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Abstract—In this paper, we introduce an innovative robotic
nursing assistance system with multilateral multimodal human-
robot (MMHR) collaboration, enabling nursing robots to be as-
sisted by remote and on-site operators. Through our augmented
reality (AR) interfaces, the remote and local operators can mon-
itor the robots’ operations, issue task and action commands, and
facilitate collaborative assistance and information exchange via
AR cues or verbal communication. Our preliminary user study
evaluated the usability of the prototype system and validated
the efficacy of our MMHR collaboration in a representative
nursing assistance task scenario. The results show significant
improvements in overall task efficiency for the remote operator
and reveal human strategies and rationales in the spontaneous
multilateral human-robot collaboration.

I. INTRODUCTION

Over the last decade, robots for nursing assistance have
evolved from mobile telepresence to mobile manipulators
and humanoid robots [1]. Compared to tele-robotic systems
developed for specific and structured intervention (e.g., tele-
surgery), nursing robots are expected to be more general-
purpose. They are designed to perform a wide range of
tasks including communication, mobility, measurement of
clinical data, general manipulation and tool use [2], and will
need more assistance from humans to operate in dynamic,
cluttered, human environments, such as hospitals, nursing
facilities and homes. Recently, many mobile manipulators
and humanoid robots deployed all over the world (e.g., [3])
have proven their value for pandemic patient care, for miti-
gating the shortage of caregivers and reducing their infection
risks. Beyond pandemic responses, our aging society, which
is getting 8-hours older every day on average and facing a
shortage of nursing workforce, may increasingly depend on
robots to provide more sustainable, affordable, and accessible
care [4], because the nursing robots can effectively enable
nurses to engage in professional tasks and reduce their
turnover intention and time pressure [5], [6].

In the near future, we envision these nursing robots will
be deployed at a large scale in hospitals and nursing facilities
to perform comprehensive nursing assistance tasks (e.g., pa-
tient room cleaning and organization) that demand effective
human-robot collaboration and communication. In particular,
we need to advance the nursing robots from unilateral to
multilateral collaborative human-robot system, such that
they can leverage a little assistance from both remote and
local humans to effectively operate complex tasks otherwise
not feasible to their limited autonomy for perception and
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action. Consider the task of organizing medical supplies
in a cluttered storage. During a task, the robot operates
autonomously under the remote user’s supervision but can
request help from both the remote and local users. When
the robot encounters a problem (e.g., cannot find the target
object), it can alert the remote user who could move robot’s
camera to search for the missing target, or point and click
the mislabeled object in the camera view, to remotely control
the robot’s action and remove the objects that occlude the
target. A local user, called by the remote user or the robot,
could also help with all these issues. However, there are
also problems only the local users can help with, such as
retrieving the target object from a location the robot cannot
access, or manipulating the object or storage in ways not
feasible with remotely controlled actions.
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Fig. 1: Multilateral Multimodal Collaboration for Nursing Assistance.

This paper will present an innovative robotic nursing
assistance system with multilateral multimodal (MMHR) col-
laboration. Our prototype MMHR nursing assistance system
will enable each nursing robot in the team to be assisted by
remote operators and local human nurses through multimodal
human-robot interfaces with adjustable levels of autonomy.
Shown in Fig. 1, the remote operator can switch the control
between multiple robots. The local nurses can also assist any
robot in the shared workspace while multitasking on other
patient care tasks (e.g., tele-medical counseling). The system
also supports natural and intuitive communication (e.g., AR
visual cues, verbal communication) among human and robot
team members. The significance of our work is to contribute
a prototype system that advances the engineering for robotic
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nursing assistance and can be deployed for human-robot
collaboration across a wide range of industry, maintenance,
warehouse and assisted living tasks applications. We further
conducted a user study to evaluate the usability of the
prototype system, and validated the efficacy of multilateral
and multimodal collaboration in a representative nursing
assistance task scenario. Our study also reveals how humans
decide on task division and delegation in spontaneous mul-
tilateral collaboration.

