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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Methane variance was highest along
environmental gradients and between
sites.

• Sul ate was negatively and non-linearly
correlated with methane concentration.

• Salinity was a signi cant, but weaker
proxy or methane concentration.

A R T I C L E I N F O

Editor: Jay Gan

Dataset link: Dataset: Porewater covariates
rom coastal tidal wetlands in the United States
(Original data)

A B S T R A C T

Tidal wetlands can be a substantial sink o greenhouse gases, which can be o set by variable methane (CH4)
emissions under certain environmental conditions and anthropogenic interventions. Land managers and poli-
cymakers need maps o tidal wetland CH4 properties to make restoration decisions and inventory greenhouse
gases. However, there is a mismatch in spatial scale between point-based sampling o porewater CH4 concen-
tration and its predictors, and the coarser resolution mapping products used to upscale these data. We sampled
porewater CH4 concentrations, salinity, sul ate (SO42 ), ammonium (NH4+), and total Fe using a spatially strati ed
sampling at 27 tidal wetlands in the United States. We measured porewater CH4 concentrations across our
orders o magnitude (0.05 to 852.9 M). The relative contribution o spatial scale to variance in CH4 was highest
between- and within-sites. Porewater CH4 concentration was best explained by SO42 concentration with
segmented linear regression (p < 0.01, R2 = 0.54) indicating lesser sensitivity o CH4 to SO42 below 0.62 mM
SO42 . Salinity was a signi cant proxy or CH4 concentration, because it was highly correlated with SO42 (p <

0.01, R2 = 0.909). However, salinity was less predictive o CH4 with segmented linear regression (p < 0.01, R2 =
0.319) relative to SO42 . Neither NH4+, total Fe, nor relative tidal elevation correlated signi cantly with porewater
CH4; however, NH4+ was positively and signi cantly correlated with SO42 a ter detrending CH4 or its rela-
tionship with SO42 (p < 0.01, R2 = 0.194). Future sampling should ocus on within- and between-site envi-
ronmental gradients to accurately map CH4 variation. Mapping salinity at sub-watershed scales has some
potential or mapping SO42 , and by proxy, constraining spatial variation in porewater CH4 concentrations.
Additional work is needed to explain site-level deviations rom the salinity-sul ate relationship and elucidate
other predictors o methanogenesis. This work demonstrates a unique approach to remote team science and the
potential to strengthen collaborative research networks.

1. Introduction

Tidal wetlands are increasingly recognized or their contributions to
the global methane (CH4) budget emitting 0.76 Tg CH4 year 1

(Rosentreter et al., 2023), which o sets a portion o the carbon dioxide
(CO2) they sequester. Human activities have perturbed both CH4 emis-
sions (Kroeger et al., 2017) and carbon sequestration (Pendleton et al.,
2012; Tan et al., 2020) and there ore have the potential to contribute to
natural climate solutions that improve carbon removal and reduce
greenhouse gas (GHG) emissions with appropriate management actions
(Chmura et al., 2003; Mcleod et al., 2011; Fargione et al., 2018; Arias-
Ortiz et al., 2021). Quanti ying CH4 emissions rom tidal wetlands is
vital due to the impact o CH4 on radiative orcing in the atmosphere
which is 45× that o CO2 over 100 years rom sustained sources o CH4
(re er to Supplemental Table 1 in Neubauer and Megonigal 2015).
However, signi cant uncertainties remain with spatial variation among
tidal wetlands in the production and emission o CH4 at regional and
global scales (Xiao et al., 2024). New ground data and more detailed
maps o wetland subclasses are needed or improving coastal GHG in-
ventorying at a national scale (Holmquist et al., 2018), and or
improving the classi cation o sector-based CH4 emissions (Nesser et al.,

2024). Wider-scale monitoring o CH4 fuxes will require intensive eld-
based sampling with specialized equipment to e ectively capture spatial
variability (Needelman et al., 2018; Derby et al., 2022).

Understanding spatial scaling is a vital part o strategically deploying
ground-based monitoring (Johnson et al., 2007), integrating ground and
remote sensing data (Guo et al., 2017), and evaluating biogeochemical
relationships at policy-relevant scales (Corstanje et al., 2008a, 2008b).
Methane production is infuenced by many processes that operate at
di erent spatial scales o aggregation. For example, at the scale o in-
dividual soil particles, methanogenesis is spatially heterogeneous due to
the presence o anoxic (Keiluweit et al., 2018) or oxic (Määttä and
Malhotra, 2024) microsites. At the scale o meters, methanogenesis is
spatially variable due to microtopography and variability in the depth o
the water table (Perryman et al., 2022). Within watersheds, methano-
genesis varies due to estuary-wide gradients in salinity and elevation
(Arias-Ortiz et al., 2024). Across continental-scale gradients, methano-
genesis varies due to climate variables such as mean annual temperature
(Arias-Ortiz et al., 2024) and perhaps geomorphic controls (Kirwan
et al., 2023; Cotovicz Jr et al., 2024). Importantly, spatial scaling is
distinct rom sampling uncertainty, which a ects individual
measurements.
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In tidal wetlands, CH4 emissions are a result o the production o CH4
in soils, fuxes rom soil to sur ace through plants, di usion or ebullition
across the soil sur ace, and consumption o CH4 by methanotrophs
(Bubier et al., 1995; Couwenberg et al., 2011; Sutton-Grier and Mego-
nigal 2011; Mueller et al., 2016; Santos et al., 2019; Bansal et al., 2020;
Vroom et al., 2022; Bastviken et al., 2023). Methanogenesis can occur
under oxic or anoxic conditions, with the ormer deviating rom the
dogma that CH4 production is restricted to anoxic sediments (Perez-
Coronel and Beman, 2022). In anoxic conditions, the presence o alter-
native terminal electron acceptors may substantially limit methano-
genesis (Megonigal et al., 2004) or promote CH4 oxidation. Microbial
competition or organic carbon (electron donors) can inhibit methano-
genesis in the presence o higher energy-yielding electron acceptors such
as SO42 (Win rey and Zeikus, 1977; Mount ort et al., 1980; Lovley and
Klug, 1983; Kristjansson and Schönheit, 1983). Sul ate is a substrate or
anaerobic CH4 oxidation as a second mechanism or inhibiting the
accumulation o CH4 in porewater and emission o CH4 (Hinrichs and
Boetius, 2002; Segarra et al., 2015). Such interactions between SO42

availability and CH4 cycling give rise to strong correlations between
these compounds. For example, Keller et al. (2009) o ered evidence or
a segmented regression relationship between porewater CH4 and SO42 ,
where CH4 concentration rapidly decreases above 4 mM SO42 concen-
tration. Importantly, while SO42 reduction clearly suppresses methane
emissions, the two processes nonetheless co-occur in tidal wetlands due
to spatial separation in the soil pro le, microsite heterogeneity, and the
presence o methanogenic pathways that do not compete with SO42

reducers.
In previous studies, salinity was used as a proxy or sul ate's role in

inhibiting methane emissions, where SO42 leads to sul ate-reducing
bacteria outcompeting CH4 producers (Win rey and Zeikus, 1977;
Mount ort et al., 1980; Lovley and Klug, 1983; Kristjansson and
Schönheit, 1983). A literature review by Po enbarger et al. (2011)
ound that porewater CH4 decreased as salinity increased across a nar-
row range (0–6.8 psu). Many other studies support the well-established
paradigm that SO42 associated with salinity e ectively suppresses CH4
production in tidal wetlands (Chambers et al., 2013; Neubauer, 2013;
Helton et al., 2014; Weston et al., 2014; Wilson et al., 2015; Wang et al.,
2017). Keller et al. (2009) provided a singular dataset to relate salinity
and SO42 , but considerable variability in that dataset prevents robust
interpretation o a relationship. Al-Haj and Fulweiler (2020) empha-
sized that co-located measurements o CH4, salinity, and other relevant
covariates are necessary to validate and understand scale-driven
changes in drivers o CH4 production across broader salinity gradients
and geographical areas. Evidence or relationships between porewater
CH4 concentration and covariates exist in the literature, but limited
data, indirect measurements o covariates, di erences in methods, and
contrasting conclusions yield uncertainty o these relationships in tidal
wetlands.

