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SUMMARY

Emotional experiences can profoundly impact our conceptual model of the world, modifying how we repre-
sent and remember a host of information even indirectly associated with that experienced in the past. Yet,
how a new emotional experience infiltrates and spreads across pre-existing semantic knowledge structures
(e.g., categories) is unknown. We used a modified aversive sensory preconditioning paradigm in fMRI (n = 35)
toinvestigate whether threat memories integrate with a pre-established category to alter the representation of
the entire category. We observed selective but transient changes in the representation of conceptually related
items in the amygdala, medial prefrontal cortex, and occipitotemporal cortex following threat conditioning to a
simple cue (geometric shape) pre-associated with a different, but related, set of category exemplars. These
representational changes persisted beyond 24 h in the hippocampus and perirhinal cortex. Reactivation of
the semantic category during threat conditioning, combined with activation of the hippocampus or medial pre-
frontal cortex, was predictive of subsequent amygdala reactivity toward novel category members at test. This
provides evidence for online integration of emotional experiences into semantic categories, which then pro-
motes threat generalization. Behaviorally, threat conditioning by proxy selectively and retroactively enhanced
recognition memory and increased the perceived typicality of the semantic category indirectly associated
with threat. These findings detail a complex route through which new emotional learning generalizes by modi-

fying semantic structures built up over time and stored in memory as conceptual knowledge.

INTRODUCTION

Imagine you developed a fear of dogs after a terrifying encounter
at arelative’s house. As time goes by, you realize that not only do
you avoid your relative’s dog but also parks, hiking trails, and
certain friends’ houses—all locations that did not previously
cause anxiety but where you know, through experience, that
dogs might be off leash. This illustrates the complex relation-
ships that humans draw upon to integrate emotional experiences
into pre-existing knowledge structures, allowing us to draw
meaningful inferences about the possibility of danger in the
absence of direct knowledge. This cognitive process conforms
to long-standing principles from learning theory' and is opera-
tionalized by paradigms wherein memories are indirectly modi-
fied through reinforcement of related stimuli, known as higher-
order conditioning.>*

A flexible learning and memory system that can efficiently up-
date prior stimulus representations and semantic (knowledge)
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structures, or schemas,* with new learning is clearly adap-
tive®>—we can predict the potential for harm without experi-
encing the negative consequences directly (e.g., if you avoid
parks, you lower even the minuscule possibility of another dog
bite at those locations). Conversely, an experience of threat
that indiscriminately generalizes to an entire semantic structure
can spread threat associations to harmless stimuli or situations
only tangentially related to the negative experience (e.g., avoid-
ing other commonly domesticated animals) (see Figure 1A for a
visualized example). This maladaptive form of generalization is
characteristic of many anxiety-related disorders, such as post-
traumatic stress disorder (PTSD) and obsessive-compulsive dis-
order.5® Although the ability to modify pre-existing semantic
structures with new learning is a hallmark of human cognition,
the neurobehavioral mechanisms by which threat learning might
do this are poorly understood.

There have been at least two primary experimental ap-
proaches for studying how a new experience updates our
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A Scientific question: How does threat generalize across higher-order semantic pathways?
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Figure 1. Conceptual and experimental overview of modified aversive sensory preconditioning procedure
(A) Conceptual overview. Threat associations can generalize from a traumatic incident (e.g., a dog bite) across similar conceptual associations, referred to as a

semantic structure or network (e.g., things related to dogs, such as parks or pet sto
resemble aspects of the traumatic incident.

res), even when stimuli from these structures were not present nor perceptually

(B) 2-day aversive sensory preconditioning task structure. Day 1: semantic categories (animal, tools) were paired with one of two neutral shapes (circle, square)
during a preconditioning phase. One shape (CS+) was then paired with the US (shock) during a subsequent threat conditioning phase; the category paired with

this shape is labeled the PS+, the other shape/category are CS— and PS—, respec

tively. Transfer phases immediately after conditioning (transfer 1 and 2) test for

threat (CS+-US) associations generalizing to novel PS+ category items. Day 2: transfer tests were repeated with novel category exemplars (transfer 3 and 4) and

followed by a recognition memory test for day 1 stimuli.
CS+, conditioned threat cue; CS—, conditioned safety cue; PS+, preconditioned t
US, unconditioned stimulus.

mental model of the world by modulating memories related to
those experiences. One approach involves animal learning
models that incorporate sensory preconditioning protocols.
Sensory preconditioning is a well-established protocol in which
animals first undergo a preconditioning phase where they learn
an association between at least two arbitrary and affectively
neutral stimuli (e.g., tone and light) in the absence of meaningful
reinforcement (i.e., latent learning).”°~'? Then, one of the stimuli
is used as a conditioned stimulus (CS, the light) in a learning
(conditioning) phase where the animal learns it predicts a bio-
logically salient unconditioned stimulus (US; e.g., a shock in
threat conditioning). Finally, a transfer phase (also referred to

hreat cue; PS—, preconditioned safety cue; SCR, skin conductance response;

as a retrieval phase) tests whether the preconditioned stimulus
(PS, the tone) elicits a conditioned response (e.g., freezing)
similar to that elicited by the CS during initial learning. Neurobi-
ological research shows consistent involvement of the hippo-
campus, perirhinal cortex (PRC), and orbitofrontal cortex in
learning and retrieval in sensory preconditioning tasks.™ In
aversive sensory preconditioning, the PRC cooperates with
the basolateral amygdala (BLA) to coordinate indirect PS-US
threat associations.’*'® The other primary experimental
approach involves episodic memory tasks in humans that
require novel inferences about pairs or groups of previously en-
coded stimuli based on new learning. These tasks consistently
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show engagement of the hippocampus and medial prefrontal
cortex (mPFC) for integrating across overlapping stimuli or
events to draw novel inferences.®> %79

Integrating a new memory of threat with broad semantic struc-
tures could lead to widespread changes in how related concepts
are perceived, appraised, and remembered.?®?" In this way, the
transfer of emotional value could go beyond directly experienced
instances of a stimulus in the past and spread more widely
through underlying associations built up over time and stored
in memory as semantic structures. Using the earlier example, it
is unnecessary to have prior experience with the vicious dog
outside of your relative’s house. Pre-existing knowledge of
where dogs are likely to be encountered is sufficient to motivate
avoidance of those locations after the attack. Neuroimaging
research shows that threat conditioning modulates cortical rep-
resentations of object concepts that are directly associated with
threat.”>*® However, whether and how neural mechanisms
designed to integrate discrete memories provide a route to
indirectly implant emotional value into existing semantic struc-
tures is unknown.

A major question concerns when memory integration occurs
for events that overlap with previous experiences.>'®""?* An on-
line integration (i.e., mediated learning) account proposes that
the mental representation of the PS is reactivated on CS trials
during conditioning, thereby integrating the PS and US represen-
tations at the time of emotional learning.'® Evidence from aver-
sive sensory preconditioning tasks in rodents suggests that on-
line integration requires the PRC, as temporary lesions of the
PRC spare direct threat conditioning but prevent the transfer of
threat learning and responding to the PS."® Additionally, non-
aversive memory integration tasks in humans show that hippo-
campal activity at the time of learning predicts successful infer-
ence and preferences toward the paired preconditioned cues at
test'® (but see Wang et al.*).

Alternatively, the retrieval account of memory integration®®
emphasizes processes during the transfer phase. In this ac-
count, PS presentations elicit retrieval of the previously associ-
ated CS, which brings with it the representation of the US to
inform behavior (i.e., chaining) without a mediated PS-US repre-
sentation. Appetitive sensory preconditioning work suggests the
orbitofrontal cortex is required to retrieve indirectly acquired
positive-value information of the PS to predict novel outcomes
during retrieval.?’