II. RELATED WORK

A. Human-Robot Collaboration for Nursing Assistance

In response to Ebola, Zika and the COVID-19 pandemic
crisis, mobile manipulators and humanoids with various lev-
els of autonomy have been developed and deployed for nurs-
ing assistance tasks for quarantine patient care (e.g., fetching
and delivering medical supplies, preparing and cleaning
nursing workspace and patient rooms, taking vital sign
measurements) [7]. These robots may operate autonomously
on a few tasks (e.g., Moxi [8], autonomous navigation to
deliver medical supplies). However, most of them still need
to leverage human assistance, either from remote or local
operators, to handle tasks that involve more complex and dif-
ficult operations. While these more advanced nursing robots
have the potential to perform various complicated tasks that
involve the robot’s base, arm, and camera coordination [9],
these tasks could not be feasible or performed efficiently
without collaboration between the robot autonomy, remote
operators and local operators. To improve the remote human-
robot collaboration (HRC) through tele-nursing interfaces,
recent research efforts have developed more transparent and
intuitive human-robot interfaces that integrate natural gaze
and motion control [10], [11], more adaptive human-robot
task division based on their performance and workload [12],
and investigated the human-robot communication through
multimodal interfaces [13], perception and action augmenta-
tion [14] and for HRC with various levels of autonomy [15],
[16]. Meanwhile, to better collaborate (interact) with nurses
(patients) in the shared workspace, recent nursing robots also
improved their system integration for more dexterous base-
arm coordination [17], autonomy for safe navigation and
precise manipulation, haptic sensing for human contact [11],
and intelligence for natural verbal communication and social
interaction [18]-[20]. In this work, we will advance the
HRC for nursing assistance to a more versatile multi-lateral
collaboration, so that the nursing robots will be able to
leverage (a little) assistance from both the remote and local
operators to accomplish an otherwise not feasible task due
to its limited autonomy for perception and action.

III. PROTOTYPE SYSTEM
A. System Overview

Shown in Fig. 2, our proposed system supports the col-
laboration of nursing robots, local users sharing the robot’s
workspace, and remote users operating the robot from a
different physical location. Our system utilizes the nursing
robot IONA (Intelligent rObotic Nursing Assistant), a mobile

humanoid nursing robot developed in our recent work [17],
which has outstanding manipulation reachability and dex-
terity to operate in cluttered workspace (e.g., between the
high shelves that store medical supplies). A versatile sup-
porting structure allows multiple manipulator arms (Kinova
Gen3) to be mounted on the robot’s motorized chest, and
move autonomously with respect to the mobile base (Freight
Research Platform). The robot also has several RGB+D
cameras (Realsense D435) on the robot chest and hands
to provide sufficient telepresence and autonomous visual
perception. The operator console of the remote users has
a screen-based graphical user interface along with keyboard
and mouse control. Meanwhile, the local users can control
the robot using head-mounted augmented reality interfaces
(Microsoft HoloLens 2). Both the remote and local users’
interfaces support multimodal communication through aug-
mented reality visual cues, auditory feedback and speech.
Our software system uses Ubuntu 20.04 operating system
and ROS1 (Robot Operating System) for robot control. The
user interfaces were developed using Unity and Microsoft
Reality Toolkit (MRTK) 2.7.2, while ROS-TCP Connector
package was used to support the communication.
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Fig. 2: MMHR system architecture involves a remote user employing a
screen-based interface and a local user wearing a mixed-reality headset to
interact with each other and with the robotic system.

B. Robotic Systems

Here we describe the essential modules of the robotic sys-
tems in Fig. 2 and their communication. The robotic system
has a Task State Manager module that tracks the list of tasks
from the remote operator’s control interface. In our setup, the
task plan contains the list of the medicines to be handled,
including their unique identifier (id), associated names, and
expiration dates. The Task State Manager therefore monitors
the current target and sends its information to the Object
Tracker module. The Object Tracker constantly detects all
visible markers in the current field of view of the camera
mounted on the robot’s chest and stores their 2D positions

Dimage = (Pz,Dy), i.€., the marker’s pixel coordinates in
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the camera image. If the current target is detected, the
position Pimage 18 sent to the Pose Estimation. If not, the
Object Tracker will generate a request to the Help Request
Handler module. The Help Request Handler will compare
the error code e; in the request against the category of errors
e = {e1,ea9,...,e,} to identify the encountered problem.
A help request will be sent to either a local or a remote
user depending on e;. When receiving a help request, the
interfaces will generate a message based on e; and display it
to the remote or local operator using augmented reality text
box (and potentially using speech). Once the current task
is handled with human assistance, the Task State Manager
updates the target and the robot resumes its autonomous
actions. Shown in Fig. 3, besides the help requests from
the robot, the remote and local operators can also send help
requests to one another if they need to collaboratively resolve
the problem.

el

Resume

—_—> Robot

Fig. 3: Help request handler module. The robot sends a help request based
on a specific error code e;. Each user can solve the issue independently or
send a request to each other, and resume the task upon resolution.

