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Since the1970s, Arctic seaice has undergone unprecedented change,
becoming thinner, less extensive and less resilient to summer melt. Snow’s
high albedo greatly reduces solar absorptionin seaice and the upper ocean,
which mitigates sea-ice melt and ocean warming. However, the drivers of
summertime snow depth variability are unknown. The Arctic Oscillation
isamode of natural climate variability, influencing Arctic snowfall and

air temperatures. Thus, it may affect summertime snow conditions on
Arcticseaice. Here we examine the role of the Arctic Oscillation in summer
snow depth variability on Arctic seaice in 1980-2020 using atmospheric
reanalysis, snow modelling and satellite data. The positive phase leads to
greater snow accumulation, ranging up to -4.5 cmnear the North Pole,

and higher surface albedo in summer. There are more intense, frequent
Arctic cyclones, cooler temperatures aloft and greater snowfall relative to
negative and neutral phases; these conditions facilitate a more persistent
summer snow cover, which may lessen sea-ice melt and ocean warming.

The Arctic Oscillation influence on summertime snow weakens after 2007,
which suggests that future warming and Arctic sea-ice loss might modify the

relationship between the Arctic Oscillation and snow on Arctic seaice.

Snow is one of the most reflective’ and insulative*° natural materials
on Earth. As a consequence, snow on sea ice is an integral part of the
sea-ice and climate systems’®. Understanding the mechanisms that
control the magnitude and timing of snow accumulation is of critical
importance for reliably predicting sea-ice conditions. However, there
are challenges in accurately predicting snow conditions on seaice.
Because snow is tightly coupled to sea-ice and atmospheric condi-
tions™'°, the snow processes that dominate changes in space and time.
There is generally good understanding of the physical processes that
affect the spatial distribution of snow, but acute knowledge gaps exist
onthedrivers of snow’s temporal variability.

For snow distribution on the pan-Arcticscale, the timing of sea-ice
formationis key. Later ice formation reduces the amount of time that

snowfall canaccumulate on seaice, leading to a thinner snowpack™2,
This relationship is most evident in the pan-Arctic gradient in spring
snow depth, from the relatively thin snow (15-25 cm) on seasonal ice
in the Chukchi Sea to the thicker snow (30-45 cm) on multiyearice in
the LincolnSea'*"*". There are regional exceptions to this spatial gradi-
entinsnow depth, however.Inthe North Atlantic sector, considerably
deeper snowpacks (40+ cm averages) can occur despite much of the
seaicebeingseasonal (ref.17 and references therein). The deeper snow
inthisregionisattributable to the position of the North Atlantic storm
track, which brings frequent, heavy snowfall throughout the sea-ice
growth period™. Itis the interplay between the timing of snowfall and
the presence of seaice that dictates the regional distribution of snow
onArcticseaiceinautumn-spring.
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Fig.1| Therelationship between snow depth on Arctic seaice and the Arctic
Oscillation. a-f, The June-August mean for 19980-2020 in snow depth (a), the
correlation between snow depth anomalies and the Arctic Oscillation (AO) (b),
snow depth anomalies regressed onto the AO index (c), the linear response
(composite difference) in snow depth anomalies to the AO (d), the nonlinear
response (composite sum) in snow depth anomalies to the AO (e) and snow

depth anomalies regressed onto the first principal component of snow depth

(f). Correlation coefficients between anomalies in snow depth and blue-sky
surface albedoinJune (g),July (h) and August (i) for areas with at least 80% sea-ice
concentration. The light grey contours in c-fare the corresponding results using
1,000 hPa geopotential height anomalies.

Regarding large-scale temporal variability, relatively little is under-
stood about snow on Arctic seaice. Thisisinlarge part due to limited,
routine sampling. Historical observations™" give the first long-term
time series of snow on Arctic sea ice spanning 1954-1991. The tempo-
ral variability is presented as the standard deviation of snow depth
anomalies from transect measurements, giving an ~6-cm value for
springtime conditions”. Because the measurements originated from
different drifting ice floes, the variability represents a combination
of interannual variability, local-scale heterogeneity and large-scale
geographic differences. These measurements are largely limited to
the autumn-spring seasons, as sampling ceased during the summer
ifsnow covered less than 50% of the transect line or wasless than 5-cm
deep”. Thus, a substantial knowledge gap exists on the drivers of sum-
mertime snow depth variability on Arctic seaice.