Other variables such as water level, watershed nutrient status, and
the presence o other terminal electron acceptors have the potential to
infuence methanogenesis as well. Due to their inherent tidal compo-
nents, these wetland ecosystems experience diurnal or semidiurnal
changes in water levels. The tidal cycle a ects water table depth (Vann
and Megonigal 2003), requency (Tong et al., 2020) and duration o
inundation (Bansal et al., 2020), which together contribute to temporal
and spatial heterogeneity in oxic and anoxic conditions or CH4 pro-
duction. Tides also contribute additional heterogeneity in CH4 produc-
tion and emissions through variance in covariate supply. The land use
surrounding the wetland may also impact the supply o nitrogen to the
wetland (Bowen et al., 2020). Nitrate (NO3 ) can serve as an alternate
terminal electron acceptor in anoxic conditions, promoting decompo-
sition. Ammonium may infuence the production o CH4 by increasing
plant productivity (Langley et al., 2013). Other porewater constituents
such as erric iron (Fe3+) can act as alternative terminal electron ac-
ceptors as well (Zou et al., 2018).

Understanding which physical actors infuence covariate

concentrations and how these may explain observed variability in
porewater CH4 concentrations in wetlands is complex. Most previous
research e orts have ocused on either individual sites (Bartlett et al.,
1987; Keller et al., 2009), or synthesizing disparate studies with
di erent methodologies (Po enbarger et al., 2011; Al-Haj and Ful-
weiler, 2020; Arias-Ortiz et al., 2024). Relationships have not been
quantitatively validated across landscape-level spatial scales with a
consistent methodology. Deployment o a lower cost, spatially broad
coverage sampling design based on a participatory science ramework
(Bell et al., 2013; Hadj-Hammou et al., 2017) has the potential to assess
the spatial scaling o methanogenesis in tidal wetlands to in orm large
monitoring investments as well as validate previously determined
dominant driver and proxy relationships across wider spatial scales.

This study uses a USA-wide survey o porewater CH4 concentration
and associated covariates based on a strati ed sampling plan. We
ocused on porewater CH4 concentration instead o CH4 fuxes or two
reasons. First, concentration measurements are less intensive to sample
when compared to fuxes in terms o work-hours and specialized
equipment (Arias-Ortiz et al., 2021), making them more easible within
continental-scale survey contexts. Second, the presence o dissolved
porewater CH4 is an important antecedent condition to CH4 emissions
(Keller et al., 2009; Duan et al., 2023) and has been shown to be posi-
tively correlated with CH4 emissions in wetlands (Yang et al., 2019; Villa
et al., 2020; Capooci et al., 2024).We aimed to quanti y relationships
between porewater CH4 variance at di erent spatial scales and validate
previously reported relationships between CH4 and its predictors along
broader ranges o covariate concentrations. We tested the ollowing
hypotheses: (i) SO42 is negatively correlated with CH4 concentration,
(ii) salinity is a proxy or SO42 in predicting porewater CH4 concentra-
tions, and (iii) relative tidal elevation, total Fe, and NH4+ are secondary
predictors o porewater CH4 concentration.

2. Methods

2.1. Site descriptions and experimental design

Between 2020 and 2021, we sampled a total o 27 tidal wetland sites
(20 o which were located in the National Estuarine Research Reserve
System [NERRS]) across the conterminous United States and Alaska
(Supplemental Table 1; Fig. 1A). Sampling was constrained to coastal
emergent intertidal marshes, excluding swamps, tidal reshwater
orested wetlands, mangroves, and lakes. Field sampling was completed
rom July to early December in 2020 and 2021 coinciding with each
site's peak aboveground biomass season. To assess the regional and local
scale o variability o porewater conditions, each site was sampled at 3 to
4 locations (‘subsites’, Fig. 1B). Porewater samples were collected at 4
plots within each subsite (Fig. 1C). Subsites were selected by site experts
in order to maximize a dominant environmental gradient such as
salinity, management, elevation, and/or inundation, and to maximize
distance rom each other.

At each subsite, our 0.25 m2 areas (‘plots’) were sampled, or a total
o 367 plots. Using a rolling tape measure, the rst plot was located 20 m
inland rom the wetlands/creek edge. A visual marker was thrown
behind the researcher to randomize the location o the rst plot and
eliminate observer bias. Plots were spatially strati ed with 1.5 m
separating a pair o plots and a second pair located 15 m apart (Fig. 1C).
Orientation between the 15 m strati ed pairs was selected rom a ran-
domized list o compass bearings (Corstanje et al., 2008a; Corstanje
et al., 2008b). I any plot was located in a water eature or was otherwise
inaccessible, another direction was selected.

2.2. Porewater sampling and analyses

Porewater samples were collected 10–25 cm subsur ace using sipper
wells or rhizon MOM samplers (Rhizosphere Research Products,
Wageningen, Netherlands). The latter depth range was chosen to avoid
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sur ace water entrapment (Zimmerman et al., 2005) and to ensure su -
cient collection o porewater sample or an initial fushing (~20–30
mL) o the re-used sippers and or all analyses (up to 60 mL). The ma-
jority (90 %) o samples were collected using sippers that consisted o
two sections: Tygon Masterfex tubing and Tefon PTFE chemical resis-
tant tubing per orated with 3/32 diameter holes and sealable above-
ground with a stopcock (Noyce and Megonigal 2021). Within each plot,
one porewater sampler was temporarily installed in a hole o the same
diameter opened using a solid plastic rod. I little or no water was drawn
rom the initial sipper location, the sipper was re-located within the plot,
and up to ve attempts were made. I these attempts ailed, the plot was
moved and re-sampled. The stopcock on the sipper remained closed
unless the sample was actively being withdrawn. Up to 90 mL o pore-
water was extracted rom each well. Sippers and syringes were emptied,
but not cleaned, and reused between plots. Single-use rhizon samples
were collected or upwards o 2 h via vacuum pressure created in a sy-
ringe with a stopcock, held open with a retainer.

Porewater was extracted and ltered to 0.45 m via a syringe-
mounted lter (polyvinylidene fuoride) into 22 mL scintillation vials
in order o priority: CH4, SO42 , Cl , NH4+, and total Fe. Dissolved CH4
was extracted rom an un ltered sample o 12 mL porewater equili-
brated with an equivalent volume o atmosphere within a syringe and
shaken vigorously or 2 min (Megonigal and Schlesinger, 2002). The air
sample was injected into a nitrogen (N2) fushed 12 mL Labco (Lamp-
eter, Wales, UK) exetainer via a single use needle attached to a lter to
absorb excess water. The SO42 and Cl samples were collected using 10
mL o porewater ltered into a scintillation vial containing approxi-
mately 1 mL o 5 % zinc acetate and sodium hydroxide bu er, and
shaken to mix (Keller et al., 2009; Environmental Protection Agency,
1996). Up to 40 additional mL o porewater was collected and ltered
into two vials to be analyzed or NH4+ and total Fe, respectively.

Methane samples were stored at air temperature (Faust and Liebig,
2018), while all other samples were kept on ice during collection and
later rozen. Samples were shipped overnight on ice to the Smithsonian
Environmental Research Center (Edgewater, MD, USA) and stored in a
20 C reezer until analysis. Methane was measured on a Bruker Varian

450 gas chromatograph. Porewater CH4 concentrations were derived
rom the slope o the line o known standard values, ranging rom 100 to
100,000 ppm CH4, and log-trans ormed to account or non-negative
values.

Sul ate and Cl were analyzed on a Thermo Fisher (Waltham, MA,
USA) Dionex Integrion (2019) ollowing similar methods rom Noyce
and Megonigal (2021), where samples were separated using an A11 4
m ast column using 32 mM o KOH as the eluent. The detection limit
or SO42 and Cl was calculated by multiplying the standard deviation
o the lowest standard by three, respectively. Ammonium was used as an

indicator o nutrient status and total Fe as an indicator o the potential
or Fe3+ presence. Ammonium was analyzed using the Berthelot-
salicylate colorimetric technique (Noyce et al., 2019). Total iron
(Fe2+ + Fe3+) concentrations were determined by the errozine method
(Loeppert and Inskeep, 1996; Viollier et al., 2000) on a Shimadzu UV-
1800 UV spectrophotometer and measured at the Louisiana Univer-
sities Marine Consortium.

