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SUMMARY

Emotional experiences can profoundly impact our conceptual model of the world, modifying how we repre-
sent and remember a host of information even indirectly associated with that experienced in the past. Yet,
how a new emotional experience infiltrates and spreads across pre-existing semantic knowledge structures
(e.g., categories) is unknown.We used amodified aversive sensory preconditioning paradigm in fMRI (n = 35)
to investigatewhether threatmemories integratewith apre-established category to alter the representation of
the entire category.Weobserved selective but transient changes in the representation of conceptually related
items in theamygdala,medial prefrontal cortex, andoccipitotemporal cortex following threat conditioning to a
simple cue (geometric shape) pre-associated with a different, but related, set of category exemplars. These
representational changes persisted beyond 24 h in the hippocampus and perirhinal cortex. Reactivation of
the semanticcategoryduring threat conditioning, combinedwith activationof thehippocampusormedial pre-
frontal cortex, was predictive of subsequent amygdala reactivity toward novel categorymembers at test. This
provides evidence for online integration of emotional experiences into semantic categories, which then pro-
motes threat generalization. Behaviorally, threat conditioning by proxy selectively and retroactively enhanced
recognition memory and increased the perceived typicality of the semantic category indirectly associated
with threat. These findings detail a complex route throughwhich new emotional learning generalizes bymodi-
fying semantic structures built up over time and stored in memory as conceptual knowledge.

INTRODUCTION

Imagine you developed a fear of dogs after a terrifying encounter

at a relative’s house. As time goes by, you realize that not only do

you avoid your relative’s dog but also parks, hiking trails, and

certain friends’ houses—all locations that did not previously

cause anxiety but where you know, through experience, that

dogs might be off leash. This illustrates the complex relation-

ships that humans draw upon to integrate emotional experiences

into pre-existing knowledge structures, allowing us to draw

meaningful inferences about the possibility of danger in the

absence of direct knowledge. This cognitive process conforms

to long-standing principles from learning theory1 and is opera-

tionalized by paradigms wherein memories are indirectly modi-

fied through reinforcement of related stimuli, known as higher-

order conditioning.2,3

A flexible learning and memory system that can efficiently up-

date prior stimulus representations and semantic (knowledge)

structures, or schemas,4 with new learning is clearly adap-

tive5—we can predict the potential for harm without experi-

encing the negative consequences directly (e.g., if you avoid

parks, you lower even the minuscule possibility of another dog

bite at those locations). Conversely, an experience of threat

that indiscriminately generalizes to an entire semantic structure

can spread threat associations to harmless stimuli or situations

only tangentially related to the negative experience (e.g., avoid-

ing other commonly domesticated animals) (see Figure 1A for a

visualized example). This maladaptive form of generalization is

characteristic of many anxiety-related disorders, such as post-

traumatic stress disorder (PTSD) and obsessive-compulsive dis-

order.6–8 Although the ability to modify pre-existing semantic

structures with new learning is a hallmark of human cognition,

the neurobehavioral mechanisms by which threat learning might

do this are poorly understood.

There have been at least two primary experimental ap-

proaches for studying how a new experience updates our

3522 Current Biology 34, 3522–3536, August 5, 2024 ª 2024 Elsevier Inc.
All rights are reserved, including those for text and data mining, AI training, and similar technologies.

ll

mailto:samuel.cooper@austin.utexas.edu
mailto:joseph.dunsmoor@austin.utexas.edu
https://doi.org/10.1016/j.cub.2024.06.071
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2024.06.071&domain=pdf


mental model of the world by modulating memories related to

those experiences. One approach involves animal learning

models that incorporate sensory preconditioning protocols.

Sensory preconditioning is a well-established protocol in which

animals first undergo a preconditioning phase where they learn

an association between at least two arbitrary and affectively

neutral stimuli (e.g., tone and light) in the absence of meaningful

reinforcement (i.e., latent learning).2,9–12 Then, one of the stimuli

is used as a conditioned stimulus (CS, the light) in a learning

(conditioning) phase where the animal learns it predicts a bio-

logically salient unconditioned stimulus (US; e.g., a shock in

threat conditioning). Finally, a transfer phase (also referred to

as a retrieval phase) tests whether the preconditioned stimulus

(PS, the tone) elicits a conditioned response (e.g., freezing)

similar to that elicited by the CS during initial learning. Neurobi-

ological research shows consistent involvement of the hippo-

campus, perirhinal cortex (PRC), and orbitofrontal cortex in

learning and retrieval in sensory preconditioning tasks.13 In

aversive sensory preconditioning, the PRC cooperates with

the basolateral amygdala (BLA) to coordinate indirect PS-US

threat associations.14,15 The other primary experimental

approach involves episodic memory tasks in humans that

require novel inferences about pairs or groups of previously en-

coded stimuli based on new learning. These tasks consistently

A

B

Figure 1. Conceptual and experimental overview of modified aversive sensory preconditioning procedure

(A) Conceptual overview. Threat associations can generalize from a traumatic incident (e.g., a dog bite) across similar conceptual associations, referred to as a

semantic structure or network (e.g., things related to dogs, such as parks or pet stores), evenwhen stimuli from these structures were not present nor perceptually

resemble aspects of the traumatic incident.

(B) 2-day aversive sensory preconditioning task structure. Day 1: semantic categories (animal, tools) were paired with one of two neutral shapes (circle, square)

during a preconditioning phase. One shape (CS+) was then paired with the US (shock) during a subsequent threat conditioning phase; the category paired with

this shape is labeled the PS+, the other shape/category are CS� and PS�, respectively. Transfer phases immediately after conditioning (transfer 1 and 2) test for

threat (CS+-US) associations generalizing to novel PS+ category items. Day 2: transfer tests were repeated with novel category exemplars (transfer 3 and 4) and

followed by a recognition memory test for day 1 stimuli.

CS+, conditioned threat cue; CS�, conditioned safety cue; PS+, preconditioned threat cue; PS�, preconditioned safety cue; SCR, skin conductance response;

US, unconditioned stimulus.
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show engagement of the hippocampus and medial prefrontal

cortex (mPFC) for integrating across overlapping stimuli or

events to draw novel inferences.5,16–19

Integrating a newmemory of threat with broad semantic struc-

tures could lead to widespread changes in how related concepts

are perceived, appraised, and remembered.20,21 In this way, the

transfer of emotional value could go beyond directly experienced

instances of a stimulus in the past and spread more widely

through underlying associations built up over time and stored

in memory as semantic structures. Using the earlier example, it

is unnecessary to have prior experience with the vicious dog

outside of your relative’s house. Pre-existing knowledge of

where dogs are likely to be encountered is sufficient to motivate

avoidance of those locations after the attack. Neuroimaging

research shows that threat conditioning modulates cortical rep-

resentations of object concepts that are directly associated with

threat.22,23 However, whether and how neural mechanisms

designed to integrate discrete memories provide a route to

indirectly implant emotional value into existing semantic struc-

tures is unknown.

A major question concerns when memory integration occurs

for events that overlapwith previous experiences.5,16,17,24 An on-

line integration (i.e., mediated learning) account proposes that

the mental representation of the PS is reactivated on CS trials

during conditioning, thereby integrating the PS andUS represen-

tations at the time of emotional learning.15 Evidence from aver-

sive sensory preconditioning tasks in rodents suggests that on-

line integration requires the PRC, as temporary lesions of the

PRC spare direct threat conditioning but prevent the transfer of

threat learning and responding to the PS.13 Additionally, non-

aversive memory integration tasks in humans show that hippo-

campal activity at the time of learning predicts successful infer-

ence and preferences toward the paired preconditioned cues at

test18 (but see Wang et al.25).

Alternatively, the retrieval account of memory integration26

emphasizes processes during the transfer phase. In this ac-

count, PS presentations elicit retrieval of the previously associ-

ated CS, which brings with it the representation of the US to

inform behavior (i.e., chaining) without a mediated PS-US repre-

sentation. Appetitive sensory preconditioning work suggests the

orbitofrontal cortex is required to retrieve indirectly acquired

positive-value information of the PS to predict novel outcomes

during retrieval.27

These two accounts are not mutually exclusive. Dynamic

behavioral demands might necessitate memory integration at

the time of conditioning in some instances or at transfer test

(retrieval) in others.26 For example, online integration at the

time of emotional learningmight modify memory representations

of specific instances of the PS pre-associated with the CS

in preparation for reencountering that specific PS.15,18,19

Retrieval-based integration might rely on pattern completion

processes, subserved by the hippocampus,24 or relational

reasoning, subserved by the hippocampus and mPFC,16 to

draw upon a broader network of relational links when encoun-

tering novel instances of the PS at a transfer test.

Here, we investigated the neurobehavioral mechanisms by

which emotional learning indirectly modulates the representation

of object concepts through memory integration. We used fMRI

while participants completed a novel 2-day aversive sensory

preconditioning task and applied multivariate pattern analysis

(MVPA) to test different accounts for how regions in the medial

temporal lobe and the mPFC facilitate integration of a threat

memory with a previously associated category. During precondi-

tioning, trial-unique (non-repeating) exemplars from two seman-

tic categories (animals or tools) served as PSs and were paired

with a shape CSs (square or circle). Then, during threat condi-

tioning, one shape (CS+) predicted an aversive electric shock,

and the other was safe (CS�). Next, novel category exemplars

from the PS categories (now referred to as PS+ and PS�, indi-

rectly associated with the CS+ and CS�, respectively) were pre-

sented alone during two transfer tests, separated by a brief

reminder of the CS-US association.28 The next day, participants

completed two more transfer tests in the scanner to assess

whether representational changes persist over a 24-h period.