These two accounts are not mutually exclusive. Dynamic
behavioral demands might necessitate memory integration at
the time of conditioning in some instances or at transfer test
(retrieval) in others.?® For example, online integration at the
time of emotional learning might modify memory representations
of specific instances of the PS pre-associated with the CS
in preparation for reencountering that specific PS.'181°
Retrieval-based integration might rely on pattern completion
processes, subserved by the hippocampus,®® or relational
reasoning, subserved by the hippocampus and mPFC,'® to
draw upon a broader network of relational links when encoun-
tering novel instances of the PS at a transfer test.

Here, we investigated the neurobehavioral mechanisms by
which emotional learning indirectly modulates the representation
of object concepts through memory integration. We used fMRI
while participants completed a novel 2-day aversive sensory
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preconditioning task and applied multivariate pattern analysis
(MVPA) to test different accounts for how regions in the medial
temporal lobe and the mPFC facilitate integration of a threat
memory with a previously associated category. During precondi-
tioning, trial-unique (non-repeating) exemplars from two seman-
tic categories (animals or tools) served as PSs and were paired
with a shape CSs (square or circle). Then, during threat condi-
tioning, one shape (CS+) predicted an aversive electric shock,
and the other was safe (CS—). Next, novel category exemplars
from the PS categories (now referred to as PS+ and PS—, indi-
rectly associated with the CS+ and CS—, respectively) were pre-
sented alone during two transfer tests, separated by a brief
reminder of the CS-US association.?® The next day, participants
completed two more transfer tests in the scanner to assess
whether representational changes persist over a 24-h period.
The experiment concluded with a recognition memory test and
subjective ratings of category typicality for the PSs encoded
before and after threat conditioning on day 1.

Synthesizing research on aversive sensory preconditioning
and non-affective memory integration, we predicted that aver-
sive sensory preconditioning with trial-unique exemplars would
be sufficient to generate a category-level association with the
CS, which would then selectively modulate patterns of neural
similarity for novel category members at test following direct
CS-US learning. Specifically, we hypothesized that medial tem-
poral lobe regions primarily implicated in aversive sensory pre-
conditioning (PRC, hippocampus, amygdala) and cortical mem-
ory integration regions (mPFC) would demonstrate stronger
pattern similarity for the PS+ category in comparison with the
PS— category at test. We also hypothesized that category-se-
lective occipitotemporal cortex regions would demonstrate
the same pattern, reflecting their role in tracking semantic
relationships.

To investigate the mechanisms underlying potential category-
level modulation, we tested reinstatement of threat-specific CS+
neural patterns on PS+ trials at test (retrieval account). We hypoth-
esized that this form of reinstatement would be evident in the
medial temporal lobe and mPFC. We also tracked neural reactiva-
tion of the PS+ category during conditioning on CS+ trials, which
would putatively support the recombination of the PS category
and the CS at the time of threat conditioning (online integration).
For this analysis, our hypothesis was limited to predicting that re-
activation in category-selective occipitotemporal regions would
relate to BLA activity to the PS+ at test, given strong rodent evi-
dence for the role of the BLA in online integration. As an additional
exploratory test, we also investigated the potentially moderating
role of individual differences in neural activity in the hippocampus
and mPFC, both key memory integration regions, in the relation-
ship between increased category reactivation and threat-related
BLA activity.

RESULTS

Behavioral results

Threat conditioning

Confirming successful differential threat acquisition, mean skin
conductance responses (SCRs) were greater for the CS+ relative
to the CS— (8= 0.45, t,,.4(34) = 4.97, p < 0.001, 95% confidence
interval [CI] [0.26, 0.63]), as were mean shock expectancy ratings
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Figure 2. Behavioral and physiological evidence for successful aversive sensory preconditioning

A retroactive bias toward increased memory for PS+ (vs. PS—) items encoding during preconditioning is behavioral evidence for successful mediated learning (A).
Further evidence includes increased reported mean typicality for PS+ (vs. PS—) items (B) and animmediate transfer 1 x SCRinteraction (C), such that higher typicality
forthe PS+ category was associated with increased SCR (positive slope) to PS+s during transfer. For box-and-whisker plots, the box represents the middle 50% of the
individual data points (fitted values; for recognition data, values are transformed back to the response scale). The shaded point and error bars inside the box represent
the mixed-effects regression estimated marginal mean and 95% confidence intervals. Also see Figure S1 for behavioral and physiological data from the threat

conditioning phase.

CS+, conditioned threat cue; CS—, conditioned safety cue; PS+, preconditioned threat cue; PS—, preconditioned safety cue; SCR, skin conductance response.

*p < 0.05.

(8=2.16, t,y214(33.5) = 41.18, p < 0.001, 95% CI [2.05, 2.26]). See
Figure S1 for plotted results.

Transfer tests

Mean SCRs were not significantly different between the PS+ and
PS— during the immediate (day 1) or 24-h (day 2) transfer test
(ps > 0.085). Given prior evidence that typicality influences cate-
gory-level threat generalization,?® we tested whether individual
differences in participants’ mean typicality for the PS+ category
predicted arousal toward PS+ items at test. During the transfer
phase (transfer 1) immediately after conditioning, category typi-
cality significantly positively moderated the relationship between
stimulus and SCRs (8 =0.117, t,,214(1,490) = 1.99, p = 0.046, 95%
CI[0.01, 0.23)) (Figure 2C). This association between retrospec-
tive typicality ratings and within-session arousal was selective to
the PS+ category. Typicality did significantly moderate in other
experimental phases (ps > 0.376).

Participants did not report elevated shock expectancy ratings
during the transfer tests. Mean ratings indicated an overall low
likelihood of receiving a shock on either PS+ (day 1: M = 1.175;
day 2: M = 1.045) or PS— (day 1: M = 1.45; day 2: M = 1.14) trials.
Ratings were nominally enhanced on PS— trials during immediate
transfer 1 and 24-h transfer 3 (transfer 1: § = —0.227, t,,214(1,950) =
—4.987, p < 0.001, 95% CI [-0.31, —0.13]; transfer 3: = —0.152,
twaii(1,943) = —3.035, p = 0.002, 95% CI [-0.24, —0.05]); there
was no PS+ vs. PS— difference on either immediate transfer 2
or 24-h transfer 4 (transfer 2: 8 = 0.011, t,,2(1,950) = 0.248, p =
0.803, 95% CI [-0.078, 0.10]; transfer 4: 8 < 0.001, t,,44(1,942) =
—0.001, p = 0.999, 95% CI [-0.09, 0.09]).

Threat conditioning retroactively enhances memory for
items pre-associated with a conditioned stimulus

24-h recognition memory performance (controlling for false
alarm rate) was significantly greater for PS+ vs. PS— items
encoded prior to conditioning (8 = 0.226, Zasymp. = 2.28, p =
0.022, 95% CI [0.03, 0.42]) (see Figure 2A). There was no

significant difference between PS+ and PS— items encoded dur-
ing the transfer tests immediately following conditioning (8 =
—0.032, Zagymp. = —0.299, p = 0.765, 95% CI [-0.24, 0.18]).
Subjective typicality ratings

Participants rated PS+ items (relative to PS— items) as being
overall more typical of their semantic category. This included
items encoded during preconditioning (8 = 0.10, t,,.4(3,826) =
2.55, p =0.010, 95% CI [0.01, 0.18]) and the day 1 transfer tests
(transfers 1 and 2) (8 = 0.09, t,,41¢(3,826) = 2.32, p = 0.020, 95% Cl
[0.02, 0.18]) (see Figure 2B). This result suggests that threat-con-
ditioning retroactively and proactively enhanced subjective stim-
ulus typicality, in line with prior findings.*°

Univariate analysis of aversive sensory preconditioning
Whole-brain analyses

Univariate whole-brain fMRI analysis (voxel wise p < 0.001,
cluster corrected p < 0.05) of the CS+ > CS— contrast for threat
conditioning found significant clusters consistent with prior
threat conditioning meta-analyses®' (see Table S2; Figure S3).
Significant whole-brain clusters for the PS+ > PS— or PS— > PS+
univariate contrasts were not found during transfer phases or
preconditioning.

