Synthesis and Characterization of a Series of CpW(CO)₂PR₃H, [CpW(CO)₂PR₃]⁻, [CpW(CO)₂PR₃(CH₃CN)]⁺, and [CpW(CO)₂PR₃]₂ **Complexes**

Diane P. Isaacs and Jillian L. Dempsey*

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North

Carolina 27599-3290, United States

Key words: Metal hydrides, thermochemistry, pK_a

Abstract

A series of tungsten cyclopentadienyl carbonyl complexes were prepared and characterized to

quantify their thermochemical properties and explore their reactivity. The PR₃ ligand was

systematically varied across a series of CpW(CO)₂PR₃H metal hydride complexes, where PR₃ =

P(OEt)₃, P(Bu)₃, and P(Cy)₃. These complexes are known to undergo multiple proton, electron,

and proton-coupled electron transfer reactions to access a variety of species including

[CpW(CO)₂PR₃]⁻, [CpW(CO)₂PR₃(CH₃CN)]⁺, and [CpW(CO)₂PR₃]₂. Cyclic voltammograms of

the CpW(CO)₂PR₃H^{•+/0} and [CpW(CO)₂PR₃]^{•0/-} couples are chemically irreversible, indicating

chemical reactivity upon oxidation; the anodic peak potential shifts to lower potentials as the

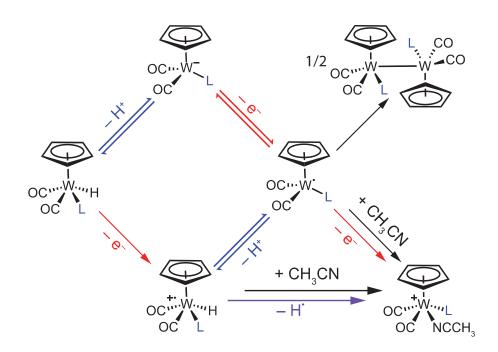
donating ability of phosphine is increased, agreeing with previous literature on similar complexes.

Additionally, voltammograms of [CpW(CO)₂P(Cy)₃]⁻ become chemically reversible at scan rates

above 500 mV/s, indicating that the dimerization of the [CpW(CO)₂PR₃] product, formed by the

oxidation of [CpW(CO)₂PR₃], is slower with the sterically bulky phosphine P(Cy)₃, and at high

1


scan rates the species can be reduced before dimerization occurs. Further, as the donating ability of the phosphine increases, the p K_a of the CpW(CO)₂PR₃H complexes increases. This work shows how ligand sterics and electronics can tune the thermochemical properties that underpin proton, electron, and proton-coupled electron transfer reactivity of these complexes.

Introduction

Transition metal hydride complexes are key intermediates in many fuel forming reactions including CO₂ reduction, H⁺ reduction, N₂ reduction, and H₂ oxidation.^{1–4} It is important to understand the proton–coupled electron transfer (PCET) reactivity of transition metal hydride complexes, as the formation and reactivity of metal hydride species can generate a range of species and reactive intermediates.^{5–7} Notably, the isolation and characterization of PCET intermediates can enable analysis of the more complicated reactions as a whole.

 $CpW(CO)_2LH$ (Cp = cyclopentadienyl, L = Lewis base) complexes 5,6,8,9 are a well-studied class of transition metal hydride complexes. $^{5-7,10-13}$ These transition metal hydride complexes are known to undergo deprotonation reactions to yield $[CpW(CO)_2L]^{-,5-7}$ oxidation reactions coupled with a PCET event and solvent (acetonitrile) binding to form $[CpW(CO)_2L(CH_3CN)]^{+,5-7,14}$ and a proton-coupled electron transfer reaction to yield $[CpW(CO)_2L]^{-,4}$, which can dimerize to form

 $[CpW(CO)_2L]_2 \quad or \quad undergo \quad disproportionation \quad (and \quad solvent \quad ligation) \quad to \quad form \\ [CpW(CO)_2L(CH_3CN)]^+ \quad and \quad [CpW(CO)_2L]^-(Scheme \ 1).^{5-7,11,14-17}$

Scheme 1: Reaction scheme depicting the thermochemical and chemical steps between CpW(CO)₂LH, [CpW(CO)₂L]⁻, [CpW(CO)₂L(CH₃CN)]⁺, and [CpW(CO)₂L]₂. Red arrows represent electron transfer, blue arrows represent proton transfer, purple arrows represent hydrogen atom transfer, and black arrows represent chemical steps.

 $CpW(CO)_2LH$ complexes can be synthesized with a variety of Lewis base ligands (L), ranging from carbonyls to carbenes to phosphines. ^{5,6,10,18} The steric and electronic properties of L can be systematically changed, and the influence of L on the thermochemical properties and reactivity of $CpW(CO)_2LH$ can be interrogated. Ligands such as monodentate trialkyl or triaryl phosphines (PR₃) offer an accessible spectrum of electronic and steric properties. For instance, the electronic properties of PR₃ ligands have been well studied by $Tolman^{19}$ and their steric bulk can be readily quantified by the Tolman cone angle. ^{20,21} Some $CpW(CO)_2(PR_3)H$ complexes have been studied previously, ^{5,10,13} however other derivatives only been mentioned in passing or have not yet reported, such as $PR_3 = P(OEt)_3$, $P(Bu)_3$, or $P(Cy)_3$ ($P(OEt)_3 = triethyl$ phosphite, $P(Bu)_3 = triethyl$ phosphite, $P(Bu)_3 = triethyl$ phosphite, $P(Bu)_3 = triethyl$

tributyl phosphine, and P(Cy)₃ = tricyclohexyl phosphine). ^{18,22} In this work, we report the synthesis and thermochemical properties of a family of CpW(CO)₂PR₃H complexes with PR₃ = P(OEt)₃, P(Bu)₃, and P(Cy)₃. We also report the synthesis and characterization of related species, [CpW(CO)₂PR₃]⁻, [CpW(CO)₂PR₃(CH₃CN)]⁺, and [CpW(CO)₂PR₃]₂, which are products of proton, electron, and proton-coupled electron transfer reactions. Through comprehensive characterization, we reveal how the electronics and sterics of these different phosphine ligands affect thermochemical properties and the kinetics of their reactivity, augmenting existing datasets for related complexes and strengthening trends for this important class of molecules.

Experimental

General considerations

All syntheses and analyses were performed under a nitrogen atmosphere, either in an inert atmosphere glovebox or on a Schlenk line, unless otherwise specified. Synthesis of CpW(CO)₃H^{23,24} and triphenylmethyl radical²⁵ (Moses Gomberg's dimer) were synthesized according to literature procedures. Triethyl phosphite and tricyclohexylphosphine was purchased from Fisher Scientific. Tributyl phospine was purchased from SigmaAldrich. Acetonitrile (Fisher Scientific, HPLC grade, >99.9%), diethyl ether (Fisher Scientific, >99%), and pentane (Fischer Scientific, >99%) were degassed with argon and dried using a Pure Process Technology solvent system. Deuterated acetonitrile (Cambridge Isotope Laboratories, >99.8%) was stirred over CaH₂ for 24 hours, degassed using a freeze–pump–thaw technique, vacuum transferred to a Strauss flask, and stored under an inert-atmosphere glovebox. All NMR spectra were recorded on either a Bruker NEO 400 MHz spectrometer with Prodigy probe, a Bruker AVIII 500 MHz spectrometer with a standard 5 mm broad band probe, or a Bruker B600 MHz spectrometer with a BBFO probe. UV–

visible absorbance measurements were recorded on an Agilent Cary 60 UV-vis spectrophotometer using 1 cm path length quartz cuvettes. Infrared spectra were acquired on Thermo Scientific Nicolet iS5 FT-IR spectrometer utilizing an air-tight solution cell. High-resolution mass spectrometry was collected with a Thermo Scientific Q Exactive HF-X instrument.

Electrochemistry. Electrochemical measurements were performed in a nitrogen-filled glovebox at room temperature with a WaveDriver potentiostat (Pine Research) using a glassy carbon working electrode, a glassy carbon counter electrode, and a silver wire pseudo-reference electrode. The pseudo-reference silver wire electrode was submerged in a glass tube containing electrolyte (0.25 M [Bu₄N][PF₆] in CH₃CN) and separated from the solution with a porous glass Vycor tip. The electrochemical cell used was a 20 mL scintillation vial fitted with a custom-made Teflon cap for the three electrodes. The electrode leads in the glovebox were connected to the WaveDriver with a custom shielded electrode cable feedthrough. All scans were internally referenced to the ferrocenium/ferrocene couple (0 V vs. Fc^{+/0}). Ohmic drop was minimized using a high electrolyte concentration (0.25 M [Bu₄N][PF₆]), as well as by minimizing the distance between the working and reference electrodes. The positive feedback Ru method (Pine Research) was used to compensate for the residual ohmic drop. Glassy carbon electrodes (CH Instruments) were polished with 0.05 µm alumina powder (CH Instruments, contained no agglomerating agents) Milli-Q water slurries, rinsed, and ultrasonicated briefly in Milli-Q water to remove residual polishing powder. The working electrode was pretreated with cyclical scans from approximately 1 to -2.5 V at 200 mV/s in 0.25 M [Bu₄N][PF₆] in CH₃CN until cycles were superimposable.