The experiment concluded with a recognition memory test and

subjective ratings of category typicality for the PSs encoded

before and after threat conditioning on day 1.

Synthesizing research on aversive sensory preconditioning

and non-affective memory integration, we predicted that aver-

sive sensory preconditioning with trial-unique exemplars would

be sufficient to generate a category-level association with the

CS, which would then selectively modulate patterns of neural

similarity for novel category members at test following direct

CS-US learning. Specifically, we hypothesized that medial tem-

poral lobe regions primarily implicated in aversive sensory pre-

conditioning (PRC, hippocampus, amygdala) and cortical mem-

ory integration regions (mPFC) would demonstrate stronger

pattern similarity for the PS+ category in comparison with the

PS� category at test. We also hypothesized that category-se-

lective occipitotemporal cortex regions would demonstrate

the same pattern, reflecting their role in tracking semantic

relationships.

To investigate the mechanisms underlying potential category-

level modulation, we tested reinstatement of threat-specific CS+

neural patterns onPS+ trials at test (retrieval account).Wehypoth-

esized that this form of reinstatement would be evident in the

medial temporal lobe andmPFC.Wealso tracked neural reactiva-

tion of the PS+ category during conditioning on CS+ trials, which

would putatively support the recombination of the PS category

and the CS at the time of threat conditioning (online integration).

For this analysis, our hypothesis was limited to predicting that re-

activation in category-selective occipitotemporal regions would

relate to BLA activity to the PS+ at test, given strong rodent evi-

dence for the role of the BLA in online integration. As an additional

exploratory test, we also investigated the potentially moderating

role of individual differences in neural activity in the hippocampus

and mPFC, both key memory integration regions, in the relation-

ship between increased category reactivation and threat-related

BLA activity.

RESULTS

Behavioral results
Threat conditioning

Confirming successful differential threat acquisition, mean skin

conductance responses (SCRs) were greater for the CS+ relative

to the CS� (b = 0.45, twald(34) = 4.97, p < 0.001, 95% confidence

interval [CI] [0.26, 0.63]), as weremean shock expectancy ratings
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(b = 2.16, twald(33.5) = 41.18, p < 0.001, 95% CI [2.05, 2.26]). See

Figure S1 for plotted results.

Transfer tests

Mean SCRswere not significantly different between the PS+ and

PS� during the immediate (day 1) or 24-h (day 2) transfer test

(psR 0.085). Given prior evidence that typicality influences cate-

gory-level threat generalization,29 we tested whether individual

differences in participants’ mean typicality for the PS+ category

predicted arousal toward PS+ items at test. During the transfer

phase (transfer 1) immediately after conditioning, category typi-

cality significantly positively moderated the relationship between

stimulus and SCRs (b = 0.117, twald(1,490) = 1.99, p = 0.046, 95%

CI [0.01, 0.23]) (Figure 2C). This association between retrospec-

tive typicality ratings and within-session arousal was selective to

the PS+ category. Typicality did significantly moderate in other

experimental phases (ps R 0.376).

Participants did not report elevated shock expectancy ratings

during the transfer tests. Mean ratings indicated an overall low

likelihood of receiving a shock on either PS+ (day 1: M = 1.175;

day 2:M = 1.045) or PS� (day 1:M = 1.45; day 2:M = 1.14) trials.

Ratings were nominally enhanced on PS� trials during immediate

transfer 1 and 24-h transfer 3 (transfer 1: b =�0.227, twald(1,950) =

�4.987, p < 0.001, 95%CI [�0.31,�0.13]; transfer 3: b =�0.152,

twald(1,943) = �3.035, p = 0.002, 95% CI [�0.24, �0.05]); there

was no PS+ vs. PS� difference on either immediate transfer 2

or 24-h transfer 4 (transfer 2: b = 0.011, twald(1,950) = 0.248, p =

0.803, 95% CI [�0.078, 0.10]; transfer 4: b < 0.001, twald(1,942) =

�0.001, p = 0.999, 95% CI [�0.09, 0.09]).

Threat conditioning retroactively enhances memory for

items pre-associated with a conditioned stimulus

24-h recognition memory performance (controlling for false

alarm rate) was significantly greater for PS+ vs. PS� items

encoded prior to conditioning (b = 0.226, zasymp. = 2.28, p =

0.022, 95% CI [0.03, 0.42]) (see Figure 2A). There was no

significant difference between PS+ and PS� items encoded dur-

ing the transfer tests immediately following conditioning (b =

�0.032, zasymp. = �0.299, p = 0.765, 95% CI [�0.24, 0.18]).

Subjective typicality ratings

Participants rated PS+ items (relative to PS� items) as being

overall more typical of their semantic category. This included

items encoded during preconditioning (b = 0.10, twald(3,826) =

2.55, p = 0.010, 95% CI [0.01, 0.18]) and the day 1 transfer tests

(transfers 1 and 2) (b = 0.09, twald(3,826) = 2.32, p = 0.020, 95%CI

[0.02, 0.18]) (see Figure 2B). This result suggests that threat-con-

ditioning retroactively and proactively enhanced subjective stim-

ulus typicality, in line with prior findings.30

Univariate analysis of aversive sensory preconditioning
Whole-brain analyses

Univariate whole-brain fMRI analysis (voxel wise p % 0.001,

cluster corrected p < 0.05) of the CS+ > CS� contrast for threat

conditioning found significant clusters consistent with prior

threat conditioning meta-analyses31 (see Table S2; Figure S3).

Significant whole-brain clusters for the PS+ > PS� or PS� > PS+

univariate contrasts were not found during transfer phases or

preconditioning.

Univariate ROI analyses

Activity in the BLA (b = 0.31, twald(170) = 2.49, p = 0.013, 95% CI

[0.06, 0.56]) and hippocampus (b = 0.32, twald(170) = 2.25, p =

0.025, 95% CI [0.04, 0.64]) was significantly higher for the PS+

(vs. PS�) during the transfer 1 test. Across all regions of interest

(ROIs), there were no other significant PS+ > PS� or PS� > PS+

activations during the transfer tests (ps R 0.075).

Pattern similarity analysis of aversive sensory
preconditioning
To examine potential modulation of category-level representa-

tions resulting from indirect threat learning, multivariate patterns

A B C

Figure 2. Behavioral and physiological evidence for successful aversive sensory preconditioning

A retroactive bias toward increased memory for PS+ (vs. PS�) items encoding during preconditioning is behavioral evidence for successful mediated learning (A).

Further evidence includes increased reportedmean typicality for PS+ (vs.PS�) items (B) andan immediate transfer 13SCR interaction (C), such that higher typicality

for thePS+categorywasassociatedwith increasedSCR(positiveslope) toPS+sduring transfer.Forbox-and-whiskerplots, theboxrepresents themiddle50%of the

individual data points (fitted values; for recognition data, values are transformedback to the response scale). Theshadedpoint and error bars inside thebox represent

the mixed-effects regression estimated marginal mean and 95% confidence intervals. Also see Figure S1 for behavioral and physiological data from the threat

conditioning phase.

CS+, conditioned threat cue; CS�, conditioned safety cue; PS+, preconditioned threat cue; PS�, preconditioned safety cue; SCR, skin conductance response.

*p < 0.05.
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of activation to each trial-unique PS item were correlated with

the patterns from all other PS category exemplars encoded

within the same experimental phase. As expected, there was

no difference in pattern similarity between the PS+ and PS� cat-

egories at pre-conditioning in any a priori ROIs (ps R 0.773;

Figures 3C and 4; also see Table S3 for full test statistics and

Figures S4 and S5 for plots showing PS+ and PS� values sepa-

rately), providing benchmark evidence that semantic categories

were not differentially represented in multi-voxel patterns of ac-

tivity prior to conditioning.

Following conditioning, category-selective occipitotemporal re-

gions (identified fromthe independentcategory localizer) exhibited

enhancedpatternsimilarity forPS+ itemsvs.PS� itemsduringday

1 transfer tests (transfer 1: b = 0.33, twald(170) = 2.11, p = 0.036,

95% CI [0.02, 0.64]; transfer 2: b = 0.35, twald(170) = 2.28, p =

0.023, 95% CI [0.04, 0.66]) (see Figure 3C). Notably, selectivity in

pattern similarity between the PS+ vs. PS� categorieswas absent

in theseoccipitotemporal regionsafter�24h (transfer3:b=�0.02,

twald(170) = �0.15, p = 0.877, 95% CI [�0.33, 0.28]; transfer 4:

b = 0.07, twald(170) = 0.46, p = 0.642, 95% CI [�0.23, 0.38]).

A B

C

Figure 3. Schematic of within-category representational similarity analyses and category-cortex results

(A) Overview of within-category representational similarity analyses to test for category-level neural modulation after threat conditioning. For each phase, each

multi-voxel pattern for each stimulus is correlated with all other stimuli from the same category for all possible pairs. Each trial is a unique category exemplar.

