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GRAPHICAL ABSTRACT

e Methane variance was highest along
environmental gradients and between
sites.

o Sulfate was negatively and non-linearly
correlated with methane concentration.

e Salinity was a significant, but weaker
proxy for methane concentration.
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ABSTRACT

Editor: Jay Gan

Dataset link: Dataset: Porewater covariates
from coastal tidal wetlands in the United States
(Original data)

Tidal wetlands can be a substantial sink of greenhouse gases, which can be offset by variable methane (CH4)
emissions under certain environmental conditions and anthropogenic interventions. Land managers and poli-
cymakers need maps of tidal wetland CH4 properties to make restoration decisions and inventory greenhouse
gases. However, there is a mismatch in spatial scale between point-based sampling of porewater CH4 concen-
tration and its predictors, and the coarser resolution mapping products used to upscale these data. We sampled
porewater CHy4 concentrations, salinity, sulfate (S037), ammonium (NHJ), and total Fe using a spatially stratified
sampling at 27 tidal wetlands in the United States. We measured porewater CH4 concentrations across four
orders of magnitude (0.05 to 852.9 pM). The relative contribution of spatial scale to variance in CH4 was highest
between- and within-sites. Porewater CH, concentration was best explained by SO3~ concentration with
segmented linear regression (p < 0.01, R? = 0.54) indicating lesser sensitivity of CH4 to SO~ below 0.62 mM
S0%". Salinity was a significant proxy for CH, concentration, because it was highly correlated with SO3~ (p <
0.01, R? = 0.909). However, salinity was less predictive of CH4 with segmented linear regression (p < 0.01, R%=
0.319) relative to SO . Neither NH, total Fe, nor relative tidal elevation correlated significantly with porewater
CH,; however, NHf was positively and significantly correlated with SO3~ after detrending CHy for its rela-
tionship with SO~ (p < 0.01, R? = 0.194). Future sampling should focus on within- and between-site envi-
ronmental gradients to accurately map CHy variation. Mapping salinity at sub-watershed scales has some
potential for mapping S0%, and by proxy, constraining spatial variation in porewater CH4 concentrations.
Additional work is needed to explain site-level deviations from the salinity-sulfate relationship and elucidate
other predictors of methanogenesis. This work demonstrates a unique approach to remote team science and the
potential to strengthen collaborative research networks.

1. Introduction

2024). Wider-scale monitoring of CH, fluxes will require intensive field-
based sampling with specialized equipment to effectively capture spatial

Tidal wetlands are increasingly recognized for their contributions to
the global methane (CH4) budget emitting 0.76 Tg CH, year !
(Rosentreter et al., 2023), which offsets a portion of the carbon dioxide
(COy) they sequester. Human activities have perturbed both CH4 emis-
sions (Kroeger et al., 2017) and carbon sequestration (Pendleton et al.,
2012; Tan et al., 2020) and therefore have the potential to contribute to
natural climate solutions that improve carbon removal and reduce
greenhouse gas (GHG) emissions with appropriate management actions
(Chmura et al., 2003; Mcleod et al., 2011; Fargione et al., 2018; Arias-
Ortiz et al., 2021). Quantifying CH4 emissions from tidal wetlands is
vital due to the impact of CHy4 on radiative forcing in the atmosphere
which is 45x that of CO5 over 100 years from sustained sources of CH4
(refer to Supplemental Table 1 in Neubauer and Megonigal 2015).
However, significant uncertainties remain with spatial variation among
tidal wetlands in the production and emission of CHy4 at regional and
global scales (Xiao et al., 2024). New ground data and more detailed
maps of wetland subclasses are needed for improving coastal GHG in-
ventorying at a national scale (Holmquist et al., 2018), and for
improving the classification of sector-based CH4 emissions (Nesser et al.,

variability (Needelman et al., 2018; Derby et al., 2022).

Understanding spatial scaling is a vital part of strategically deploying
ground-based monitoring (Johnson et al., 2007), integrating ground and
remote sensing data (Guo et al., 2017), and evaluating biogeochemical
relationships at policy-relevant scales (Corstanje et al., 2008a, 2008b).
Methane production is influenced by many processes that operate at
different spatial scales of aggregation. For example, at the scale of in-
dividual soil particles, methanogenesis is spatially heterogeneous due to
the presence of anoxic (Keiluweit et al., 2018) or oxic (Maatta and
Malhotra, 2024) microsites. At the scale of meters, methanogenesis is
spatially variable due to microtopography and variability in the depth of
the water table (Perryman et al., 2022). Within watersheds, methano-
genesis varies due to estuary-wide gradients in salinity and elevation
(Arias-Ortiz et al., 2024). Across continental-scale gradients, methano-
genesis varies due to climate variables such as mean annual temperature
(Arias-Ortiz et al., 2024) and perhaps geomorphic controls (Kirwan
et al., 2023; Cotovicz Jr et al., 2024). Importantly, spatial scaling is
distinct from sampling uncertainty, which affects individual
measurements.
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In tidal wetlands, CH4 emissions are a result of the production of CHy4
in soils, fluxes from soil to surface through plants, diffusion or ebullition
across the soil surface, and consumption of CH4 by methanotrophs
(Bubier et al., 1995; Couwenberg et al., 2011; Sutton-Grier and Mego-
nigal 2011; Mueller et al., 2016; Santos et al., 2019; Bansal et al., 2020;
Vroom et al., 2022; Bastviken et al., 2023). Methanogenesis can occur
under oxic or anoxic conditions, with the former deviating from the
dogma that CHy4 production is restricted to anoxic sediments (Perez-
Coronel and Beman, 2022). In anoxic conditions, the presence of alter-
native terminal electron acceptors may substantially limit methano-
genesis (Megonigal et al., 2004) or promote CHy4 oxidation. Microbial
competition for organic carbon (electron donors) can inhibit methano-
genesis in the presence of higher energy-yielding electron acceptors such
as SO%~ (Winfrey and Zeikus, 1977; Mountfort et al., 1980; Lovley and
Klug, 1983; Kristjansson and Schonheit, 1983). Sulfate is a substrate for
anaerobic CH4 oxidation as a second mechanism for inhibiting the
accumulation of CHy in porewater and emission of CH4 (Hinrichs and
Boetius, 2002; Segarra et al., 2015). Such interactions between So%-
availability and CHy4 cycling give rise to strong correlations between
these compounds. For example, Keller et al. (2009) offered evidence for
a segmented regression relationship between porewater CH, and SOZ ",
where CH,4 concentration rapidly decreases above 4 mM SO3~ concen-
tration. Importantly, while SO~ reduction clearly suppresses methane
emissions, the two processes nonetheless co-occur in tidal wetlands due
to spatial separation in the soil profile, microsite heterogeneity, and the
presence of methanogenic pathways that do not compete with SO3~
reducers.