Inthis study, we aim to remedy this knowledge gap by investigating
thelinkages between snow on Arctic seaice and atmospheric variabil-
ity. We examined the role of the Arctic Oscillation (AO), the dominant
atmospheric mode of natural climate variability in the Arctic*, in snow
conditions on Arctic sea ice. Our focus is the summer melt season, a

periodinwhich the presence of snow has alarge albedo effect onsolar
absorptioninseaice?**and, consequently, surface melt.

Summer snow depth variability and albedo

The AO played alarge role in summer snow depth variability on Arctic
seaicein1980-2020. We found that the summertime snow depthanom-
aliesand theirleading pattern (first principal component) were strongly
related (95% significance) to the AO in the central Arctic (Fig. 1b,c,fand
corresponding maps with statistical significance in Extended Data
Fig.1). The linear response (composite difference) of snow to the AO
was stronger than that of the nonlinear response (composite sum)
(Fig.1d,e), further indicating that, during positive AO summers (June-
August average), there is deeper snow on Arctic sea ice. For context,
only ~0.5 cm (2 cm) of fine-grained (coarse-grained) snow is needed
toreflect nearly 80% of incoming solar radiation**°, During positive
AO summers, there is up to -4.5 cm more snow accumulation near the
North Pole relative to neutral AO conditions. Thus, it can be expected
that suchvariability can greatly influence the surface albedo of Arctic
seaicein summer.
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Fig.2|Therelationship between surface albedo and the Arctic Oscillation.
a,b, The meanJuly blue-sky albedo from satellite observations over the
continuous (sea-ice concentrations greater than 80%) sea-ice domain of the
Arctic Ocean (y axis) against the June-July mean Arctic Oscillation (AO) index
for1980-2020 (a) and 2000-2020 (b) with a correction for mean albedo effect

June-July mean AO (unitless)

of melt ponds. Marker colour indicates mean June-July 2 m air temperature of
areas poleward of 75° N from ERAS reanalysis. In b, the years 2000-2007, before
the weakening of the snowy AO response, are highlighted in black. Note that the
temperatures are the same for points betweena andb.

We, therefore, evaluated the relationship between summer snow
accumulation, surface albedo and the AO. The variability in snow
depth and blue-sky surface albedo are strongly correlated in most of
the Arctic in June (Fig. 1g). The exception to this is in the Greenland
and Lincoln seas, which tend to have the deepest snowpack on Arc-
tic sea ice'®”. Thus, variations in the thickness of deep snow, which
already exceeds the snow optical thickness, will not affect the surface
albedo’. InJuly, statistically significant correlations are concentrated
north of 75° N and in the Kara Sea (Fig. 1h), whereas, in August, they
are concentrated in the peripheral seas (Fig. 1i). The spatial patternin
August is notable in the context of freeze-up timing, which we found
to be significantly correlated with August snow depth variability
(below).

To separate the possible effects of seasonal ice coverage on the
albedo results, we investigated the relationship between albedo vari-
ability and the AO in the continuous sea-ice zone, following ref. 27. We
found that positive AO indicesinJune-July correlate with higher mean
surface albedos in the continuous sea-ice zone in July (Fig. 2a). Thisis
consistent with the preceding finding of adeeper, more expansive sum-
mer snowpack on sea ice during the positive AO phase. The AO index
andsurfacealbedo are significantly correlated (r= 0.49, P=0.001). The
low correlation may be due to several factors, including the presence
of melt ponds, variationsinice coverage, limited sampling during the
earlier satellite era, a negligible albedo effect over pre-existing deep
snow and others.

To explore the albedo effect of melt ponds, which have an albedo
of 0.12-0.32 (ref. 3), we analysed the 2000-2020 period using avail-
able, independent satellite retrievals of melt pond coverage (Fig. 2b).
After correcting for mean melt pond albedo effects, the relationship
between surface albedo and the AO remains noisy (r = 0.46) but statisti-
cally significant (P=0.030). This suggests that other factors, such as
small variations in sea-ice coverage and, thus, open leads (albedo of
0.07)*%, may have alarger effect on the average July surface albedo than
interannual melt pond variability. The increasingly warm summers
of the Arctic Ocean (Fig. 2b) are altering the reflective properties of
the snow and sea-ice covers and increasing the proportion of liquid
precipitation”. Both effects will further decrease surface albedo and
weaken the correlation.