2.3. Aboveground biomass assessment and longitude, latitude, and
elevation data

The relative abundance and percent cover o each plant species was
described in each plot using the Braun-Blanquet (1932) scale. A
destructive harvest o 10 × 10 cm or 25 × 25 cm was conducted, clip-
ping all stems within 2 cm o the marsh sur ace. Live stems were sorted
by species, i possible. Aboveground necromass was pooled and not
identi ed by species. All plant samples were dried at 60 C until stable
weight was reached ( 5 days), and then weighed with a Sartorius 1574A
(Sartorius AG, Goettingen, Germany) or Ohaus STX 422 (Ohaus Cor-
poration, Parsippany, New Jersey, U.S.) balance, to the microgram. The
latitude, longitude, and elevation (NAVD88 vertical datum) o each plot
was measured, i possible, using a cell-phone, Google Earth, hand-held
Garmin (models: 73, Etrex 20×, GPSMap 64st or 78sc, Montana 600),
SP80 RTK, Bad El GNSS, Trimble (Geo7x, R8s, R10, R12, R12i), Leica
Sprinter 150 m or 250 m Digital Level, or Emlid Reach RS2.

2.4. Data analysis

Data visualization and multiple regression approaches were con-
ducted in R (version 4.1.3, R Core Team, 2022). Additional gures were
created using ArcGIS (version 10.8, Environmental Systems Research
Institute, Inc., 2020). A Spearman's rank correlation was used to assess
the relationship between the porewater covariates, aboveground
biomass, and species richness. Data normality was tested using the
Shapiro-Wilks normality test and visualized in histograms (Supple-
mentary Fig. 1).

In order to quanti y the relationship between spatial scale and
porewater CH4 variability, we partitioned variance attributable to each
level o spatial hierarchy using a Bayesian random e ects model (Hobbs
and Hooten, 2015). We estimated the amount o variance present at
each spatial scale using Eq. (1). Methane data were natural log-
trans ormed.

ln(CH4) = ln( )+ 1 5m,i+ 15m,j + within site,k + between site,l (1)

ln( ) N(0,1000)

Fig. 1. A three-paneled gure illustrating this study's spatial scales o sampling. A.: An outline map o North America with all sampled sites; B.: example site (red
circle rom panel A.) with three example subsite locations, and; C.: a detailed view o example subsite 2 rom panel B., demonstrating the paired plot-based sampling
structure. Colors in panels B. and C.: beige (tidal wetland), green ( orested wetland), white (land), blue (open water).
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1 5m,i N 0, 2
1 5m

)

15m,j N 0, 2
15m

)

within site,k N 0, 2
within site

)

between site,l N 0, 2
between site

)

1 2 gamma(0 001,0 001)

where CH4,i is the methane concentration o datapoint i, is the mean
CH4 concentration, and each is a random e ect representing i indi-
vidual plots (1.5 m), j 15 m-strati ed plot pairs (15 m), k subsites
(within-site), and l sites (between-site). Priors were unin ormed with the
prior or log( ) distributed as normal with a mean o zero and a variance
o 1000 (Hobbs and Hooten, 2015). Each random e ect was distributed
as normal with a mean o zero and a variance attributed to that spatial
level. Each spatial variance was assigned an inverse gamma prior with
both alpha and beta parameters set to 0.001.

The model was t in rjags using 4 chains and 5000 iterations
(Plummer et al., 2021). Traceplots were examined to ensure model
convergence on a single solution. Data were summarized as both the
variance partitioned at each spatial level and the cumulative summed
variance across each level (Corstanje et al., 2008a; Corstanje et al.,
2008b). Data are presented as a percentage o total cumulative variance,
with the mean estimate and standard error extracted rom the posterior
distributions o the parameters (Fig. 3).

We calculated relationships between CH4 and porewater covariates
SO42 , NH4+, and total Fe, as well as between SO42 and salinity using
linear models. During initial data visualization we observed a break-
point in the relationship between SO42 and CH4 and utilized a
segmented regression (Muggeo, 2008). We compared the per ormance
relative to parsimony o segmented regressions to single slope linear
models using Akaike's In ormation Criteria.

We tested or potential secondary relationships with other pre-
dictors. To do this, we rst detrended CH4 or its relationship with SO42

by calculating residuals as the di erence between measured CH4 and
predicted CH4 rom its segmented regression relationship with sul ate
concentration. We regressed the residuals against porewater NH4+, total

Fig. 2. Upper panel: a map o the U.S. with sites sampled (multi-colored dots) and numerically labeled 1–27 (moving counterclockwise rom Alaska). Lower panel:
log scale CH4 box plots grouped by coast (Paci c, Gul , Atlantic), labeled with site name and re erence number. NERRS with multiple components that were sampled
in separate years are labeled with the component name listed rst, and ollowed by the NERR site name (ex. 18. Monie Bay [Chesapeake Bay, Maryland]).
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Fe, and marsh plat orm elevation. To analyze the relationship between
wetland elevation and residual variance in CH4, we normalized eleva-
tion measured at the plots to tidal amplitude at mean high water
(Z*MHW) re erenced to the NAVD88 datum (Holmquist and Windham-
Myers, 2022). Mean high water (MHW) and mean sea level (MSL)
values were interpolated between NOAA (tidesandcurrents.noaa.gov)
and Coastwide Re erence Monitoring System (CRMS, lacoast.gov/crms/
Home.aspx) tide gauges using ordinary kriging. For Kachemak Bay,
Alaska, USA datums rom the nearest complete NOAA tide gauge (Nik-
siki, AK, USA: 9455760) were used directly, rather than leveraging the
kriging model t across the distant regions o the contiguous United
States.

3. Results

3.1. Dataset description

A total o 27 unique sites and 367 plots distributed across 19 coastal
states were sampled (Fig. 2). Only 1 plot lacked Cl data and 2 plots
lacked SO42 data as they were below the detection limits o 1.503 ×
10 4 Cl psu and 1.115 × 10 3 mM SO42 , respectively. Porewater SO42

measured rom plots varied rom below the detection limit to a
maximum o 47.45 mM (Table 1, Supplemental Fig. 3). Due to limited
porewater, 3 plots lacked a total Fe measurement and 5 lacked NH4+.
Elevation data were collected at 156 plots, representing 13 sites. The
dataset o sampled plots represents all salinity classes rom resh to brine
(0.5–55 psu). Across all sites, 109 unique plant species were identi ed.
O those, 103 and 90 were identi ed to genus and species level,
respectively (Supplemental Table 1).

3.2. Spatial variability of porewater methane concentration

The concentrations o porewater CH4 samples (n = 332) used in

analysis ranged rom 0.05 to 852.9 M, with a mean ± s.e. o 108 ±
0.56 M (Table 1). Methane samples were collected rom all plots (n =
367); however, some values were excluded due to sampling issues
associated with rhizons, values below the detection limit, and samples
collected rom outlier habitat types (e.g. submersed vegetation beds)
that were not targeted by this study. Including some omitted samples,
CH4 concentrations (n = 344) ranged rom 0.05 M to 7828 M, with a
mean ± s.e. o 163 ± 1.57 M. Porewater CH4 was increasingly variable
at larger spatial scales (Fig. 3). Finer spatial scales contributed relatively
less variance than coarser ones. The 1.5 m and 15 m spatial scales
contributed (mean ± s.e.) 9.6 ± 2.2 % and 5.7 ± 2.2 % o the cumula-
tive spatial variance, respectively. Within-site gradients and between-
site di erences accounted or 29.5 ± 7.9 % and 55.3 ± 9.6 % o the
cumulative spatial variance, respectively.

3.3. Correlations between porewater methane, sulfate, and salinity
concentrations

Porewater CH4 was negatively and signi cantly correlated with
porewater SO42 across the dataset ( = 0.732, p < 0.01; Supplemental
Fig. 1). A segmented linear regression had higher explanatory power or
the CH4 and SO42 relationship (both covariates log-trans ormed) over a
single linear regression (Fig. 4A, Table 2). Furthermore, the segmented
regression was statistically signi cant (p < 0.01) and resulted in a lower
corrected Akaike In ormation Criterion (AICc) score (Table 2). The CH4
and SO42 resulted in a negative slope with a breakpoint o 0.62 mM
SO42 (Fig. 4A), characterized by a relatively fatter slope at concentra-
tions lower than 0.62 mM SO42 , and steeper slopes at concentrations
>0.62 mM SO42 (Fig. 4A, Eq. 2). Fi ty-nine data points in ormed the
slope below the breakpoint, and 306 data points in ormed the slope
above the breakpoint, described in Eq. 2:

ln(CH4) =
4 934 0 0615*ln SO2

4

)
; i ln SO2

4

)
0 478

4 963 1 358 ln
[
SO2

4

]+ 0 478
)
; i ln SO2

4

)
> 0 478

(2)

where CH4 concentration is in micromolar ( M) and SO42 is in milli-
molar (mM).