In previous studies, salinity was used as a proxy for sulfate's role in
inhibiting methane emissions, where SO3~ leads to sulfate-reducing
bacteria outcompeting CH4 producers (Winfrey and Zeikus, 1977;
Mountfort et al., 1980; Lovley and Klug, 1983; Kristjansson and
Schonheit, 1983). A literature review by Poffenbarger et al. (2011)
found that porewater CH4 decreased as salinity increased across a nar-
row range (0-6.8 psu). Many other studies support the well-established
paradigm that SOF~ associated with salinity effectively suppresses CHy
production in tidal wetlands (Chambers et al., 2013; Neubauer, 2013;
Helton et al., 2014; Weston et al., 2014; Wilson et al., 2015; Wang et al.,
2017). Keller et al. (2009) provided a singular dataset to relate salinity
and SO, but considerable variability in that dataset prevents robust
interpretation of a relationship. Al-Haj and Fulweiler (2020) empha-
sized that co-located measurements of CHy, salinity, and other relevant
covariates are necessary to validate and understand scale-driven
changes in drivers of CH4 production across broader salinity gradients
and geographical areas. Evidence for relationships between porewater
CH4 concentration and covariates exist in the literature, but limited
data, indirect measurements of covariates, differences in methods, and
contrasting conclusions yield uncertainty of these relationships in tidal
wetlands.

Other variables such as water level, watershed nutrient status, and
the presence of other terminal electron acceptors have the potential to
influence methanogenesis as well. Due to their inherent tidal compo-
nents, these wetland ecosystems experience diurnal or semidiurnal
changes in water levels. The tidal cycle affects water table depth (Vann
and Megonigal 2003), frequency (Tong et al., 2020) and duration of
inundation (Bansal et al., 2020), which together contribute to temporal
and spatial heterogeneity in oxic and anoxic conditions for CHy4 pro-
duction. Tides also contribute additional heterogeneity in CH4 produc-
tion and emissions through variance in covariate supply. The land use
surrounding the wetland may also impact the supply of nitrogen to the
wetland (Bowen et al., 2020). Nitrate (NO3_) can serve as an alternate
terminal electron acceptor in anoxic conditions, promoting decompo-
sition. Ammonium may influence the production of CH4 by increasing
plant productivity (Langley et al., 2013). Other porewater constituents
such as ferric iron (Fe®) can act as alternative terminal electron ac-
ceptors as well (Zou et al., 2018).

Understanding which physical covariate

factors influence
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concentrations and how these may explain observed variability in
porewater CH,4 concentrations in wetlands is complex. Most previous
research efforts have focused on either individual sites (Bartlett et al.,
1987; Keller et al., 2009), or synthesizing disparate studies with
different methodologies (Poffenbarger et al., 2011; Al-Haj and Ful-
weiler, 2020; Arias-Ortiz et al., 2024). Relationships have not been
quantitatively validated across landscape-level spatial scales with a
consistent methodology. Deployment of a lower cost, spatially broad
coverage sampling design based on a participatory science framework
(Bell et al., 2013; Hadj-Hammou et al., 2017) has the potential to assess
the spatial scaling of methanogenesis in tidal wetlands to inform large
monitoring investments as well as validate previously determined
dominant driver and proxy relationships across wider spatial scales.

This study uses a USA-wide survey of porewater CH4 concentration
and associated covariates based on a stratified sampling plan. We
focused on porewater CH,4 concentration instead of CH4 fluxes for two
reasons. First, concentration measurements are less intensive to sample
when compared to fluxes in terms of work-hours and specialized
equipment (Arias-Ortiz et al., 2021), making them more feasible within
continental-scale survey contexts. Second, the presence of dissolved
porewater CHy is an important antecedent condition to CH,4 emissions
(Keller et al., 2009; Duan et al., 2023) and has been shown to be posi-
tively correlated with CH4 emissions in wetlands (Yang et al., 2019; Villa
et al., 2020; Capooci et al., 2024).We aimed to quantify relationships
between porewater CHy variance at different spatial scales and validate
previously reported relationships between CHy4 and its predictors along
broader ranges of covariate concentrations. We tested the following
hypotheses: (i) SO7 ™ is negatively correlated with CH4 concentration,
(ii) salinity is a proxy for SO3~ in predicting porewater CH,4 concentra-
tions, and (iii) relative tidal elevation, total Fe, and NHj are secondary
predictors of porewater CH4 concentration.

2. Methods
2.1. Site descriptions and experimental design

Between 2020 and 2021, we sampled a total of 27 tidal wetland sites
(20 of which were located in the National Estuarine Research Reserve
System [NERRS]) across the conterminous United States and Alaska
(Supplemental Table 1; Fig. 1A). Sampling was constrained to coastal
emergent intertidal marshes, excluding swamps, tidal freshwater
forested wetlands, mangroves, and lakes. Field sampling was completed
from July to early December in 2020 and 2021 coinciding with each
site's peak aboveground biomass season. To assess the regional and local
scale of variability of porewater conditions, each site was sampled at 3 to
4 locations (‘subsites’, Fig. 1B). Porewater samples were collected at 4
plots within each subsite (Fig. 1C). Subsites were selected by site experts
in order to maximize a dominant environmental gradient such as
salinity, management, elevation, and/or inundation, and to maximize
distance from each other.

At each subsite, four 0.25 m? areas (‘plots’) were sampled, for a total
of 367 plots. Using a rolling tape measure, the first plot was located 20 m
inland from the wetlands/creek edge. A visual marker was thrown
behind the researcher to randomize the location of the first plot and
eliminate observer bias. Plots were spatially stratified with 1.5 m
separating a pair of plots and a second pair located 15 m apart (Fig. 1C).
Orientation between the 15 m stratified pairs was selected from a ran-
domized list of compass bearings (Corstanje et al., 2008a; Corstanje
et al., 2008b). If any plot was located in a water feature or was otherwise
inaccessible, another direction was selected.