(B) For each phase, correlations fromwithin each category are averaged to form an overall metric of within-category similarity. PS+ vs. PS� similarity scores from

the same phase are then tested.

(C) Within-category representational similarity results for category-selective occipitotemporal regions across all task phases. Data are represented as PS+ > PS�
difference scores for visualization purposes only; models/estimated marginal means incorporate separate PS+ and PS� values. Larger values indicate stronger

similarity for the PS+ vs. PS�. For box-and-whisker plots, the box represents the middle 50% of the individual data points. Shaded point and error bars inside the

box represent the mixed-effects regression estimated marginal mean and 95% confidence intervals. Statistical tests are conducted on the estimated marginal

means visualized here, which are derived from outlier-resistant robust models that down-weight extreme individual values in tests. Also see Figure S4 for fitted

values with separate PS+ and PS� values and Table S3 for full test statistics.

PS+, preconditioned threat cue; PS�, preconditioned safety cue.

*p < 0.05
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Figure 4. Within-category similarity across a priori anatomical ROIs

Perirhinal cortex and hippocampus showed increased PS+ similarity at immediate and 24-h transfer tests, whereas the amygdala and medial PFC only showed

this effect at the immediate transfer test. The analytic steps used to produce these results are visualized in Figure 3. Data are represented as PS+>PS� difference

scores for visualization purposes only; all models and estimated marginal means incorporate separate PS+ and PS� values. Larger values indicate stronger

similarity for the PS+ vs. PS�. For box-and-whisker plots, the box represents the middle 50% of the individual data points. Shaded point and error bars inside the

box represent the mixed-effects regression estimated marginal mean and 95% confidence intervals. Statistical tests are conducted on the estimated marginal

means visualized here, which are derived from outlier-resistant robust models that down-weight extreme individual values in tests. Also see Figure S5 for fitted

values with separate PS+ and PS� values and Table S3 for full test statistics, as well as Figure S6 for visualization of exploratory analyses in entorhinal cortex.

PFC, prefrontal cortex; PS+, preconditioned threat cue; PS�, preconditioned safety cue.

*p < 0.05.
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Across a priori ROIs from the medial temporal lobe and mPFC

(see Figure 4), there was enhanced pattern similarity for trial-

unique items from the PS+ vs. PS� category in the PRC at

both day 1 transfer tests (transfer 1: b = 0.29, twald(170) = 3.05,

p = 0.002, 95% CI [0.10, 0.48]; transfer 2: b = 0.40, twald(170) =

4.14, p < 0.001, 95% CI [0.21, 0.59]). This selectivity in PS+

pattern similarity in the PRC extended to the 24-h test (transfer

3: b = 0.33, twald(170) = 2.93, p < 0.001, 95% CI [0.14, 0.53]). In

the hippocampus, enhanced pattern similarity was observed

during the second transfer test on day 1 (b = 0.18, twald(170) =

2.16, p = 0.031, 95% CI [0.01, 0.34]) and extended to the first

transfer test on day 2 (b = 0.24, twald(170) = 2.93, p = 0.003,

95% CI [0.08, 0.41]). The amygdala (b = 0.30, twald(170) = 3.29,

p = 0.001, 95% CI [0.12, 0.48]) and mPFC (b = 0.34, twald(170) =

3.01, p = 0.003, 95% CI [0.11, 0.57]) exhibited selectively

enhanced PS+ pattern similarity during the second transfer

test on day 1; however, this selectivity did not extend to day 2

in either region (ps R 0.061, see Table S3 for full test statistics).

Threat pattern reinstatement during transfer tests
Multivariate analyses have identified the amygdala andmPFC as

reflecting neural threat patterns at tests of threat memory

retrieval.32–34 Here, we tested the degree to which multi-voxel

threat patterns are reinstated during transfer tests. Multi-voxel

activity patterns evoked by CS trials during conditioning were

correlated with their corresponding pre-associated PSs during

transfer as a form of encoding-retrieval similarity.32,35,36 There

was significant reinstatement of CS+ threat conditioning neural

patterns in the amygdala during transfer 1 on PS+ trials

(vs. CS�/PS� trials) (b = 0.26, twald(306) = 3.04, p = 0.002,

95%CI [0.09, 0.44]) (see Figure 5B). Threat-specific pattern rein-

statement was selective to the first transfer test (other transfer

tests, ps R 0.816). Interestingly, selective threat pattern rein-

statement in the mPFC was observed in the second transfer

test on day 1 (b = 0.36, twald(306) = 4.72, p < 0.001, 95% CI

[0.21, 0.52]). All other mPFC comparisons, as well as the same

tests within the PRC, hippocampus, and category-selective vi-

sual regions, were nonsignificant (ps R 0.088).

Evidence of online integration through cortical
reactivation during aversive learning
Using our validated classifier, we estimated reactivation of the

PS+ category (animals or tools, counterbalanced) during the pre-

sentation of the CS+ at the time of threat conditioning in cate-

gory-selective cortices as an index of online emotional memory

integration. According to the online integration account, CS trials

will trigger reactivation of the PS representation, which will un-

dergo modification as CS-US learning progresses throughout

conditioning, thereby resulting in a modified PS representation

at test.26 Decoded PS� category reinstatement on CS� trials

served as a comparison condition. For all analyses, decoded

category reactivation is referred to by PS+ or PS� label, as for

some participants, the animal category was the PS+, and the

tool was PS�, and for others, vice versa. Decoding yields clas-

sifier evidence values (probability estimates); larger values indi-

cate greater reactivation likelihood. Aligning with related prior

work,37 classifier evidence for PS+ category reactivation was

well distributed (M = 0.46, SD = 0.15, interquartile range

[IQR] = 0.22) and significantly differed from zero (one-sample t

test, t(33) = 16.8, p < 0.001) (Figure 6B). Evidence values did

not significantly differ based on which category was the PS+ or

PS� per participant, t(30) = �0.045, p = 0.964. Similar results

were found for the PS� category.

We then used individual participants’ classifier evidence for

the decoded PS+ (and PS�) on CS+ trials during conditioning

to predict their degree of BLA activity during the transfer test

on PS+ trials. Individual differences in BLA activity during trans-

fer were the key focus of this analysis, given this region’s pre-

sumed role in retrieving the modified association of the PS+,

which was indirectly altered at the time of threat conditioning

(online integration) through reactivation of the PS+ representa-

tion.15 To test for moderation of this relationship, we expanded

the interaction with another term in two parallel analyses: one

with hippocampus univariate activity to CSs during threat

A

B

Figure 5. Testing for threat reinstatement via across-phase repre-

sentational similarity analyses

(A) Overview of across-phase representational similarity analyses used to test

for neural threat pattern reinstatement. Multi-voxel threat (CS+) and safety

(CS�) patterns were correlated with the corresponding category pattern (CS+

to PS+, CS� to PS�) from either preconditioning or transfer phases. After

threat conditioning, we predicted transfer PS+ patterns would more strongly

resemble CS+ patterns, whereas preconditioning and PS� patterns would

minimally resemble threat conditioning patterns.

(B) Neural threat reinstatement was observed in the amygdala during transfer,

as PS+ similarity to CS+ patterns was increased relative to CS�/PS� simi-

larity. As expected, no PS+/PS� difference was observed for preconditioning/

threat conditioning patterns. For box-and-whisker plots, the boundaries of the

box represent the middle 50% of the plotted individual data points. Inside the

box, shaded point and error bars represent the mixed-effects regression

estimated marginal mean and 95% confidence intervals. Statistical tests are

conducted on the estimated marginal means visualized here, which are

derived from outlier-resistant robust models that down-weight extreme indi-

vidual values in tests.

CON, threat conditioning; PRE, preconditioning; PS+, preconditioned threat

cue; PS�, preconditioned safety cue.

*p < 0.05.
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conditioning, the other with mPFC activity to CSs during threat

conditioning. We focused on these two regions due to their

prominence in the memory literature as key hubs for episodic

memory integration.16 To determine whether the addition of a

separate hippocampus or mPFC univariate activity term to the

model, both as a separate term and then added to the interaction

term, significantly improved model fit (as improved fit for the

model with the interaction is a requirement for formal moderation

analyses), we conducted likelihood ratio tests comparing

models with and without the expanded interaction (chi-squared

distribution, significance at p < 0.05). All models continued to

include the repeated-measures stimulus term (CS+/PS+/,

CS�/PS�).

Reactivation of the PSs during CS trials did not selectively pre-

dict BLA activity during either transfer phase. Addition of the CS

univariate activity term (without adding it to the interaction term)

resulted in significantly improved model fits for both hippocam-

pal (c2(2) = 10.868, p = 0.004) and mPFC activity (c2(2) = 10.672,

p = 0.004). Importantly, interacting PS reactivation with CS uni-

variate activity in the hippocampus (c2(3) = 12.723, p = 0.005)

A B

C D

Figure 6. Decoding analyses reveal that category reactivation interacts with memory integration activity to predict generalized BLA activity

for novel items from an indirectly threat conditioned category

(A) Schematic of fMRI decoding analyses. During threat conditioning, PS category reactivation is decoded using a classifier validated on localizer data. Decoding

is conducted within category-selective occipitotemporal ROIs. Degree of category reactivation is indexed by evidence values reflecting the strength of the PS

pattern reactivation.