The Spearman's rank correlation also indicated that salinity and
SO42 were the most strongly positive correlated variables ( = 0.935, p
< 0.001; Fig. 4B and Supplemental Fig. 1). A single linear regression that
modeled salinity and SO42 was positive, signi cant, and had strong
explanatory power (Table 2). While the relationship between salinity
and SO42 is signi cant and positively linear, this linearity is only clearly
observed at salinities>8 psu and SO42 > 1 mM (Fig. 4B, Eq. 3). The area
o these values, and thus the change in relationship rom weakly to
strongly linear, is indicated by the pair o horizontal and vertical dashed
lines in panel B (Fig. 4). Below these values, the linearity o the rela-
tionship weakens as the spread between data points increases.

SO2
4 = 2 969+0 789S (3)

where S is salinity (psu) and SO42 is sul ate concentration in millimolar
(mM).

Porewater CH4 and salinity were also signi cantly and inversely
correlated ( = 0.576, p < 0.001; Fig. 4C and Supplemental Fig. 1).
Due to the strong linear relationship between salinity and SO42 as well
as the relationship between CH4 and salinity (Fig. 4C), we expected that
salinity may have similar predictive power or porewater CH4 (Eq. 4).
However, substituting salinity or SO42 concentration results in a rela-
tionship with lower predictive ability than SO42 on its own (Fig. 4C). A
simple linear model produces a signi cant, negative relationship, but
the segmented linear regression provides more predictive accuracy
(Table 2):

Table 1
Minimum, maximum, and mean values or measured porewater covariates or
all plots and by coast (Atlantic, Gul , and Paci c).

Value Minimum Maximum Mean

Covariate: CH4 ( M)
All plots 0.05 852.9 108
Atlantic 0.163 714.6 119.4
Gul 0.078 852.9 163.9
Paci c 0.05 186.8 4.78

Covariate: Cl (ppt)
All plots 0.021 55.22 17.28
Atlantic 0.021 42.52 14.02
Gul 0.052 55.22 15.38
Paci c 3.824 53.4 28.94

Covariate: SO42 (mM)
All plots <0.001* 47.45 10.57
Atlantic <0.001* 31.5 7.495
Gul 0.005 42.3 8.552
Paci c 2.463 47.45 21.85

Covariate: NH4+ ( M)
All plots 33.04 641 103.7
Atlantic 33.04 641 83.41
Gul 33.08 618.4 119.8
Paci c 34.88 459.4 141

Covariate: total Fe ( M)
All plots 0.012 2966 54.32
Atlantic 0.015 2966 73.82
Gul 0.016 618.2 47.63
Paci c 0.012 201.1 7.149

* Indicates that lowest value was below the instrument detection limit.
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ln(CH4) =
{

3 795 0 210*ln(S); i ln(S) 2 445
3 282 2 840(ln[S] 2 445 ); i ln(S) > 2 445 (4)

Both porewater SO42 and salinity correlated strongly with porewater
CH4, but the modeled relationship between SO42 and CH4 explains more
variability in CH4 (Eq. 2, Table 2). Additional relationships between CH4
and other covariates were investigated to explain remaining variability
in CH4. Since some variability in CH4 was explained by SO42 , we
detrended the CH4 residuals, there ore removing the explanatory e ect
o SO42 on the CH4 residuals. Following that, we investigated the
remaining variability ound in the CH4 residuals (Eq. 2) by regressing
them separately against log-trans ormed NH4+, total Fe, and Z*MHW, the
latter which is a proxy or tidal inundation. We detected a signi cant,
positive correlation between CH4 residuals and NH4+ (Table 2). A simple
linear model was signi cant and positive, but with lower explanatory
power than a segmented regression with a breakpoint at 44 M NH4+

(Fig. 4D). Signi cant correlations were not detected between detrended
CH4 residuals and total Fe (p = 0.80) nor Z*MHW (p = 0.27).

4. Discussion

Our national-scale study o tidal wetland CH4 concentration pro-
duced a unique and unprecedented spatially-nested dataset o co-located
porewater measurements rom tidal wetlands along all coastlines o the
USA. We provide important in ormation on spatial scaling properties o
CH4 concentration that are use ul or remote sensing, inventorying, and
planning new ground monitoring. We also tested three hypotheses
regarding the predictability o CH4 concentration over landscape scales.
Our rst hypothesis was supported as we observed a negative correla-
tion between porewater concentrations o CH4 and SO42 , an energeti-
cally avorable terminal electron acceptor under anoxic conditions that
is present in seawater. Our second hypothesis was supported; salinity
was a signi cant, though comparatively weak, proxy or CH4 concen-
tration in the absence o direct SO42 measurements. Our third hypoth-
esis, that nutrient enrichment, the presence o Fe, and tidal elevation
would be important secondary predictors was partially supported with
NH4+ being weakly correlated with variance unexplained by the CH4-
SO42 relationship.

In this section, we discuss how scaling and covariate relationships
can in orm uture coastal wetland carbon monitoring. We compare the
breakpoints in relationships between porewater CH4 and its covariates

to the results o previous studies. Finally, we suggest uture research
directions, and refect on the strengths o a collaborative participatory-
science approach.

4.1. Implications of spatial scaling and covariate relationships for
monitoring

Our study considered the importance o spatial scaling on porewater
CH4 concentrations. Heterogeneity in porewater CH4 was detected even
at relatively ne spatial scales, but the proportion o variance was least
at the smallest spatial scales. This result recalls Tobler's (1970, 2004)
rst law o geography, where increased proximity between measure-
ments results in increased similarities between them. Statistics applies
this principle via measures o spatial autocorrelation to assess spatial
dependence between measurements (Craw ord, 2009). We detected a
sharp increase in variance when scaling along within-site gradients and
between-sites. Within-site variation was attributed mostly to variation
in salinity associated with SO42 . The between-site variance increase may
be explained by di erences in dominant coastal typologies o the sites
we sampled, their climate zones, or both (Dürr et al., 2011; Beck et al.,
2018; Kirwan et al., 2023). Together, the key results supporting the
importance o within-site, and between-site variability, and the domi-
nance o SO42 as a process-based predictor, can in orm new monitoring
plans or coastal CH4 monitoring.

Our results in orm uture e orts to develop maps o CH4-relevant
processes in three ways. First we show that the scale o moderate-
resolution remote sensing will be able to capture the majority o
spatial variance in CH4. Maps o sur ace water (Huang et al., 2018),
vegetation (Adam et al., 2010), and salinity (Murphy et al., 2010) are
typically made using 10–30 m spatial resolution imagery products (e.g.,
rom Sentinel and Landsat satellites). According to our dataset, 85 % o
the variance in CH4 concentration occurs at scales >15 m and could be
hypothetically detected by these remote sensing products. The remain-
ing 15 % o variance occurs at sub-pixel resolution that would be
averaged out by these mapping techniques. Second, this study rein orces
the need or tidal wetland subtype maps which include intermediate
salinity classes, or, more ideally, continuous salinity predictions
(Holmquist et al., 2018). The dataset presented in this paper itsel could
potentially be used as calibration and validation data in the creation o
such a map (Koontz et al., 2024). Third, in ormation on spatial scaling
could be used as priors in uture e orts to explicitly use high-resolution

Fig. 3. Variance in log-trans ormed porewater CH4, expressed as a percentage o total variance, at our spatial scales ordered rom le t to right, smallest to largest
scale: 1.5 m (m), 15 m, within site [along site-speci c gradients], and between-sites. Points represent mean estimates and segments represent the standard error o the
estimate. Spatial variance is presented both as cumulative variance, with variability propagated rom smaller to larger scales, as well as decomposed variance,
variability attributable to each spatial level.
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eld data to moderate-resolution remote sensing using Bayesian hier-
archical modeling (Guo et al., 2017), overcoming the issue o scale
mismatch between ground and remotely sensed data.

For uture monitoring o methanogenesis in tidal wetlands, our
analysis supports sampling designs that ocus rst on prioritizing more
sites across wide climate gradients and/or geomorphic classes, and
second on capturing environmental variation within watersheds.

Additional studies and carbon inventories could use this continental-
scale dataset to generate in ormed sampling strategies that optimize
in ormation content o new data relative to the cost o deploying and
maintaining monitoring in rastructure (Hurtt et al., 2022; Brown et al.,
2023).