2.2. Porewater sampling and analyses
Porewater samples were collected 10-25 cm subsurface using sipper

wells or rhizon MOM samplers (Rhizosphere Research Products,
Wageningen, Netherlands). The latter depth range was chosen to avoid
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Fig. 1. A three-paneled figure illustrating this study's spatial scales of sampling. A.: An outline map of North America with all sampled sites; B.: example site (red
circle from panel A.) with three example subsite locations, and; C.: a detailed view of example subsite 2 from panel B., demonstrating the paired plot-based sampling
structure. Colors in panels B. and C.: beige (tidal wetland), green (forested wetland), white (land), blue (open water).

surface water entrapment (Zimmerman et al., 2005) and to ensure suf-
ficient collection of porewater sample for an initial flushing (~20-30
mL) of the re-used sippers and for all analyses (up to 60 mL). The ma-
jority (90 %) of samples were collected using sippers that consisted of
two sections: Tygon Masterflex tubing and Teflon PTFE chemical resis-
tant tubing perforated with 3/32" diameter holes and sealable above-
ground with a stopcock (Noyce and Megonigal 2021). Within each plot,
one porewater sampler was temporarily installed in a hole of the same
diameter opened using a solid plastic rod. If little or no water was drawn
from the initial sipper location, the sipper was re-located within the plot,
and up to five attempts were made. If these attempts failed, the plot was
moved and re-sampled. The stopcock on the sipper remained closed
unless the sample was actively being withdrawn. Up to 90 mL of pore-
water was extracted from each well. Sippers and syringes were emptied,
but not cleaned, and reused between plots. Single-use rhizon samples
were collected for upwards of 2 h via vacuum pressure created in a sy-
ringe with a stopcock, held open with a retainer.

Porewater was extracted and filtered to 0.45 pm via a syringe-
mounted filter (polyvinylidene fluoride) into 22 mL scintillation vials
in order of priority: CHg, SOZ%~, CI-, NHJ, and total Fe. Dissolved CHy4
was extracted from an unfiltered sample of 12 mL porewater equili-
brated with an equivalent volume of atmosphere within a syringe and
shaken vigorously for 2 min (Megonigal and Schlesinger, 2002). The air
sample was injected into a nitrogen (N3) flushed 12 mL Labco (Lamp-
eter, Wales, UK) exetainer via a single use needle attached to a filter to
absorb excess water. The SO3~ and Cl~ samples were collected using 10
mL of porewater filtered into a scintillation vial containing approxi-
mately 1 mL of 5 % zinc acetate and sodium hydroxide buffer, and
shaken to mix (Keller et al., 2009; Environmental Protection Agency,
1996). Up to 40 additional mL of porewater was collected and filtered
into two vials to be analyzed for NH} and total Fe, respectively.

Methane samples were stored at air temperature (Faust and Liebig,
2018), while all other samples were kept on ice during collection and
later frozen. Samples were shipped overnight on ice to the Smithsonian
Environmental Research Center (Edgewater, MD, USA) and stored in a
—20 °C freezer until analysis. Methane was measured on a Bruker Varian
450 gas chromatograph. Porewater CH4 concentrations were derived
from the slope of the line of known standard values, ranging from 100 to
100,000 ppm CHy4, and log-transformed to account for non-negative
values.

Sulfate and Cl~ were analyzed on a Thermo Fisher (Waltham, MA,
USA) Dionex Integrion (2019) following similar methods from Noyce
and Megonigal (2021), where samples were separated using an All 4
pm fast column using 32 mM of KOH as the eluent. The detection limit
for SO%~ and Cl~ was calculated by multiplying the standard deviation
of the lowest standard by three, respectively. Ammonium was used as an

indicator of nutrient status and total Fe as an indicator of the potential
for Fe presence. Ammonium was analyzed using the Berthelot-
salicylate colorimetric technique (Noyce et al., 2019). Total iron
(Fe®** + Fe*") concentrations were determined by the ferrozine method
(Loeppert and Inskeep, 1996; Viollier et al., 2000) on a Shimadzu UV-
1800 UV spectrophotometer and measured at the Louisiana Univer-
sities Marine Consortium.

2.3. Aboveground biomass assessment and longitude, latitude, and
elevation data

The relative abundance and percent cover of each plant species was
described in each plot using the Braun-Blanquet (1932) scale. A
destructive harvest of 10 x 10 cm or 25 x 25 cm was conducted, clip-
ping all stems within 2 cm of the marsh surface. Live stems were sorted
by species, if possible. Aboveground necromass was pooled and not
identified by species. All plant samples were dried at 60 °C until stable
weight was reached (>5 days), and then weighed with a Sartorius 1574A
(Sartorius AG, Goettingen, Germany) or Ohaus STX 422 (Ohaus Cor-
poration, Parsippany, New Jersey, U.S.) balance, to the microgram. The
latitude, longitude, and elevation (NAVD88 vertical datum) of each plot
was measured, if possible, using a cell-phone, Google Earth, hand-held
Garmin (models: 73, Etrex 20x, GPSMap 64st or 78sc, Montana 600),
SP80 RTK, Bad Elf GNSS, Trimble (Geo7x, R8s, R10, R12, R12i), Leica
Sprinter 150 m or 250 m Digital Level, or Emlid Reach RS2.

2.4. Data analysis

Data visualization and multiple regression approaches were con-
ducted in R (version 4.1.3, R Core Team, 2022). Additional figures were
created using ArcGIS (version 10.8, Environmental Systems Research
Institute, Inc., 2020). A Spearman's rank correlation was used to assess
the relationship between the porewater covariates, aboveground
biomass, and species richness. Data normality was tested using the
Shapiro-Wilks normality test and visualized in histograms (Supple-
mentary Fig. 1).

In order to quantify the relationship between spatial scale and
porewater CH, variability, we partitioned variance attributable to each
level of spatial hierarchy using a Bayesian random effects model (Hobbs
and Hooten, 2015). We estimated the amount of variance present at
each spatial scale using Eq. (1). Methane data were natural log-
transformed.

ln(CH4) =lIn (/’l) + ﬁl .5m,i + ﬂl 5mj + ﬂwithinvxite,k + ﬂbetween.site.l (1)

In(u) ~ N(0,1000)
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Prsmi ~ N(o, 6%.5m)

Pismy ~ N(0,675,,)

Puithinsitek ~ N(0; Ohihinsice)
Preweensitel ~ N (0, Cheryeensite)
1/02 ~ gamma(0.001,0.001)

where CHy;; is the methane concentration of datapoint i, y is the mean
CH4 concentration, and each f is a random effect representing i indi-
vidual plots (1.5 m), j 15 m-stratified plot pairs (15 m), k subsites
(within-site), and [ sites (between-site). Priors were uninformed with the
prior for log(y) distributed as normal with a mean of zero and a variance
of 1000 (Hobbs and Hooten, 2015). Each random effect was distributed
as normal with a mean of zero and a variance attributed to that spatial
level. Each spatial variance was assigned an inverse gamma prior with
both alpha and beta parameters set to 0.001.