Synthesis of CpW(CO)₂PR₃H

CpW(CO)₂P(OEt)₃H. Preparation of CpW(CO)₂P(OEt)₃H was adapted from literature procedures of similar complexes.^{5,13,23,24} In an inert atmosphere glovebox, triethyl phosphite (0.217 mL, 1.27

mmol, 1.6 equiv) and CpW(CO)₃H (0.2679 g, 0.805 mmol, 1 equiv, yellow solid) were added to a 20 mL scintillation charged with a stir bar. To the vial, 5 mL of toluene was added. The reaction was stirred for 18 hrs at room temperature. Toluene was removed under vacuum to yield a yellow oil. The oil was dissolved in 2 mL pentane and placed in the freezer. After 1 day, a light-yellow solid crashed out of solution. Pentane was decanted off with a pipette and the solid was rinsed with cold pentane three times. The yellow solid was then dried under vacuum (0.2432 g, 0.515mmol, 64% yield) and stored in the glovebox freezer. ¹H NMR (400 MHz, CD₃CN) **δ** 5.39 (5H, s), 3.43 (6H, m), 1.23 (9H, t, J = 14.0, 7.0 Hz), -8.25 (1H, d, $^2J^{31}_{P-H} = 72.0$ Hz) 31 P NMR (162 MHz, CD₃CN) δ 153 (1P, s ${}^{1}J^{183}W-P = 425$ Hz). IR in pentane 1955 and 1885 cm⁻¹ (CO). IR in CH₂Cl₂ 1941 and 1855 cm⁻¹ (CO). Anal. Calcd for C₁₃H₂₁O₅PW: C, 33.07; H, 4.49; N, 0. Found C, 33.01; H, 4.41; N, 0. HRMS (ESI-HFX) m/z: $[M + H]^+$ Calcd for $C_{13}H_{21}O_5PWH$ 473.115; Found 473.071. CpW(CO)₂P(Bu)₃H. Preparation of CpW(CO)₂(P(Bu)₃H was adapted from literature procedures of similar complexes.^{5,13,23,24} In an inert atmosphere glovebox, tributylphosphine (0.0747 mL, 0.3028 mmol, 1 equiv, yellow solid) and CpW(CO)₃H (0.1010 g, 0.3034 mmol, 1 equiv) were added to a scintillation vial charged with a stir bar. To the vial, 5 mL of pentane was added. The reaction was stirred for 18 hrs at room temperature. Unlike other analogs, CpW(CO)₂(P(Bu)₃H did not crash out of pentane and a stoichiometric ratio of CpW(CO)₃H and PR₃ were required to isolate the product. The pentane was removed under vacuum and a yellow oily solid was collected (0.1441 g, 0.2835 mmol, 93 % yield) and stored in the glovebox freezer. ¹H NMR (400 MHz, CD₃CN) **δ** 5.35 (5H, s, Cis), 5.17 (5H, s, Trans), 1.73 (6H, m), 1.37 (12 H, m), 0.92 (9H, t, J = 14.1, 6.8 Hz),-8.00 (1H, d, Cis, ${}^{2}J^{31}_{P-H}$ = 65.2 Hz. ${}^{1}J^{183}_{W-H}$ = 48.4 Hz), -8.22 (1H, d, Trans, ${}^{2}J^{31}_{P-H}$ = 23.0 Hz) 72% Cis isomer, 28 % Trans isomer. ³¹P NMR (162 MHz, CD₃CN) **δ** 14.1 (1P, s, Cis, ${}^{1}J^{183}W^{-P}$ = 254 Hz), 7.36 (1P, s, Trans, ${}^{1}J^{183}w_{-P} = 279$ Hz). IR in pentane 1939 and 1856 cm⁻¹ (CO). IR in CH₂Cl₂ 1918 and 1830 cm⁻¹ (CO). Anal. Calcd for C₁₉H₃₃O₂PW: C, 44.89; H, 6.57; N, 0. Found C, 45.19; H, 6.56; N, 0. HRMS (ESI-HFX) m/z: [M + H]⁺ Calcd for C₁₉H₃₃O₂PWH 509.256; Found 509.180.

 $CpW(CO)_2P(Cy)_3H$. Preparation of CpW(CO)_2(PCy)_3H was adapted from literature procedures of similar complexes. ^{5,13,23,24} In an inert atmosphere glovebox, tricyclohexylphosphine (0.1239 g, 0.4418 mmol, 1 equiv) and CpW(CO)_3H (0.1640 g, 0.4926 mmol, 1.11 equiv, yellow solid) were added to a scintillation vial charged with a stir bar. To the vial, 3 mL of pentane was added. The reaction was stirred for 72 hrs at room temperature. A light-yellow solid crashed out slowly over time. The yellow solid was collected by filtration and rinsed with pentane 3 times (0.1647 g, 0.2809 mmol, 64% yield). ¹H NMR (400 MHz, CD₃CN) δ 5.36 (5H, s), 1.84 (12H, m), 1.67 (6H, m), 1.27 (15H, m), - 7.64 (1H, d, ${}^2J^3I_{P-H} = 60.9$ Hz)). ³¹P NMR (162 MHz, CD₃CN) δ 43.2 (1P, s). IR in pentane 1934 and 1848 cm⁻¹ (CO). IR in CH₂Cl₂ 1941 and 1856 cm⁻¹ (CO). Anal. Calcd for C₂₅H₃₉O₂PW: C, 51.20; H, 6.72; N, 0. Found C, 50.56; H, 6.35; N, 0. HRMS (ESI-HFX) m/z: [M + H]⁺ Calcd for C₂₅H₃₉O₂PWH 587.382; Found 587.227.

Synthesis of Na[CpW(CO)₂PR₃]

 $Na[CpW(CO)_2P(OEt)_3]$. Preparation of Na[CpW(CO)_2P(OEt)_3] was adapted from literature procedures of similar complexes. ^{5,16} In an inert atmosphere glovebox CpW(CO)_2P(OEt)_3H (0.0514 g, 0.109 mmol, 1 equiv) was combined with NaH (0.0029 g, 0.12 mmol, 1.1 equiv) in a 20 mL scintillation vial. The solids were then dissolved in 5 mL acetonitrile and stirred overnight. The solution was filtered to remove excess NaH and solvent was removed under vacuum to yield a yellow solid (0.0550 g, 0.0111 mmol, 101%). ¹H NMR (400 MHz, CD₃CN) δ 4.84 (5H, s), 3.78 (6H, m), 1.13 (9H, t, J = 14.1, 7.1 Hz). ³¹P NMR (162 MHz, CD₃CN) δ 177 (1P, s, ¹ $J^{183}w_{-P} = 701$

Hz). IR in CH₂Cl₂ 1942 and 1848 cm⁻¹ (CO). HRMS (ESI-HFX) m/z: [M⁻] Calcd for C₁₃H₂₁O₅PW 471.099; Found 471.057.

Na[*CpW*(*CO*)₂*P*(*Bu*)₃]. Preparation of Na[*CpW*(*CO*)₂*P*(*Bu*)₃] was adapted from literature procedures of similar complexes. ^{5,16} In an inert atmosphere glovebox $CpW(CO)_2P(Bu)_3H$ (0.0510 g, 0.101 mmol, 1 equiv) was combined with NaH (0.0028 g, 0.12 mmol, 1.2 equiv) in a scintillation vial. The solids were dissolved in 5 mL acetonitrile and stirred overnight. The solution was filtered to remove excess NaH and the solvent removed under vacuum to yield a yellow solid (0.0501 g, 0.0946 mmol, 94/%). ¹H NMR (400 MHz, CD_3CN) δ 4.70 (5H, s), 1.58 (6H, m), 1.34 (12H, m), 0.90 (9H, t, J = 14.3, 7.2 Hz). ³¹P NMR (162 MHz, CD_3CN) δ 21.6 (1P, s, $^1J^{183}w_{-P} = 458$ Hz). IR in CH_2Cl_2 1937 and 1844 cm⁻¹ (CO). HRMS (ESI-HFX) m/z: [M $^-$] Calcd for for $C_{19}H_{32}O_2PW$ 507.240; Found 507.166.

 $Na[CpW(CO)_2P(Cy)_3]$. Preparation of Na[CpW(CO)_2P(Cy)_3] was adapted from literature procedures of similar complexes. ^{5,16} In an inert atmosphere glovebox CpW(CO)_2P(Cy)_3H (0.0345 g, 0.0589 mmol, 1.1 equiv) was combined with NaH (0.0014 g, 0.058, 1 equiv)in a scintillation vial. The solids were dissolved in 10 mL acetonitrile and stirred overnight. The solution was filtered to remove excess NaH and the solvent removed under vacuum to yield a yellow solid (0.0347 g, 0.0570 mmol, 98%). ¹H NMR (400 MHz, CD₃CN) δ 4.70 (5H, s), 1.78 (18H, m), 1.20 (15H, m). ³¹P NMR (162 MHz, CD₃CN) δ 43.1 (1P, s, ¹ J^{183}_{W-P} = 452 Hz). IR in CH₂Cl₂ 1937 and 1848 cm⁻¹ (CO). HRMS (ESI-HFX) m/z: [M⁻] Calcd for for C₂₅H₃₈O₂PW 585.366; Found 585.214.