Univariate ROI analyses

Activity in the BLA (8 = 0.31, t,,44(170) = 2.49, p = 0.013, 95% CI
[0.06, 0.56]) and hippocampus (6 = 0.32, t,.4(170) = 2.25, p =
0.025, 95% CI [0.04, 0.64]) was significantly higher for the PS+
(vs. PS—) during the transfer 1 test. Across all regions of interest
(ROIs), there were no other significant PS+ > PS— or PS— > PS+
activations during the transfer tests (ps > 0.075).

Pattern similarity analysis of aversive sensory
preconditioning

To examine potential modulation of category-level representa-
tions resulting from indirect threat learning, multivariate patterns
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Figure 3. Schematic of within-category representational similarity analyses and category-cortex results

(A) Overview of within-category representational similarity analyses to test for category-level neural modulation after threat conditioning. For each phase, each
multi-voxel pattern for each stimulus is correlated with all other stimuli from the same category for all possible pairs. Each trial is a unique category exemplar.
(B) For each phase, correlations from within each category are averaged to form an overall metric of within-category similarity. PS+ vs. PS— similarity scores from
the same phase are then tested.

(C) Within-category representational similarity results for category-selective occipitotemporal regions across all task phases. Data are represented as PS+ > PS—
difference scores for visualization purposes only; models/estimated marginal means incorporate separate PS+ and PS— values. Larger values indicate stronger
similarity for the PS+ vs. PS—. For box-and-whisker plots, the box represents the middle 50% of the individual data points. Shaded point and error bars inside the
box represent the mixed-effects regression estimated marginal mean and 95% confidence intervals. Statistical tests are conducted on the estimated marginal
means visualized here, which are derived from outlier-resistant robust models that down-weight extreme individual values in tests. Also see Figure S4 for fitted

values with separate PS+ and PS— values and Table S3 for full test statistics.
PS+, preconditioned threat cue; PS—, preconditioned safety cue.
*p < 0.05

of activation to each trial-unique PS item were correlated with
the patterns from all other PS category exemplars encoded
within the same experimental phase. As expected, there was
no difference in pattern similarity between the PS+ and PS— cat-
egories at pre-conditioning in any a priori ROIls (ps > 0.773;
Figures 3C and 4; also see Table S3 for full test statistics and
Figures S4 and S5 for plots showing PS+ and PS— values sepa-
rately), providing benchmark evidence that semantic categories
were not differentially represented in multi-voxel patterns of ac-
tivity prior to conditioning.

3526 Current Biology 34, 3522-3536, August 5, 2024

Following conditioning, category-selective occipitotemporal re-
gions (identified from the independent category localizer) exhibited
enhanced pattern similarity for PS+ items vs. PS— items during day
1 transfer tests (transfer 1: 8 = 0.33, t,,44(170) = 2.11, p = 0.036,
95% CI [0.02, 0.64]; transfer 2: 8 = 0.35, t,,.4(170) = 2.28, p =
0.023, 95% CI [0.04, 0.66]) (see Figure 3C). Notably, selectivity in
pattern similarity between the PS+ vs. PS— categories was absent
inthese occipitotemporal regions after ~24 h (transfer 3: 6= —0.02,
twaid(170) = —0.15, p = 0.877, 95% CI [—0.33, 0.28]; transfer 4:
6 =0.07, t,24(170) = 0.46, p = 0.642, 95% CI [-0.23, 0.38]).
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Figure 4. Within-category similarity across a priori anatomical ROIls

Perirhinal cortex and hippocampus showed increased PS+ similarity at immediate and 24-h transfer tests, whereas the amygdala and medial PFC only showed
this effect at the immediate transfer test. The analytic steps used to produce these results are visualized in Figure 3. Data are represented as PS+ > PS— difference
scores for visualization purposes only; all models and estimated marginal means incorporate separate PS+ and PS— values. Larger values indicate stronger
similarity for the PS+ vs. PS—. For box-and-whisker plots, the box represents the middle 50% of the individual data points. Shaded point and error bars inside the
box represent the mixed-effects regression estimated marginal mean and 95% confidence intervals. Statistical tests are conducted on the estimated marginal
means visualized here, which are derived from outlier-resistant robust models that down-weight extreme individual values in tests. Also see Figure S5 for fitted
values with separate PS+ and PS— values and Table S3 for full test statistics, as well as Figure S6 for visualization of exploratory analyses in entorhinal cortex.
PFC, prefrontal cortex; PS+, preconditioned threat cue; PS—, preconditioned safety cue.

*p < 0.05.
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Figure 5. Testing for threat reinstatement via across-phase repre-
sentational similarity analyses

(A) Overview of across-phase representational similarity analyses used to test
for neural threat pattern reinstatement. Multi-voxel threat (CS+) and safety
(CS—) patterns were correlated with the corresponding category pattern (CS+
to PS+, CS— to PS—) from either preconditioning or transfer phases. After
threat conditioning, we predicted transfer PS+ patterns would more strongly
resemble CS+ patterns, whereas preconditioning and PS— patterns would
minimally resemble threat conditioning patterns.

(B) Neural threat reinstatement was observed in the amygdala during transfer,
as PS+ similarity to CS+ patterns was increased relative to CS—/PS— simi-
larity. As expected, no PS+/PS— difference was observed for preconditioning/
threat conditioning patterns. For box-and-whisker plots, the boundaries of the
box represent the middle 50% of the plotted individual data points. Inside the
box, shaded point and error bars represent the mixed-effects regression
estimated marginal mean and 95% confidence intervals. Statistical tests are
conducted on the estimated marginal means visualized here, which are
derived from outlier-resistant robust models that down-weight extreme indi-
vidual values in tests.

CON, threat conditioning; PRE, preconditioning; PS+, preconditioned threat
cue; PS—, preconditioned safety cue.

*p < 0.05.

Across a priori ROIs from the medial temporal lobe and mPFC
(see Figure 4), there was enhanced pattern similarity for trial-
unique items from the PS+ vs. PS— category in the PRC at
both day 1 transfer tests (transfer 1: g = 0.29, t,,.4(170) = 3.05,
p =0.002, 95% CI [0.10, 0.48]; transfer 2: § = 0.40, t,,44(170) =
4.14, p < 0.001, 95% CI [0.21, 0.59)). This selectivity in PS+
pattern similarity in the PRC extended to the 24-h test (transfer
3: 8 =0.33, tya(170) = 2.93, p < 0.001, 95% CI [0.14, 0.53]). In
the hippocampus, enhanced pattern similarity was observed
during the second transfer test on day 1 (8 = 0.18, t,,44(170) =
2.16, p = 0.031, 95% CI [0.01, 0.34]) and extended to the first
transfer test on day 2 (6 = 0.24, t,,4(170) = 2.93, p = 0.003,
95% CI [0.08, 0.41]). The amygdala (8 = 0.30, t,,214(170) = 3.29,
p =0.001,95% CI [0.12, 0.48]) and mPFC (8 = 0.34, t,,44(170) =
3.01, p = 0.003, 95% CI [0.11, 0.57]) exhibited selectively
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enhanced PS+ pattern similarity during the second transfer
test on day 1; however, this selectivity did not extend to day 2
in either region (ps > 0.061, see Table S3 for full test statistics).