Melt onset, sea-ice conditions and remnant snow
Snow depth variability during the melt season is influenced by many
time-varying physical processes. For example, the timing of melt onset
could influence summer snow depth variability by way of a positive
albedo feedback. As snow melts, snow grains coarsen, which reduces
the reflectivity and increases the transmittance, thereby increasing
solar absorption within the snowpack?. We found that the relation-
ship between melt onset timing and snow depth variability was weak
and not statistically significant when averaged over June-August in
1980-2020 (Fig. 3a-c and corresponding maps with statistical sig-
nificance in Extended Data Fig. 2). However, for June only, the timing
of melt onset and snow depth variability were strongly correlated in
much of the easternand central Arctic (Fig. 3a). Melt onset was strongly
correlated tothe AO, where, during positive AO summers, the eastern
and central Arctic tended to have later melt onset thanin negative AO
summers. InJuly and August (Fig. 3b,c), no significant correlations
between melt onset and snow depth variability were found, which indi-
cates that melt onset has ashort-lived effect on snow depth variability
during the melt season.

Seaiceisa platform onto which snow accumulates. Accordingly,
sea-ice coverage could affect summer snow depth variability across
the Arctic. During the early melt season (June), the variability in June
sea-ice coverage significantly explains 19% of the snow depth variance
in areas with 95% statistical significance (Fig. 3d and Extended Data
Fig.3d). These areas are concentratedin the peripheral seas (Extended
Data Fig. 3d). Sea-ice concentrations from earlier months have no
statistically significant relationship with snow depth variability for the
remainder of the melt season (Extended Data Fig. 3), which suggests
no lag effect between prior months’ ice coverage and subsequent
months’ snow conditions. InJuly, the relationship between sea-ice
concentration and snow depth was weakest. In August, sea-ice concen-
trations play asignificant role in August snow depth variability in most
peripheral seas (Fig. 3c and Extended Data Fig. 31). This relationship
partly results from the timing of sea-ice freeze up, which can occurin
August (Extended Data Fig. 4a).

As observed in the western Arctic?, earlier sea-ice freeze up may
allow more total snowfall toaccumulate, creating a deeper snowpack.
Deeper snow requires more energy to completely melt. Consequently,
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Fig.3| Therelationships between snow depth variability, melt onset,
sea-ice coverage and remnant snow. a-c, Correlation coefficients of
1980-2020 anomalies between the date of melt onset and June (a), July (b) and
August (c) snow depths. d-f, Snow depths and sea ice concentration (SIC) for

June (d), July (e) and August (f). g-i, May snow depths and June (g), July (h) and
August (i) snow depths. An equivalent figure with 95% statistical significance is
available as Extended Data Fig. 3.

the previous year’s freeze-up date could affect the following summer’s
snow depth conditions. We found that the timing of sea-ice freeze
up explains 13% of the variance in June snow depth variability in the
Kara, E. Lapteyv, E. Siberian and Chukchi seas. From July onward, the
timing of the previous year’s freeze up had a negligible effect on snow
depth variability (Extended Data Fig. 4b-d). This suggests that the
effects of freeze-up timing on snow depth variability may propagate
into the early melt season in regions with seasonal ice, but the effects
are short-lived.

Remnant snow, or snow that persists from preceding months,
playsanimportantrolein snow depthvariability during the early melt

season (Fig. 3g-i). Remnant snow from April and May significantly
contributes 30% and 74%, respectively, to the snow depth variability in
June (Extended DataFig.2d-f).InJuly, remnant snow fromJune explains
22% of the snow depth variability on average. Snow depths in April-May
have the lowest contribution (11%) to August snow depth variability,
albeit with no statistical significance. In short, snow depths from late
winter, spring and early summer strongly covary, but theirimpact on
mid and late summer snow depth progressively weakens. Sea-ice drift
may complicate the causal inferences about remnant snow and summer
snow variability. During June-August, Arctic sea-ice drifts ~6 km per
day onaverage®. This equates to an ~-550-km distance from early June
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Fig. 4| The relationship between snowfall and the Arctic Oscillation.
a-f, The June-August mean for 1980-2020 in snowfall (a), the correlation
between snowfall anomalies and the Arctic Oscillation (AO) (b), snowfall
anomalies regressed onto the AO index (c), the linear response (composite
difference) in snowfall anomalies to the AO (d), the nonlinear response