Synthesis of [CpW(CO)₂PR₃(CH₃CN)][PF₆]

[CpW(CO)₂P(OEt)₃(CH₃CN)][PF₆]. Preparation of [CpW(CO)₂P(OEt)₃(CH₃CN)][PF₆] was adapted from literature procedures of similar complexes.^{11,14,24,26} In an inert atmosphere glovebox,

CpW(CO)₂P(OEt)₃H (0.0490 g, 0.104 mmol, 1.07 equiv) was added to a 20 mL scintillation vial. The solid was dissolved in 1 mL dichloromethane and 5 equivalents of acetonitrile (26 µL) was added. Trityl hexafluorophosphate (0.0377 g, 0.0971 mmol, 1 equiv) was added to a 20 mL scintillation vial and dissolved in 2 mL dichloromethane. The trityl PF₆ solution was added to the, CpW(CO)₂P(OEt)₃H solution while stirring The solution was stirred for 15 mins at room temperature while shielded from light. The solution turned an orange/red color within a couple of minutes. The solvent was removed by vacuum while shielding the vial from light to yield an orange/red solid. Diethyl ether was added to the vial to yield orange solution with undissolved red/orange solid. The orange diethyl ether solution decanted off and the solid was dried under vacuum to afford a red/orange solid (0.0507g, 0.0793 mmol, 82%). ¹H NMR (400 MHz, CD₃CN) **8** 5.59 (5H, s), 4.05 (2H, m), 2.52 (3H, s), 1.31 (3H, t, J = 14.1, 7.1 Hz). ³¹P NMR (162 MHz, CD₃CN) δ 131.77 (1P, s, ${}^{1}J^{183}W-P = 347$ Hz), -144.64 (1P, septet, PF₆). IR in CH₂Cl₂ 1912 and 1998 cm⁻¹ (CO). Anal. Calcd for C₁₅H₂₃O₅NP₂WF₆: C, 27.41; H, 3.53; N, 2.13. Found C, 27.59; H, 3.38; N, 2.03. HRMS (ESI-HFX) m/z: [M]⁺ Calcd for C₁₅H₂₃O₅NPW 512.153; Found 512.082. $[CpW(CO)_2P(Bu)_3(CH_3CN)][PF_6]$. Preparation of $[CpW(CO)_2P(Bu)_3(CH_3CN)][PF_6]$ was adapted from literature procedures of similar complexes. 11,14,24,26 In an inert atmosphere glovebox, CpW(CO)₂P(Bu)₃H (0.0491 g, 0.0968 mmol, 1 equiv) and trityl hexafluorophosphate (0.0375 g, 0.0966 mmol, 1 equiv) were added to a 20 mL scintillation vial. The solids were dissolved in 5 mL dichloromethane and 5 equivalents of acetonitrile (26 μL) were added. The solution was stirred for 20 mins at room temperature. The solvent was removed by vacuum while shielding the vial from light. Diethyl ether was added to the vial to yield red solution with undissolved orange solid. The red diethyl ether solution was decanted. The orange solid rinsed with ether 3 times and dried under vacuum (0.0359g, 0.0518 mmol, 53%). ¹H NMR (400 MHz, CD₃CN) δ 5.80 (5H, s), 2.56

(3H, s), 1.91 (6H, m), 1.41 (12H, m), 0.95 (9H, t, J = 13.9, 6.8 Hz). ³¹P NMR (162 MHz, CD₃CN) $\delta - 0.42$ (1P, s, ${}^{1}J^{183}W^{-P} = 235$ Hz), $\delta - 145$ (1P, septet, PF₆). IR CH₂Cl₂ in, 1889 and 1971 cm ⁻¹ (CO). Anal. Calcd for C₂₁H₃₅O₂NP₂WF₆: C, 36.38; H, 5.10; N, 2.02. Found C, 36.38; H, 5.09; N, 1.91. HRMS (ESI-HFX) m/z: [M]⁺ Calcd for C₂₁H₃₅O₂NPW 547.286; Found 547.219.

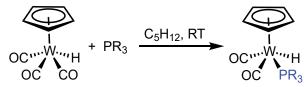
[CpW(CO)₂P(Cy)₃(CH₃CN)][PF₆]. Preparation of [CpW(CO)₂P(Cy)₃(CH₃CN)][PF₆] was adapted from literature procedures of similar complexes.^{11,14,24,26} In an inert atmosphere glovebox, CpW(CO)₂P(Cy)₃H (0.0581 g, 0.0990 mmol, 1.04 equiv) and trityl hexafluorophosphate (0.0370 g, 0.0953 mmol, 1 equiv) were added to a 20 mL scintillation vial. Solids were dissolved in 5 mL dichloromethane and 5 equivalents of acetonitrile (26 μL) were added. The solution was stirred for 10 mins at room temperature. The solvent was removed by vacuum while shielding the vial from light. Diethyl ether was added to the vial to yield red solution with an undissolved orange solid. The red diethyl ether solution was decanted. The orange solid was rinsed with ether 3 times and dried under vacuum (0.0651 g, 00844 mmol, 89%). ¹H NMR (400 MHz, CD₃CN)) δ 5.86 (5H, s), 2.56 (3H, s), 1.84 (12H, m), 1.73 (3H, m) 1.43 (6H, m), 1.31 (12H, m). ³¹P NMR (162 MHz, CD₃CN) δ 21.1 (1P, s, ${}^{1}J^{183}_{W-P}$ = 242 Hz), – 145 (1P, septet, PF₆). IR in CH₂Cl₂ 1912 and 1998 cm⁻¹ (CO). Anal. Calcd for C₂7H₄₁O₂NP₂WF₆: C, 42.03; H, 5.37; N, 1.82. Found C, 42.36; H, 5.44; N, 1.61. HRMS (ESI-HFX) m/z: [M]⁺ Calcd for C₂7H₄₁O₂NPW 626.420; Found 626.238.

Synthesis of [CpW(CO)₂PR₃]₂

[CpW(CO)₂P(OEt)₃]₂. Preparation of [CpW(CO)₂P(OEt)₃]₂ was adapted from literature procedures of similar complexes. ^{14,15,24,27} In an inert atmosphere glovebox, CpW(CO)₂P(OEt)₃H (0.0530 g, 0.112 mmol, 2 equiv) and (Ph₃C)₂ (0.0246 g, 0.0505 mmol, 1 equiv) were combined in a 20 mL scintillation vial. The solids were then dissolved in 3 mL diethyl ether and stirred for 10 min at room temperature. The solvent was removed under vacuum, rinsed 3 times with pentane,

and dried under vacuum for 30 mins to yield a red solid (0.0103 g, 0.0110 mmol, 22%). ¹H NMR (400 MHz, CD₃CN) **δ** 5.13 (10H, s, gauche), 5.05 (10H, s, anti), 4.00 (12H, m), 1.29 (18H, t, J = 14.0, 7.1 Hz, gauche), 1.25 (18H, t, J = 14.1, 7.1 Hz, anti). ³¹P NMR (162 MHz, CD₃CN) **δ** 152 (1P, s, gauche), 150 (1P, s, anti). IR in CH₂Cl₂ 1859 and 1835 cm⁻¹ (CO). Anal. Calcd for [C₁₃H₂₀O₅PW]₂: C, 33.14; H, 4.29; N, 0. Found C, 33.13; H, 4.17; N, 0. HRMS (ESI-HFX) m/z: [M + H]⁺ Calcd for [C₁₃H₂₀O₅PWH]₂ 944.140; Found 944.114.