Threat pattern reinstatement during transfer tests
Multivariate analyses have identified the amygdala and mPFC as
reflecting neural threat patterns at tests of threat memory
retrieval.>>** Here, we tested the degree to which multi-voxel
threat patterns are reinstated during transfer tests. Multi-voxel
activity patterns evoked by CS trials during conditioning were
correlated with their corresponding pre-associated PSs during
transfer as a form of encoding-retrieval similarity.®°>°¢ There
was significant reinstatement of CS+ threat conditioning neural
patterns in the amygdala during transfer 1 on PS+ trials
(vs. CS—/PS— trials) (8 = 0.26, t,,,4(306) = 3.04, p = 0.002,
95% CI[0.09, 0.44]) (see Figure 5B). Threat-specific pattern rein-
statement was selective to the first transfer test (other transfer
tests, ps > 0.816). Interestingly, selective threat pattern rein-
statement in the mPFC was observed in the second transfer
test on day 1 (8 = 0.36, ,,.4(306) = 4.72, p < 0.001, 95% CI
[0.21, 0.52]). All other mPFC comparisons, as well as the same
tests within the PRC, hippocampus, and category-selective vi-
sual regions, were nonsignificant (ps > 0.088).

Evidence of online integration through cortical
reactivation during aversive learning

Using our validated classifier, we estimated reactivation of the
PS+ category (animals or tools, counterbalanced) during the pre-
sentation of the CS+ at the time of threat conditioning in cate-
gory-selective cortices as an index of online emotional memory
integration. According to the online integration account, CS trials
will trigger reactivation of the PS representation, which will un-
dergo modification as CS-US learning progresses throughout
conditioning, thereby resulting in a modified PS representation
at test.?° Decoded PS— category reinstatement on CS— trials
served as a comparison condition. For all analyses, decoded
category reactivation is referred to by PS+ or PS— label, as for
some participants, the animal category was the PS+, and the
tool was PS—, and for others, vice versa. Decoding yields clas-
sifier evidence values (probability estimates); larger values indi-
cate greater reactivation likelihood. Aligning with related prior
work,®” classifier evidence for PS+ category reactivation was
well distributed (M = 0.46, SD = 0.15, interquartile range
[IQR] = 0.22) and significantly differed from zero (one-sample t
test, #(33) = 16.8, p < 0.001) (Figure 6B). Evidence values did
not significantly differ based on which category was the PS+ or
PS— per participant, #(30) = —0.045, p = 0.964. Similar results
were found for the PS— category.

We then used individual participants’ classifier evidence for
the decoded PS+ (and PS—) on CS+ trials during conditioning
to predict their degree of BLA activity during the transfer test
on PS+ trials. Individual differences in BLA activity during trans-
fer were the key focus of this analysis, given this region’s pre-
sumed role in retrieving the modified association of the PS+,
which was indirectly altered at the time of threat conditioning
(online integration) through reactivation of the PS+ representa-
tion."® To test for moderation of this relationship, we expanded
the interaction with another term in two parallel analyses: one
with hippocampus univariate activity to CSs during threat



Current Biology ¢? CellPress

A Decoded PS- pattern
PS- reactivation*

1.00

= ) { 0.75

1 T o050

0.25

PS+ reactivation* 0.00

Decoded PS+ pattern
B8 s+ (during CS*+) BB ps- (during CS-)

Decoded Evidence Values

*reactivation of preconditioning category exemplars

c D

Threat Conditioning Immediate Transfer 2 Predicting Inmediate Transfer 2

Basolateral Amygdala Activity

Q
H g 1.5 *
=
2
ﬁ 1 Novel category exemplars S 10
Decoded PS+/PS- on CS+/CS- gory exemp <
A A~ C
“ /I &> s
PN { AR s %= 0.5 Positive
/.‘! o .‘.: ﬁz ‘ }\ g) Moderation
L*k&\\x,j { 2
e ~ “‘ £ o0
Hipp. CS+/CS- Activity t‘ \J]"\ X
ﬁ3 e - S Negative
p— Basolateral Amygdala S -0.5 7 Moderation
&% PS*% | PS- Activity Y
A, 3 g
X \— ; \("“ 8 -1.0
. 12 - -
CS+/CS- PS+ PS-

Figure 6. Decoding analyses reveal that category reactivation interacts with memory integration activity to predict generalized BLA activity
for novel items from an indirectly threat conditioned category

(A) Schematic of fMRI decoding analyses. During threat conditioning, PS category reactivation is decoded using a classifier validated on localizer data. Decoding
is conducted within category-selective occipitotemporal ROls. Degree of category reactivation is indexed by evidence values reflecting the strength of the PS
pattern reactivation.

(B) Distribution of decoded PS+ and PS— reactivation evidence values indicates sufficient variability for individual difference analyses. Error bars show SEM;
bolded bands represent the median. Mean evidence values for both PS+ and PS— are significantly different than zero (ps < 0.001).

(C) Schematic of decoding moderation analyses. Beta coefficients () represent threat conditioning terms predicting the outcome variable (BLA activity during
transfer 2). B4 represents the decoded PS during the CS from category-selective cortex, B, represents univariate activity during a CS, and B3 represents the B4 X
B2 interaction. The actual tested model is structured hierarchically via mixed-effects regressions, with all CS+/PS+ and CS—/PS— data in a multilevel (repeated-
measures) stimulus term nested within each participant.

(D) Cortical reactivation and online integration results, indicating that the hippocampus significantly moderates the relationship between category cortex re-
activation during threat conditioning and BLA activity. For visualization, separate interaction coefficients (decoded PS reactivation x CS activation) were ex-
tracted for transfer 2 PS+ and PS— conditions and bootstrapped (k = 1,000). Coefficients, 95% confidence intervals, and distributions are plotted against zero to
demonstrate interaction significance; confidence intervals not overlapping with zero are significant. We only visualize the hippocampus moderation analysis here;
the medial prefrontal cortex was also a significant moderator.

BLA, basolateral amygdala; CS+, conditioned threat cue; CS—, conditioned safety cue; hipp., hippocampus; PS+, preconditioned threat cue; PS—, precondi-
tioned safety cue.

*p < 0.05.

conditioning, the other with mPFC activity to CSs during threat
conditioning. We focused on these two regions due to their
prominence in the memory literature as key hubs for episodic
memory integration.’® To determine whether the addition of a
separate hippocampus or mPFC univariate activity term to the
model, both as a separate term and then added to the interaction
term, significantly improved model fit (as improved fit for the
model with the interaction is a requirement for formal moderation
analyses), we conducted likelihood ratio tests comparing
models with and without the expanded interaction (chi-squared

distribution, significance at p < 0.05). All models continued to
include the repeated-measures stimulus term (CS+/PS+/,
CS—/PS—).