-5

(composite sum) in snowfall anomalies to the AO (e) and snowfall anomalies
regressed onto the first principal component of snowfall (f). The light grey
contours in c-fare the corresponding results using 1,000 hPa geopotential
height anomalies.

tolate August. Hence, snow depthsin oneregionin early summer may
notstrongly correlate with those in the same regioninlate summer. The
weaker correlationsinsnow depths between May and later months may
be influenced by such drift effects (Fig. 3g-i).

To summarize, the influence of melt onset and remnant spring
snow on summer snow depth variability appears to be largely limited
to June. This suggests that snowfall and air temperature, rather than
sea-ice state and pre-existing snow conditions, play a larger role in
snow depth variability during the mid-to-late summer melt season,
which we demonstrate next.

Atmospheric conditions

The positive phase of the AO in summer facilitates enhanced Arctic
snowfall by way of cooler temperatures aloft and amore active, north-
erly Atlantic stormtrack (Extended DataFig. 5). The leading pattern of
variability in summer snowfallis strongly related to the AO (Fig. 4c,d,f).
During positive AO summers, there are cooler temperatures at the
850-hPalevel, which promotes higher snowfall-to-total precipitation
ratios (Fig. 5). Although more rainfall and more total precipitation
occur during positive AO summers, snowfall dominates the precipi-
tation increase. In particular, snowfall in the central Arctic, north of
Alaska, Lincoln Sea and the northern Canadian Arctic Archipelago is
most strongly (95% significance) correlated with the AO (Fig. 4b). Dur-
ing positive AO summers, there is -5 mm more snow water equivalent
on average, which is ~2.5 cm of snow accumulation assuming a fresh
snowfall density of 0.2 g cm™ (ref. 19).

Cyclones are the key mechanism for establishing the snowpack
over Arctic sea ice in autumn-spring'®, and in June-August, they are
associated with cooler conditions and greater snowfall*'. We, there-
fore, explored the relationship between the AO and cyclone activity to
determine whether cyclones’ precipitation plays animportantrolein
summer snow depth variability. We found that more cyclones penetrate

deeper into the Arctic during positive AO summers, asindicated by the
high significant correlations and strong linear response (Fig. 6b,d).
This result agrees with previous studies investigating Arctic cyclone
activity and the Northern Atlantic Oscillation and AO***. However,
we found a strong negative nonlinear response north of Greenland
and the Canadian Arctic Archipelago (Fig. 6e), which suggests that
fewer cyclones may occur in that region during extreme positive and
negative AO summers.

Onaverage, cyclones were more intense during positive AO sum-
mers (Extended Data Fig. 7); minimum sealevel pressures (SLPs) were
~3 hPa and -8 hPa lower relative to neutral and negative AO phases,
respectively. This, together with cooler temperatures aloft (Fig. 5a-c),
probably contributed to greater snowfall in the central Arctic during
positive AO summersin1980-2020.Indeed, thereis~1 mm of additional
water equivalent from enhanced cyclone snowfall during positive AO
summers. Collectively, these results demonstrate that a positive AO
contributes to more frequent summer snow accumulation on Arctic
seaice by way of enhanced storm activity and snowfall.

Inadditiontoenhanced snowfall, freezing conditions at the sea-ice
surface canallow snow to persist longer during summer. Accordingly,
we evaluated 2 m air temperatures and found weak, inverse correla-
tions with the AO. This suggests that during positive AO summers,
there could be cooler surface air temperatures. However, statistically
significant correlations were limited to the central Arctic (Extended
DataFig.1). Theleading pattern of variability, as well as the linear and
nonlinear responses, are within the noise of the 2 m air temperature
time series based on a Z-test (Extended Data Fig. 6).