Methane (micromolar)
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The model was fit in rjags using 4 chains and 5000 iterations
(Plummer et al., 2021). Traceplots were examined to ensure model
convergence on a single solution. Data were summarized as both the
variance partitioned at each spatial level and the cumulative summed
variance across each level (Corstanje et al., 2008a; Corstanje et al.,
2008b). Data are presented as a percentage of total cumulative variance,
with the mean estimate and standard error extracted from the posterior
distributions of the parameters (Fig. 3).

We calculated relationships between CH4 and porewater covariates
SO%~, NHj, and total Fe, as well as between SO~ and salinity using
linear models. During initial data visualization we observed a break-
point in the relationship between SOZ~ and CH4 and utilized a
segmented regression (Muggeo, 2008). We compared the performance
relative to parsimony of segmented regressions to single slope linear
models using Akaike's Information Criteria.

We tested for potential secondary relationships with other pre-
dictors. To do this, we first detrended CHy for its relationship with S0%~
by calculating residuals as the difference between measured CH4 and
predicted CHy4 from its segmented regression relationship with sulfate
concentration. We regressed the residuals against porewater NHj, total

Fig. 2. Upper panel: a map of the U.S. with sites sampled (multi-colored dots) and numerically labeled 1-27 (moving counterclockwise from Alaska). Lower panel:
log scale CH,4 box plots grouped by coast (Pacific, Gulf, Atlantic), labeled with site name and reference number. NERRS with multiple components that were sampled
in separate years are labeled with the component name listed first, and followed by the NERR site name (ex. 18. Monie Bay [Chesapeake Bay, Maryland]).
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Fe, and marsh platform elevation. To analyze the relationship between
wetland elevation and residual variance in CH4, we normalized eleva-
tion measured at the plots to tidal amplitude at mean high water
(Z*muw) referenced to the NAVD88 datum (Holmquist and Windham-
Myers, 2022). Mean high water (MHW) and mean sea level (MSL)
values were interpolated between NOAA (tidesandcurrents.noaa.gov)
and Coastwide Reference Monitoring System (CRMS, lacoast.gov/crms/
Home.aspx) tide gauges using ordinary kriging. For Kachemak Bay,
Alaska, USA datums from the nearest complete NOAA tide gauge (Nik-
siki, AK, USA: 9455760) were used directly, rather than leveraging the
kriging model fit across the distant regions of the contiguous United
States.

3. Results
3.1. Dataset description

A total of 27 unique sites and 367 plots distributed across 19 coastal
states were sampled (Fig. 2). Only 1 plot lacked Cl™ data and 2 plots
lacked SO3~ data as they were below the detection limits of 1.503 x
1074l psuand 1.115 x 10”3 mM SOZ ", respectively. Porewater SO%~
measured from plots varied from below the detection limit to a
maximum of 47.45 mM (Table 1, Supplemental Fig. 3). Due to limited
porewater, 3 plots lacked a total Fe measurement and 5 lacked NHj.
Elevation data were collected at 156 plots, representing 13 sites. The
dataset of sampled plots represents all salinity classes from fresh to brine
(0.5-55 psu). Across all sites, 109 unique plant species were identified.
Of those, 103 and 90 were identified to genus and species level,
respectively (Supplemental Table 1).

3.2. Spatial variability of porewater methane concentration

The concentrations of porewater CH,4 samples (n = 332) used in

Table 1
Minimum, maximum, and mean values for measured porewater covariates for
all plots and by coast (Atlantic, Gulf, and Pacific).

Value Minimum Maximum Mean
Covariate: CHy (pM)

All plots 0.05 852.9 108
Atlantic 0.163 714.6 119.4
Gulf 0.078 852.9 163.9
Pacific 0.05 186.8 4.78
Covariate: C1~ (ppt)

All plots 0.021 55.22 17.28
Atlantic 0.021 42.52 14.02
Gulf 0.052 55.22 15.38
Pacific 3.824 53.4 28.94
Covariate: SO%’ (mM)

All plots <0.001* 47.45 10.57
Atlantic <0.001* 31.5 7.495
Gulf 0.005 42.3 8.552
Pacific 2.463 47.45 21.85
Covariate: NHy (M)

All plots 33.04 641 103.7
Atlantic 33.04 641 83.41
Gulf 33.08 618.4 119.8
Pacific 34.88 459.4 141
Covariate: total Fe (uM)

All plots 0.012 2966 54.32
Atlantic 0.015 2966 73.82
Gulf 0.016 618.2 47.63
Pacific 0.012 201.1 7.149

“ Indicates that lowest value was below the instrument detection limit.
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analysis ranged from 0.05 to 852.9 pM, with a mean =+ s.e. of 108 £+
0.56 pM (Table 1). Methane samples were collected from all plots (n =
367); however, some values were excluded due to sampling issues
associated with rhizons, values below the detection limit, and samples
collected from outlier habitat types (e.g. submersed vegetation beds)
that were not targeted by this study. Including some omitted samples,
CH4 concentrations (n = 344) ranged from 0.05 pM to 7828 pM, with a
mean + s.e. of 163 + 1.57 pM. Porewater CH4 was increasingly variable
at larger spatial scales (Fig. 3). Finer spatial scales contributed relatively
less variance than coarser ones. The 1.5 m and 15 m spatial scales
contributed (mean =+ s.e.) 9.6 4+ 2.2 % and 5.7 + 2.2 % of the cumula-
tive spatial variance, respectively. Within-site gradients and between-
site differences accounted for 29.5 + 7.9 % and 55.3 + 9.6 % of the
cumulative spatial variance, respectively.

3.3. Correlations between porewater methane, sulfate, and salinity
concentrations

Porewater CH, was negatively and significantly correlated with
porewater SOF~ across the dataset (p = —0.732, p < 0.01; Supplemental
Fig. 1). A segmented linear regression had higher explanatory power for
the CH4 and SO%’ relationship (both covariates log-transformed) over a
single linear regression (Fig. 4A, Table 2). Furthermore, the segmented
regression was statistically significant (p < 0.01) and resulted in a lower
corrected Akaike Information Criterion (AICc) score (Table 2). The CHy
and SO%~ resulted in a negative slope with a breakpoint of 0.62 mM
SO~ (Fig. 4A), characterized by a relatively flatter slope at concentra-
tions lower than 0.62 mM SOZ~, and steeper slopes at concentrations
>0.62 mM SO3~ (Fig. 4A, Eq. 2). Fifty-nine data points informed the
slope below the breakpoint, and 306 data points informed the slope
above the breakpoint, described in Eq. 2:

4.934 — 0.0615*In(SO3");if In(SO;") < —0.478
4.963 — 1.358(In[SO; | + 0.478);if In(SOF") > —0.478
2

In(CH4) =

where CHy4 concentration is in micromolar (uM) and SO%’ is in milli-
molar (mM).