Our results suggest that to map CH4 concentration, uture research
should ocus on SO42 because salinity is an imper ect proxy. While a

Fig. 4. Porewater covariate relationships in our panels: A. sul ate and methane (both log-trans ormed); B. salinity and sul ate; C. salinity and methane; and D.
ammonium and residual variance in methane (log-trans ormed) a ter removing variance explained by the concentration o sul ate (log-trans ormed). Solid, black
lines with a break (segmented linear regression) indicate that the relationship between covariates signi cantly changes within the range o measured concentrations.
Dashed lines correspond to concentration break points where the relationship between covariates changes, and are discussed in text.
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dominant predictor o CH4, SO42 is more rarely measured compared to
the much more ubiquitous salinity measurements (Tong et al., 2010;
Po enbarger et al., 2011). Our results supported a high degree o cor-
relation between SO42 and salinity (R2 = 0.909). However, the rela-
tionship between salinity and CH4 had lower, though signi cant,
explanatory power (R2 = 0.319) compared to the direct SO42 relation-
ship (R2= 0.54). Part o this could be due to a decoupling o the strength
o the salinity-SO42 relationship at low salinities, particularly below 5
psu due to SO42 depletion at low concentrations.

Although this study provided evidence that SO42 , and by proxy
salinity, explain a signi cant proportion o spatial variance in porewater
CH4 concentrations, other studies show that inundation and the pres-
ence o other terminal electron acceptors may still be important to uture
mapping and monitoring o CH4 properties. Arias-Ortiz et al. (2024)
showed that in a U.S. wide synthesis o CH4 emissions, salinity class was
the dominant predictor, but that inundation class and mean annual
temperature are important secondary predictors. In pan-Arctic wet-
lands, spatial variability in CH4 emissions is dominantly controlled by
water table depth, as well as soil temperature, and vegetative unctional
types (Bao et al., 2021). In reshwater, nontidal and tropical wetlands
with distinct dry and wet seasonality, inundation timing and duration
are more important drivers or CH4 emissions than SO42 or salinity (Li
et al., 2024). In our study, Z*MHW, a proxy or tidal inundation, was not a
signi cant secondary predictor o CH4. This may refect high un-
certainties in Z*MHW (Holmquist and Windham-Myers, 2022), weakness
o Z*MHW as a proxy or inundation (Cassaway et al., 2024), or our study
having too ew elevation measurements to be representative o actual
gradients.

In addition to water level, uture mapping and monitoring e orts
may want to more intensively investigate watershed-level land use e -
ects on the availability o nutrients and alternative terminal electron
acceptors. We used NH4+ as a proxy or nutrient status and ound evi-
dence indicating that organic nitrogen could interact with the CH4-SO42

relationship with the potential to cause watershed-speci c anomalies in
CH4 concentration. In reshwater wetlands with or without tidal ex-
change, several other electron acceptors in addition to SO42 catalyze

CH4 oxidation, including nitrite (NO2 ) (Hu et al., 2014), and nitrate
(Segarra et al., 2013). Reactive nitrogen concentration is typically low in
tidal wetlands (Valiela and Teal, 1974), but can be elevated in nutrient
rich agricultural runo (Pardo et al., 2011). Finally, while our study
ound no relationship between total Fe and CH4 concentrations, a pre-
vious study indicated that Fe can occur in elevated amounts in agri-
cultural runo (Zou et al., 2018), which provides a pre erable terminal
electron acceptor Fe3+ (Sivan et al., 2011) that can reduce methano-
genesis when added to a wetland (Zou et al., 2018). Taken together, the
role o agricultural runo and nutrient enrichment on methanogenesis
and CH4 oxidation could potentially be an important aspect o uture
mapping and monitoring.

4.2. Novel relationships between sulfate, methane, and ammonium

We observed a previously undocumented signi cant change in the
slope o the CH4-SO42 relationship de ned by a breakpoint o 0.62 mM
SO42 , with high sensitivity to changing SO42 below the breakpoint and
low sensitivity above (Fig. 4A). This relationship presumably refects the
concentration at which SO42 reduction rates become limited by SO42

availability (Win rey and Zeikus, 1977; Mount ort et al., 1980; Lovley
and Klug, 1983; Kristjansson and Schönheit, 1983). Below our break-
point o 0.62 mM SO42 , we suggest that the ability o SO42 -reducing
bacteria to outcompete methanogens progressively weakens. However,
only acetoclastic and hydrogenotrophic methanogens are likely to be
positively impacted by reductions in SO42 , whereas the activity o
methylotrophic methanogens is una ected by SO42 -reducing bacteria
(Sey erth et al., 2020).

The CH4-SO42 relationship is distinct rom previously reported
breakpoints that were developed using much smaller sample sizes and
observed within singular wetland sites (Bartlett et al., 1987; Keller et al.,
2009; Po enbarger et al., 2011). In studies o lacustrine and marine
ecosystems, published breakpoints are at lower SO42 concentrations,
ranging between 0.008 and 0.04 mM SO42 (Lovley and Klug, 1983;
Ingvorsen et al., 1984; Kuivila et al., 1989; Sinke et al., 1992; Holmer
and Storkholm, 2001). At the higher end, Po enbarger et al. (2011)
noted a breakpoint o 4 mM SO42 in tidal wetlands, over which CH4
concentrations were negligible.

We also discovered a novel breakpoint and a signi cant relationship
between NH4+ and CH4 that explained additional variance in porewater
CH4 concentrations and provided some support or our third hypothesis.
A ter detrending the e ects o SO42 on CH4, NH4+ was positively and
signi cantly correlated with CH4, with a breakpoint at 44 M NH4+

(Fig. 4D). Perhaps the most parsimonious explanation is that high NH4+

availability supports high plant production and soil carbon inputs that
support methanogenesis (Langley et al., 2013), a process that is gener-
ally carbon-limited (Megonigal et al., 2004). Another potential expla-
nation or this relationship could be that NH4+ inhibits CH4 oxidation in
wetlands when concentrations o NH4-N are 30× that o CH4, allowing
CH4 to persist in porewater (Van Der Nat et al., 1997; Laanbroek, 2010).
We hypothesize that below 44 M NH4+, CH4 oxidation is primarily
occurring, and above 44 MNH4+, NH4+ oxidation inhibits CH4 oxidation.
Alternatively, this relationship may refect the coupling o NO3 to
anammox, o which NH4+ is a product, and NO2 -dependent anaerobic
CH4 oxidation, leading to some CH4 consumption (Zhu et al., 2010; Shen
et al., 2015). Within tidal wetlands, the nitrogen species are determined,
in part, by internal nitrogen cycling (Noyce and Megonigal 2021),
exogenous supply rom tidal waters (Krask et al., 2022), inundation
duration (Chowdhury and Dick, 2013), and surrounding land uses
(Weston et al., 2006). The mechanisms that underpin the NH4 and CH4
relationship are unclear but suggest that available reactive nitrogen
species may partially determine the ate o porewater CH4.

Table 2
Statistical outputs or the modeled relationships between porewater covariates.
The p-value, R2, and Akaike In ormation Criterion with standard correction
(AICc) values are provided or two model types, single linear regression and
segmented linear regression, i applicable.

Modeled relationship CH4 ( M) and SO42 (mM)

Value p-Value R2 AICc

Single linear regression <0.01 0.45 1401
Segmented linear regression <0.01 0.54 1346

Modeled relationship Salinity (ppt) and SO42 (mM)

Value p-Value R2 AICc

Single linear regression <0.01 0.909 N/A

Modeled relationship CH4 ( M) and Salinity (ppt)

Value p-Value R2 AICc

Single linear regression p < 0.01 0.191 1544
Segmented linear regression 0.319 1489

Modeled relationship CH4 ( M) residuals (SO42 e ect removed) and NH4+

( M)

Value p-Value R2 AICc

Single linear regression <0.01 0.1663 1281
Segmented linear regression <0.01 0.1942 1272
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4.3. Potential limitations and caveats inherent in a kit-based sampling
approach

The data rom this highly collaborative kit-based sampling e ort o
U.S. tidal wetland porewaters is valuable to constrain spatial variation in
porewater CH4 and its covariates. However, we acknowledge some re-
sults are limited in their application and warrant caveats. Limitations
and caveats arise rom the act that we ocused on a spatially-rich,
though temporally limited, sampling strategy, variability in site char-
acteristics reduced our ability to sample heavy clays, and our need to
ocus on stable analytes limited some o the more detailed biogeo-
chemical in erences that could be made.