Reactivation of the PSs during CS trials did not selectively pre-
dict BLA activity during either transfer phase. Addition of the CS
univariate activity term (without adding it to the interaction term)
resulted in significantly improved model fits for both hippocam-
pal (x2(2) = 10.868, p = 0.004) and mPFC activity (x3(2) = 10.672,
p = 0.004). Importantly, interacting PS reactivation with CS uni-
variate activity in the hippocampus (x2(3) = 12.723, p = 0.005)
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or mPFC (x%3) = 11.6, p = 0.008) during threat conditioning re-
sulted in models that significantly predicted BLA activity during
immediate transfer 2 (see Figure 6C for schematic of interaction
that includes hippocampal CS activity). Probing these interac-
tions (moderations) revealed that increased BLA PS+ (vs. PS—)
during transfer 2 was selectively related to the interaction of
increased PS+ (vs. PS—) reactivation and increased univariate
activity in the hippocampus (6 = 0.52, t,,4(53) = 2.43, p =
0.015, 95% CI [0.10, 0.95)) (see Figure 6D) or mPFC (8 = 0.45,
twaia(d53) = 2.24, p = 0.025, 95% CI [0.06, 0.85]) during CS+
(vs. CS—) trials, confirming this effect as related to integrated
aversive conditioning.

DISCUSSION

The complexity of human experience necessitates a flexible
memory system that can adapt to a range of novel experiences
and efficiently update existing memories to reflect new informa-
tion. Semantic structures, built up over multiple experiences,
help facilitate this process by providing a scaffold for inference
and behavioral selection, even without direct experience of po-
tential consequences. Prior work implies that semantic struc-
tures could provide ingress points for learned threats to enter
and then broadly generalize across semantic networks.**°
However, the mechanisms by which emotional experiences inte-
grate with previously acquired knowledge to modify the meaning
and salience of different stimuli indirectly related to the experi-
ence have not been directly tested. The current study revealed
potential neural mechanisms for building integrated memories
of threat within a semantic structure, with the majority of our a
priori predictions supported by the current data.

In accordance with our hypotheses, pre-association of a set of
category exemplars with a to-be-conditioned threat stimulus
modified the neural representation of unique category exemplars
within category-selective occipitotemporal regions, the mPFC,
and medial temporal lobe regions that include the amygdala, hip-
pocampus, and PRC. Specifically, pattern similarity among
unique exemplars pre-associated with a threat cue became
more similar following threat conditioning. Enhanced neural sim-
ilarity could facilitate the transfer of emotional learning to a
diverse set of category exemplars despite their physical distinc-
tions. This finding is consistent with a prior report of increased
neural similarity in the occipitotemporal cortex and the amygdala
for category-level stimuli directly predictive of an aversive US
(direct conditioning)®® but extends this finding to a higher-order
learning paradigm (sensory preconditioning) that necessitates
integrating across separate phases of learning. Modulation
was transient in the occipitotemporal cortex and the amygdala
but persisted beyond 24 h in the hippocampus and PRC, sug-
gesting separation between immediate and longer-term
changes in neural organization among these regions.

Prior studies establish the PRC’s role in storing semantic infor-
mation*'**> and show that representational similarity covaries
with semantic and visual dimensions.*>** Here, in line with our
hypotheses, we observed modulation from emotional learning
of stimulus representations in the PRC that persisted beyond
the initial test. The hippocampus also maintained increased
within-category similarity for the indirectly threat-conditioned
category, which is consistent with its central role in threat-related
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delayed recall and retrieval.>***>*“° These findings extend reports
of PRC and hippocampal involvement in sensory precondition-
ing'®" to demonstrate how the selectively modified representa-
tions persist at 24 h following preconditioning and aversive
learning.

At the moment of an emotional experience, do we immediately
integrate this event with distinct past memories? Or does inte-
gration occur upon encountering a new situation that requires
retrieval of the emotional memory? Prior research points to
neither memory integration process as unilaterally predominant,
with both forms of integration involved when memory guides de-
cision-making.>?*?® Qur results suggest that humans employ
both routes when integration involves modulation of pre-estab-
lished semantic structures.

First, individual difference analysis of category reactivation
during conditioning supports an online integration account: se-
lective reactivation of an indirectly conditioned category (PS) in
occipitotemporal regions during threat conditioning trials (CS tri-
als) interacted with increased hippocampal or mPFC activity to
predict BLA activity during immediate transfer trials. Psycholog-
ically, this suggests that retrieval of the pre-associated category
representation is integrated into the newly formed threat memory
during emotional learning. These results align with prior neuroi-
maging work showing evidence of online integration of episodic
memory'4"~*9 as well as studies showing reactivated category-
selective voxels predicting responses during a subsequent
retrieval test in aversive learning®® and associative inference
tasks.’®*! Hippocampal and mPFC involvement during integra-
tion that subserves later retrieval is central to prominent episodic
memory models.'®'” Here, interaction between participant-level
increases in online integration of reactivation of a semantic cate-
gory representation and increases in activity in the hippocampus
or mPFC during threat conditioning supported increased activity
to novel PS+ presentations in the BLA, a prominent region in
neural models describing emotion-episodic memory interac-
tions.®*°° That said, our hypotheses regarding online integration
were only partially supported, as decoded reactivation in occipi-
totemporal regions alone did not predict subsequent BLA activ-
ity: it was only through the interaction with hippocampal or mPFC
activity at the moment of learning. This suggests an important
role for memory formation and retrieval regions that interact
with representations in higher-order visual cortex to promote
subsequent concept-based generalizations, although further
study is needed to clarify the individual differences we observed
in this integration process.

Alternatively, there is evidence of retrieval-based integration
(i.e., chaining) from selective reinstatement of the threat-specific
neural pattern during immediate transfer tests in the amygdala
and mPFC. Specifically, overlapping fMRI patterns were selec-
tively correlated with the formation of a threat memory on CS+
trials and retrieval of a threat memory on PS+ trials. One possi-
bility is that the amygdala and mPFC play a more domain-gen-
eral role in the retrieval of value information at the time of
retrieval. Reinstating patterns specific to CS+ on PS+ trials could
reflect the general affective salience of the PS+ cues following
threat conditioning; the mPFC could support a model-based
inference®” that helps evaluate unique instances of the PS cate-
gory not directly encountered during pre-conditioning and
thus lack a directly learned PS-CS association. Consequently,
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chaining in these regions could prioritize reinstatement of the
CS-US relation to promote pattern completion and decrease
threat discrimination between physically dissimilar category ex-
emplars. Hypotheses here were only partially supported, as
threat memory reinstatement was not observed in category-se-
lective visual cortex, hippocampus, or PRC, ventral visual stream
components specialized in object recognition®*>° and regions
yielding online integration evidence, as detailed above. In this
way, regions tuned toward object recognition and representation
might facilitate memory integration through reactivation of previ-
ously encountered instances directly associated with the CS.
Conversely, regions with a domain-general role regarding
value-related information might reinstate the threat memory
when the properties of a novel stimulus must be inferred from
related, but distinct, past events.

Recognition memory was selectively (PS+ > PS—) and retroac-
tively enhanced for items encoded prior to threat conditioning, in
line with tests of direct threat conditioning of categories.®*°°
These results accord with accelerating research on behavioral
tagging®”°® of human episodic memory,*® which proposes that
salient events can rescue weak memories formed minutes-to-
hours before (or after) the salient event. Sensory preconditioning,
per se, does not require a tag-and-capture mechanism, as there
is no evidence to our knowledge that the time window between
preconditioning and threat conditioning is a boundary condition
for sensory preconditioning to be effective. However, the sen-
sory preconditioning protocol could initiate a behavioral tagging
mechanism, given that the design involves “weak” learning
(PS-CS pairs) followed by a salient event (CS-US pairs). Here,
the timing and overlapping events likely produced the retroactive
memory benefit, which aligns with a recent study using a similar
preconditioning design that found retroactive enhancement for
relational episodic memory.' Importantly, selective enhance-
ment in our study was not symmetrical; there was no proactive
benefit on memories encoded during the transfer phase (as
sometimes seen in prior work®®®°). The transfer test might not
have constituted weak learning (in accordance with behavioral
tagging phenomenon), as although participants did not explicitly
expect shock, arousal was significantly elevated on typical PS+
items and neuroimaging results showed strong evidence of
modulation of PS+ representations during transfer within mem-
ory formation areas.