We performed a monthly lag analysis to explore the possibility
of preconditioning effects of atmospheric variability on snow depth
variability. The zero-month lag for 2 m temperatures, snowfall and
cyclonesyielded the highest and only statistically significant (95%) cor-
relation. This suggests that the AO affects storm tracks, precipitation
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Fig. 5| Therelationship between 850-hPa air temperature, snowfall-to-total
precipitation ratio, total precipitation, rainfall and the Arctic Oscillation.
a-1, TheJune-August results for 1980-2020 of column 1 correlations with the
Arctic Oscillation (AO), column 2 regressions onto the AO and column 3 linear

response (composite difference) for 850-hPa air temperature (a-c), snowfall-to-
total precipitation ratio (d-f), total precipitation (g-i) and rainfall (j-1), computed
asthe difference between the total precipitation minus snowfall. The yellow dots
represent 95% statistical significanceina, d, g andj.

and surface temperatures on relatively short timescales and has a
near-immediate (but short-lived) effect on snow depth variability
during the mid-to-late summer melt season.

Effects of Arctic sea-iceloss

There has been a profound loss of Arctic sea ice since the late 1970s*°.
Given the state change in the Arctic sea-ice cover, we re-examined
the relationship between snow depth variability, the AO, sea ice and

atmospheric variables before and after the breakpoint of 2007 in the
June-August sea-ice concentration time series (Extended Data Fig. 8).
Post 2007, we found weaker summertime relationships betweenthe AO
and snow depth, snowfall and air temperature and cyclone frequency,
intensity,2 mtemperature and snowfall. In particular, negative correla-
tions emerged between the AO and snow depth, snowfall and cyclone
frequencyin the coastal areas of the Pacific sector, albeit, not statisti-
cally significant. Interestingly, negative (but not statistically significant)
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Fig. 6 | The relationship between cyclone activity and the Arctic Oscillation.
a-f, The June-August mean for 1980-2020 in the summed daily presence

of cyclones (a), the correlation between cyclone anomalies and the Arctic
Oscillation (AO) (b), cyclone anomalies regressed onto the AO index (c), the
linear response (composite difference) in cyclone anomalies to the AO (d), the

nonlinear response (composite sum) in cyclone anomalies to the AO (e) and
cyclone anomalies regressed onto the first principal component of cyclones
(P). Thelight grey contours in c-fare the corresponding results using 1,000 hPa
geopotential height anomalies.

correlations emerged between the AO and sea-ice concentration (SIC)
post 2007. The loss of seaice may contribute to warmer temperatures,
less snowfalland less snow accumulation during positive AO summers.
Indeed, earlier work” found a weakening in Arctic cyclones over the
1979-2009 period, which was attributed to atmospheric warming. We
found no statistically significant trend in cyclone intensity for 1980-
2020,1980-2006 or 2007-2020, agreeing with recent findings®. Note,
careshould be taken wheninterpreting trends in cyclone characteris-
tics, as they are dependent on the algorithm and reanalysis product’®.
Furthermore, the results and statistical significance presented here
should be interpreted with caution considering that the breakpoint
of 2007 gives 14 sample years for the post 2007 period.

Summertime snow and the AO in past and
contemporary periods
For1980-2020, the positive phase of the AO in summer led to cooler
temperatures aloft and enhanced snowfall, which increased snow accu-
mulation onArcticseaice and, consequently, raised the surface albedo.
Because our analysis is largely based on reanalysis and model data, we
examined historical and contemporary snow observations from the
North Pole drifting ice stations® and ice mass balance buoys*° for pos-
sible corroborating results. Averaged over June-August, the snow depth
observations from 1962-2017 were positively correlated with the AO
(r=0.37) with86% statistical significance (Extended Data Fig. 9). While
the result lends supporting evidence of this study’s conclusions, the
interpretation of the correlation warrants caution as some years con-
sisted of only one to three-point measurements from different locations.
The relationship between the AO and summertime snow may be
useful for analyses on the preconditioning and predictability of Arctic
seaice during the melt season. Given that most variablesin our analysis
exhibited astronglinear response to the AOin1980-2020, itisinsightful
to consider that during negative AO summers, the opposite phenom-
enon tends to occur: during negative AO summers, there are warmer

temperatures aloft, less snowfall, less snow accumulation and lower
surface albedo, all of which would promote greater surface melt. While
theresults presented in this work largely summarize the mean pan-Arctic
response to the AO insummer, there are regional exceptions. Notably,
the Barents Sea experienced enhanced warming during positive AO
summers, which contributed to anomalously low snowfall, anomalously
high rainfall, thinner snow depths and less extensive sea-ice coverage
inthatregionin1980-2020. Thisresult underscores the complexity in
atmosphere-ice-oceaninteractions across the Arctic.