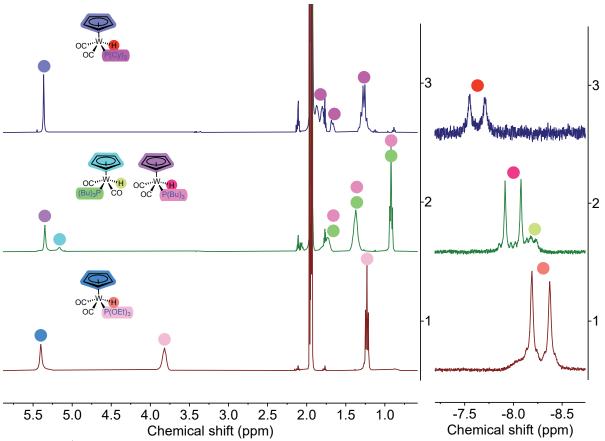
[CpW(CO)₂P(Bu)₃]₂. Preparation of [CpW(CO)₂P(Bu)₃]₂ was adapted from literature procedures of similar complexes. ^{14,15,24,27} In an inert atmosphere glovebox, CpW(CO)₂P(Bu)₃H (0.0436 g, 0.0859 mmol, 1.03 equiv) and (Ph₃C)₂ (0.0405 g, 0.0832 mmol, 1 equiv) were combined in a 20 mL scintillation vial. The solids were then dissolved in 1.5 mL diethyl ether and stirred for 10 min at room temperature. A pink solid crashed out of solution and was collected via filtration. The solid was rinsed 3 times with diethyl ether and dried under vacuum for 30 mins to yield a pink solid (0.0203g, 0.0200 mmol, 24%). ¹H NMR (400 MHz, CD₃CN)) δ 5.03 (10H, s, gauche), 4.93 (10H, s, anti), 1.49 (24H, m, J = 14.4, 7.2 Hz gauche), 1.39 (24H, t, J = 14.6, 7.3 Hz anti), 1.27 (12H, m), 0.94 (18H, m). ³¹P NMR (162 MHz, CD₃CN) δ 9.33 (1P, s, gauche), 7.38 (1P, s, anti). IR in CH₂Cl₂ 1830 and 1810 cm⁻¹ (CO). Anal. Calcd for [C₁₃H₂₀O₅PW]₂: C, 44.98; H, 6.37; N, 0. Found C, 44.82; H, 6.15; N, 0. HRMS (ESI-HFX) m/z: [M] Calcd for [C₁₉H₃₂O₂PW]₂ 1014.480; Found 1014.328.


[CpW(CO)₂P(Cy)₃]₂. Preparation of [CpW(CO)₂P(Cy)₃]₂ was adapted from literature procedures of similar complexes. ^{14,15,24,27} In an inert atmosphere glovebox, CpW(CO)₂P(Cy)₃H (0.0497 g, 0.0848 mmol, 1.03 equiv) and (Ph₃C)₂ (0.0402 g, 0.0826 mmol, 1 equiv) were combined in a 20 mL scintillation vial. The solids were then dissolved in 3 mL diethyl ether and stirred for 45 min at room temperature. A purple-pink solid crashed out of solution and was collected via filtration.

The solid was rinsed 3 times with diethyl ether and dried under vacuum for 30 mins to yield a purple-pink solid (0.0369 g, 0.0315 mmol, 38%). [CpW(CO)₂P(Cy)₃]₂ is not soluble in acetonitrile and characterization is limited. Anal. Calcd for [C₂₅H₃₈O₂PW]₂: C, 51.30; H, 6.56; N, 0. Found C, 51.26; H, 6.38; N, 0. HRMS (ESI-HFX) m/z: [M] Calcd for [C₂₅H₃₈O₂PW]₂ 1170.732; Found 1170.425.

Results and Discussion

Synthesis and characterization of CpW(CO)₂PR₃H complexes


Syntheses of $CpW(CO)_2PR_3H$ (PR₃ = P(OEt)₃, P(Bu)₃, P(Cy)₃) were adapted from literature reports of similar complexes, whereby^{5,13,23,24} $CpW(CO)_3H$ is stirred with PR₃ at room temperature in pentane and PR₃ exchanges with one of the CO ligands, affording $CpW(CO)_2PR_3H$.

Scheme 2: Reaction scheme for the synthesis of CpW(CO)s₂PR₃H.

¹H NMR spectra of CpW(CO)₂PR₃H H (PR₃ = P(OEt)₃ and P(Cy)₃) exhibit a diagnostic Cp resonance at room temperature that appears as a singlet at 5.39 and 5.36 ppm, respectively, along with a hydride resonance observed as a doublet at −8.25 and −7.64 ppm, respectively. A single phosphine resonance in the ³¹P NMR is observed at 153 and 43.2 ppm for P(OEt)₃ and P(Cy)₃ respectively. Two Cp resonances are observed in the ¹H NMR spectrum of CpW(CO)₂P(Bu)₃H. The two Cp resonances in CpW(CO)₂P(Bu)₃H are assigned to the cis and trans isomers of the complex at 5.35 and 5.17 ppm respectively, where cis and trans refer to the position of the phosphine relative to the hydride. The assignment of the two isomers is confirmed

by the presence of two diagnostic upfield metal hydride resonances observed as doublets in the 1 H NMR spectrum (-8.00 and -8.22 ppm) and two peaks in the 31 P NMR spectrum (14.1 and 7.36 ppm). Cis and trans isomers have distinct coupling constants for the metal hydride resonances coupling to the phosphorous, with a larger coupling constant observed for the cis configuration for molecules of the type $CpM(CO)_2PR_3H$. 28,29 Further investigation into $PR_3 = P(OEt)_3$ and $P(Cy)_3$, indicate coalescence of the isomers at room temperature. In low temperature 1 H NMR of $PR_3 = P(OEt)_3$, both isomers can be observed by ca. -10 °C and for $PR_3 = P(Cy)_3$, the peaks start to separate by ca. -30 °C, but the solvent freezes before the peaks are fully distinguishable (Figure S1, Table 1). Further, 183 W satellites are observed for the metal hydride complexes for $PR_3 = P(OEt)_3$ and $P(Bu)_3$.

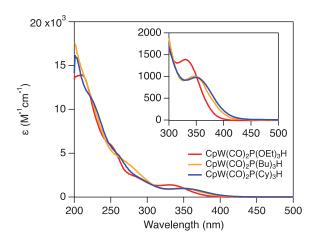

Figure 1: ¹H NMR spectra of CpW(CO)₂P(OEt)₃H (1), CpW(CO)₂P(Bu)₃H (2), and CpW(CO)₂P(Cy)₃H (3) in CD₃CN acquired on a 400 MHz spectrometer. Peak assignments are color coded to the structures on the figure.

Table 1: ¹H NMR chemical shifts for Cp resonances, ¹H NMR chemical shifts for metal hydride resonances, coupling constants for the hydride peak of each complex by ¹H NMR, ³¹P NMR chemical shifts of the PR₃ group, and the relative amounts of each isomer calculated by integration of the Cp resonance in the ¹H NMR spectra.

Compound/Temp.	Isomer	Relative amount	Ср б	Hydride δ (J _{PH})
CpW(CO) ₂ (P(OEt) ₃)H ca30 °C	Cis	82%	5.41	-8.40 (72)
	Trans	18%	5.27	-8.08 (27)
CpW(CO) ₂ (P(Bu) ₃)H ca. 25 °C	Cis	72%	5.35	-8.00 (65.2)
	Trans	28%	5.17	-8.22 (23.0)
CpW(CO) ₂ (P(Cy) ₃)H ca. 25 °C	Cis/Trans Coalescence	_	5.36	-7.64 (60.9)

The cis and trans isomers of CpW(CO)₂PR₃H are each expected to have two IR-active CO stretches based on their C₁ and C_s symmetries, respectively. However, the FTIR spectra of the CpW(CO)₂PR₃H complexes in pentane only exhibit two CO stretches in the IR, 1955 and 1885 cm⁻¹ (P(OEt)₃), 1939 and 1856 cm⁻¹ (P(Bu)₃), 1934 and 1848 cm⁻¹ (P(Cy)₃), indicating the isomers are likely of similar energy and their CO stretches overlap. In CH₂Cl₂, these CO stretches appear at 1941 and 1855 cm⁻¹ (P(OEt)₃), 1918 and 1830 cm⁻¹ (P(Bu)₃), and 1941 and 1856 cm⁻¹ (P(Cy)₃).

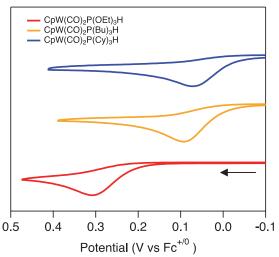
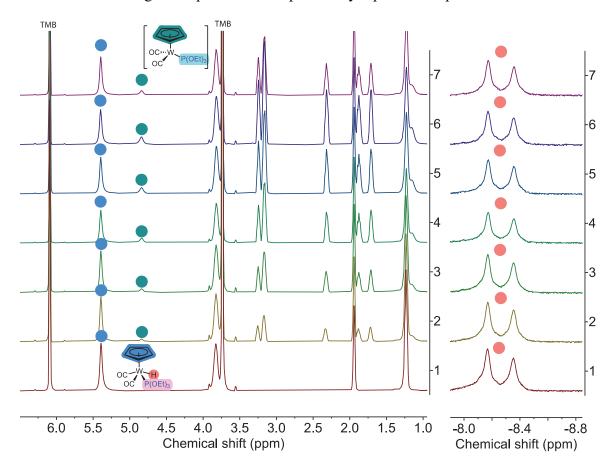
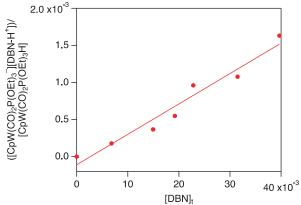

Solutions of all the CpW(CO)₂PR₃H complexes are pale yellow, and feature a broad absorption band in the UV region (Figure 2, P(OEt)₃ λ_{max} = 329 nm, ϵ = 1388 M⁻¹cm⁻¹; P(Bu)₃ λ_{max} = 347 nm ϵ = 1007 M⁻¹cm⁻¹; P(Cy)₃ λ_{max} = 350 nm ϵ = 979.5 M⁻¹cm⁻¹) of the UV-visible absorbance spectra. The transition is red shifted ca. 20 nm for the more donating phosphines P(Bu)₃ and P(Cy)₃.