The Spearman's rank correlation also indicated that salinity and
S02~ were the most strongly positive correlated variables (p = 0.935, p
< 0.001; Fig. 4B and Supplemental Fig. 1). A single linear regression that
modeled salinity and SO%~ was positive, significant, and had strong
explanatory power (Table 2). While the relationship between salinity
and SO3" is significant and positively linear, this linearity is only clearly
observed at salinities >8 psu and SO~ > 1 mM (Fig. 4B, Eq. 3). The area
of these values, and thus the change in relationship from weakly to
strongly linear, is indicated by the pair of horizontal and vertical dashed
lines in panel B (Fig. 4). Below these values, the linearity of the rela-
tionship weakens as the spread between data points increases.

SO3™ = —2.969 +0.789S (3)

where S is salinity (psu) and SO% " is sulfate concentration in millimolar
(mM).

Porewater CH4 and salinity were also significantly and inversely
correlated (p = —0.576, p < 0.001; Fig. 4C and Supplemental Fig. 1).
Due to the strong linear relationship between salinity and SOF~ as well
as the relationship between CHy4 and salinity (Fig. 4C), we expected that
salinity may have similar predictive power for porewater CH4 (Eq. 4).
However, substituting salinity for SO~ concentration results in a rela-
tionship with lower predictive ability than S03~ on its own (Fig. 4C). A
simple linear model produces a significant, negative relationship, but
the segmented linear regression provides more predictive accuracy
(Table 2):



E.L. Koontz et al.

Cumulative variance
100 e}

75

’ +

25

Total [CH,] Variance (%)

Science of the Total Environment 957 (2024) 177290

Decomposed variance

& & {\‘;o’\@* &
\‘\’\\.‘Q\ Ql{\

smaller to larger scale

Fig. 3. Variance in log-transformed porewater CHy, expressed as a percentage of total variance, at four spatial scales ordered from left to right, smallest to largest
scale: 1.5 m (m), 15 m, within site [along site-specific gradients], and between-sites. Points represent mean estimates and segments represent the standard error of the
estimate. Spatial variance is presented both as cumulative variance, with variability propagated from smaller to larger scales, as well as decomposed variance,

variability attributable to each spatial level.

3.795 — 0.210%In(S); if In(S) < 2.445

In(CH,) = { 3.282 — 2.840(In[S] — 2.445 ):if In(S) > 2.445 )

Both porewater SO3~ and salinity correlated strongly with porewater
CHy, but the modeled relationship between SOZ~ and CHy4 explains more
variability in CH4 (Eq. 2, Table 2). Additional relationships between CH4
and other covariates were investigated to explain remaining variability
in CHy. Since some variability in CH,4 was explained by SO3~, we
detrended the CH4 residuals, therefore removing the explanatory effect
of SO~ on the CH4 residuals. Following that, we investigated the
remaining variability found in the CHy4 residuals (Eq. 2) by regressing
them separately against log-transformed NHJ, total Fe, and Z*ypw, the
latter which is a proxy for tidal inundation. We detected a significant,
positive correlation between CHy residuals and NHJ (Table 2). A simple
linear model was significant and positive, but with lower explanatory
power than a segmented regression with a breakpoint at 44 pM NHZ
(Fig. 4D). Significant correlations were not detected between detrended
CH4 residuals and total Fe (p = 0.80) nor Z*ygw (p = 0.27).

4. Discussion

Our national-scale study of tidal wetland CH4 concentration pro-
duced a unique and unprecedented spatially-nested dataset of co-located
porewater measurements from tidal wetlands along all coastlines of the
USA. We provide important information on spatial scaling properties of
CH4 concentration that are useful for remote sensing, inventorying, and
planning new ground monitoring. We also tested three hypotheses
regarding the predictability of CH4 concentration over landscape scales.
Our first hypothesis was supported as we observed a negative correla-
tion between porewater concentrations of CH4 and S0%~, an energeti-
cally favorable terminal electron acceptor under anoxic conditions that
is present in seawater. Our second hypothesis was supported; salinity
was a significant, though comparatively weak, proxy for CH4 concen-
tration in the absence of direct SO3~ measurements. Our third hypoth-
esis, that nutrient enrichment, the presence of Fe, and tidal elevation
would be important secondary predictors was partially supported with
NHj being weakly correlated with variance unexplained by the CHy-
S0%~ relationship.

In this section, we discuss how scaling and covariate relationships
can inform future coastal wetland carbon monitoring. We compare the
breakpoints in relationships between porewater CH,4 and its covariates

to the results of previous studies. Finally, we suggest future research
directions, and reflect on the strengths of a collaborative participatory-
science approach.

4.1. Implications of spatial scaling and covariate relationships for
monitoring

Our study considered the importance of spatial scaling on porewater
CH4 concentrations. Heterogeneity in porewater CH4 was detected even
at relatively fine spatial scales, but the proportion of variance was least
at the smallest spatial scales. This result recalls Tobler's (1970, 2004)
first law of geography, where increased proximity between measure-
ments results in increased similarities between them. Statistics applies
this principle via measures of spatial autocorrelation to assess spatial
dependence between measurements (Crawford, 2009). We detected a
sharp increase in variance when scaling along within-site gradients and
between-sites. Within-site variation was attributed mostly to variation
in salinity associated with SO3~. The between-site variance increase may
be explained by differences in dominant coastal typologies of the sites
we sampled, their climate zones, or both (Diirr et al., 2011; Beck et al.,
2018; Kirwan et al., 2023). Together, the key results supporting the
importance of within-site, and between-site variability, and the domi-
nance of SOF~ as a process-based predictor, can inform new monitoring
plans for coastal CH4 monitoring.