Our module for Pose Estimation handles the frame
transformations between the workspace, the robot and the
HoloLens, and sends them to the Motion Planner module.
We use Azure Spatial Anchor (ASA) and the ASA SDK for
Linux to set a common coordinate reference system between
the robot and the HoloLens (See Fig. 4). Azure Spatial
Anchor is a cloud-based service provided by Microsoft that
allows for the creation, storage, and retrieval of digital ob-
jects, anchored to precise physical world locations. The Pose
Estimation module receives the pixel coordinates pjmage
from the Object Tracker, and computes its 3D position
relative to the camera’s coordinate frame. For augmenting
the local user’s view with a digital twin [21], we calculate the
transformation Ty from the spatial anchor to the object. The
transformation from the target object to the camera frame
T87 s calculatgd from the input p;,,q4¢, can be represented as:
T{ = [RL,t§;0,1], where R{ is the 3 x 3 rotation matrix
and t7 is a translation vector that represents the object’s
position relative to the camera. We can then retrieve the
transformation of the object relative to the spatial anchor
T4 as the product of the transformations from the robot’s
odometry to the ASA system 77, odometry to the base
link 73, base link to the robot’s chest T, and the static
transformation from the chest to the camera T%. Therefore,
we can compute Ty = (T3)~L- T3 - Tg - T? - TY.

The Pose Estimation module also calculates the transfor-
mation from the base link of the robot’s mobile base to the
target object (Ty). With the received estimated object pose,
the Motion Planner module uses RelaxedIK [22] to solve
the inverse kinematics for the robot arm and generate the
entire motion to handle an object, or to execute the actions

————
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Fig. 4: Transformation Tree of the system. A shared anchor frame is located
relative to both the HoloLens world frame and the robot’s odometry frame,
ensuring synchronized spatial referencing.

commanded by remote or local users. When the task has
been completed, the Motion Planner will communicate with
the Task State Manager module to update the target and
transition to the next task.

C. Remote and Local User Interfaces

Shown in Fig. 5 (a), the remote user interface has a
screen-based graphical user interface (GUI), which streams
the view from a main camera attached to the chest of
the robot and from a secondary standalone camera in the
workspace. The main camera view shows the name and the
ID of the detected objects, and marks the expired medicines
in red. Users can use the mouse cursor to draw a rectangle
in the camera view to indicate the object to be grasped
or a location to place it. Besides the visual feedback, the
interface also provides auditory feedback (e.g., an alert sound
when a help request is received). The interface has a control
panel that displays messages (e.g., to indicate the errors and
suggestions to fix them) and provides buttons for the user to
control the camera view and robot’s actions. These actions
include: 1) Move camera up/down — Moving the robot’s
chest by a predefined distance to adjust the camera view; 2)
Grasp — Commanding the robot to grasp a selected object
on the screen; 3) Place here — Placing the object grasped
by the robot in a specified location in the field of view; 4)
Set Aside — Placing the object grasped by the robot in the
disposal area in front of the shelves; 5) Place in the bin —
Placing the object grasped by the robot into a designated
container; 6) Call local operator — Sending a help request
to the local operator.

The local user interface uses HoloLens to render several
AR entities (on robot, environment, and interfaces) to display
task and robot states, and to control the robot. Shown
in Fig. 5 (b), the interface provides real-time updates on the
task state, using AR to indicate the target object the robot is
grasping and of the designated bin where the robot is placing
it. When the local user receives a help request (from the
robot or the remote user), an AR dialog panel pops up with
a notification sound to describe the problem and suggestions
to fix it. For example, along with the suggested action “Place
here”, the interface will also highlight the designated bin to
place the object. Once the action for assistance is completed,
the user can click the checkmark on the dialog panel to
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Fig. 5: User Interfaces. (a) The remote user interface includes two camera views and a control panel to send commands to the robot or call the local
operator. (b) The local user HoloLens interface displays hologram overlays for task status and assistance.

resume the robot’s autonomous operation for the remaining
tasks.