First, in this study, we prioritized a spatially extensive deployment
during each site's peak aboveground biomass season across a wide va-
riety o sites that span the entire coastline o the USA, which did not
permit a time series o measurements to occur. However, previous
studies show that measurements o CH4 emissions taken during peak
aboveground biomass growing conditions tend to reliably scale to
annual fuxes (Bridgham et al., 2006). Further, we cite the strong-
relationship between CH4 and SO42 (R2 = 0.54) as evidence that this
relationship, at least during the peak aboveground biomass growing
season, is likely robust across sites. We hypothesize that some o the
residual variance (46 %) may be explained by time speci c phenomena
such as slight di erences in the timing relative to seasonal cycles within
sites or time since the last large tidal food event. Previous studies have
ocused on datasets that maximized observations o the important
temporal scales o CH4 variability (Bartlett et al., 1987; Keller et al.,
2009; Tong et al., 2010; Po enbarger et al., 2011; Derby et al., 2022).
This new dataset provides an important counterpart to these temporally
rich analyses and uture work should integrate the strengths o both
approaches.

A second caveat is related to site characteristics and porewater
sampling methodology. We collected porewater using “sippers” rom the
majority o our 367 sampling plots. However, this was not possible or
22 plots consisting o mineral dominated soils with high clay concen-
trations, or which we used rhizons (Shotbolt, 2010). Rhizon samples o
porewater CH4 yielded concentrations <6.23 M, meaning that the
rhizon sampling method likely underestimated the CH4 concentration.
We hypothesize that a small raction o CH4 was actually dissolved in the
porewater, and the rest o the porewater CH4 concentration was con-
tained within poorly soluble CH4 micro-bubbles that did not pass
through the rhizon lter with a nominal pore size o 0.6 M. As a result,
rhizon measurements o porewater CH4 were excluded rom analysis,
but the remaining covariates collected with rhizons remained in the
dataset (Song et al., 2003; Seeberg-Elver eldt et al., 2005; Chen et al.,
2015). Future studies should be aware o this potential methodological
limitation.

Although the kit-based sampling design enabled us to e ectively
capture spatial variation o porewater CH4 concentration and assess
covariates, the logistics o mail-in kits limited analysis to those analytes
that could be easily stabilized. For example, we ocused on the avail-
ability o terminal electron acceptors rather than electron donors such as
dissolved organic carbon (DOC). We assumed that terminal electron
acceptors would be rate limiting and there ore explain more variation.
We also ocused on total Fe rather than reactive Fe3+, and NH4+ as a
proxy or nutrient status rather than other reactive nitrogen species.
Should uture work overcome logistical constraints, we recommend
measurements o additional electron acceptors that may increase un-
derstanding o spatial variability in porewater CH4. We speci cally
recommend uture studies to include measurements o porewater con-
centrations o NO3 , NO2 , manganese, and Fe3+ alongside the ve
covariates we measured.

4.4. Recommendations for future research

The results o this unprecedented, diverse, and large porewater

dataset and its analysis uncovers new research priorities. First, the
relationship between porewater CH4 and CH4 fuxes across spatial scales
needs to be better understood. Second, more detailed microbial in or-
mation on the presence o methanogens and methanotrophs is needed.
We close by discussing the bene ts o the participatory nature o this
study, and using it as a template or uture research.

While porewater CH4 concentration is a contributing variable, it is
not a direct proxy or CH4 fuxes, which is the covariate o interest or
greenhouse gas inventories (Crooks et al., 2018), emission reduction
goals (Kroeger et al., 2017), and inversion modeling (Nesser et al.,
2024). For CH4 to be emitted, it needs to not only be present in the
porewater, but also needs to ascend through soil layers and avoid
oxidation (Blair and Aller, 1995; Laanbroek, 2010). The conveyance o
porewater CH4 to atmospheric emissions is primarily acilitated by plant
transport, and secondarily by ebullition and lateral exchange with
foodwaters (Bubier et al., 1995; Couwenberg et al., 2011; Sutton-Grier
and Megonigal 2011; Mueller et al., 2016; Santos et al., 2019; Bansal
et al., 2020; Vroom et al., 2022; Bastviken et al., 2023). A recent syn-
thesis o USA coastal wetland CH4 emissions data reported a poor rela-
tionship with porewater CH4 concentration (Arias-Ortiz et al., 2024).
However, this di ers rom previous studies (Yang et al., 2019; Villa
et al., 2020; Capooci et al., 2024). For example, high porewater CH4
concentrations sampled in one estuarine site at 15.5 cm subsur ace
strongly correlated to CH4 emissions captured at the sur ace (Capooci
et al., 2024). The lack o a clear relationship between CH4 emissions and
porewater CH4 concentrations likely refects the complex interaction o
production, consumption, and transport activities that control pore-
water CH4 inventories across multiple spatial scales.

One potential tool or disentangling the roles o methane production,
consumption and transport, as well as porewater and fux data, is the
Peatland Ecosystem Photosynthesis Respiration and Methane Transport
(PEPRMT) model. In PEPRMT, porewater CH4 is an unobserved state,
with CH4 fux as the output variable (Oikawa et al., 2017). In uture
studies, our observations o porewater CH4, as well as CH4 fux data,
could all be integrated into models, like PEPRMT, using a state-space
ramework (Dietze, 2017). This type o ramework can leverage multi-
ple types o observations (concentrations, fuxes) to constrain model
behavior, reduce uncertainty, and improve systems-level understanding.

Future work could identi y the relevant mechanisms o production
and consumption in tidal wetland soils. To accomplish this, it is neces-
sary to understand which types o methanogens and methanotrophs are
present. This may be accomplished by incorporating sequencing work,
such as 16S rRNA gene sequencing and quantitative PCR assays, both
previously used (Schubert et al., 2011; Hu et al., 2014) in wetlands to
elucidate the speci c species and which substrates or covariates they
utilize.

As a nal note, the participatory-nature o this study bene ted the
project by producing a larger sample size that could not have been
easibly collected by a single team and a higher-quality dataset that
bene ted rom local expertise in siting sampling locations. The National
Estuarine Research Reserve System (NERRS) proved to be a valuable
resource or a national scale survey o tidal wetland biogeochemical
conditions. With both personnel and a publicly accessible standardized
data collection and reporting plat orm (e.g. the Centralized Data Man-
agement O ce, CDMO), the 30-site (as o this writing) NERRS network
and data archive enhances research capacity or co-located and upscaled
assessments o coastal processes. Coordinating remote training and kit-
based sampling may be a viable alternative to travel-based eld work
which can lower the carbon ootprint o science, provide training,
networking and inclusion opportunities or junior researchers, as well as
bene t the project by integrating the deeper expertise o those working
in these locations.

5. Conclusion

This study draws on a unique dataset built rom 367 plots sampled
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across 27 sites distributed across 19 coastal states, covering climate
zones, coastal typologies (river-, tide-, or wave-dominated), salinity
gradients ( resh to brine: 0.5–55 psu), and dominant coastal marsh
vegetation communities (109 plant species) in the USA. This work
clari es cross-site and regional trends in porewater CH4 and its envi-
ronmental correlates, which was not attainable rom previous site-
speci c studies. We ound several key results that provided support
or the majority o our hypotheses.
Our rst hypothesis that porewater CH4 decreased with increases in

SO42 was supported. Particularly, the broad geographic coverage o our
data revealed a novel breakpoint in the relationship between porewater
SO42 and CH4 when SO42 is 0.62 mM. This breakpoint presumably re-
fects the concentration at, and below which SO42 reduction rates start
to become limited by SO42 availability, and competition or electron
donors between methanogens and SO42 reducers begins to weaken. Our
second hypothesis that salinity is a proxy or SO42 predicting porewater
CH4 concentrations was supported. While salinity is signi cantly
correlated with CH4 because it is strongly intercorrelated with SO42 , it is
not an ideal proxy or porewater CH4 concentration due to decoupling o
the salinity and SO42 relationship, especially or the reshwater tidal
wetlands. Our third hypothesis was partially supported, where SO42

explained most o the variability in porewater CH4 relative to variables
investigated (salinity, NH4+, total Fe, and Z*MHW). Residual variation in
the CH4-SO42 relationship was partially explained by porewater NH4+,
with no additional variation explained by total Fe or Z*MHW. This nding
suggests that porewater NH4+ concentration may also be use ul or
scaling CH4 emissions using a threshold o 44 M CH4, but the mecha-
nisms behind the threshold are presently unclear and deserve additional
research. Additionally, our results show that porewater CH4 was
increasingly variable at relatively wider spatial scales, suggesting that
di erences among sites may be partly explained by distinct dominant
coastal typologies and climate zones. Considering that the dominant
sources o variation in porewater CH4 were within and between site
di erences, these results suggest that moderate spatial resolution
remote sensing products (e.g., 10× 10 to 30× 30 m) are appropriate or
constraining variation along the most important spatial gradients that
control porewater CH4 concentrations.