Our results inform future efforts to develop maps of CHy-relevant
processes in three ways. First we show that the scale of moderate-
resolution remote sensing will be able to capture the majority of
spatial variance in CH4. Maps of surface water (Huang et al., 2018),
vegetation (Adam et al., 2010), and salinity (Murphy et al., 2010) are
typically made using 10-30 m spatial resolution imagery products (e.g.,
from Sentinel and Landsat satellites). According to our dataset, 85 % of
the variance in CH4 concentration occurs at scales >15 m and could be
hypothetically detected by these remote sensing products. The remain-
ing 15 % of variance occurs at sub-pixel resolution that would be
averaged out by these mapping techniques. Second, this study reinforces
the need for tidal wetland subtype maps which include intermediate
salinity classes, or, more ideally, continuous salinity predictions
(Holmquist et al., 2018). The dataset presented in this paper itself could
potentially be used as calibration and validation data in the creation of
such a map (Koontz et al., 2024). Third, information on spatial scaling
could be used as priors in future efforts to explicitly fuse high-resolution
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Fig. 4. Porewater covariate relationships in four panels: A. sulfate and methane (both log-transformed); B. salinity and sulfate; C. salinity and methane; and D.
ammonium and residual variance in methane (log-transformed) after removing variance explained by the concentration of sulfate (log-transformed). Solid, black
lines with a break (segmented linear regression) indicate that the relationship between covariates significantly changes within the range of measured concentrations.
Dashed lines correspond to concentration break points where the relationship between covariates changes, and are discussed in text.

field data to moderate-resolution remote sensing using Bayesian hier-
archical modeling (Guo et al., 2017), overcoming the issue of scale
mismatch between ground and remotely sensed data.

For future monitoring of methanogenesis in tidal wetlands, our
analysis supports sampling designs that focus first on prioritizing more
sites across wide climate gradients and/or geomorphic classes, and
second on capturing environmental variation within watersheds.

Additional studies and carbon inventories could use this continental-
scale dataset to generate informed sampling strategies that optimize
information content of new data relative to the cost of deploying and
maintaining monitoring infrastructure (Hurtt et al., 2022; Brown et al.,
2023).

Our results suggest that to map CHy4 concentration, future research
should focus on SO3~ because salinity is an imperfect proxy. While a
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Table 2

Statistical outputs for the modeled relationships between porewater covariates.
The p-value, R?, and Akaike Information Criterion with standard correction
(AICc) values are provided for two model types, single linear regression and
segmented linear regression, if applicable.

Modeled relationship CH4 (pM) and SO%’ (mM)

Value p-Value R? AlCc
Single linear regression <0.01 0.45 1401
Segmented linear regression <0.01 0.54 1346

Modeled relationship Salinity (ppt) and SOF~ (mM)

Value p-Value R? AlCc

Single linear regression <0.01 0.909 N/A

Modeled relationship CH4 (pM) and Salinity (ppt)

Value p-Value R? AlCc
Single linear regression p<0.01 0.191 1544
Segmented linear regression 0.319 1489

Modeled relationship CH,4 (uM) residuals (SO~ effect removed) and NHj

(M)
Value p-Value R? AlCc
Single linear regression <0.01 0.1663 1281
Segmented linear regression ~ <0.01 0.1942 1272

dominant predictor of CHy, SO?( is more rarely measured compared to
the much more ubiquitous salinity measurements (Tong et al., 2010;
Poffenbarger et al., 2011). Our results supported a high degree of cor-
relation between SO%’ and salinity (R? = 0.909). However, the rela-
tionship between salinity and CH4 had lower, though significant,
explanatory power (R% = 0.319) compared to the direct SOF~ relation-
ship (R2 = 0.54). Part of this could be due to a decoupling of the strength
of the salinity-SO7~ relationship at low salinities, particularly below 5
psu due to SO7 depletion at low concentrations.

Although this study provided evidence that SO3~, and by proxy
salinity, explain a significant proportion of spatial variance in porewater
CH4 concentrations, other studies show that inundation and the pres-
ence of other terminal electron acceptors may still be important to future
mapping and monitoring of CHy4 properties. Arias-Ortiz et al. (2024)
showed that in a U.S. wide synthesis of CH4 emissions, salinity class was
the dominant predictor, but that inundation class and mean annual
temperature are important secondary predictors. In pan-Arctic wet-
lands, spatial variability in CH4 emissions is dominantly controlled by
water table depth, as well as soil temperature, and vegetative functional
types (Bao et al., 2021). In freshwater, nontidal and tropical wetlands
with distinct dry and wet seasonality, inundation timing and duration
are more important drivers for CH4 emissions than SO% ™ or salinity (Li
etal., 2024). In our study, Z*yuw, a proxy for tidal inundation, was not a
significant secondary predictor of CH4. This may reflect high un-
certainties in Z*ypyw (Holmquist and Windham-Myers, 2022), weakness
of Z*ymw as a proxy for inundation (Cassaway et al., 2024), or our study
having too few elevation measurements to be representative of actual
gradients.

In addition to water level, future mapping and monitoring efforts
may want to more intensively investigate watershed-level land use ef-
fects on the availability of nutrients and alternative terminal electron
acceptors. We used NH4 as a proxy for nutrient status and found evi-
dence indicating that organic nitrogen could interact with the CH4-SO3~
relationship with the potential to cause watershed-specific anomalies in
CH4 concentration. In freshwater wetlands with or without tidal ex-
change, several other electron acceptors in addition to SOF~ catalyze
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CH4 oxidation, including nitrite (NO3) (Hu et al., 2014), and nitrate
(Segarra et al., 2013). Reactive nitrogen concentration is typically low in
tidal wetlands (Valiela and Teal, 1974), but can be elevated in nutrient
rich agricultural runoff (Pardo et al., 2011). Finally, while our study
found no relationship between total Fe and CH,4 concentrations, a pre-
vious study indicated that Fe can occur in elevated amounts in agri-
cultural runoff (Zou et al., 2018), which provides a preferable terminal
electron acceptor Fe®" (Sivan et al., 2011) that can reduce methano-
genesis when added to a wetland (Zou et al., 2018). Taken together, the
role of agricultural runoff and nutrient enrichment on methanogenesis
and CH4 oxidation could potentially be an important aspect of future
mapping and monitoring.

4.2. Novel relationships between sulfate, methane, and ammonium

We observed a previously undocumented significant change in the
slope of the CH4-SO3 ™ relationship defined by a breakpoint of 0.62 mM
S0% ", with high sensitivity to changing SOF~ below the breakpoint and
low sensitivity above (Fig. 4A). This relationship presumably reflects the
concentration at which SO%’ reduction rates become limited by SO3~
availability (Winfrey and Zeikus, 1977; Mountfort et al., 1980; Lovley
and Klug, 1983; Kristjansson and Schonheit, 1983). Below our break-
point of 0.62 mM SO3~, we suggest that the ability of SOF -reducing
bacteria to outcompete methanogens progressively weakens. However,
only acetoclastic and hydrogenotrophic methanogens are likely to be
positively impacted by reductions in SOF, whereas the activity of
methylotrophic methanogens is unaffected by SO3 -reducing bacteria
(Seyfferth et al., 2020).