(B) Distribution of decoded PS+ and PS� reactivation evidence values indicates sufficient variability for individual difference analyses. Error bars show SEM;

bolded bands represent the median. Mean evidence values for both PS+ and PS� are significantly different than zero (ps < 0.001).

(C) Schematic of decoding moderation analyses. Beta coefficients (b) represent threat conditioning terms predicting the outcome variable (BLA activity during

transfer 2). b1 represents the decoded PS during the CS from category-selective cortex, b2 represents univariate activity during a CS, and b3 represents the b1 3

b2 interaction. The actual tested model is structured hierarchically via mixed-effects regressions, with all CS+/PS+ and CS�/PS� data in a multilevel (repeated-

measures) stimulus term nested within each participant.

(D) Cortical reactivation and online integration results, indicating that the hippocampus significantly moderates the relationship between category cortex re-

activation during threat conditioning and BLA activity. For visualization, separate interaction coefficients (decoded PS reactivation 3 CS activation) were ex-

tracted for transfer 2 PS+ and PS� conditions and bootstrapped (k = 1,000). Coefficients, 95% confidence intervals, and distributions are plotted against zero to

demonstrate interaction significance; confidence intervals not overlapping with zero are significant.We only visualize the hippocampusmoderation analysis here;

the medial prefrontal cortex was also a significant moderator.

BLA, basolateral amygdala; CS+, conditioned threat cue; CS�, conditioned safety cue; hipp., hippocampus; PS+, preconditioned threat cue; PS�, precondi-

tioned safety cue.

*p < 0.05.
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or mPFC (c2(3) = 11.6, p = 0.008) during threat conditioning re-

sulted in models that significantly predicted BLA activity during

immediate transfer 2 (see Figure 6C for schematic of interaction

that includes hippocampal CS activity). Probing these interac-

tions (moderations) revealed that increased BLA PS+ (vs. PS�)

during transfer 2 was selectively related to the interaction of

increased PS+ (vs. PS�) reactivation and increased univariate

activity in the hippocampus (b = 0.52, twald(53) = 2.43, p =

0.015, 95% CI [0.10, 0.95]) (see Figure 6D) or mPFC (b = 0.45,

twald(53) = 2.24, p = 0.025, 95% CI [0.06, 0.85]) during CS+

(vs. CS�) trials, confirming this effect as related to integrated

aversive conditioning.

DISCUSSION

The complexity of human experience necessitates a flexible

memory system that can adapt to a range of novel experiences

and efficiently update existing memories to reflect new informa-

tion. Semantic structures, built up over multiple experiences,

help facilitate this process by providing a scaffold for inference

and behavioral selection, even without direct experience of po-

tential consequences. Prior work implies that semantic struc-

tures could provide ingress points for learned threats to enter

and then broadly generalize across semantic networks.38–40

However, themechanisms bywhich emotional experiences inte-

grate with previously acquired knowledge tomodify themeaning

and salience of different stimuli indirectly related to the experi-

ence have not been directly tested. The current study revealed

potential neural mechanisms for building integrated memories

of threat within a semantic structure, with the majority of our a

priori predictions supported by the current data.

In accordance with our hypotheses, pre-association of a set of

category exemplars with a to-be-conditioned threat stimulus

modified the neural representation of unique category exemplars

within category-selective occipitotemporal regions, the mPFC,

andmedial temporal lobe regions that include the amygdala, hip-

pocampus, and PRC. Specifically, pattern similarity among

unique exemplars pre-associated with a threat cue became

more similar following threat conditioning. Enhanced neural sim-

ilarity could facilitate the transfer of emotional learning to a

diverse set of category exemplars despite their physical distinc-

tions. This finding is consistent with a prior report of increased

neural similarity in the occipitotemporal cortex and the amygdala

for category-level stimuli directly predictive of an aversive US

(direct conditioning)23 but extends this finding to a higher-order

learning paradigm (sensory preconditioning) that necessitates

integrating across separate phases of learning. Modulation

was transient in the occipitotemporal cortex and the amygdala

but persisted beyond 24 h in the hippocampus and PRC, sug-

gesting separation between immediate and longer-term

changes in neural organization among these regions.

Prior studies establish the PRC’s role in storing semantic infor-

mation41,42 and show that representational similarity covaries

with semantic and visual dimensions.43,44 Here, in line with our

hypotheses, we observed modulation from emotional learning

of stimulus representations in the PRC that persisted beyond

the initial test. The hippocampus also maintained increased

within-category similarity for the indirectly threat-conditioned

category, which is consistent with its central role in threat-related

delayed recall and retrieval.32,45,46 These findings extend reports

of PRC and hippocampal involvement in sensory precondition-

ing13,16 to demonstrate how the selectively modified representa-

tions persist at 24 h following preconditioning and aversive

learning.

At themoment of an emotional experience, dowe immediately

integrate this event with distinct past memories? Or does inte-

gration occur upon encountering a new situation that requires

retrieval of the emotional memory? Prior research points to

neither memory integration process as unilaterally predominant,

with both forms of integration involved when memory guides de-

cision-making.5,24,26 Our results suggest that humans employ

both routes when integration involves modulation of pre-estab-

lished semantic structures.

First, individual difference analysis of category reactivation

during conditioning supports an online integration account: se-

lective reactivation of an indirectly conditioned category (PS) in

occipitotemporal regions during threat conditioning trials (CS tri-

als) interacted with increased hippocampal or mPFC activity to

predict BLA activity during immediate transfer trials. Psycholog-

ically, this suggests that retrieval of the pre-associated category

representation is integrated into the newly formed threatmemory

during emotional learning. These results align with prior neuroi-

maging work showing evidence of online integration of episodic

memory18,47–49 as well as studies showing reactivated category-

selective voxels predicting responses during a subsequent

retrieval test in aversive learning50 and associative inference

tasks.49,51 Hippocampal and mPFC involvement during integra-

tion that subserves later retrieval is central to prominent episodic

memorymodels.16,17 Here, interaction between participant-level

increases in online integration of reactivation of a semantic cate-

gory representation and increases in activity in the hippocampus

or mPFC during threat conditioning supported increased activity

to novel PS+ presentations in the BLA, a prominent region in

neural models describing emotion-episodic memory interac-

tions.52,53 That said, our hypotheses regarding online integration

were only partially supported, as decoded reactivation in occipi-

totemporal regions alone did not predict subsequent BLA activ-

ity: it was only through the interactionwith hippocampal ormPFC

activity at the moment of learning. This suggests an important

role for memory formation and retrieval regions that interact

with representations in higher-order visual cortex to promote

subsequent concept-based generalizations, although further

study is needed to clarify the individual differences we observed

in this integration process.

Alternatively, there is evidence of retrieval-based integration

(i.e., chaining) from selective reinstatement of the threat-specific

neural pattern during immediate transfer tests in the amygdala

and mPFC. Specifically, overlapping fMRI patterns were selec-

tively correlated with the formation of a threat memory on CS+

trials and retrieval of a threat memory on PS+ trials. One possi-

bility is that the amygdala and mPFC play a more domain-gen-

eral role in the retrieval of value information at the time of

retrieval. Reinstating patterns specific to CS+ on PS+ trials could

reflect the general affective salience of the PS+ cues following

threat conditioning; the mPFC could support a model-based

inference25 that helps evaluate unique instances of the PS cate-

gory not directly encountered during pre-conditioning and

thus lack a directly learned PS-CS association. Consequently,
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chaining in these regions could prioritize reinstatement of the

CS-US relation to promote pattern completion and decrease

threat discrimination between physically dissimilar category ex-

emplars. Hypotheses here were only partially supported, as

threat memory reinstatement was not observed in category-se-

lective visual cortex, hippocampus, or PRC, ventral visual stream

components specialized in object recognition54,55 and regions

yielding online integration evidence, as detailed above. In this

way, regions tuned toward object recognition and representation

might facilitate memory integration through reactivation of previ-

ously encountered instances directly associated with the CS.

Conversely, regions with a domain-general role regarding

value-related information might reinstate the threat memory

when the properties of a novel stimulus must be inferred from

related, but distinct, past events.

Recognitionmemorywas selectively (PS+ >PS�) and retroac-

tively enhanced for items encoded prior to threat conditioning, in

line with tests of direct threat conditioning of categories.30,56

These results accord with accelerating research on behavioral

tagging57,58 of human episodic memory,59 which proposes that

salient events can rescue weak memories formed minutes-to-

hours before (or after) the salient event. Sensory preconditioning,

per se, does not require a tag-and-capture mechanism, as there

is no evidence to our knowledge that the time window between

preconditioning and threat conditioning is a boundary condition

for sensory preconditioning to be effective. However, the sen-

sory preconditioning protocol could initiate a behavioral tagging

mechanism, given that the design involves ‘‘weak’’ learning

(PS-CS pairs) followed by a salient event (CS-US pairs). Here,

the timing and overlapping events likely produced the retroactive

memory benefit, which aligns with a recent study using a similar

preconditioning design that found retroactive enhancement for

relational episodic memory.19 Importantly, selective enhance-

ment in our study was not symmetrical; there was no proactive

benefit on memories encoded during the transfer phase (as

sometimes seen in prior work56,60). The transfer test might not

have constituted weak learning (in accordance with behavioral

tagging phenomenon), as although participants did not explicitly

expect shock, arousal was significantly elevated on typical PS+

items and neuroimaging results showed strong evidence of

modulation of PS+ representations during transfer within mem-

ory formation areas.