Theinfluence of the AO on summertime snow weakens after 2007,
which suggests that future warming and Arctic sea-ice loss may modify
the relationship between the AO and snow on Arctic seaice. We specu-
late the link weakened after 2007 due to the combined effects of the
warming trendin the Arctic*. There is less sea-ice coverage® to capture
falling snow, and more summer precipitation is coming in the form of
rainrather than snow” in the contemporary period. With Arctic sea-ice
loss projected to continue**, it will be especially relevant to revisit this
analysisin future decades tobetter understand the evolving relationship
betweenthe AO and Arctic snow-seaice systemin awarmer climate.

Online content

Any methods, additional references, Nature Portfolio reporting
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author
contributions and competinginterests; and statements of dataand code
availability are available at https://doi.org/10.1038/s41561-024-01525-y.
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Methods

Toinvestigate the relationship between the AO and summertime snow
on Arctic sea ice, we use regression, composite and principal com-
ponent techniques on reanalysis, model and satellite data. While the
summer meltseasonin the Arctic Ocean tends to comprise May-Sep-
tember**, we placed emphasis on the June-August months, since they
represent peakinsolation and melt. All data were averaged to monthly
values, and anomalies were computed and detrended on the basis of
the 1980-2020 mean. Excluding the albedo dataset, anomalies were
weighted by the square root of the cosine of latitude for determining
principal components.

Correlation maps with statistical significance corresponding
to those in in Figs. 1b, 3b, 4b and 6b are available in Extended Data
Fig. 1. Regressions of a given variable onto the AO index (or onto the
first principal component) were linear. We refer to the first principal
componentas the leading pattern of variability. We applied composite
techniques toinvestigate the linearity of agiven variable’s response to
the AO. The linear response is defined as the difference between the
positive and negative composites, whereas the nonlinear response was
defined as the sum of the positive and negative composites, following
refs. 45,46. Composites were determined using the extreme 5 years that
exceeded one standard deviation of the mean. The interpretation of
alinear response is that a variable changes in an equal and opposite
manner based on whether the AO phase is positive or negative. For a
nonlinear response, a variable changes in the same manner, regardless
of the sign of the AO phase.

We performed lead-lag correlations to better understand the
relationship between sea-ice coverage, melt-freeze onset timing,
pre-existing snow and summer snow depth variability from the per-
spective of preconditioning. We also correlated the former variables’
first principal components against the leading mode in monthly snow
depthanomalies. ABayesian time series decomposition method devel-
oped by Zhao et al.*” was applied to the 1980-2020 June-August SIC
time series toidentify abreakpointin 2007. The breakpoint represents
anabruptshiftin the sea-ice concentration trend (Extended Data Fig. 8)
using a polynomial fit model. The model fit yields a root mean square
error of 0.7% and a correlation coefficient of 0.85. The code is freely
available at https://github.com/zhaokg/Rbeast.

ERAS reanalysis

We used the fifth generation of the European Centre for Medium
Range Weather Forecasts Reanalysis (ERAS5)*® for investigating the
spatiotemporal patterns of 1,000 hPa geopotential height, SLP,2 m
air temperature and snowfall. We computed monthly averages from
6 hour timesteps. The monthly AO indices were constructed following
refs. 49,50. Previous works® > have shown that this definition suc-
cessfully captures summertime atmospheric variability associated
withblocking anticyclones, whereas the AO definition of Thompson
and Wallace?® mainly reflects wintertime atmospheric variability.
We applied empirical orthogonal function analysis on the temporal
covariance matrix of monthly geopotential height fields using a
zonally averaged, monthly geopotential height field from1,000 hPa
to 200 hPa north of 40° N. The seasonal cycle was removed from
the monthly mean height field. The covariance matrix was used in
the empirical orthogonal function analysis, and the gridded data
were correspondingly weighted by the square root of the cosine of
latitude. The time series were standardized by removing the long-term
mean and dividing by the standard deviation of the monthly index.
We note that the summer AO trends over 1979-2022 and 1950-2022
are not significant, despite a positive trend in the winter AO (for
example, ref. 54).