Figure 2: UV-vis absorbance spectra of CpW(CO)₂P(OEt)₃H (red), CpW(CO)₂P(Bu)₃H (orange), CpW(CO)₂P(Cy)₃H (blue) in CH₃CN. Inset: Zoom-in of the features at ca. 350 nm.

Next, cyclic voltammetry and spectrophotometric titrations were utilized to characterize the thermochemical properties of the CpW(CO)₂PR₃H complexes. These properties ultimately dictate the reagents necessary to promote the chemical transformations between CpW(CO)₂PR₃H complexes and their PCET products highlighted in Scheme 1. Cyclic voltammograms of CpW(CO)₂PR₃H contain a chemically irreversible oxidative wave, even at scan rates up to 10 V s⁻¹ (Figure 3, Figures S2-4). Oxidation of CpW(CO)₂PR₃H affords the unstable radical cation, [CpW(CO)₂PR₃H]*+, which can undergo a one-electron, one-proton PCET reaction and subsequently react with solvent to form [CpW(CO)₂PR₃(CH₃CN)]⁺.^{6,7} The anodic peak potentials range from 0.31 to 0.098 to 0.069 V vs $Fc^{+/0}$ for $PR_3 = P(OEt)_3$, $P(Bu)_3$, $P(Cy)_3$, respectively. This is in agreement with the Tolman electronic parameter ranking for the phosphine ligands derived from IR, 19 and indicates that CpW(CO)₂PR₃H complexes are more readily oxidized with more donating ligands. These data fit the existing trend for known anodic peak potentials of $CpW(CO)_2LH$ complexes (L = CO, P(Me)₃, and IMes, where IMes = 1,3bis(2,4,6trimethylphenyl)imidazol-2-ylidene). With L = CO, an anodic peak potential of 0.74 V vs $Fc^{+/0}$ was reported, ^{6,8,11} and as the ligand donor strength is increased, the peak shifts to more negative


potentials—anodic peak potentials of 0.16 V and -0.13 vs Fc^{+/0} were recorded for L = P(Me)₃ ^{5,11} and L = IMes⁷ respectively.

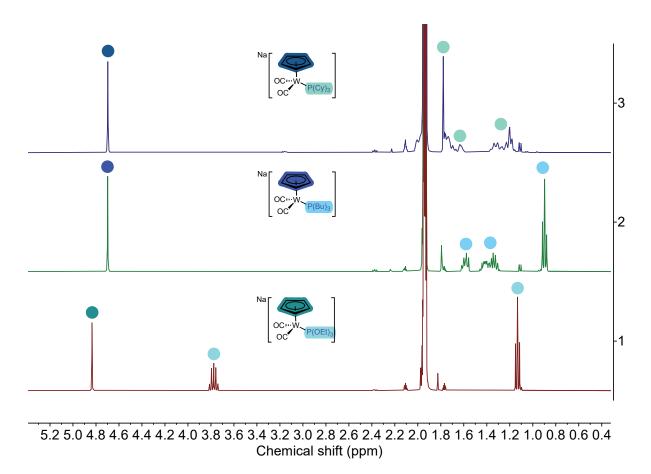

Figure 3: Cyclic voltammograms of CpW(CO)₂P(OEt)₃H (0.74 mM, red), CpW(CO)₂P(Bu)₃H (0.85 mM, orange), and CpW(CO)₂P(Cy)₃H (0.31 mM, blue) in CH₃CN (250 mM [NBu₄][PF₆]) with a 50 mV s⁻¹ scan rate and applied voltage corrected for ohmic drop using positive feedback R_u . Working electrode: glassy carbon, counter electrode: glassy carbon, reference electrode: silver wire pseudo electrode referenced to Fc^{+/0} with ferrocene as an internal standard.

Understanding the acidity of CpW(CO)₂PR₃H complexes guides the selection of appropriate bases to deprotonate the metal hydride complex to form [CpW(CO)₂PR₃]⁻. Spectrophotometric titrations were performed to determine the p K_a values of the metal hydride complexes in this study (Figures 4, 5, S8–24).³⁰ As the electron donating ability of the phosphine increases, the p K_a value of the metal hydride complex increases. Experimental p K_a values were determined to be 25.4±0.1, 30.0±0.1, and 29.9±0.2 for PR₃ = P(OEt)₃, P(Bu)₃, and P(Cy)₃, respectively (values are the average of three trials). This presumably reflects the relatively stability of the conjugate base formed upon hydride deprotonation, [CpW(CO)₂PR₃]⁻. These data fit existing trends for CpW(CO)₂LH complexes; when L = CO a p K_a of 16,6,8,11 L = P(Me)₃ has p K_a of 26.6,5,11 and L = IMes has a p K_a of 32.9.7 While the p K_a values of PR₃ = P(Bu)₃ and P(Cy)₃ fall

between those reported for P(Me)₃ and IMes, they are slightly higher than expected based on their relative donor strength compared to these previously reported complexes.

Figure 4: ¹H NMR spectra of CpW(CO)₂P(OEt)₃H upon addition of 1, 5– diazabicyclo[4.3.0]non–5–ene (DBN). Spectra collected on a 400 MHz instrument in CD₃CN with 1, 3, 5 - trimethoxybenzene as an internal standard.

Figure 5: Plot of the relative concentrations of $[([CpW(CO)_2P(OEt)_3]^-][DBN-H^+])/[CpW(CO)_2P(OEt)_3H]$ vs $[DBN]_t$ (DBN = 1, 5– diazabicyclo[4.3.0]non–5–ene) Concentrations of $[CpW(CO)_2P(OEt)_3]^-$ and $CpW(CO)_2P(OEt)_3H$ were obtained by 1H NMR spectroscopy with


reference to an internal standard, biphenyl. The linear fit of the plot is y = 0.0369x - 0.000188 with an r^2 value of 0.9688. This plot represents the first trial of the three trials conducted. The p K_a value in the main text is the average of three trials.

Synthesis and characterization of [Na][CpW(CO)₂PR₃] complexes

The syntheses of [Na][CpW(CO)₂PR₃] complexes were adapted from literature procedure.^{5,16,24} First, CpW(CO)₂PR₃H was combined with excess NaH and stirred overnight in acetonitrile. Then, excess NaH was removed via filtration to isolate [Na][CpW(CO)₂PR₃].

Scheme 3: Reaction scheme for the synthesis of [Na][CpW(CO)₂PR₃].

Successful synthesis of [Na][CpW(CO)₂PR₃] is supported by 1 H NMR spectra (Figure 6), in which the up field metal hydride peak observed in spectra of CpW(CO)₂PR₃H is absent. The Cp peak is upfield relative to that of the corresponding neutral metal hydride species, at 4.84, 4.70, and 4.70 ppm for PR₃ = P(OEt)₃, P(Bu)₃, and P(Cy)₃, respectively (Figure 6). The 31 P NMR contains a single phosphorous peak at 177, 21.6, and 43.1 ppm for PR₃ = P(OEt)₃, P(Bu)₃, and P(Cy)₃, respectively.

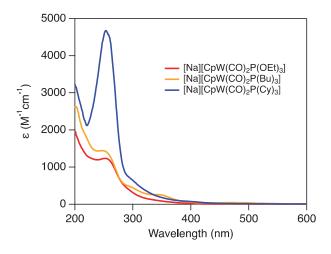


Figure 6: The ¹H NMR spectra of [Na][CpW(CO)₂P(OEt)₃] (1), [Na][CpW(CO)₂P(Bu)₃] (2), and [Na][CpW(CO)₂P(Cy)₃] (3) in CD₃CN acquired on a 400 MHz spectrometer. Peak assignments are color coded to the structures on the figure.