Although physiological arousal during transfer was differen-

tially affected by participants’ ratings of category typicality, it

is notable that physiological arousal was not maintained

throughout the test, and participants did not report that they ex-

pected shock to PS+ items. As such, threat transfer via sensory

preconditioning was not directly evident from our behavioral

measures, a result that aligns with reported difficulty in eliciting

robust expression in humans using these types of protocols.61,62

Desynchrony between threatmeasures is well-documented,63,64

particularly between neural and behavioral or subjective out-

comes.65 Here, this might reflect an adaptive desynchrony in

which the brain encodes higher-order relationships and their

threat salience, as this is relatively efficient and expends minimal

resources but does not necessarily evoke behavioral generaliza-

tion. Another possible explanation is the ‘‘strong situation’’ the-

ory, which describes individual differences in threat learning as

a function of experimental threat salience.66 Strong threat

situations refer to contexts with sufficient biological salience to

provoke an adaptive and normative response from most, result-

ing in near-zero response variability. In contrast, weak threat sit-

uations are those in which a clearly adaptive response is not

required by the encountered threat, leading to natural response

variability that can be accounted for by other variation sources.

For example, most people who see a honking truck about to

hit them will step away to avoid severe harm, whereas for a truck

farther away, some might attempt to quickly cross while others

will wait. Importantly, without sufficient relevant between-person

variation (e.g., differences in psychopathology), a weak situation

can become a strong (i.e., zero variability) situation. Our protocol

is possibly a weak situation for neural differences, but as the

threat threshold for behavioral expression is elevated, it might

function as a strong situation only when testing those without

threat-related psychopathology (e.g., PTSD).

The limitations of the current effort should be mentioned.

Notably, we did not test brain-behavior relationships (e.g.,

SCR related to neural integration indices) due to increased

model complexity (i.e., adding an additional interaction term)

resulting in model convergence issues and more general con-

cerns about power and reproducibility.67 There are also limita-

tions in terms of the ecological validity of the current design.

Our CS+ ‘‘booster trials’’ separating transfer phases help

reduce arousal habituation during transfer phases,28 but an

explicit, unambiguous reminder of the CS+/US association is

unlikely to be encountered in the real world. Additionally, our

study does not address how a single instance of threat

learning (e.g., a single dog attack) leads to widespread se-

mantic generalization. Our experimental design used repeated

instances of category exemplars to generate a strong cate-

gory-to-CS link, whereas real-life scenarios would likely

involve a more isolated category member. The concept

learning literature suggests that the basic level concept (e.g.,

a dog) is the most accessible entry point toward generalization

to the superordinate category.68 But whether higher-order fear

generalizes to a broader semantic category based on a more

isolated association between a single category exemplar and

a CS is an open question.

The integration of emotional memories with existing knowl-

edge is a pillar of human inference in a dynamic and sometimes

dangerous world, but this process has received limited empirical

attention. We used multivariate fMRI analyses to provide neuro-

behavioral explanations for the indirect integration of aversive

learning with a pre-established semantic structure. Evidence

for online and retrieval integration was dependent on neural re-

gion and analysis, supporting a ‘‘which-when’’ memory integra-

tion account26 while also suggesting next steps for further delin-

eating the precise neural circuity underlying these processes.

However, after �24 h, canonical threat regions did not maintain

threat-related neural representations, and overall behavioral and

physiological expression of threat learning was limited, both of

which are possibly related to testing a psychiatrically healthy

sample. PTSD is empirically related to increased threat-related

neural activity at 24-h recall,69,70 and PTSD symptomology is

conceptually consistent with persistent heightened higher-order

threat learning.71,72 As such, this effort provides a potential

experimental tool for testing subtle pathogenic processes, as

we expect that stronger �24-h reactivation and behavioral
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expression would emerge in relation to PTSD and potentially

other forms of anxiety-related psychopathology.
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82. Lonsdorf, T.B., Klingelhöfer-Jens, M., Andreatta, M., Beckers, T.,

Chalkia, A., Gerlicher, A., Jentsch, V.L., Meir Drexler, S., Mertens, G.,

Richter, J., et al. (2019). Navigating the garden of forking paths for data

exclusions in fear conditioning research. eLife 8, e52465. https://doi.

org/10.7554/eLife.52465.

83. Esteban, O., Markiewicz, C.J., Blair, R.W., Moodie, C.A., Isik, A.I.,

Erramuzpe, A., Kent, J.D., Goncalves, M., DuPre, E., Snyder, M., et al.

(2019). fMRIPrep: a robust preprocessing pipeline for functional MRI.

Nat. Methods 16, 111–116. https://doi.org/10.1038/s41592-018-0235-4.

84. Esteban, O., Blair, R., Markiewicz, C.J., Berleant, S.L., Moodie, C., Ma,

F., and Isik, A.I. (2018). FMRIPrep: a robust preprocessing pipeline for

functional MRI. Zenodo. https://doi.org/10.5281/zenodo.852659.

85. Gorgolewski, K.J., Esteban, O., Markiewicz, C.J., Ziegler, E., Ellis, D.G.,

Notter, M.P., and Jarecka, D. (2018). nipy/nipype: 1.8.3. Zenodo. https://

doi.org/10.5281/zenodo.596855.

86. Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O.,

Waskom, M.L., and Ghosh, S.S. (2011). Nipype: A Flexible, Lightweight

and Extensible Neuroimaging Data Processing Framework in Python.

Front. Neuroinform. 5, 13. https://doi.org/10.3389/fninf.2011.00013.

87. Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich,

P.A., and Gee, J.C. (2010). N4ITK: Improved N3 Bias Correction. IEEE

Trans. Med. Imaging 29, 1310–1320. https://doi.org/10.1109/tmi.2010.

2046908.

88. Avants, B.B., Epstein, C.L., Grossman, M., and Gee, J.C. (2008).

Symmetric Diffeomorphic Image Registration with Cross-Correlation:

Evaluating Automated Labeling of Elderly and Neurodegenerative

ll

3534 Current Biology 34, 3522–3536, August 5, 2024

Article

https://doi.org/10.1016/j.visres.2019.10.007
https://doi.org/10.1038/nature14106
https://doi.org/10.1038/nature14106
https://doi.org/10.1073/pnas.0907078106
https://doi.org/10.1073/pnas.0907078106
https://doi.org/10.1073/pnas.1220875110
https://doi.org/10.1016/j.tics.2022.06.009
https://doi.org/10.1016/j.tics.2022.06.009
https://doi.org/10.1101/lm.053760.123
https://doi.org/10.1101/lm.053760.123
https://doi.org/10.3389/fnbeh.2022.928769
https://doi.org/10.3389/fnbeh.2021.746161
https://doi.org/10.1016/j.jbtep.2012.08.003
https://doi.org/10.1016/0005-7967(74)90005-9
https://doi.org/10.1016/0005-7967(74)90005-9
https://doi.org/10.1176/appi.ajp.2016.16030353
https://doi.org/10.1176/appi.ajp.2016.16030353
http://refhub.elsevier.com/S0960-9822(24)00855-8/sref66
http://refhub.elsevier.com/S0960-9822(24)00855-8/sref66
http://refhub.elsevier.com/S0960-9822(24)00855-8/sref66
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
http://refhub.elsevier.com/S0960-9822(24)00855-8/sref68
https://doi.org/10.1016/j.ijpsycho.2014.11.006
https://doi.org/10.1017/S0033291719001387
https://doi.org/10.1017/S0033291719001387
https://doi.org/10.1016/j.neuron.2022.03.001
https://doi.org/10.1016/j.neuron.2022.03.001
http://refhub.elsevier.com/S0960-9822(24)00855-8/sref72
http://refhub.elsevier.com/S0960-9822(24)00855-8/sref72
http://refhub.elsevier.com/S0960-9822(24)00855-8/sref72
https://doi.org/10.1177/1073191116638410
https://doi.org/10.1037/pas0000486
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1016/j.neubiorev.2023.105146
https://doi.org/10.1016/j.neubiorev.2023.105146
https://doi.org/10.1016/j.neubiorev.2022.104918
https://doi.org/10.1016/j.bbr.2020.112931
https://doi.org/10.1016/j.bbr.2020.112931
https://doi.org/10.1111/psyp.14242
https://doi.org/10.1016/j.ijpsycho.2013.10.015
https://doi.org/10.1016/j.ijpsycho.2013.10.015
https://doi.org/10.1111/j.1469-8986.1971.tb00501.x
https://doi.org/10.7554/eLife.52465
https://doi.org/10.7554/eLife.52465
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.5281/zenodo.852659
https://doi.org/10.5281/zenodo.596855
https://doi.org/10.5281/zenodo.596855
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1109/tmi.2010.2046908
https://doi.org/10.1109/tmi.2010.2046908


Brain. Med. Image Anal. 12, 26–41. https://doi.org/10.1016/j.media.