The CH4-SOZ ™ relationship is distinct from previously reported
breakpoints that were developed using much smaller sample sizes and
observed within singular wetland sites (Bartlett et al., 1987; Keller et al.,
2009; Poffenbarger et al., 2011). In studies of lacustrine and marine
ecosystems, published breakpoints are at lower SO3~ concentrations,
ranging between 0.008 and 0.04 mM SO3 (Lovley and Klug, 1983;
Ingvorsen et al., 1984; Kuivila et al., 1989; Sinke et al., 1992; Holmer
and Storkholm, 2001). At the higher end, Poffenbarger et al. (2011)
noted a breakpoint of 4 mM S0Z in tidal wetlands, over which CHy4
concentrations were negligible.

We also discovered a novel breakpoint and a significant relationship
between NHJ and CH, that explained additional variance in porewater
CH4 concentrations and provided some support for our third hypothesis.
After detrending the effects of SO%’ on CH4, NH4 was positively and
significantly correlated with CHy4, with a breakpoint at 44 pyM NHZ
(Fig. 4D). Perhaps the most parsimonious explanation is that high NHj
availability supports high plant production and soil carbon inputs that
support methanogenesis (Langley et al., 2013), a process that is gener-
ally carbon-limited (Megonigal et al., 2004). Another potential expla-
nation for this relationship could be that NHJ inhibits CH, oxidation in
wetlands when concentrations of NH4-N are 30x that of CH4, allowing
CH4 to persist in porewater (Van Der Nat et al., 1997; Laanbroek, 2010).
We hypothesize that below 44 pM NHj4, CH,4 oxidation is primarily
occurring, and above 44 uM NHZ, NHJ oxidation inhibits CH, oxidation.
Alternatively, this relationship may reflect the coupling of NO3 to
anammox, of which NHJ is a product, and NO;-dependent anaerobic
CH4 oxidation, leading to some CH4 consumption (Zhu et al., 2010; Shen
et al., 2015). Within tidal wetlands, the nitrogen species are determined,
in part, by internal nitrogen cycling (Noyce and Megonigal 2021),
exogenous supply from tidal waters (Krask et al., 2022), inundation
duration (Chowdhury and Dick, 2013), and surrounding land uses
(Weston et al., 2006). The mechanisms that underpin the NH4 and CH4
relationship are unclear but suggest that available reactive nitrogen
species may partially determine the fate of porewater CHy.
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4.3. Potential limitations and caveats inherent in a kit-based sampling
approach

The data from this highly collaborative kit-based sampling effort of
U.S. tidal wetland porewaters is valuable to constrain spatial variation in
porewater CHy and its covariates. However, we acknowledge some re-
sults are limited in their application and warrant caveats. Limitations
and caveats arise from the fact that we focused on a spatially-rich,
though temporally limited, sampling strategy, variability in site char-
acteristics reduced our ability to sample heavy clays, and our need to
focus on stable analytes limited some of the more detailed biogeo-
chemical inferences that could be made.

First, in this study, we prioritized a spatially extensive deployment
during each site's peak aboveground biomass season across a wide va-
riety of sites that span the entire coastline of the USA, which did not
permit a time series of measurements to occur. However, previous
studies show that measurements of CH4 emissions taken during peak
aboveground biomass growing conditions tend to reliably scale to
annual fluxes (Bridgham et al., 2006). Further, we cite the strong-
relationship between CH4 and SO?( (R2 = 0.54) as evidence that this
relationship, at least during the peak aboveground biomass growing
season, is likely robust across sites. We hypothesize that some of the
residual variance (46 %) may be explained by time specific phenomena
such as slight differences in the timing relative to seasonal cycles within
sites or time since the last large tidal flood event. Previous studies have
focused on datasets that maximized observations of the important
temporal scales of CHy4 variability (Bartlett et al., 1987; Keller et al.,
2009; Tong et al., 2010; Poffenbarger et al., 2011; Derby et al., 2022).
This new dataset provides an important counterpart to these temporally
rich analyses and future work should integrate the strengths of both
approaches.

A second caveat is related to site characteristics and porewater
sampling methodology. We collected porewater using “sippers” from the
majority of our 367 sampling plots. However, this was not possible for
22 plots consisting of mineral dominated soils with high clay concen-
trations, for which we used rhizons (Shotbolt, 2010). Rhizon samples of
porewater CHy4 yielded concentrations <6.23 pM, meaning that the
rhizon sampling method likely underestimated the CH4 concentration.
We hypothesize that a small fraction of CH4 was actually dissolved in the
porewater, and the rest of the porewater CH4 concentration was con-
tained within poorly soluble CH4 micro-bubbles that did not pass
through the rhizon filter with a nominal pore size of 0.6 pM. As a result,
rhizon measurements of porewater CH4 were excluded from analysis,
but the remaining covariates collected with rhizons remained in the
dataset (Song et al., 2003; Seeberg-Elverfeldt et al., 2005; Chen et al.,
2015). Future studies should be aware of this potential methodological
limitation.

Although the kit-based sampling design enabled us to effectively
capture spatial variation of porewater CH4 concentration and assess
covariates, the logistics of mail-in kits limited analysis to those analytes
that could be easily stabilized. For example, we focused on the avail-
ability of terminal electron acceptors rather than electron donors such as
dissolved organic carbon (DOC). We assumed that terminal electron
acceptors would be rate limiting and therefore explain more variation.
We also focused on total Fe rather than reactive Fe3+, and NHJ as a
proxy for nutrient status rather than other reactive nitrogen species.
Should future work overcome logistical constraints, we recommend
measurements of additional electron acceptors that may increase un-
derstanding of spatial variability in porewater CH4. We specifically
recommend future studies to include measurements of porewater con-
centrations of NO3, NO3, manganese, and Fe3t alongside the five
covariates we measured.

4.4. Recommendations for future research

The results of this unprecedented, diverse, and large porewater
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dataset and its analysis uncovers new research priorities. First, the
relationship between porewater CH4 and CHy fluxes across spatial scales
needs to be better understood. Second, more detailed microbial infor-
mation on the presence of methanogens and methanotrophs is needed.
We close by discussing the benefits of the participatory nature of this
study, and using it as a template for future research.