The FTIR spectra of [Na][CpW(CO)₂PR₃] each contain two CO stretches, as predicted based on their C_8 symmetry. Surprisingly, the frequencies of the CO stretches in CH₂Cl₂ are very similar across PR₃ = P(OEt)₃, P(Bu)₃, and P(Cy)₃ at 1942 and 1848 cm⁻¹; 1937 and 1844 cm⁻¹; and, 1937 and 1848 cm⁻¹ respectively, and do not trend with the electronics of the phosphine.¹⁹

Solutions of the [Na][CpW(CO)₂PR₃] complexes are yellow. The UV-visible absorption profile for all analogs contains an intense transition at 253 nm (ϵ = 1236 M⁻¹cm⁻¹), 248 nm (ϵ = 1446 M⁻¹cm⁻¹) 253 nm (ϵ = 4512 M⁻¹cm⁻¹), and a shoulder around 300-350 nm for PR₃ = P(OEt)₃, P(Bu)₃, and P(Cy)₃ respectively (Figure 7). While the absorbance feature appears at similar energy for all three complexes, the extinction coefficient for the P(Cy)₃ complex is much larger than the

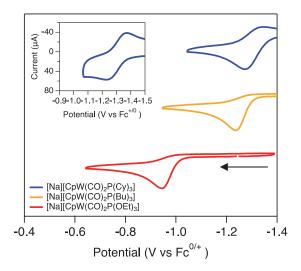
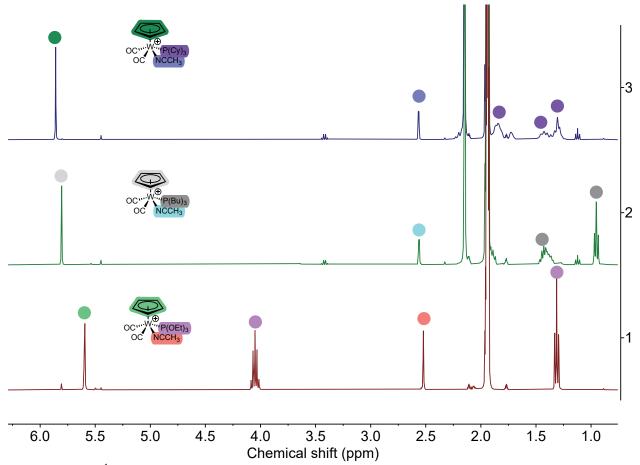

other analogues. In addition, the peak at 253 nm is more pronounced for P(Cy)₃, while the 253 nm and the 248 nm peaks for P(OEt)₃, P(Bu)₃ respectively, appear as a shoulder rather than a distinct peak. The cause of this difference in peak shape is unclear and more studies are needed to determine its origin.

Figure 7: UV-vis absorbance spectra of [Na][CpW(CO)₂P(OEt)₃] (red), [Na][CpW(CO)₂P(Bu)₃] (orange), [Na][CpW(CO)₂P(Cy)₃] (blue) in CH₃CN.

Similar to the CpW(CO)₂PR₃H complexes, electrochemistry can provide insight into the PCET reactivity of these complexes. The cyclic voltammograms of [Na][CpW(CO)₂PR₃] recorded at 50 mV/s contain a chemically irreversible oxidative wave that is attributed to the oxidation of [Na][CpW(CO)₂PR₃] to [CpW(CO)₂PR₃], which can undergo further oxidation and solvent association to form [CpW(CO)₂PR₃(CH₃CN)] or dimerize to form [CpW(CO)₂PR₃]₂. Figure 8, Figures S5-7, Scheme 1). The anodic peak potential shifts to more negative potentials as the electron donating ability of the phosphine is increased from –0.95 to –1.23 to –1.26 V vs Fc^{+/0} for PR₃ = P(OEt)₃, P(Bu)₃, and P(Cy)₃ respectively, consistent with trends observed for oxidation of CpW(CO)₂PR₃H. For PR₃ = P(Cy)₃, the oxidation of [Na][CpW(CO)₂PR₃] to [CpW(CO)₂ PR₃] becomes reversible as the scan rate is increased from 50 to 10,000 mV/s. We hypothesize that the kinetics of dimerization are substantially slower for PR₃ = P(Cy)₃ as compared to PR₃ = P(OEt)₃

and P(Bu)₃, due to steric bulk of the ligand, such that at faster scan rates the species can be reduced before dimerization occurs.


Figure 8: Cyclic voltammograms of Na[CpW(CO)₂P(OEt)₃] (0.73 mM, red), Na[CpW(CO)₂P(Bu)₃] (0.74 mM, orange), and Na[CpW(CO)₂P(Cy)₃] (0.60 mM, blue) in CH₃CN (250 mM [NBu₄][PF₆]) with a 50 mV s⁻¹ scan rate and corrected for IR compensation. Working electrode: glassy carbon, counter electrode: glassy carbon, reference electrode: silver wire pseudo electrode referenced to Fc^{+/0} with ferrocene as an internal standard. Inset: Voltammogram of 0.60 mM Na[CpW(CO)₂P(Cy)₃] recorded at 7500 mVs⁻¹.

Synthesis and characterization of $[CpW(CO)_2PR_3(CH_3CN)][PF_6]$ complexes

The syntheses of the $[CpW(CO)_2PR_3(CH_3CN)][PF_6]$ complexes were adapted from literature procedures. 11,14,24,26 $CpW(CO)_2PR_3H$ was combined with trityl hexafluorophosphate and five equivalents of CH_3CN , then stirred at room temperature. The solvent was removed by vacuum and the byproduct, Ph_3CH was extracted with diethyl ether yielding $[CpW(CO)_2PR_3(CH_3CN)][PF_6]$.

Scheme 4: Reaction scheme for the synthesis of [CpW(CO)₂PR₃(CH₃CN)][PF₆].

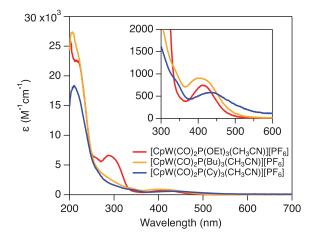
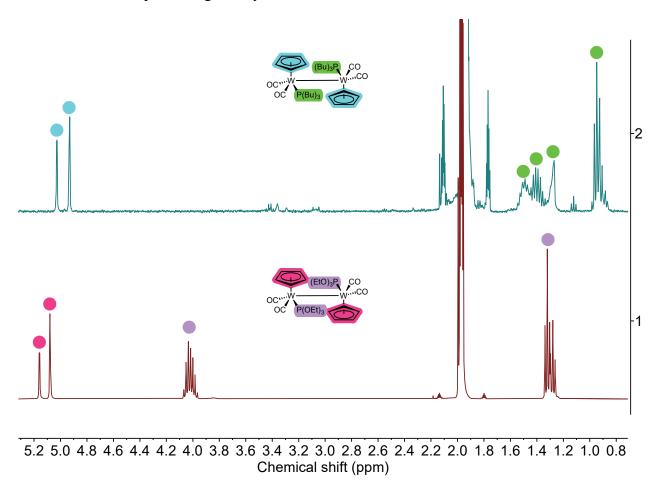

In the ¹H NMR spectra (Figure 9), the Cp peak is shifted downfield compared to the metal hydride complexes, appearing at 5.59, 5.80, and 5.86 ppm for PR₃ = P(OEt)₃, P(Bu)₃, and P(Cy)₃ respectively. Additionally, a new peak at ca. 2.5 ppm is observed, characteristic of a bound CH₃CN ligand. Two CO stretches are observed in the IR spectra of these complexes in CH₂Cl₂ at 1912 and 1998 cm⁻¹ for PR₃ = P(OEt)₃, 1889 and 1974 cm⁻¹ for PR₃ = P(Bu)₃; and 1889 and 1971 cm⁻¹ for PR₃ = P(Cy)₃. Cis and trans isomers are possible for [CpW(CO)₂PR₃(CH₃CN)][PF₆] complexes, but the isomers appear to be indistinguishable at room temperature by both NMR and FTIR.

Figure 9: The ¹H NMR spectra of [CpW(CO)₂P(OEt)₃(CH₃CN)][PF₆] (1), [CpW(CO)₂P(Bu)₃(CH₃CN)][PF₆] (2), and [CpW(CO)₂P(Cy)₃(CH₃CN)][PF₆] (3) in CD₃CN acquired on a 400 MHz spectrometer. Peak assignments are color coded to the structures on the figure.

Solutions of the [CpW(CO)₂PR₃(CH₃CN)][PF₆] complexes in acetonitrile are orange, with a broad absorption bands (Figure 10, P(OEt)₃ λ_{max} = 413 nm, ϵ = 741 M⁻¹cm⁻¹; P(Bu)₃ λ_{max} = 405

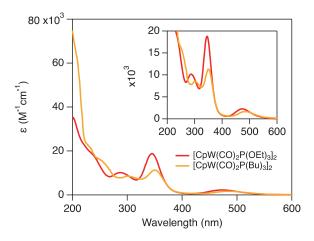
nm $\varepsilon = 891 \text{ M}^{-1}\text{cm}^{-1}$; $P(Cy)_3 \lambda_{max} = 432 \text{ nm } \varepsilon = 589 \text{ M}^{-1}\text{cm}^{-1}$). There is a minimal peak shift of less than 30 nm between the analogs, with the $P(Cy)_3$ complex absorbing furthest to the red.

Figure 10: UV-vis absorbance spectra of [CpW(CO)₂P(OEt)₃(CH₃CN)][PF₆] (red), [Na][CpW(CO)₂P(Bu)₃(CH₃CN)][PF₆] (orange), [Na][CpW(CO)₂P(Cy)₃(CH₃CN)][PF₆] (blue) in CH₃CN.