2007.06.004.

89. Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of Brain MR

Images Through a Hidden Markov Random Field Model and the

Expectation-Maximization Algorithm. IEEE Trans. Med. Imaging 20,

45–57. https://doi.org/10.1109/42.906424.

90. Dale, A.M., Fischl, B., and Sereno, M.I. (1999). Cortical Surface-Based

Analysis: I. Segmentation and Surface Reconstruction. NeuroImage 9,

179–194. https://doi.org/10.1006/nimg.1998.0395.

91. Klein, A., Ghosh, S.S., Bao, F.S., Giard, J., H€ame, Y., Stavsky, E., Lee, N.,

Rossa, B., Reuter, M., Chaibub Neto, E., and Keshavan, A. (2017).

Mindboggling Morphometry of Human Brains. PLoS Comput. Biol. 13,

e1005350. https://doi.org/10.1371/journal.pcbi.1005350.

92. Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., and Collins, D.L.

(2009). Unbiased Nonlinear Average Age-Appropriate Brain Templates

from Birth to Adulthood. NeuroImage 47 (Suppl 1 ), 102. https://doi.org/

10.1016/s1053-8119(09)70884-5.

93. Cox, R.W., and Hyde, J.S. (1997). Software Tools for Analysis and

Visualization of fMRI Data. NMR Biomed. 10, 171–178. https://doi.org/

10.1002/(SICI)1099-1492(199706/08)10:4/5.

94. Greve, D.N., and Fischl, B. (2009). Accurate and Robust Brain Image

Alignment Using Boundary-Based Registration. NeuroImage 48, 63–72.

https://doi.org/10.1016/j.neuroimage.2009.06.060.

95. Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved

Optimization for the Robust and Accurate Linear Registration andMotion

Correction of Brain Images. NeuroImage 17, 825–841. https://doi.org/10.

1006/nimg.2002.1132.

96. Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., and

Petersen, S.E. (2014). Methods to Detect, Characterize, and Remove

Motion Artifact in Resting State fMRI. Neuroimage 84, 320–341.

https://doi.org/10.1016/j.neuroimage.2013.08.048.

97. Behzadi, Y., Restom, K., Liau, J., and Liu, T.T. (2007). A component

based noise correction method (CompCor) for BOLD and perfusion

based fMRI. NeuroImage 37, 90–101. https://doi.org/10.1016/j.neuro-

image.2007.04.042.

98. Satterthwaite, T.D., Elliott, M.A., Gerraty, R.T., Ruparel, K., Loughead, J.,

Calkins, M.E., Eickhoff, S.B., Hakonarson, H., Gur, R.C., Gur, R.E., et al.

(2013). An improved framework for confound regression and filtering for

control of motion artifact in the preprocessing of resting-state functional

connectivity data. NeuroImage 64, 240–256. https://doi.org/10.1016/j.

neuroimage.2012.08.052.

99. Lanczos, C. (1964). Evaluation of Noisy Data. J. Soc. Ind. Appl. Math. Ser.

B Numer. Anal. 1, 76–85. https://doi.org/10.1137/0701007.

100. Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A.,

Kossaifi, J., Gramfort, A., Thirion, B., and Varoquaux, G. (2014). Machine

learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14.

https://doi.org/10.3389/fninf.2014.00014.

101. Mumford, J.A., Turner, B.O., Ashby, F.G., and Poldrack, R.A. (2012).

Deconvolving BOLD activation in event-related designs for multivoxel

pattern classification analyses. NeuroImage 59, 2636–2643. https://doi.

org/10.1016/j.neuroimage.2011.08.076.

102. Mumford, J.A., Davis, T., and Poldrack, R.A. (2014). The impact of study

design on pattern estimation for single-trial multivariate pattern analysis.

NeuroImage 103, 130–138. https://doi.org/10.1016/j.neuroimage.2014.

09.026.

103. Cox, R.W. (1996). AFNI: software for analysis and visualization of func-

tional magnetic resonance neuroimages. Comput. Biomed. Res. 29,

162–173. https://doi.org/10.1006/cbmr.1996.0014.

104. Yu, T., Lang, S., Birbaumer, N., and Kotchoubey, B. (2014). Neural corre-

lates of sensory preconditioning: A preliminary fMRI investigation. Hum.

Brain Mapp. 35, 1297–1304. https://doi.org/10.1002/hbm.22253.

105. Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah,

N.J., Habel, U., Schneider, F., and Zilles, K. (2005). Cytoarchitectonic

mapping of the human amygdala, hippocampal region and entorhinal

cortex: intersubject variability and probability maps. Anat. Embryol.

(Berl) 210, 343–352. https://doi.org/10.1007/s00429-005-0025-5.

106. Ritchey, M., Montchal, M.E., Yonelinas, A.P., and Ranganath, C. (2015).

Delay-dependent contributions of medial temporal lobe regions to

episodic memory retrieval. eLife 4, e05025. https://doi.org/10.7554/

eLife.05025.

107. Constantinescu, A.O., O’Reilly, J.X., and Behrens, T.E.J. (2016).

Organizing conceptual knowledge in humans with a gridlike code.

Science 352, 1464–1468. https://doi.org/10.1126/science.aaf0941.

108. Garvert, M.M., Dolan, R.J., and Behrens, T.E. (2017). A map of abstract

relational knowledge in the human hippocampal–entorhinal cortex.

eLife 6, e17086. https://doi.org/10.7554/eLife.17086.

109. Kim, H., Smolker, H.R., Smith, L.L., Banich, M.T., and Lewis-Peacock,

J.A. (2020). Changes to information in working memory depend on

distinct removal operations. Nat. Commun. 11, 6239. https://doi.org/

10.1038/s41467-020-20085-4.

110. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011).

Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12,

2825–2830.

111. Martin, A. (2007). The Representation of Object Concepts in the Brain.

Annu. Rev. Psychol. 58, 25–45. https://doi.org/10.1146/annurev.psych.

57.102904.190143.

112. R Core Team (2018). R: A Language and Environment for Statistical

Computing (R Foundation for Statistical Computing).

113. Chen, G., Saad, Z.S., Britton, J.C., Pine, D.S., and Cox, R.W. (2013).

Linear mixed-effects modeling approach to FMRI group analysis.

NeuroImage 73, 176–190. https://doi.org/10.1016/j.neuroimage.2013.

01.047.

114. Chen, G., Taylor, P.A., Stoddard, J., Cox, R.W., Bandettini, P.A., and

Pessoa, L. (2022). Sources of Information Waste in Neuroimaging:

Mishandling Structures, Thinking Dichotomously, and Over-Reducing

Data. Aperture Neuro 2, 1–22. https://doi.org/10.52294/2e179dbf-

5e37-4338-a639-9ceb92b055ea.

115. Field, A.P., and Wilcox, R.R. (2017). Robust statistical methods: A primer

for clinical psychology and experimental psychopathology researchers.

Behav. Res. Ther. 98, 19–38. https://doi.org/10.1016/j.brat.2017.05.013.

116. Koller, M. (2016). robustlmm: An R Package for Robust Estimation of

Linear Mixed-Effects Models. J. Stat. Softw. 75, 1–24. https://doi.org/

10.18637/jss.v075.i06.

117. Bates, D., M€achler, M., Bolker, B., and Walker, S. (2015). Fitting linear

mixed-effects models using lme4. J. Stat. Softw. 67, 1–51. https://doi.

org/10.18637/jss.v067.i01.

118. Barr, D.J., Levy, R., Scheepers, C., and Tily, H.J. (2013). Random effects

structure for confirmatory hypothesis testing: keep it maximal. J. Mem.

Lang. 68, 255–278. https://doi.org/10.1016/j.jml.2012.11.001.

119. Lenth, R.V. (2021). emmeans: Estimated Marginal Means, aka Least-

Squares Means. https://cran.r-project.org/web/packages/emmeans/

emmeans.pdf.

120. Luke, S.G. (2017). Evaluating significance in linear mixed-effects models

in R. Behav. Res. Methods 49, 1494–1502. https://doi.org/10.3758/

s13428-016-0809-y.

121. Arnqvist, G. (2020). Mixed Models Offer No Freedom from Degrees of

Freedom. Trends Ecol. Evol. 35, 329–335. https://doi.org/10.1016/j.

tree.2019.12.004.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Joseph E. Dunsmoor

(joseph.dunsmoor@austin.utexas.edu).

Materials availability
This study did not generate any unique reagents.

Data and code availability

d All de-identified neuroimaging and behavioral data have been deposited at the NIMH NDA and are publicly available as of the

date of the publication. The data ID is listed in the key resources table.

d All custom Python and R code used for analysis has been deposited at OSF and is publicly available as of the date of publica-

tion. The DOI is listed in the key resources table.

d The lead contact can provide any additional information required to reanalyze the data reported in this paper upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We recruited 37 participants (Mage = 21.5, SDage = 3.07; 19 identified as women, one as nonbinary, 17 as men) from the local com-

munity to complete all measures. All participants completed standardized clinical interviews73,74 with a trained clinical psychologist

or technician and were determined to be free of any psychopathology, neurological disorder, or interfering medical conditions. Two

participants did not return for the second testing session; therefore, analyses were conducted on a final sample of N = 35. All study

procedures described herein received approval from the University of Texas at Austin Institutional Review Board (IRB #2020020157-

MOD1). All participants provided written informed consent prior to participation.