While porewater CH4 concentration is a contributing variable, it is
not a direct proxy for CHy fluxes, which is the covariate of interest for
greenhouse gas inventories (Crooks et al., 2018), emission reduction
goals (Kroeger et al., 2017), and inversion modeling (Nesser et al.,
2024). For CHy4 to be emitted, it needs to not only be present in the
porewater, but also needs to ascend through soil layers and avoid
oxidation (Blair and Aller, 1995; Laanbroek, 2010). The conveyance of
porewater CHy4 to atmospheric emissions is primarily facilitated by plant
transport, and secondarily by ebullition and lateral exchange with
floodwaters (Bubier et al., 1995; Couwenberg et al., 2011; Sutton-Grier
and Megonigal 2011; Mueller et al., 2016; Santos et al., 2019; Bansal
et al., 2020; Vroom et al., 2022; Bastviken et al., 2023). A recent syn-
thesis of USA coastal wetland CH4 emissions data reported a poor rela-
tionship with porewater CH4 concentration (Arias-Ortiz et al., 2024).
However, this differs from previous studies (Yang et al., 2019; Villa
et al., 2020; Capooci et al., 2024). For example, high porewater CHy4
concentrations sampled in one estuarine site at 15.5 cm subsurface
strongly correlated to CH4 emissions captured at the surface (Capooci
et al., 2024). The lack of a clear relationship between CH4 emissions and
porewater CH4 concentrations likely reflects the complex interaction of
production, consumption, and transport activities that control pore-
water CHy4 inventories across multiple spatial scales.

One potential tool for disentangling the roles of methane production,
consumption and transport, as well as porewater and flux data, is the
Peatland Ecosystem Photosynthesis Respiration and Methane Transport
(PEPRMT) model. In PEPRMT, porewater CH4 is an unobserved state,
with CHy flux as the output variable (Oikawa et al., 2017). In future
studies, our observations of porewater CHy, as well as CH4 flux data,
could all be integrated into models, like PEPRMT, using a state-space
framework (Dietze, 2017). This type of framework can leverage multi-
ple types of observations (concentrations, fluxes) to constrain model
behavior, reduce uncertainty, and improve systems-level understanding.

Future work could identify the relevant mechanisms of production
and consumption in tidal wetland soils. To accomplish this, it is neces-
sary to understand which types of methanogens and methanotrophs are
present. This may be accomplished by incorporating sequencing work,
such as 16S rRNA gene sequencing and quantitative PCR assays, both
previously used (Schubert et al., 2011; Hu et al., 2014) in wetlands to
elucidate the specific species and which substrates or covariates they
utilize.

As a final note, the participatory-nature of this study benefited the
project by producing a larger sample size that could not have been
feasibly collected by a single team and a higher-quality dataset that
benefited from local expertise in siting sampling locations. The National
Estuarine Research Reserve System (NERRS) proved to be a valuable
resource for a national scale survey of tidal wetland biogeochemical
conditions. With both personnel and a publicly accessible standardized
data collection and reporting platform (e.g. the Centralized Data Man-
agement Office, CDMO), the 30-site (as of this writing) NERRS network
and data archive enhances research capacity for co-located and upscaled
assessments of coastal processes. Coordinating remote training and Kkit-
based sampling may be a viable alternative to travel-based field work
which can lower the carbon footprint of science, provide training,
networking and inclusion opportunities for junior researchers, as well as
benefit the project by integrating the deeper expertise of those working
in these locations.

5. Conclusion

This study draws on a unique dataset built from 367 plots sampled
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across 27 sites distributed across 19 coastal states, covering climate
zones, coastal typologies (river-, tide-, or wave-dominated), salinity
gradients (fresh to brine: 0.5-55 psu), and dominant coastal marsh
vegetation communities (109 plant species) in the USA. This work
clarifies cross-site and regional trends in porewater CH4 and its envi-
ronmental correlates, which was not attainable from previous site-
specific studies. We found several key results that provided support
for the majority of our hypotheses.

Our first hypothesis that porewater CH4 decreased with increases in
SO3~ was supported. Particularly, the broad geographic coverage of our
data revealed a novel breakpoint in the relationship between porewater
SO7~ and CH,4 when SO%~ is 0.62 mM. This breakpoint presumably re-
flects the concentration at, and below which SO‘ZC reduction rates start
to become limited by SO~ availability, and competition for electron
donors between methanogens and SO3~ reducers begins to weaken. Our
second hypothesis that salinity is a proxy for SOF~ predicting porewater
CH4 concentrations was supported. While salinity is significantly
correlated with CH,4 because it is strongly intercorrelated with SO, it is
not an ideal proxy for porewater CH4 concentration due to decoupling of
the salinity and SOZ ™ relationship, especially for the freshwater tidal
wetlands. Our third hypothesis was partially supported, where SO3~
explained most of the variability in porewater CH,4 relative to variables
investigated (salinity, NHj, total Fe, and Z*yw). Residual variation in
the CH4-SOZ ™ relationship was partially explained by porewater NHJ,
with no additional variation explained by total Fe or Z*ygw. This finding
suggests that porewater NHi concentration may also be useful for
scaling CH4 emissions using a threshold of 44 pM CHg4, but the mecha-
nisms behind the threshold are presently unclear and deserve additional
research. Additionally, our results show that porewater CH4 was
increasingly variable at relatively wider spatial scales, suggesting that
differences among sites may be partly explained by distinct dominant
coastal typologies and climate zones. Considering that the dominant
sources of variation in porewater CH4 were within and between site
differences, these results suggest that moderate spatial resolution
remote sensing products (e.g., 10 x 10 to 30 x 30 m) are appropriate for
constraining variation along the most important spatial gradients that
control porewater CH4 concentrations.

Importantly, while this study delivers the first national-scale survey
of tidal marsh porewater CH4 concentrations and commonly-measured
biogeochemical covariates, future work is needed to determine
whether CHy4 fluxes follow the same spatial patterns of porewater CHy4
concentration considering that net CH4 emissions are controlled simul-
taneously by production, consumption, and transport, all of which vary
with soil depth and time. However, additional studies and carbon in-
ventories could use this continental-scale dataset to inform sampling
strategies that optimize generation of new data relative to the cost of
deploying and maintaining monitoring infrastructure. On that note, our
field survey approach — highly collaborative, with a low-cost and low-
latency field collection and lab analysis protocols — provides a success-
ful template to advance carbon monitoring in coastal wetlands across
spatial and temporal scales.
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