Hz and 33.13 Hz,
respectively.

Then, for every bending mode of the cantilever beam, the raw
response measured by the LCSDLV system was processed with a band-
pass filter centered on the frequency of the mode to be derived. The
demodulation method described in Sec 3.1 was implemented to the
filtered response to extract the MSs of the cantilever beam. As shown in
Fig. 14, the normalized MSs of the first four modes of the cantilever
beam were obtained from the demodulation method. In addition, the
first four MSs obtained by the FEM were also shown in Fig. 14 for
comparison purposes. The formation ends of MSs flatted out as a result
of filtering during the demodulation method used in the LCSLDV
measurement.

Modal assurance criterion (MAC) values are calculated as the
normalized scalar product of the two sets of MSs ¢, and ¢y [27]. They
are arranged into the MAC matrix

{2} (01
({on) 01 ) (10 0% )

MAC(r,q) = 27)

where ¢, is the MS vector of the rth mode from the LCSLDV measure-
ment, ¢} is the MS vector of the gth mode from the FEM and T is the
transpose of a matrix. The values of the diagonal components in the MAC
matrix extracted from the LCSLDV measurement and the FEM were
illustrated in Table 2 and the MAC matrix was demonstrated in Fig. 15.

It can be seen from Table 2 that the natural frequencies obtained by
the FFT of the raw response measured by the LCSLDV system was
basically consistent with them obtained by finite element simulation. Let
r; be the relative error of the values of the natural frequencies from the
FEM and the LCSLDV system. The maximum deviation of natural fre-
quencies from the FEM and the LCSLDV system was 2.97% and the
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Table 2
Comparison of the natural frequencies from the FEM and the LCSLDV system.
Mode FEM LCSLDV rn MAC
1 0.97144 Hz 0.94333 Hz 2.97% 0.98420
2 6.0861 Hz 5.99667 Hz 1.49% 0.95282
3 17.053 Hz 16.8233 Hz 1.36% 0.92304
4 33.466 Hz 33.13 Hz 1.1% 0.93578

minimum deviation was 1.1%. The deviation of this magnitude was
unavoidable because there were machining error and the clamped
boundary condition of the cantilever beam could not be an ideal
boundary condition. Note that it was acceptable that the MAC value of
the fourth mode was 0.92304 since the flattening of the end of the MSs
caused by filtering was inevitable [28].

5. Conclusion

This paper introduced the cause and the elimination of interference
caused by signal coupling of the scanning frequency and vibration fre-
quencies in the spectrum, which was ignored by most LCSLDV mea-
surements. This kind of interference signal was named bimodal
interference in this paper because it caused two symmetrically shifted
peaks centered at the dominant frequency in the spectrum, making it
impossible to determine the precise value of the dominant frequency.
The frequency shift of bimodal interference was positively correlated
with the scanning frequency of the mirror. The trigonometric functions
from the perspectives of optics and dynamics and discretized by time
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Fig. 15. MAC matrix extracted from the LCSLDV system and the FEM.

series were used to represent the laser spot reflected from the X-mirror
and going to the cantilever beam. Through analyzing the trigonometric
functions of the incidence and reflection of the laser beam with
continuous scanning in a tiny time interval, the mathematical explana-
tion of the symmetric frequency shifts centered at the dominant fre-
quency caused by the scanning frequency was derived. By analyzing



Y. Hu et al.

C antilev

Measurement 218 (2023) 112998

Accelerometer
l L .

Fig.

Table 3
Comparison of the natural frequencies measured by the traditional modal
analysis method and the LCSLDV system.

Mode SMM LCSLDV 2

1 0.9506 Hz 0.94333 Hz 0.77%
2 5.9422 Hz 5.99667 Hz —0.91%
3 16.6968 Hz 16.8233 Hz —0.75%
4 32.8925 Hz 33.13 Hz —0.72%

mathematical equations, it can be known that when the scanning fre-
quency increases, the value of the frequency shift caused by bimodal
interference increases simultaneously. The effect of bimodal interfer-
ence is too obvious to ignore in LCSLDV measurement.

The experimental results of nine groups with different sampling
frequencies illustrated that there was no aliasing in the system and
bimodal interference was independent of the sampling frequency under
the insurance of the sampling accuracy. The experimental results of six
groups with different measuring distances demonstrated that the fre-
quency shifts of bimodal interference would not decrease with the
decrease of the measuring distance in long-range measurement. The
experimental results of six groups with different scanning frequencies
illustrated that the frequency shifts of bimodal interference would not
decrease with the decrease of the measuring distance in long-range
measurement. The experimental results of six groups of scanning fre-
quencies demonstrated that the symmetric frequency shifts of the
dominant frequency in long-range measurement was caused by the
scanning frequency of the mirror. There was a positive correlation be-
tween the scanning frequency and the value of symmetric frequency
shifts of the dominant frequency in the spectrum caused by bimodal
interference. The phenomenon of bimodal interference was inconspic-
uous if the scanning length was less than 0.5 m. When the scanning
frequency was reduced to 0.01 Hz, bimodal interference in the spectrum
of the raw response from the LCSLDV measurement at 60 m almost
disappeared because the value of the symmetric frequency shifts was 3
orders of magnitude lower than the dominant frequency.

This work also reported the first long-range continuously scanning

Appendix:. Traditional modal analysis results for the cantilever beam

16. Pictures of (a) classical modal measurement of the cantilever beam and (b) the layout of the accelerometer.

measurement with Polytec RSV-150 laser Doppler vibrometer. It is sig-
nificant to recode accurate results without bimodal interference in
LCSLDV measurement. From this, natural frequencies in long-range
continuously scanning measurement can be accurately estimated. Due
to ambient noise, the interference signal in the raw response of long-
range measurement is inevitable, the optimized OMA results in this
paper shows that it hardly affects modal parameter estimation of the
LCSLDV system.
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In order to verify the accuracy of the modal parameters of the cantilever beam excited by the shaker at the cantilever end, a classical modal
measurement was implemented on the cantilever beam as shown in Fig. 16. An acceleration was attached at the position with 10 cm from the free end
of the cantilever beam. Fifteen points were evenly spaced on the central axis of the cantilever beam. The distance between each point was 10 cm. The
first four natural frequencies of the cantilever beam, which were illustrated in Table 3, were analyzed by the m + p software after fifteen points were
hit by an impact hammer. One can know that the maximum deviation of the natural frequencies measured by the traditional modal analysis method
and the LCSLDV system was 0.91%. Let r, be the relative error of the value of the natural frequencies measured by the traditional modal analysis
method and the LCSLDV system, and the normalized standard deviation of r, was 0.007861. The traditional modal analysis method is the most basic
and reliable modal measurement method. Hence, such a small deviation indicates that the natural frequencies of the cantilever beam measured by the

LCSLDV system were accurate.
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