METHOD DETAILS

Stimuli
For PSs, we used 180 non-repeating images of either animals (N = 90) or tools (N = 90) against a white background obtained from

public online resources and used in prior studies from our group.32,33 Each PS presentationwas a different basic-level exemplar (e.g.,

there were not two different pictures of a dog at any point). We did not include threatening/phobia-related stimuli (e.g., spiders, kni-

ves). CSs were either an image of an orange square or a blue circle against a white background. Both shapes shared the samewidth,

height, and luminance and were approximately the same size as category exemplar images. Stimulus presentation was controlled by

Psychopy.75

The US was a 5-ms electrical shock, delivered to the left index and middle finger. Shock intensity was determined through a brief

calibration sequence prior to the experiment, in which participants reached a level described as ‘‘highly annoying/unpleasant, but not

painful’’ (5-6 on a 10-point scale) through a stepwise procedure.76 The shock was controlled using the STMEPM-MRI stimulation

system (BIOPAC Systems, Goleta, CA).

Task and procedures
The current task, based on similar human work and optimized for MVPA,77 consisted of seven phases across two days (see Fig-

ure 1B). Day 1 consisted of a perceptual localizer, preconditioning, threat conditioning, and two immediate transfer tests. After shock

and skin conductance response (SCR) electrodes were attached, participants completed the perceptual localizer (described below)

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Deidentified neuroimaging and behavioral data This paper NIMH Data Archive (https://nda.nih.gov/); ID: C3797

Software and algorithms

Custom Python and R analysis code This paper OSF: https://osf.io/bpv97/; DOI https://doi.org/10.17605/OSF.IO/BPV97
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and then a preconditioning phase in which a PS stimulus was presented for 4-6s, followed immediately by a .5s CS presentation.

Participants were instructed prior to the task that their goal was to learn which category is associated with each shape, and that

they will need to remember this association. PS category (PS+ and PS-) and CS shape (CS+ and CS-) pairings were counterbalanced

across participants. For each PS presentation during preconditioning (30 animals, 30 tools), participants indicated which shape they

thought would next appear using a 4-item scale (‘‘Definitely square’’, ‘‘Maybe square’’, ‘‘Maybe circle’’, ‘‘Definitely circle’’). Next, par-

ticipants received instructions that they were now at risk for shock and received a single reminder shock during a blank screen to

ensure the perceived intensity had not changed. Participants then completed the threat conditioning phase. Only CSs were pre-

sented. One CS co-terminated with shock (CS+, 12 trials, 66% reinforcement) and one was never paired with shock (CS-, 12 trials);

this was counterbalanced across participants. CSs were presented for 5-7s. Participants provided shock expectancy ratings for

each CS, again using a 4-item scale (‘‘Definitely shock’’, ‘‘maybe shock’’, ‘‘maybe no shock’’, ‘‘definitely no shock’’). Threat condi-

tioning was immediately followed by two transfer tests. In these tests, participants viewed novel PSs from each category (30 animals

and 30 tools; 15 of each category in each test) for 4-6s and continued to provide shock expectancy ratings as they did during the

threat conditioning phase. No US was ever administered following a PS. Between the two transfer tests there was a seamless pre-

sentation of two reinforced CS+ trials to remind participants of the CS-US association (i.e., ‘‘booster trials’’).28We refer to these trans-

fer tests as immediate Transfer 1 and Transfer 2 throughout this report.

On Day 2, approximately 24-hours later, participants completed identical transfer tests as on Day 1 (including the two reminder

CS-US trials in between the tests), referred to as 24-hour Transfer 3 and 4. Exemplars presented on Day 2 were also novel category

members and not seen on Day 1. Intertrial intervals were jittered (5-9s) for all phases across both days.

Finally, participants completed a recognitionmemory test, in which they viewed all Day 1 category stimuli (120 in total) in addition to

foil stimuli (30 novel tools, 30 novel animals). We explicitly informed participants they would only see Day 1 or new stimuli and never

Day 2 stimuli. Image order was pseudo-randomized and balanced such an equal number of items from each category appeared in

each third of the phase. Each image was presented for 3s and required a response on a 4-item scale (‘‘definitely new’’, ‘‘maybe new’’,

‘‘maybe old’’, ‘‘definitely old’’). Outside of the scanner, participants viewed each Day 1 stimulus and provided self-paced 1-7 typi-

cality ratings for each (1 = not typical at all of its category; to 7 = very typical of its category).

Skin conductance response
SCRs were acquired from the hypothenar eminence of the left palmar surface using disposable pre-gelled snap electrodes con-

nected to theMP-160BIOPACSystem (BIOPACSystems). In linewith previously described procedures,78,79 an SCRwas considered

related to CS or PS presentation if the trough-to-peak deflection occurred 0.5–3s following stimulus onset, lasted between 0.5 and

5.0s, andwas greater than 0.02microsiemens (mS), with responses not fitting these criteria scored as a zero.We obtained SCR values

using a custom MATLAB (The Mathworks Inc., Natick, MA) script that extracts SCRs for each trial using the above criteria.80 Raw

SCR scores were square root transformed prior to analyses to normalize the distribution.81 We did not exclude participants based

on performance-based rules.82

Functional MRI acquisition
Scanningwas completed using a Siemens Vida 3TMRI scanner at the University of Texas at Austin with the support of the Biomedical

Imaging Center (RRID:SCR_021898). We acquired functional data with a 64-channel head coil at 2.5mm isotropic resolution. Using

the scanner software, we automatically oriented slices parallel to the anterior-posterior commissure. We measured BOLD using T2*

EPI sequences (TR = 1000ms, TR = 86ms, FOV = 86 x 86, multiband acceleration factor = 6). Before each functional series, we

collected T2* field maps with opposite encoding phase to assist with distortion correction. We also collected anatomical images

to assist in image registration: a T1w anatomical image (MPRAGE, .8mm isotropic) was collected during each session, and one

T2w anatomical image (.8mm isotropic) was collected on Day 2.

Image preprocessing
Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.683,84 (RRID:SCR_016216), which is

based on Nipype 1.7.085,86 (RRID:SCR_002502).

Anatomical data preprocessing

A total of 2 T1-weighted (T1w) images were found within the input BIDS dataset. All of them were corrected for intensity non-unifor-

mity (INU) with N4BiasFieldCorrection,87 distributed with ANTs 2.3.388 (RRID:SCR_004757). The T1w-reference was then skull-strip-

pedwith aNipype implementation of the antsBrainExtraction.sh workflow (fromANTs), usingOASIS30ANTs as target template. Brain

tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted

T1w using fast (FSL 5.0.9,89 RRID:SCR_002823). A T1w-reference map was computed after registration of 2 T1w images (after

INU-correction) using mri_robust_template (FreeSurfer 6.0.11). Brain surfaces were reconstructed using recon-all (FreeSurfer

6.0.1,90 RRID:SCR_001847), and the brain mask estimated previously was refined with a custom variation of the method to reconcile

ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle91 (RRID:SCR_002438). Volume-

based spatial normalization to one standard space (MNI152NLin2009cAsym) was performed through nonlinear registration with

antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The following template

was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c92 [RRID:SCR_008796;

TemplateFlow ID: MNI152NLin2009cAsym]
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Functional data preprocessing

For each of the 9 BOLD runs found per subject (across all tasks and sessions), the following preprocessing was performed. First, a

reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. A B0-nonuniformity map

(or fieldmap) was estimated based on two (or more) echo-planar imaging (EPI) references with opposing phase-encoding directions,

with 3dQwarp93 (AFNI 20160207). Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference

was calculated for a more accurate co-registration with the anatomical reference. The BOLD reference was then co-registered to the

T1w reference using bbregister (FreeSurfer) which implements boundary-based registration.94 Co-registration was configured with

six degrees of freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices, and six correspond-

ing rotation and translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.995). BOLD runs were

slice-time corrected to 0.003s (0.5 of slice acquisition range 0s-0.00539s) using 3dTshift fromAFNI 2016020793 (RRID:SCR_005927).