Importantly, while this study delivers the rst national-scale survey
o tidal marsh porewater CH4 concentrations and commonly-measured
biogeochemical covariates, uture work is needed to determine
whether CH4 fuxes ollow the same spatial patterns o porewater CH4
concentration considering that net CH4 emissions are controlled simul-
taneously by production, consumption, and transport, all o which vary
with soil depth and time. However, additional studies and carbon in-
ventories could use this continental-scale dataset to in orm sampling
strategies that optimize generation o new data relative to the cost o
deploying and maintaining monitoring in rastructure. On that note, our
eld survey approach – highly collaborative, with a low-cost and low-
latency eld collection and lab analysis protocols – provides a success-
ul template to advance carbon monitoring in coastal wetlands across
spatial and temporal scales.
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2018. Present and uture Köppen-Geiger climate classi cation maps at 1-km
resolution. Sci. Data 5 (1), 180214. https://doi.org/10.1038/sdata.2018.214.

Bell, S., Corn ord, D., Bastin, L., 2013. The state o automated amateur weather
observations. Weather 68 (2), 36–41. https://doi.org/10.1002/wea.1980.

Blair, N.E., Aller, R.C., 1995. Anaerobic methane oxidation on the Amazon shel .
Geochim. Cosmochim. Acta 59 (18), 3707–3715. https://doi.org/10.1016/0016-
7037(95)00277-7.

Bowen, Jenni er L., Giblin, Anne E., Murphy, Anna E., Bulseco, Ashley N., Deegan, Linda
A., Johnson, David S., Nelson, James A., Mozdzer, Thomas J., Sullivan, Hillary L.,
2020. Not all nitrogen is created equal: di erential e ects o nitrate and ammonium
enrichment in coastal wetlands. BioScience 70 (12), 1108–1119. https://doi.org/
10.1093/biosci/biaa140.

Braun-Blanquet, Josias, 1932. Plant Sociology. The Study o Plant Communities.
McGraw-Hill Book Co., Inc., New York and London.

Bridgham, S.D., Megonigal, J.P., Keller, J.K., Bliss, N.B., Trettin, C., 2006. The carbon
balance o North American wetlands. Wetlands 26 (4), 889–916. https://doi.org/
10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2.

Brown, Molly E., Mitchell, Catherine, Halabisky, Meghan, Gusta son, Benjamin, do
Rosario Gomes, Helga, Goes, Joaquim I., Zhang, Xuesong, Campbell, Anthony D.,
Poulter, Benjamin, 2023. Assessment o the NASA carbon monitoring system wet
carbon stakeholder community: data needs, gaps, and opportunities. Environ. Res.
Lett. 18 (8), 084005. https://doi.org/10.1088/1748-9326/ace208.

Bubier, Jill L., Moore, Tim R., Bellisario, Lianne, Comer, Neil T., Crill, Patrick M., 1995.
Ecological controls on methane emissions rom a northern peatland complex in the
zone o discontinuous perma rost, Manitoba, Canada. Glob. Biogeochem. Cycles 9
(4), 455–470. https://doi.org/10.1029/95GB02379.

Capooci, Margaret, Sey erth, Angelia L., Tobias, Craig, Wozniak, Andrew S.,
Hedgpeth, Alexandra, Bowen, Malique, Biddle, Jenni er F., McFarlane, Karis J.,
Vargas, Rodrigo, 2024. High methane concentrations in tidal salt marsh soils: where
does the methane go? Glob. Chang. Biol. 30 (1), e17050. https://doi.org/10.1111/
gcb.17050.

Cassaway, A.F., Twilley, R.R., Rovai, A.S., Snedden, G.A., 2024. Patterns o marsh
sur ace accretion rates along salinity and hydroperiod gradients between active and

inactive coastal deltaic foodplains. Estuar. Coast. Shel Sci. 301 (108757), 108757.
https://doi.org/10.1016/j.ecss.2024.108757.

Chambers, L.G., Osborne, T.Z., Reddy, K.R., 2013. E ect o salinity-altering pulsing
events on soil organic carbon loss along an intertidal wetland gradient: a laboratory
experiment. Biogeochemistry 115 (1–3), 363–383. https://doi.org/10.1007/s10533-
013-9841-5.

Chen, Meilian, Lee, Jong Hyeon, Hur, Jin, 2015. E ects o sampling methods on the
quantity and quality o dissolved organic matter in sediment pore waters as revealed
by absorption and fuorescence spectroscopy. Environ. Sci. Pollut. Res. 22 (19),
14841–14851. https://doi.org/10.1007/s11356-015-4656-7.

Chmura, Gail L., Anis eld, Shimon C., Cahoon, Donald R., Lynch, James C., 2003. Global
carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17 (4),
1111. https://doi.org/10.1029/2002GB001917.

Chowdhury, Taniya Roy, Dick, Richard P., 2013. Ecology o aerobic methanotrophs in
controlling methane fuxes rom wetlands. Appl. Soil Ecol. Sect. Agric. Ecosyst.
Environ. 65 (March), 8–22. https://doi.org/10.1016/j.apsoil.2012.12.014.

Corstanje, R., Kirk, G.J.D., Lark, R.M., 2008a. The behaviour o soil process models o
ammonia volatilization at contrasting spatial scales. Eur. J. Soil Sci. 59 (6),
1271–1283. https://doi.org/10.1111/j.1365-2389.2008.01086.x.

Corstanje, R., Kirk, G.J.D., Pawlett, M., Read, R., Lark, R.M., 2008b. Spatial variation o
ammonia volatilization rom soil and its scale-dependent correlation with soil
properties. Eur. J. Soil Sci. 59 (6), 1260–1270. https://doi.org/10.1111/j.1365-
2389.2008.01087.x.

Cotovicz Jr., L.C., Abril, G., Sanders, C.J., Tait, D.R., Maher, D.T., Sippo, J.Z.,
Holloway, C., Yau, Y.Y.Y., Santos, I.R., 2024. Methane oxidation minimizes
emissions and o sets to carbon burial in mangroves. Nat. Clim. Chang. 14 (3),
275–281. https://doi.org/10.1038/s41558-024-01927-1.

Couwenberg, John, Thiele, Annett, Tanneberger, Franziska, Augustin, Jürgen,
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Rhizon sampling o porewaters near the sediment-water inter ace o aquatic systems.
Limnol. Oceanogr. Methods/ASLO 3 (8), 361–371. https://doi.org/10.4319/
lom.2005.3.361.

Segarra, K.E.A., Comer ord, C., Slaughter, J., Joye, S.B., 2013. Impact o electron
acceptor availability on the anaerobic oxidation o methane in coastal reshwater
and brackish wetland sediments. Geochim. Cosmochim. Acta 115, 15–30. https://
doi.org/10.1016/j.gca.2013.03.029.

Segarra, K.E.A., Schubotz, F., Samarkin, V., Yoshinaga, M.Y., Hinrichs, K.-U., Joye, S.B.,
2015. High rates o anaerobic methane oxidation in reshwater wetlands reduce
potential atmospheric methane emissions. Nat. Commun. 6 (1), 7477. https://doi.
org/10.1038/ncomms8477.

Sey erth, A.L., Both eld, F., Vargas, R., Stuckey, J.W., Wang, J., Kearns, K., Michael, H.
A., Guimond, J., Yu, X., Sparks, D.L., 2020. Spatial and temporal heterogeneity o
geochemical controls on carbon cycling in a tidal salt marsh. Geochim. Cosmochim.
Acta 282, 1–18. https://doi.org/10.1016/j.gca.2020.05.013.

Shen, Li-Dong, Liu, Shuai, Zhan-Fei He, Xu, Lian, Qian Huang, He, Yun-Feng, Lou, Li-
Ping, Xiang-Yang, Xu, Zheng, Ping, Bao-Lan, Hu., 2015. Depth-speci c distribution
and importance o nitrite-dependent anaerobic ammonium and methane-oxidising
bacteria in an urban wetland. Soil Biol. Biochem. 83 (April), 43–51. https://doi.org/
10.1016/j.soilbio.2015.01.010.