Synthesis and characterization of [CpW(CO)₂PR₃]₂ Complexes

The syntheses of [CpW(CO)₂PR₃]₂ complexes were adapted from literature procedures. ^{14,15,24,27} CpW(CO)₂PR₃H was combined with Gomberg's dimer ((Ph₃C)₂) and stirred at room temperature in diethyl ether to afford [CpW(CO)₂PR₃]₂, which is isolated through filtration. This reaction occurs through H atom abstraction to form Ph₃CH and [CpW(CO)₂PR₃]* which subsequently dimerizes to form [CpW(CO)₂PR₃]₂.

Scheme 5: Reaction scheme for the synthesis of [CpW(CO)₂PR₃]₂.


Due to solubility issues, we were unable to fully characterize $[CpW(CO)_2P(Cy)_3]_2$. $[CpW(CO)_2P(OEt)_3]_2$ and $[CpW(CO)_2P(Bu)_3]_2$, both contain anti and gauche isomers with the possibility of more complex isomerization, such as accounting for any cis and trans isomers in

addition to anti and gauche isomers. The presence of anti and gauche isomers is indicated by a pair of resonances for the Cp protons at 5.13 and 5.05 ppm for $PR_3 = P(OEt)_3$ and 5.03 and 4.93 for $PR_3 = P(Bu)_3$ (Figure 11, Table S1). Similar complexes in the literature are also reported to form as a mixture of both the anti and gauche isomers. 14,15,24,27 In the IR spectra in CH_2Cl_2 there are two peaks in the carbonyl region at 1859 and 1835 cm⁻¹ for $PR_3 = P(OEt)_3$ and 1830 and 1810 cm⁻¹ for $PR_3 = P(Bu)_3$. While there are at least two isomers present and there are two stretches predicted for each isomer, only two stretches are observed, the isomers are likely of similar energy and their $PR_3 = P(Bu)_3$ constructions overlap resulting in only two stretches.

Figure 11: The ¹H NMR spectra of [CpW(CO)₂P(OEt)₃]₂ (1), [CpW(CO)₂P(Bu)₃]₂ (2)) in CD₃CN acquired on a 400 MHz spectrometer. Peak assignments are color coded to the structures on the figure.

The UV-visible absorbance spectra of the [CpW(CO)₂PR₃]₂ complexes contain two absorption features . The first is an intense absorption band between 300–400 nm and is attributed to $\sigma \rightarrow \sigma^*$ transition.^{24,31} A second less intense broad band is observed 425–550 nm that is attributed to the $d\pi \rightarrow \sigma^*$ transition (Figure 12).^{24,31} The absorption features are red-shifted for the more electron donating phosphine, P(Bu)₃ complex (350 nm, ε = 11166 M⁻¹cm⁻¹; 483 nm, ε = 1676 M⁻¹cm⁻¹) compared to the more electron withdrawing phosphine, P(OEt)₃ species (345 nm, ε = 18665 M⁻¹cm⁻¹; 473 nm, ε = 2257 M⁻¹cm⁻¹), similar to what was observed in the UV-visible absorption spectra of the CpW(CO)₂PR₃H complexes. For PR₃ = P(Cy)₃ complex (355 nm, 502 nm), similar features are observed in toluene, but the complex is only sparingly soluble and therefore the measurement is purely qualitative (Figure S24).

Figure 12: UV-vis spectra of [CpW(CO)₂P(OEt)₃]₂ (red), and CpW(CO)₂P(Bu)₃]₂ (orange) in CH₃CN.

Conclusion

A series of CpW(CO)₂PR₃H (PR₃ = P(OEt)₃, P(Bu)₃, and P(Cy)₃), [CpW(CO)₂PR₃]⁻, [CpW(CO)₂PR₃(CH₃CN)]⁺, and [CpW(CO)₂PR₃]₂ complexes were synthesized to examine the influence of the steric and the electronic parameters of the phosphine ligands on the complexes thermochemical properties. These complexes were characterized by ¹H NMR, IR, and UV-visible absorbance spectroscopy where it was found that the phosphine electronics impact the

thermochemical properties of these complexes, aligning with existing trends known about electron donating abilities of these phosphines. In ¹H NMR spectra, the Cp peaks shift upfield for the more electron donating phosphines due to the increased electron density on the metal center that increases shielding. The UV-visible absorbance features show minimal shifts in absorbance features (less than 50 nm) between analogs; where the more electron donating phosphine complexes are red shifted.

The cyclic voltammograms of the CpW(CO)₂PR₃H and [CpW(CO)₂PR₃]⁻ complexes further inform on the influence of PR₃ on the electronics and kinetics of these tungsten complexes. The $E_{p,a}(CpW(CO)_2PR_3H^{+/0})$ and $E_{p,a}(CpW(CO)_2PR_3^{-0/-})$ values shift anodically as the donor ability of PR₃ is decreased. Furthermore, reversibility of the CpW(CO)₂PR₃ $^{0/-}$ couple is regained for PR₃ = P(Cy)₃ as scan rate is increased, as the dimerization kinetics of the radical species are attenuated with the sterically bulky P(Cy)₃ phosphine. The pK_a values of the CpW(CO)₂PR₃H complexes, measured via spectrophotometric titration, increase with donor strength of the PR₃ Ligand. The trends of these data indicates the electron donating ability of the phosphine increases from P(OEt)₃ to P(Bu)₃ to P(Cy)₃, which is in good agreement with the Tolman electronic parameter for these phosphines.¹⁹ The synthesis and characterization of CpW(CO)₂PR₃H, [CpW(CO)₂PR₃]⁻, [CpW(CO)₂ PR₃(CH₃CN)]⁺, and [CpW(CO)₂PR₃]₂ species reported in this work will allow researchers to better identify and understand electron, proton, and proton-coupled electron transfer reactivity of these complexes.

Supporting Information. The following files are available free of charge. Additional characterization details, electrochemical data, and spectrophotometric titration plots.

Corresponding Author

Jillian L. Dempsey – Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States. http://orcid.org/0000-0002-9459-4166; Email: dempseyj@email.unc.edu

ACKNOWLEDGMENT

This work was supported by the National Science Foundation (CHE-1954868). J.L.D. acknowledges support from a Packard Fellowship for Science and Engineering. We thank Joseph Templeton for insightful discussions on NMR coupling constants. We thank the University of North Carolina's Department of Chemistry NMR Core Laboratory for the use of their NMR spectrometers. We thank the University of North Carolina's Department of Chemistry Mass Spectrometry Core Laboratory, especially Lazaro Toledo Machin, for their assistance with mass spectrometry analysis. This work made use of an NMR spectrometer (CHE-0922858) and a mass spectrometer (CHE-1726291) supported by the National Science Foundation.

References

- [1] Perutz, R. N.; Procacci, B. Photochemistry of Transition Metal Hydrides. *Chemical Reviews* **2016**, *116* (15), 8506–8544. https://doi.org/10.1021/acs.chemrev.6b00204.
- [2] Concepcion, J. J.; House, R. L.; Papanikolas, J. M.; Meyer, T. J. Chemical Approaches to Artificial Photosynthesis. *Proceedings of the National Academy of Sciences of the United States of America* **2012**, *109* (39), 15560–15564. https://doi.org/10.1073/pnas.1212254109.
- [3] Lennox, J. C.; Kurtz, D. A.; Huang, T.; Dempsey, J. L. Excited-State Proton-Coupled Electron Transfer: Different Avenues for Promoting Proton/Electron Movement with Solar Photons. *ACS Energy Letters* **2017**, *2* (5), 1246–1256. https://doi.org/10.1021/acsenergylett.7b00063.
- [4] Whittemore, T. J.; Xue, C.; Huang, J.; Gallucci, J. C.; Turro, C. Single-Chromophore Single-Molecule Photocatalyst for the Production of Dihydrogen Using Low-Energy Light. *Nature Chemistry* **2020**, *12*, 180–185. https://doi.org/10.1038/s41557-019-0397-4.
- [5] Huang, T.; Rountree, E. S.; Traywick, A. P.; Bayoumi, M.; Dempsey, J. L. Switching between Stepwise and Concerted Proton-Coupled Electron Transfer Pathways in Tungsten Hydride Activation. *J. Am. Chem. Soc* **2018**, *140*, 14655–14669. https://doi.org/10.1021/jacs.8b07102.
- [6] Bourrez, M.; Steinmetz, R.; Ott, S.; Gloaguen, F.; Hammarström, L. Concerted Proton-Coupled Electron Transfer from a Metal-Hydride Complex. *Nature Chemistry* **2015**, *7* (2), 140–145. https://doi.org/10.1038/nchem.2157.