Although physiological arousal during transfer was differen-
tially affected by participants’ ratings of category typicality, it
is notable that physiological arousal was not maintained
throughout the test, and participants did not report that they ex-
pected shock to PS+ items. As such, threat transfer via sensory
preconditioning was not directly evident from our behavioral
measures, a result that aligns with reported difficulty in eliciting
robust expression in humans using these types of protocols.®'+%?
Desynchrony between threat measures is well-documented, %%
particularly between neural and behavioral or subjective out-
comes.®® Here, this might reflect an adaptive desynchrony in
which the brain encodes higher-order relationships and their
threat salience, as this is relatively efficient and expends minimal
resources but does not necessarily evoke behavioral generaliza-
tion. Another possible explanation is the “strong situation” the-
ory, which describes individual differences in threat learning as
a function of experimental threat salience.°® Strong threat
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situations refer to contexts with sufficient biological salience to
provoke an adaptive and normative response from most, result-
ing in near-zero response variability. In contrast, weak threat sit-
uations are those in which a clearly adaptive response is not
required by the encountered threat, leading to natural response
variability that can be accounted for by other variation sources.
For example, most people who see a honking truck about to
hit them will step away to avoid severe harm, whereas for a truck
farther away, some might attempt to quickly cross while others
will wait. Importantly, without sufficient relevant between-person
variation (e.g., differences in psychopathology), a weak situation
can become a strong (i.e., zero variability) situation. Our protocol
is possibly a weak situation for neural differences, but as the
threat threshold for behavioral expression is elevated, it might
function as a strong situation only when testing those without
threat-related psychopathology (e.g., PTSD).

The limitations of the current effort should be mentioned.
Notably, we did not test brain-behavior relationships (e.g.,
SCR related to neural integration indices) due to increased
model complexity (i.e., adding an additional interaction term)
resulting in model convergence issues and more general con-
cerns about power and reproducibility.®” There are also limita-
tions in terms of the ecological validity of the current design.
Our CS+ “booster trials” separating transfer phases help
reduce arousal habituation during transfer phases,”® but an
explicit, unambiguous reminder of the CS+/US association is
unlikely to be encountered in the real world. Additionally, our
study does not address how a single instance of threat
learning (e.g., a single dog attack) leads to widespread se-
mantic generalization. Our experimental design used repeated
instances of category exemplars to generate a strong cate-
gory-to-CS link, whereas real-life scenarios would likely
involve a more isolated category member. The concept
learning literature suggests that the basic level concept (e.g.,
a dog) is the most accessible entry point toward generalization
to the superordinate category.®® But whether higher-order fear
generalizes to a broader semantic category based on a more
isolated association between a single category exemplar and
a CS is an open question.

The integration of emotional memories with existing knowl-
edge is a pillar of human inference in a dynamic and sometimes
dangerous world, but this process has received limited empirical
attention. We used multivariate fMRI analyses to provide neuro-
behavioral explanations for the indirect integration of aversive
learning with a pre-established semantic structure. Evidence
for online and retrieval integration was dependent on neural re-
gion and analysis, supporting a “which-when” memory integra-
tion account®® while also suggesting next steps for further delin-
eating the precise neural circuity underlying these processes.
However, after ~24 h, canonical threat regions did not maintain
threat-related neural representations, and overall behavioral and
physiological expression of threat learning was limited, both of
which are possibly related to testing a psychiatrically healthy
sample. PTSD is empirically related to increased threat-related
neural activity at 24-h recall,*>’® and PTSD symptomology is
conceptually consistent with persistent heightened higher-order
threat learning.”"”® As such, this effort provides a potential
experimental tool for testing subtle pathogenic processes, as
we expect that stronger ~24-h reactivation and behavioral
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expression would emerge in relation to PTSD and potentially
other forms of anxiety-related psychopathology.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data

Deidentified neuroimaging and behavioral data This paper NIMH Data Archive (https://nda.nih.gov/); ID: C3797

Software and algorithms
Custom Python and R analysis code This paper OSF: https://osf.io/bpv97/; DOI https://doi.org/10.17605/0SF.I0/BPV97

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Joseph E. Dunsmoor
(joseph.dunsmoor@austin.utexas.edu).

Materials availability
This study did not generate any unique reagents.

Data and code availability

o All de-identified neuroimaging and behavioral data have been deposited at the NIMH NDA and are publicly available as of the
date of the publication. The data ID is listed in the key resources table.

e All custom Python and R code used for analysis has been deposited at OSF and is publicly available as of the date of publica-
tion. The DOl is listed in the key resources table.

® The lead contact can provide any additional information required to reanalyze the data reported in this paper upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We recruited 37 participants (Mage = 21.5, SD,ge = 3.07; 19 identified as women, one as nonbinary, 17 as men) from the local com-
munity to complete all measures. All participants completed standardized clinical interviews”*”* with a trained clinical psychologist
or technician and were determined to be free of any psychopathology, neurological disorder, or interfering medical conditions. Two
participants did not return for the second testing session; therefore, analyses were conducted on a final sample of N = 35. All study
procedures described herein received approval from the University of Texas at Austin Institutional Review Board (IRB #2020020157-
MOD1). All participants provided written informed consent prior to participation.

METHOD DETAILS

Stimuli

For PSs, we used 180 non-repeating images of either animals (N = 90) or tools (N = 90) against a white background obtained from
public online resources and used in prior studies from our group.**>® Each PS presentation was a different basic-level exemplar (e.g.,
there were not two different pictures of a dog at any point). We did not include threatening/phobia-related stimuli (e.g., spiders, kni-
ves). CSs were either an image of an orange square or a blue circle against a white background. Both shapes shared the same width,
height, and luminance and were approximately the same size as category exemplar images. Stimulus presentation was controlled by
Psychopy.””

The US was a 5-ms electrical shock, delivered to the left index and middle finger. Shock intensity was determined through a brief
calibration sequence prior to the experiment, in which participants reached a level described as “highly annoying/unpleasant, but not
painful” (5-6 on a 10-point scale) through a stepwise procedure.”® The shock was controlled using the STMEPM-MRI stimulation
system (BIOPAC Systems, Goleta, CA).

Task and procedures

The current task, based on similar human work and optimized for MVPA,”” consisted of seven phases across two days (see Fig-
ure 1B). Day 1 consisted of a perceptual localizer, preconditioning, threat conditioning, and two immediate transfer tests. After shock
and skin conductance response (SCR) electrodes were attached, participants completed the perceptual localizer (described below)
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and then a preconditioning phase in which a PS stimulus was presented for 4-6s, followed immediately by a .5s CS presentation.
Participants were instructed prior to the task that their goal was to learn which category is associated with each shape, and that
they will need to remember this association. PS category (PS+ and PS-) and CS shape (CS+ and CS-) pairings were counterbalanced
across participants. For each PS presentation during preconditioning (30 animals, 30 tools), participants indicated which shape they
thought would next appear using a 4-item scale (“Definitely square”, “Maybe square”, “Maybe circle”, “Definitely circle”). Next, par-
ticipants received instructions that they were now at risk for shock and received a single reminder shock during a blank screen to
ensure the perceived intensity had not changed. Participants then completed the threat conditioning phase. Only CSs were pre-
sented. One CS co-terminated with shock (CS+, 12 trials, 66% reinforcement) and one was never paired with shock (CS-, 12 trials);
this was counterbalanced across participants. CSs were presented for 5-7s. Participants provided shock expectancy ratings for
each CS, again using a 4-item scale (“Definitely shock”, “maybe shock”, “maybe no shock”, “definitely no shock”). Threat condi-
tioning was immediately followed by two transfer tests. In these tests, participants viewed novel PSs from each category (30 animals
and 30 tools; 15 of each category in each test) for 4-6s and continued to provide shock expectancy ratings as they did during the
threat conditioning phase. No US was ever administered following a PS. Between the two transfer tests there was a seamless pre-
sentation of two reinforced CS+ trials to remind participants of the CS-US association (i.e., “booster trials”).?® We refer to these trans-
fer tests as immediate Transfer 1 and Transfer 2 throughout this report.