The BOLD time-series (including slice-timing correction when applied) were resampled onto their original, native space by applying a

single, composite transform to correct for head-motion and susceptibility distortions. These resampled BOLD time-series will be

referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resampled into stan-

dard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped

version were generated using a custom methodology of fMRIPrep. Several confounding time-series were calculated based on the

preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global signals. FD was computed using two for-

mulations following Power (absolute sum of relative motions96) and Jenkinson (relative root mean square displacement between af-

fines95). FD and DVARS are calculated for each functional run, both using their implementations in Nipype (following the definitions by

ref Power et al.96). The three global signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of

physiological regressorswere extracted to allow for component-based noise correction (CompCor97). Principal components are esti-

mated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two

CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from the top

2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are gener-

ated in anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on

BOLD space, the aCompCormasks are subtracted amask of pixels that likely contain a volume fraction of GM. Thismask is obtained

by dilating a GMmask extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not extracted from voxels

containing aminimal fraction of GM. Finally, thesemasks are resampled into BOLD space and binarized by thresholding at 0.99 (as in

the original implementation). Components are also calculated separately within theWMand CSFmasks. For each CompCor decom-

position, the k components with the largest singular values are retained, such that the retained components’ time series are sufficient

to explain 50 percent of variance across the nuisancemask (CSF,WM, combined, or temporal). The remaining components are drop-

ped from consideration. The head-motion estimates calculated in the correction stepwere also placedwithin the corresponding con-

founds file. The confound time series derived from head motion estimates and global signals were expanded with the inclusion of

temporal derivatives and quadratic terms for each.98 Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised

DVARS were annotated as motion outliers. All resamplings can be performed with a single interpolation step by composing all the

pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction when available, and co-registra-

tions to anatomical and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs),

configured with Lanczos interpolation to minimize the smoothing effects of other kernels.99 Non-gridded (surface) resamplings

were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2100 (RRID:SCR_001362), mostly within the functional processing workflow.

For more details of the pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.

Copyright waiver

The above boilerplate text was automatically generated by fMRIPrep with the express intention that users should copy and paste this

text into their manuscripts unchanged. It is released under the CC0 license.

General linear models and whole-brain analyses
GLMs were computed using the nilearn 0.9.2 package100 in Python 3.8.1, with standard boxcar modeling of trials convolved with a

Glover hemodynamic response function and a lag-1 autoregressive model to account for serial correlations. For standard GLM uni-

variate analyses, we included separate regressors for each stimulus across all trials of a given phase (e.g., PS+ and PS- in a transfer

phase) and applied smoothing with a Gaussian kernel (FWHM = 6mm). All images were masked to only include likely grey matter

voxels (MNI152 template, thresholded at 20% grey matter probability) and values were converted to effect sizes (beta). We also

generated Least Squares-Separate (LSS) style betaseries images for each phase,101,102 in which we iteratively estimated activity

for a given trial while including all other trials from the same category in the same phase as regressors of no interest. To facilitate

MVPA, no spatial smoothing was applied to LSS betaseries images.

Whole-brain statistical analyses were conducted using AFNI 22.3.04103 and a family-wise error approach. Two-tailed t-tests were

conducted on each voxel within participant-level whole-brain maps using 3dttest++ (with -Clustsim option). Significant cluster size

was determined via k = 10,000 random permutations of null t-test results, which were then run through 3dClustSim to identify cluster-

thresholds for each p-value. Using these cluster-thresholds, 3dClusterize was used to identify clusters in group-level masks and
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extract cluster statistics (significant at cluster p < .05, voxel p < .001, third-nearest neighbor clustering) for category-selective activity

during a perceptual localizer (see Figure S2; Table S1) and CS+ > CS- activity during the threat conditioning task (see Figure S3;

Table S2).

ROI selection and parameter estimate extraction
ROIs were chosen in accordance with a priori hypotheses based on extensive rodent aversive preconditioning work13 and human

neuroimaging of threat conditioning and episodic memory integration.31,104 For smaller regions in which higher spatial specificity

was required, bilateral BLA were defined using the Julich probabilistic atlas,105 whereas bilateral PRC was extracted from a proba-

bilistic map of manually segmented hippocampal and parahippocampus subregions.106 Both ROIs were defined at the group level.

All probabilistic maps except the BLA were thresholded at 50% or greater likelihood of a given voxel belonging to that anatomical

region. The BLAmask used amore stringent threshold of 75%due to increased noise in this region and to increase the chance voxels

from anatomically adjacent subregions were not included in this mask. For larger ROIs, including the mPFC, full amygdala, and hip-

pocampus, we defined ROIs for each participant anatomically using the relevant FreeSurfer parcellations of the Desikan-Killiany

atlas. Although not part of our a priori ROIs, the entorhinal cortex serves as the primary input/output hub for the hippocampus

and subserves many aspects of conceptual representations.107,108 Accordingly, for exploratory analyses we also created a bilateral

entorhinal cortex ROI that was defined using the Julich probabilistic atlas.

To extract parameter estimates for each ROI, we masked subject-level contrast maps (see above for GLM details) using a given

ROI mask and extracted the average of the effect size values within this mask. These subject-level averages were then used as uni-

variate activity variables in further analyses.

Perceptual localizer
Participants viewed images from categories that included animals, tools, shapes, and phase-scrambled animals and tools. Each im-

age was shown for 1s and separated by 1s. Participants were given an irrelevant task (identifying a single repeated image with a but-

ton press, i.e., perceptual N-back) to keep their attention during the localizer. Images were presented in two runs. Each run included

four blocks that consisted of 8 images each. Each category was presented for two blocks each (total 16 images per category). There

were 16s of rest between blocks. Each image was distinct from any other localizer images and from stimuli used during experimental

phases. LSS betaseries for each localizer block were computed.

Multivariate pattern analysis
MVPA included representational similarity analyses (RSA) and multivariate decoding. For RSA, we applied the nilearn library and

custom Python code to LSS betaseries for trial-by-trial data from each phase and each stimulus (weighted by mean univariate es-

timates from the same phase and stimulus type to reduce noise32,37,109) to create a representational similarity matrix for each a priori

ROI. In thesematrices, each cell is a Pearson-correlation between all pairs of PS+ and PS- images across all phases.We then Fisher z

transformedmatrices and extracted themean value of the cells that corresponded towithin-category similarity (e.g., all cells with PS+

to PS+ correlations). We also extracted themean value for the cells that corresponded to the similarity of each transfer phase to either

threat conditioning or preconditioning for each stimulus type (e.g., all cells with correlations between PS+s in generalization andCS+s

in threat conditioning or in preconditioning).

Classification was conducted using the scikit-learn library110 and custom Python scripts. In line with similar prior work22,23 and

knowledge on canonical object regions,111 we focused classification on occipital and temporal regions with voxels that uniquely

code for animals or tool object categories. These category-selective cortices were functionally identified at the group-level through

whole-brain analyses (voxel-wise p% .001, cluster-corrected p < .05, see Table S1; Figure S2) of univariate animal>tool and tool>a-

nimal contrasts of perceptual localizer fMRI data. For each set of contrasts, a 5mm sphere was drawn around the peak intensity voxel

to focus analyses on the most selective voxels and to ensure a similar number of features (voxels) were submitted to classification for

each category (animal-cortex = 64 voxels, tool-cortex = 72 voxels). We then trained an L2 weighted logistic regression classifier

(‘‘liblinear’’ solver) to decode category-specific activity (with animals, tools, and scrambled images submitted to classification) in lo-

calizer functional data in each of the two identified ROIs.We assessed classifier sensitivity by cross-validating performance from one

localizer block with the other for each classifier (mean animal cortex ROC area under the curve [AUC] = 67.5%, SD = 10%; mean

tool cortex ROC AUC 70.5%, SD = 13.2%). Three participants were removed from further analyses due to unreliable classification

(AUC values < 0.5), leaving N = 32 for further decoding analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

All ROI and behavioral/physiological group-level statistical analyses were conducted using R 4.3.112 We used robust linear mixed-

effects regression for all analyses, which is consistent with current recommendations for task-based fMRI datawithmultiple repeated

factors.113–115 All models were specified using the robustlmm116 and lme4117 libraries, reducing bias in clustered (repeated-mea-

sures) data by minimizing the influence of extreme outlier observations.115 All models contained, at minimum, within-subject fixed

effect of stimulus (e.g., CS+/CS- or PS+/PS-) and between-subject fixed effect of counterbalance order. Random effect structure

was confirmed through likelihood ratio tests of model fit and using a ‘‘keep it maximal’’ approach, per standard recommendations.118

From this model, we tested differences in stimuli estimated marginal means (using the emmeans119 library) within each phase (e.g.,
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PS+ vs. PS- during each transfer test). Per recommendations, all models were fit with restricted maximum likelihood and tests used

Kenward-Rogers degrees of freedom.120,121 We provide standardized estimates (b), parametric 95% confidence intervals, andWald

test t-values (twald) and p-values for all tests unless otherwise noted.122 Model diagnostics, tests, and parameter extraction were all

conducted using functions from the easystats, emmeans, and rstatix R libraries.119,122–126 Standardization of model parameters was

completed through post-hoc refit method.127 When used, bootstrapping was done via a standard workflow using the boot

library.128,129

For recognition memory data, a generalized linear mixed-effects model (binomial/logistic) was used to analyze high-confidence

recognition responses (0 = ‘‘sure new’’, 1 = ‘‘sure old’’). To correct memory recognition scores for false alarms, we included

within-subject trial-by-trial false alarms and between-subject mean false alarm rate as fixed-effects covariates in our models to

disambiguate within- and between-subject false alarm effects.130 Asymptotic z-tests (zasymp.) were conducted for these models.131

One participant reported falling asleep during recognition and was excluded from recognition analyses (N = 34). For Day 2 behavioral

tests, we combined immediate Transfer 1 and Transfer 2 stimuli for all analyses. For behavioral/physiological tests involving PS data

(i.e., data with trial-unique stimuli), we modeled data at the trial-level with trial random and fixed effects to account for additional ob-

servations and restrict our degrees-of-freedom.121,132
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