- [7] Roberts, J. A. S.; Appel, A. M.; DuBois, D. L.; Bullock, R. M. Comprehensive Thermochemistry of W–H Bonding in the Metal Hydrides CpW(CO)₂(IMes)H, [CpW(CO)₂(IMes)H]⁺⁺, and [CpW(CO)₂(IMes)(H)₂]⁺. Influence of an N-Heterocyclic Carbene Ligand on Metal Hydride Bond Energies. *J. Am. Chem. Soc.* **2011**, *133* (37), 14604–14613. https://doi.org/10.1021/ja202830w.
- [8] Liu, T.; Guo, M.; Orthaber, A.; Lomoth, R.; Lundberg, M.; Ott, S.; Hammarström, L. Accelerating Proton-Coupled Electron Transfer of Metal Hydrides in Catalyst Model Reactions. *Nature Chemistry* 2018, 10 (8), 881–887. https://doi.org/10.1038/s41557-018-0076-x.
- [9] Liu, T.; Tyburski, R.; Wang, S.; Fernández-Terán, R.; Ott, S.; Hammarström, L. Elucidating Proton-Coupled Electron Transfer Mechanisms of Metal Hydrides with Free Energy- and Pressure-Dependent Kinetics. *J. Am. Chem. Soc.* **2019**, *141* (43), 17245–17259. https://doi.org/10.1021/jacs.9b08189.
- [10] Kristjansdottir, S. S.; Moody, A. E.; Weberg, R. T.; Norton, J. R. Kinetic and Thermodynamic Acidity of Hydrido Transition-Metal Complexes. 5. Sensitivity of Thermodynamic Acidity to Ligand Variation and Hydride Bonding Mode. *Organometallics* 1988, 7 (9), 1983–1987. https://doi.org/10.1021/om00099a013.
- [11] Ryan, O. B.; Tilset, M.; Parker, V. D. Chemical and Electrochemical Oxidation of Group 6 Cyclopentadienylmetal Hydrides. First Estimates of 17-Electron Metal Hydride Cation Radical Thermodynamic Acidities and Their Decomposition to 17-Electron Neutral Radicals. *J. Am. Chem. Soc* **1990**, *112* (1), 2618–2626. https://doi.org/10.1021/ja00163a023.
- [12] Parker, V. D.; Tilset, M. Solution Homolytic Bond Dissociation Energies of Organotransition-Metal Hydrides. *J. Am. Chem. Soc* **1989**, *111* (17), 6711–6717. https://doi.org/10.1021/ja00199a034.
- [13] Kalck, P.; Pince, R.; Poilblanc, R.; Roussel, J. Study of the Exchange Phenomenon between Two Isomers of Phosphine Substituted Carbonyl-π-Cyclopentadienyl Complexes of Molybdenum and Tungsten II. Steric Influence of Bulky Groups in Phosphines. *Journal of Organometallic Chemistry* **1970**, *24* (2), 445–452. https://doi.org/10.1016/S0022-328X(00)80287-9.
- [14] Tilset, M. Oxidation of CpM(CO)₃ and CpM(CO)₃(NCMe) (M = Cr, Mo, W): Kinetic and Thermodynamic Considerations of Their Possible Involvement as Reducing Agents. Relative Acetonitrile Affinities of CpM(CO)₃ and CpM(CO)₃. *Inorganic Chemistry* **1994**, 33 (14), 3121–3126. https://doi.org/10.1021/ic00092a018.
- [15] Van Der Eide, E. F.; Yang, P.; Walter, E. D.; Liu, T.; Bullock, R. M. Dinuclear Metalloradicals Featuring Unsupported Metal-Metal Bonds. *Angewandte Chemie International Edition* **2012**, *51* (33), 8361–8364. https://doi.org/10.1002/anie.201203531.
- [16] Patil, H. R. H.; Graham, W. A. G. Organometallic Compounds with Metal-Metal Bonds. I. Tricarbonyl-π-Cyclopentadienylchromium, -Molybdenum, and -Tungsten Bonded to Methyl and Phenyl Derivatives of Germanium, Tin, and Lead. *Inorganic Chemistry* 1966, 5 (8), 1401–1405. https://doi.org/10.1021/ic50042a026
- [17] Roberts, J. A. S.; DuBois, D. L.; Bullock, R. M. Experimental and Digital Simulation Studies of the Electrochemical Oxidation of the Metal Anion [CpW(CO)₂(IMes)]⁻ and the 17-Electron Metal Radical CpW(CO)₂(IMes). Kinetics and Thermodynamics of Capture and Release of MeCN by a Metal Radical and a Metal Cation. *Organometallics* **2011**, *30* (17), 4555–4563. https://doi.org/10.1021/om2002816.

- [18] Bullock, R. M.; Song, J.-S.; Szalda, D. J. Protonation of Metal Hydrides by Strong Acids. Formation of an Equilibrium Mixture of Dihydride and Dihydrogen Complexes from Protonation of Cp*Os(CO) ² H. Structural Characterization of [CpW(CO)₂(PMe₃)(H)₂]⁺ OTf⁻. *Organometallics* **1996**, *15* (10), 2504–2516. https://doi.org/10.1021/om950976y.
- [19] Tolman, C. A. Electron Donor-Acceptor Properties of Phosphorus Ligands. Substituent Additivity. *J. Am. Chem. Soc.* **1970**, *92* (10), 2953–2956. https://doi.org/10.1021/ja00713a006.
- [20] Jover, J.; Cirera, J. Computational Assessment on the Tolman Cone Angles for P-Ligands. *Dalton Transactions* **2019**, *48*, 15036–15048. https://doi.org/10.1039/c9dt02876e.
- [21] Tolman, C. A. Phosphorus Ligand Exchange Equilibriums on Zerovalent Nickel. Dominant Role for Steric Effects. *J. Am. Chem. Soc.* **1970**, *92* (10), 2956–2965. https://doi.org/10.1021/ja00713a007.
- [22] Hoffman, N. W.; Brown, T. L. Thermal and Photochemical Substitution Reactions of the Tricarbonyl(Cyclopentadienyl)Hydrido Compounds of Tungsten and Molybdenum. *Inorg. Chem.* **1978**, *17* (3), 613–617. https://doi.org/10.1021/ic50181a019.
- [23] Li, C.; Gao, F.; Cheng, S.; Tjahjono, M.; Van Meurs, M.; Tay, B. Y.; Jacob, C.; Guo, L.; Garland, M. From Stoichiometric to Catalytic Binuclear Elimination in Rh-W Hydroformylations. Identification of Two New Heterobimetallic Intermediates. *Organometallics* **2011**, *30* (16), 4292–4296. https://doi.org/10.1021/om200306j.
- [24] Isaacs, D. P.; Gruninger, C. T.; Huang, T.; Jordan, A. M.; Nicholas, G.; Chen, C.-H.; Horst, M. A. ter; Dempsey, J. L. Visible Light Induced Formation of a Tungsten Hydride Complex. *Dalton Trans.* **2023**, *52* (10), 3210–3218. https://doi.org/10.1039/D2DT03675D.
- [25] Cheng, T. Y.; Szalda, D. J.; Zhang, J.; Bullock, R. M. Synthesis and Structure of CpMo(CO)(Dppe)H and Its Oxidation by Ph₃C⁺. *Inorganic Chemistry* **2006**, *45* (12), 4712–4720. https://doi.org/10.1021/ic060111k.
- [26] Gibson, D. H.; Owens, K.; Mandal, S. K.; Sattich, W. E.; Franco, J. O. Synthesis and Thermolysis of Neutral Metal Formyl Complexes of Molybdenum, Tungsten, Manganese, and Rhenium. *Organometallics* **1989**, *8*, 498–505. https://doi.org/10.1021/om00104a035
- [27] Barbini, D. C.; Tanner, P. S.; Francone, T. D.; Furst, K. B.; Jones, W. E. Direct Electrochemical Investigations of 17-Electron Complexes of CpM(CO)3 (M = Mo, W, and Cr). *Inorganic Chemistry* **1996**, *35* (13), 4017–4022. https://doi.org/10.1021/ic951303a.
- [28] Faller, J. W.; Anderson, A. S. Organometallic Conformational Equilibria. XI. Isomerism and Stereochemical Nonrigidity in Cyclopentadienylmolybdenum Complexes. *Journal of the American Chemical Society* **1970**, *92* (20), 5852–5860. https://doi.org/10.1021/ja00723a007.
- [29] King, R. B.; Pannell, K. H. Complexes of Trivalent Phosphorus Derivatives. VII. Some Triphenyl Phosphite Derivatives of Cyclopentadienylmolybdenum Carbonyls. *Inorg. Chem.* **1968**, 7 (11), 2356–2361. https://doi.org/10.1021/ic50069a035.
- [30] Saouma, C. T.; Kaminsky, W.; Mayer, J. M. Protonation and Concerted Proton–Electron Transfer Reactivity of a Bis-Benzimidazolate Ligated [2Fe–2S] Model for Rieske Clusters. *J. Am. Chem. Soc.* **2012**, *134* (17), 7293–7296. https://doi.org/10.1021/ja3019324.
- [31] Wrighton, M. S.; Ginley, D. S. Photochemistry of Metal-Metal Bonded Complexes. III. Photoreactivity of Hexacarbonylbis(η5-Cyclopentadienyl)Dimolybdenum(I) and Ditungsten(I). *J. Am. Chem. Soc* **1975**, *97* (15), 4246–4251. https://doi.org/10.1021/ja00848a016.