IV. USER STUDY EVALUATION

A. Task and Experimental Setup

We conducted a preliminary user study to assess the
usability and integration of our prototype system and validate
the efficacy of our multilateral, multimodal collaboration
system. Our experiment simulated a routine nursing task of
collecting an order of medicines from the storage shelves.
The robot had to autonomously retrieve and deposit eight
specified medicines into a bin in front of the storage shelves.
In this preliminary study, one experimenter was designated
as the local operator for all the trials to provide optimal
and uniform performance across participants. This ensured
comparable and consistent interaction behaviors with the
participants who acted as the remote operators. The remote
operator (i.e., the participant) was instructed to monitor the
robot’s autonomous operation and to intervene when the
robot encountered an error.

The types of errors include: 1) Expired medicines — The
remote operator must select, grasp, and dispose of the expired
medicine, then replace it with a valid one; 2) Misplaced
medicines — The user needs to control the robot to relocate
another misplaced medicine that occludes the target, then
select the intended one; 3) Undetected medicines — The
remote operator has to identify and select the medicine,
enabling the robot to grasp it.

Throughout the task, participants were provided with an
inventory layout, to help them locate specific medicines
while assisting the robot. While supervising the robot, the
remote operator was also required to work on the math
questions displayed on the same screen. This secondary task
was expected to distract their attention and increase their
workload for visual processing and critical thinking. The
experiment was operated in three different modes, which
were randomized for each participant:

User Secondary
Interface

.| Storage | B
shelves
=

Remote Local

OPSI‘BIO[ operator
Fig. 6: Experiment Setup: the remote operator (left), and the robotic system
and the local operator (right).

« Mode 1 - Remote only: the remote operator is responsible
for solving every problem the robot encountered.

+ Mode 2 - Remote + Local freeform: the remote operator
can resolve the problem alone or request help from a local
operator.

« Mode 3 - Remote + Local constrained: the robot decides
who to request help from to resolve the problem, and
send the request to the chosen operator. In this experiment,
the local operator was called for 75% of the encountered
errors.

B. Experimental procedure and data collection

We recruited N=20 participants (13 males and 7 fe-
males, 26.6 + 5.6 years) for our study. The experimenter
provided verbal instructions and demonstrations to teach
participants the various functionalities of the interface, and
how to address each issue (expired, misplaced and undetected
medicines). During the formal user study, we conducted two
trials for each mode, and the order was randomized for
each participant. Between modes, participants filled in some
standard and customized questionnaires, including NASA
Task Load Index (NASA-TLX) and System Usability Scale
(SUS). During the experiment, we recorded task completion
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Fig. 7: Performance comparison across modes, Mode 1: Remote only, Mode 2: Remote + Local freeform, Mode 3: Remote + Local constrained. a) Task
completion time. b) Secondary task performance, measured as the number of math questions answered per minute. ¢) Gaze distribution on the screen:
percentage of time spent on interface and secondary task. d) Percentage of local operators’ calls in Mode 2 versus task completion time reduction compared

to Mode 1, for each participant.

time, robot/task states, and interface inputs. Participants’
gaze was also tracked to evaluate attention shifts between
primary and secondary tasks and their interface engagement.
To assess cognitive workload, we collected the pupil diameter
as an indication of stress level: an increase in pupil size is
associated with increased stress [23]. We therefore compute
the cognitive workload as (Dyea — Dpase ) / Dinax> Where D.cqy
is the real-time pupil diameter, Dj,. is the baseline pupil
diameter recorded by looking at a white screen for 30
seconds before the experiment, and D,,,, is the maximum
average deviation across all trials for each participant.

V. RESULTS
A. Overall Performance, Workload, and Usability

We used the Paired t-Test with the Benjamini-Hochberg
correction, to compare the three modes. Regarding task
performance, our analysis reveals that the presence of a
local operator significantly reduces the task completion time
(p<0.001 across all modes, see Fig. 7 (a)). Fig. 7 (b) com-
pares the secondary task’s answer rate, calculated dividing
the number of answered questions by the task completion
time. The significant difference (p<0.00I) in answer rates
between Mode 1 and Mode 3 indicates that local operator
assistance also improves the secondary task performance
of the remote operator, as participants were solving the
questions quicker. Regarding workload, we analyzed the
gaze distribution on the screen, represented as the percentage
of time focused on the interface versus on the secondary task
(Fig. 7 (c)). There is a significant difference between Mode
1 and Mode 3 (p<0.001) and between Mode 2 and Mode 3
(p<0.01). Because of the local operator’s help, participants
spent significantly less time looking at the interface and
focused more on the secondary task to answer the math ques-
tions. However, the cognitive workload has no significant
difference across all modes. The subjective data collected
through NASA-TLX survey reported a significant difference
between Mode 1 and Mode 3 (p<0.01), and between Mode 2
and Mode 3 (p<0.02). The SUS scores for the three modes
suggest participants were satisfied with the overall system
and found it to be usable (Mode 1 = 87.63 & 10.41, Mode
2 =86.63 £ 9.5, Mode 3 = 88.13 £ 9.65).