Shotbolt, L., 2010. Pore water sampling rom lake and estuary sediments using rhizon
samplers. J. Paleolimnol. 44 (2), 695–700. https://doi.org/10.1007/s10933-008-
9301-8.

Sinke, Anja J.C., Cornelese, Adi A., Cappenberg, Thomas E., Zehnder, Alexander J.B.,
1992. Seasonal variation in sul ate reduction and Methanogenesis in peaty sediments
o eutrophic Lake Loosdrecht, the Netherlands. Biogeochemistry 16 (1), 43–61.
https://doi.org/10.1007/BF02402262.

Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S.G., Eckert, W., 2011.
Geochemical evidence or iron-mediated anaerobic oxidation o methane. Limnol.
Oceanogr. 56 (4), 1536–1544. https://doi.org/10.4319/lo.2011.56.4.1536.

Song, J., Luo, Y.M., Zhao, Q.G., Christie, P., 2003. Novel use o soil moisture samplers or
studies on anaerobic ammonium fuxes across lake sediment-water inter aces.
Chemosphere 50 (6), 711–715. https://doi.org/10.1016/S0045-6535(02)00210-2.

Sutton-Grier, Ariana E., Megonigal, J.P., 2011. Plant species traits regulate methane
production in reshwater wetland soils. Soil Biol. Biochem. 43 (2), 413–420. https://
doi.org/10.1016/j.soilbio.2010.11.009.

Tan, L., Ge, Z., Zhou, X., Li, S., Li, X., Tang, J., 2020. Conversion o coastal wetlands,
riparian wetlands, and peatlands increases greenhouse gas emissions: a global meta-
analysis. Glob. Chang. Biol. 26 (3), 1638–1653. https://doi.org/10.1111/gcb.14933.

Tobler, W., 2004. On the rst law o geography: a reply. Ann. Assoc. Am. Geogr. 94 (2),
304–310. https://doi.org/10.1111/j.1467-8306.2004.09402009.x.

Tobler, W.R., 1970. A computer movie simulating urban growth in the Detroit region.
Econ. Geogr. 46, 234. https://doi.org/10.2307/143141.

Tong, Chuan, Wang, Wei-Qi, Zeng, Cong-Sheng, Marrs, Rob, 2010. Methane (CH4)
emission rom a tidal marsh in the Min River Estuary, Southeast China. J. Environ.
Sci. Health Pt. A Toxic Hazard. Subst. Environ. Eng. 45 (4), 506–516. https://doi.
org/10.1080/10934520903542261.

Tong, Chuan, Luo, Min, Huang, Jia ang, She, Chenxin, Li, Yalan, Ren, Peng, 2020.
Greenhouse gas fuxes and porewater geochemistry ollowing short-term pulses o
saltwater and Fe(III) in a subtropical tidal reshwater estuarine marsh. Geoderma
369 (June). https://doi.org/10.1016/j.geoderma.2020.114340.

Valiela, I., Teal, J.M., 1974. Nutrient limitation in salt marsh vegetation. In: Reimold, R.
J., Queen, W.H. (Eds.), Ecology o Halophytes, pp. 547–563 hero.epa.gov.
https://doi.org/10.1016/B978-0-12-586450-3.50025-1.

Van Der Nat, F., De Brouwer, J., Middelburg, J.J., Laanbroek, H.J., 1997. Spatial
distribution and inhibition by ammonium o methane oxidation in intertidal

reshwater marshes. Appl. Environ. Microbiol. 63 (12), 4734–4740. https://doi.org/
10.1128/aem.63.12.4734-4740.1997.

Vann, Cheryl D., Megonigal, J.P., 2003. Elevated CO2 and water depth regulation o
methane emissions: comparison o woody and non-woody wetland plant species.
Biogeochemistry 63 (2), 117–134. https://doi.org/10.1023/A:1023397032331.

Villa, J.A., Smith, G.J., Ju, Y., Renteria, L., Angle, J.C., Arntzen, E., Harding, S.F.,
Ren, H., Chen, X., Sawyer, A.H., Graham, E.B., Stegen, J.C., Wrighton, K.C.,
Bohrer, G., 2020. Methane and nitrous oxide porewater concentrations and sur ace
fuxes o a regulated river. Sci. Total Environ. 715 (136920), 136920. https://doi.
org/10.1016/j.scitotenv.2020.136920.

Viollier, E., Inglett, P.W., Hunter, K., Roychoudhury, A.N., Van Cappellen, P., 2000. The
Ferrozine Method Revisited: Fe(II)/Fe(III) Determination in Natural Waters. https://
doi.org/10.1016/S0883-2927(99)00097-9.

Vroom, R.J.E., van den Berg, M., Pangala, S.R., van der Scheer, O.E., Sorrell, B.K., 2022.
Physiological processes a ecting methane transport by wetland vegetation — a
review. Aquat. Bot. 182 (October). https://doi.org/10.1016/j.
aquabot.2022.103547.

Wang, C., Tong, C., Chambers, L.G., Liu, X., 2017. Identi ying the salinity thresholds that
impact greenhouse gas production in subtropical tidal reshwater marsh soils.
Wetlands 37 (3), 559–571. https://doi.org/10.1007/s13157-017-0890-8.

Weston, N.B., Neubauer, S.C., Velinsky, D.J., Vile, M.A., 2014. Net ecosystem carbon
exchange and the greenhouse gas balance o tidal marshes along an estuarine salinity
gradient. Biogeochemistry 120 (1), 163–189. https://doi.org/10.1007/s10533-014-
9989-7.

Weston, Nathaniel B., Porubsky, William P., Samarkin, Vladimir A., Erickson, Matthew,
Macavoy, Stephen E., Joye, Samantha B., 2006. Porewater stoichiometry o terminal
metabolic products, sul ate, and dissolved organic carbon and nitrogen in estuarine
intertidal creek-bank sediments. Biogeochemistry 77 (3), 375–408. https://doi.org/
10.1007/s10533-005-1640-1.

Wilson, B.J., Mortazavi, B., Kiene, R.P., 2015. Spatial and temporal variability in carbon
dioxide and methane exchange at three coastal marshes along a salinity gradient in a
northern Gul o Mexico estuary. Biogeochemistry 123 (3), 329–347. https://doi.
org/10.1007/s10533-015-0085-4.

Win rey, M.R., Zeikus, J.G., 1977. E ect o sul ate on carbon and electron fow during
microbial methanogenesis in reshwater sediments. Appl. Environ. Microbiol. 33 (2),
275–281. https://doi.org/10.1128/aem.33.2.275-281.1977.

Xiao, H., Song, C., Li, S., Lu, X., Liang, M., Xia, X., Yuan, W., 2024. Global wetland
methane emissions rom 2001 to 2020: magnitude, dynamics and controls. Earth’s
Future 12 (9). https://doi.org/10.1029/2024e 004794.

Yang, P., Wang, M.H., Lai, D.Y.F., Chun, K.P., Huang, J.F., Wan, S.A., Bastviken, D.,
Tong, C., 2019. Methane dynamics in an estuarine brackish Cyperus malaccensis
marsh: production and porewater concentration in soils, and net emissions to the
atmosphere over ve years. Geoderma 337, 132–142. https://doi.org/10.1016/j.
geoderma.2018.09.019.

Zhu, Guibing, Jetten, Mike S.M., Kuschk, Peter, Ettwig, Katharina F., Yin, Chengqing,
2010. Potential roles o anaerobic ammonium and methane oxidation in the nitrogen
cycle o wetland ecosystems. Appl. Microbiol. Biotechnol. 86 (4), 1043–1055.
https://doi.org/10.1007/s00253-010-2451-4.

Zimmerman, Marc J., Massey, Andrew J., Campo, Kimberly W., 2005. Pushpoint
sampling or de ning spatial and temporal variations in contaminant concentrations
in sediment pore water near the ground-water/sur ace-water inter ace. In: Scienti c
Investigations Report No. 2005-5036. US Department o the Interior, US Geological
Survey. https://pubs.usgs.gov/sir/2005/5036/pd /sir2005_5036.pd .

Zou, Y., Zhang, S., Huo, L., Sun, G., Lu, X., Jiang, M., Yu, X., 2018. Wetland saturation
with introduced Fe(III) reduces total carbon emissions and promotes the
sequestration o DOC. Geoderma 325, 141–151. https://doi.org/10.1016/j.
geoderma.2018.03.031.

E.L. Koontz et al. Science of the Total Environment 957 (2024) 177290

14