On Day 2, approximately 24-hours later, participants completed identical transfer tests as on Day 1 (including the two reminder
CS-US trials in between the tests), referred to as 24-hour Transfer 3 and 4. Exemplars presented on Day 2 were also novel category
members and not seen on Day 1. Intertrial intervals were jittered (5-9s) for all phases across both days.

Finally, participants completed a recognition memory test, in which they viewed all Day 1 category stimuli (120 in total) in addition to
foil stimuli (30 novel tools, 30 novel animals). We explicitly informed participants they would only see Day 1 or new stimuli and never
Day 2 stimuli. Image order was pseudo-randomized and balanced such an equal number of items from each category appeared in
each third of the phase. Each image was presented for 3s and required a response on a 4-item scale (“definitely new”, “maybe new”,
“maybe old”, “definitely old”). Outside of the scanner, participants viewed each Day 1 stimulus and provided self-paced 1-7 typi-
cality ratings for each (1 = not typical at all of its category; to 7 = very typical of its category).

Skin conductance response

SCRs were acquired from the hypothenar eminence of the left palmar surface using disposable pre-gelled snap electrodes con-
nected to the MP-160 BIOPAC System (BIOPAC Systems). In line with previously described procedures,”®’® an SCR was considered
related to CS or PS presentation if the trough-to-peak deflection occurred 0.5-3s following stimulus onset, lasted between 0.5 and
5.0s, and was greater than 0.02 microsiemens (1S), with responses not fitting these criteria scored as a zero. We obtained SCR values
using a custom MATLAB (The Mathworks Inc., Natick, MA) script that extracts SCRs for each trial using the above criteria.®° Raw
SCR scores were square root transformed prior to analyses to normalize the distribution.®” We did not exclude participants based
on performance-based rules.®?

Functional MRI acquisition

Scanning was completed using a Siemens Vida 3T MRl scanner at the University of Texas at Austin with the support of the Biomedical
Imaging Center (RRID:SCR_021898). We acquired functional data with a 64-channel head coil at 2.5mm isotropic resolution. Using
the scanner software, we automatically oriented slices parallel to the anterior-posterior commissure. We measured BOLD using T2*
EPI sequences (TR = 1000ms, TR = 86ms, FOV = 86 x 86, multiband acceleration factor = 6). Before each functional series, we
collected T2* field maps with opposite encoding phase to assist with distortion correction. We also collected anatomical images
to assist in image registration: a T1w anatomical image (MPRAGE, .8mm isotropic) was collected during each session, and one
T2w anatomical image (.8mm isotropic) was collected on Day 2.

Image preprocessing

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.6%%% (RRID:SCR_016216), which is
based on Nipype 1.7.0°>%° (RRID:SCR_002502).

Anatomical data preprocessing

A total of 2 T1-weighted (T1w) images were found within the input BIDS dataset. All of them were corrected for intensity non-unifor-
mity (INU) with N4BiasFieldCorrection,®’ distributed with ANTs 2.3.3%% (RRID:SCR_004757). The T1w-reference was then skull-strip-
ped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTSs), using OASIS30ANTSs as target template. Brain
tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted
T1w using fast (FSL 5.0.9,%° RRID:SCR_002823). A T1w-reference map was computed after registration of 2 T1w images (after
INU-correction) using mri_robust_template (FreeSurfer 6.0.1"). Brain surfaces were reconstructed using recon-all (FreeSurfer
6.0.1,°° RRID:SCR_001847), and the brain mask estimated previously was refined with a custom variation of the method to reconcile
ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle®' (RRID:SCR_002438). Volume-
based spatial normalization to one standard space (MNI152NLin2009cAsym) was performed through nonlinear registration with
antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The following template
was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c® [RRID:SCR_008796;
TemplateFlow ID: MNI152NLin2009cAsym]
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Functional data preprocessing
For each of the 9 BOLD runs found per subject (across all tasks and sessions), the following preprocessing was performed. First, a
reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. A BO-nonuniformity map
(or fieldmap) was estimated based on two (or more) echo-planar imaging (EPI) references with opposing phase-encoding directions,
with 3dQwarp®® (AFNI 20160207). Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference
was calculated for a more accurate co-registration with the anatomical reference. The BOLD reference was then co-registered to the
T1w reference using bbregister (FreeSurfer) which implements boundary-based registration.”* Co-registration was configured with
six degrees of freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices, and six correspond-
ing rotation and translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9%%). BOLD runs were
slice-time corrected to 0.003s (0.5 of slice acquisition range 0s-0.00539s) using 3dTshift from AFNI 20160207°° (RRID:SCR_005927).
The BOLD time-series (including slice-timing correction when applied) were resampled onto their original, native space by applying a
single, composite transform to correct for head-motion and susceptibility distortions. These resampled BOLD time-series will be
referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resampled into stan-
dard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped
version were generated using a custom methodology of fMRIPrep. Several confounding time-series were calculated based on the
preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global signals. FD was computed using two for-
mulations following Power (absolute sum of relative motions®®) and Jenkinson (relative root mean square displacement between af-
fines®). FD and DVARS are calculated for each functional run, both using their implementations in Nipype (following the definitions by
ref Power et al.?%). The three global signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of
physiological regressors were extracted to allow for component-based noise correction (CompCor®’). Principal components are esti-
mated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two
CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from the top
2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are gener-
ated in anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on
BOLD space, the aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is obtained
by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not extracted from voxels
containing a minimal fraction of GM. Finally, these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in
the original implementation). Components are also calculated separately within the WM and CSF masks. For each CompCor decom-
position, the k components with the largest singular values are retained, such that the retained components’ time series are sufficient
to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining components are drop-
ped from consideration. The head-motion estimates calculated in the correction step were also placed within the corresponding con-
founds file. The confound time series derived from head motion estimates and global signals were expanded with the inclusion of
temporal derivatives and quadratic terms for each.”® Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised
DVARS were annotated as motion outliers. All resamplings can be performed with a single interpolation step by composing all the
pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction when available, and co-registra-
tions to anatomical and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTSs),
configured with Lanczos interpolation to minimize the smoothing effects of other kernels.®® Non-gridded (surface) resamplings
were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2'°° (RRID:SCR_001362), mostly within the functional processing workflow.
For more details of the pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.
Copyright waiver
The above boilerplate text was automatically generated by fMRIPrep with the express intention that users should copy and paste this
text into their manuscripts unchanged. It is released under the CCO license.

General linear models and whole-brain analyses

GLMs were computed using the nilearn 0.9.2 package '’ in Python 3.8.1, with standard boxcar modeling of trials convolved with a
Glover hemodynamic response function and a lag-1 autoregressive model to account for serial correlations. For standard GLM uni-
variate analyses, we included separate regressors for each stimulus across all trials of a given phase (e.g., PS+ and PS- in a transfer
phase) and applied smoothing with a Gaussian kernel (FWHM = 6mm). All images were masked to only include likely grey matter
voxels (MNI152 template, thresholded at 20% grey matter probability) and values were converted to effect sizes (beta). We also
generated Least Squares-Separate (LSS) style betaseries images for each phase,'®"'% in which we iteratively estimated activity
for a given trial while including all other trials from the same category in the same phase as regressors of no interest. To facilitate
MVPA, no spatial smoothing was applied to LSS betaseries images.