B. To Call or Not to Call for Help?

From the comparison of Mode 1 versus Mode 2, we found
that having the option to call the local operator for help
does not reduce the remote operator’s cognitive workload.
To the remote operators, to call or not to call the local
operator for help was not an easy decision if they are
able to help the robot effectively through remote control
interfaces. Compared to Mode 1, Mode 2 has significant
task completion time reduction (p<0.001, see Fig. 7(a)),
but the secondary task performance and time allocation
between interface and secondary task are comparable. Shown
in Fig. 7 (d), we found a monotonic relationship between the
frequency of assistance requests and task completion time
reduction, confirmed by a Spearman correlation coefficient
of 0.81. Overall, more frequent calls to the local operator
lead to faster task completion time. The decision to seek help
from local operators varied among participants, with post-
experiment interviews revealing insights into their strategies
and reasoning for either seeking or not seeking assistance.
Overall, we noticed three distinct behavioral patterns: Group
1 participants rarely involved the local user, emphasizing
self-reliance and efficiency in their tasks. One noted, "I felt
confident in my ability to manage the tasks independently
and didn’t consider asking for help.” Another highlighted
their ability to multitask: I found I could manage both the
robot’s operations and the math questions... I saw no reason
to delegate unnecessarily.” Group 2, on the other side,
were more strategic in their approach to delegate. "I would
delegate the hardest tasks... The rest I would handle myself,”
and "My strategy was based on the number of actions. If a
task requires multiple steps, I would prefer to request help.”
illustrate their decision to seek local operator assistance for
particularly difficult or time-consuming tasks. Some people
in this group also considered fairness, workload balance,
and personal capabilities: “I didn’t want to overload the
local operator, and I would delegate unless 1 felt I could
handle the task more quickly myself.” Other participants
aimed for an even distribution of tasks. One participant in
Group 3 focused solely on efficiency and trusted the local
operator’s ability to expedite task completion.
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VI. DISCUSSION

Our preliminary user study focused on the impact of

local assistance on the remote operator’s performance. Find-
ings indicate that enabling a multilateral assistance system
significantly decreases task completion time and reduces
the mental workload on the remote operator. Additionally,
we found that constraining the help requests also benefits
the secondary task performance. However, if the remote
operator has the option to select whether to handle the issue
themselves or delegate it to the local operator, this will
introduce an additional layer of complexity as they must
expend extra effort to determine who is best suited to address
a task failure. Indeed, the cognitive workload of the freeform
mode was comparable to Mode 1, and the secondary task
performance and attention allocated to the interface remained
consistent.
Overall, while our findings validate the importance of this
multilateral collaboration, they also suggest that it is pre-
ferred to enable the robot (instead of humans) to decide
the task division (i.e., when and who to help the robot),
because they need to consider a multitude of factors. From
the user study, we observed diverse strategies to decide
whether to call for help, which may prioritize the overall
team performance, the workload of the human collaborator,
the efficiency of remotely controlling the robot, the difficulty
of the task, etc. We also noticed that some participants
called the local operator less often because they found
controlling the robot themselves more engaging. Therefore,
it will be important to enable robots to dynamically adjust
task delegation based on the real-time estimation of remote
and local operators workload, the task complexity, and their
abilities and availability to assist the robots.

VII. CONCLUSION AND FUTURE WORK

We developed an innovative prototype system that tran-
sitions nursing robots from unilateral to multilateral col-
laborative human-robot systems, enabling effective collab-
oration and communication with both remote and local
human operators. While our MMHR collaboration system
has demonstrated promising results in improving task ef-
ficiency and reducing the remote operator’s workload, the
challenges of human decision-making suggest a need for
adaptive delegation mechanisms to balance autonomy and
assistance. Our future work will develop robot autonomy to
adapt the task division to human performance, workload, and
availability to assist. We will also conduct further user studies
to investigate: 1) how to coordinate the MMHR collaboration
when the local operators are not experts (as the experimenter)
but users novice to the task and interfaces, and 2) how people
leverage multimodal communication (i.e., AR and verbal
communication).
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