Whole-brain statistical analyses were conducted using AFNI 22.3.0 and a family-wise error approach. Two-tailed t-tests were
conducted on each voxel within participant-level whole-brain maps using 3dttest++ (with -Clustsim option). Significant cluster size
was determined via k = 10,000 random permutations of null t-test results, which were then run through 3dClustSim to identify cluster-
thresholds for each p-value. Using these cluster-thresholds, 3dClusterize was used to identify clusters in group-level masks and
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extract cluster statistics (significant at cluster p < .05, voxel p < .001, third-nearest neighbor clustering) for category-selective activity
during a perceptual localizer (see Figure S2; Table S1) and CS+ > CS- activity during the threat conditioning task (see Figure S3;
Table S2).

ROI selection and parameter estimate extraction
ROls were chosen in accordance with a priori hypotheses based on extensive rodent aversive preconditioning work'® and human
neuroimaging of threat conditioning and episodic memory integration.®’"'°* For smaller regions in which higher spatial specificity
was required, bilateral BLA were defined using the Julich probabilistic atlas,'®® whereas bilateral PRC was extracted from a proba-
bilistic map of manually segmented hippocampal and parahippocampus subregions.'°® Both ROIs were defined at the group level.
All probabilistic maps except the BLA were thresholded at 50% or greater likelihood of a given voxel belonging to that anatomical
region. The BLA mask used a more stringent threshold of 75% due to increased noise in this region and to increase the chance voxels
from anatomically adjacent subregions were not included in this mask. For larger ROls, including the mPFC, full amygdala, and hip-
pocampus, we defined ROIs for each participant anatomically using the relevant FreeSurfer parcellations of the Desikan-Killiany
atlas. Although not part of our a priori ROls, the entorhinal cortex serves as the primary input/output hub for the hippocampus
and subserves many aspects of conceptual representations.'°”'° Accordingly, for exploratory analyses we also created a bilateral
entorhinal cortex ROI that was defined using the Julich probabilistic atlas.

To extract parameter estimates for each ROI, we masked subject-level contrast maps (see above for GLM details) using a given
ROI mask and extracted the average of the effect size values within this mask. These subject-level averages were then used as uni-
variate activity variables in further analyses.

Perceptual localizer

Participants viewed images from categories that included animals, tools, shapes, and phase-scrambled animals and tools. Each im-
age was shown for 1s and separated by 1s. Participants were given an irrelevant task (identifying a single repeated image with a but-
ton press, i.e., perceptual N-back) to keep their attention during the localizer. Images were presented in two runs. Each run included
four blocks that consisted of 8 images each. Each category was presented for two blocks each (total 16 images per category). There
were 16s of rest between blocks. Each image was distinct from any other localizer images and from stimuli used during experimental
phases. LSS betaseries for each localizer block were computed.

Multivariate pattern analysis

MVPA included representational similarity analyses (RSA) and multivariate decoding. For RSA, we applied the nilearn library and
custom Python code to LSS betaseries for trial-by-trial data from each phase and each stimulus (weighted by mean univariate es-
timates from the same phase and stimulus type to reduce noise®**":'%%) to create a representational similarity matrix for each a priori
ROI. In these matrices, each cell is a Pearson-correlation between all pairs of PS+ and PS- images across all phases. We then Fisher z
transformed matrices and extracted the mean value of the cells that corresponded to within-category similarity (e.g., all cells with PS+
to PS+ correlations). We also extracted the mean value for the cells that corresponded to the similarity of each transfer phase to either
threat conditioning or preconditioning for each stimulus type (e.g., all cells with correlations between PS+s in generalization and CS+s
in threat conditioning or in preconditioning).

Classification was conducted using the scikit-learn library’'® and custom Python scripts. In line with similar prior work®*?* and
knowledge on canonical object regions,''" we focused classification on occipital and temporal regions with voxels that uniquely
code for animals or tool object categories. These category-selective cortices were functionally identified at the group-level through
whole-brain analyses (voxel-wise p < .001, cluster-corrected p < .05, see Table S1; Figure S2) of univariate animal>tool and tool>a-
nimal contrasts of perceptual localizer fMRI data. For each set of contrasts, a 5mm sphere was drawn around the peak intensity voxel
to focus analyses on the most selective voxels and to ensure a similar number of features (voxels) were submitted to classification for
each category (animal-cortex = 64 voxels, tool-cortex = 72 voxels). We then trained an L2 weighted logistic regression classifier
(“liblinear” solver) to decode category-specific activity (with animals, tools, and scrambled images submitted to classification) in lo-
calizer functional data in each of the two identified ROls. We assessed classifier sensitivity by cross-validating performance from one
localizer block with the other for each classifier (mean animal cortex ROC area under the curve [AUC] = 67.5%, SD = 10%; mean
tool cortex ROC AUC 70.5%, SD = 13.2%). Three participants were removed from further analyses due to unreliable classification
(AUC values < 0.5), leaving N = 32 for further decoding analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

All ROI and behavioral/physiological group-level statistical analyses were conducted using R 4.3.""% We used robust linear mixed-
effects regression for all analyses, which is consistent with current recommendations for task-based fMRI data with multiple repeated
factors.”"®>""® All models were specified using the robustimm''® and Ime4'"” libraries, reducing bias in clustered (repeated-mea-
sures) data by minimizing the influence of extreme outlier observations.''® All models contained, at minimum, within-subject fixed
effect of stimulus (e.g., CS+/CS- or PS+/PS-) and between-subject fixed effect of counterbalance order. Random effect structure
was confirmed through likelihood ratio tests of model fit and using a “keep it maximal” approach, per standard recommendations.’'®
From this model, we tested differences in stimuli estimated marginal means (using the emmeans'"? library) within each phase (e.g.,
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PS+ vs. PS- during each transfer test). Per recommendations, all models were fit with restricted maximum likelihood and tests used
Kenward-Rogers degrees of freedom.'2%'2! We provide standardized estimates (8), parametric 95% confidence intervals, and Wald
test t-values (t,.10) and p-values for all tests unless otherwise noted. %> Model diagnostics, tests, and parameter extraction were all
conducted using functions from the easystats, emmeans, and rstatix R libraries."'®'?*~'? Standardization of model parameters was
completed through post-hoc refit method.'?” When used, bootstrapping was done via a standard workflow using the boot
Iibrary.128‘129

For recognition memory data, a generalized linear mixed-effects model (binomial/logistic) was used to analyze high-confidence
recognition responses (0 = “sure new”, 1 = “sure old”). To correct memory recognition scores for false alarms, we included
within-subject trial-by-trial false alarms and between-subject mean false alarm rate as fixed-effects covariates in our models to
disambiguate within- and between-subject false alarm effects.'® Asymptotic z-tests (Zasymp.) Were conducted for these models. '’
One participant reported falling asleep during recognition and was excluded from recognition analyses (N = 34). For Day 2 behavioral
tests, we combined immediate Transfer 1 and Transfer 2 stimuli for all analyses. For behavioral/physiological tests involving PS data
(i.e., data with trial-unique stimuli), we modeled data at the trial-level with trial random and fixed effects to account for additional ob-
servations and restrict our degrees-of-freedom.'2"1%2
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