SnowModel-LG snow depth
SnowModel-LG* output was used to investigate snow depth variabil-
ity over 1980-2020. The model provides snow depth estimates at

25 km x 25 kmresolution at daily time steps year round by simulating
the surface energy and snow mass budgetsin aLagrangian framework.
For consistency in this study, we use the model results forced by ERAS
reanalysis*®. Snowfall, rainfall, sublimation, blowing snow, snow melt,
snow density evolution, superimposedice, ice dynamics and heat flux
are parameterized processes in the model.

The assessment of the SnowModel-LG performance insummer is
understudied (for example, ref. 24), and in general, reanalysis-based
models for snow on sea ice are difficult to assess due to the dearth of
observations and the challenges plaguing remote sensing retrievals
(for example, ref. 56). Nevertheless, we evaluated the SnowModel-LG
output against ice mass balance buoy datafrom1993-2017 (ref. 40) and
found that the model underestimates summer snow accumulation by
~27% across the Kara, central Arcticand Beaufort regions. The low bias
is a known issue in other seasons, and accordingly, the precipitation
forcingis scaled by a factor greater than one”. In further comparison
with historical observations®, the springtime standard deviationin
simulated snow depth ranges regionally from 3 cm (Greenland Sea)
to 6 cm (Kara Sea), whereas historical observations from the central
Arcticyield 6 cm. Even with the scaled precipitation, the low bias still
persists, which may affect the correlations between summer snow
depth variability and the AO.

Regarding sea-ice drift, in ref. 58, a comparison between the ice
motion product used in SnowModel-LG and ice mass buoys revealed
aslow bias in the ice motion data, particularly in the East Greenland
Sea. Such a bias probably amplifies the spatial correspondence
between cyclone-associated snowfall and simulated snow depth
anomalies in areas with rapid ice drift. Given that sea ice moves on
the order of 6 km per day in June-August®’, we expect there to be a
small effect on the regional results presented in this work, particu-
larly in the Fram Strait region where summer ice drift is largest.
More details on the model physics in SnowModel-LG can be found
inref.57.

Snow depth observations

We use snow observations from the 1954-1991 North Pole drifting ice
stations® and ice mass balance buoys from1993-2017 (ref. 40) for cor-
roborating results from the SnowModel-LG analysis. Snow sampling
at the drifting ice stations continued in summer as long as one of the
following criteria was met: snow covered 50% of the transect line or
the average snow depth on the transect line was at least 5 cm (ref. 13).
Snow depth from the ice mass balance buoys was derived from
downward-looking sonic rangefinders and has a reported accuracy
oflcm.

Cyclones

Closed cyclone systems were identified using the Melbourne University
cyclonetracking scheme®*°"* applied to 6 hourly SLP fields from ERAS
reanalysis. Werefer readers to the references above for more details and
briefly describe the methodology here. SLP fields were converted to
polar stereographic coordinates and interpolated to a one-latitudinal
grid usingabicubicspline. The Laplacian of the SLP fields was used to
determine the local maximarelative to eight neighbouring grid cells.
Closed cyclone systems were identified when the local maxima met the
following criteria: the second derivative of the SLP was positive in the
xand ydirections, and the mean Laplacianin theimmediate vicinity of
the maximumwas equal to or greater than 0.2 hPa per square degree.
We fit an ellipse to the first and second derivatives of the SLP fields to
identify the cyclone area. While the Melbourne University cyclone
tracking scheme identifies both open and closed systems, only closed
cyclone systems were used inthis analysis dueto theill-defined bounda-
ries of open systems. We evaluated the number of days that cyclones
were present in each grid cell per month, and these are defined as
‘cyclones’ hereafter. For cyclone intensity, we examined the minimum
SLP withinthe cyclone area.
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Satellite retrievals of SIC, melt-freeze dates and albedo

Four types of satellite retrievals were used in the analysis: SIC,
melt-freeze onset dates, surface albedo and melt ponds. For SIC, we
use Ocean and Sea Ice Satellite Applications Facility (OSI SAF) OSI-
450-monthly global SIC climate datarecord, release 3 (ref. 62), whichis
produced at 25 kmresolution. For summertimeretrievals, the retrieval
errors can be more than 20% from the effects of weather and melt
ponding on brightness temperatures®, but their influence on trends
in sea-ice area and extent is generally considered to be small®*. For
the melt and freeze onset dates, we used the passive microwave melt
product developed by Markus et al.®®. The first dates of continuous
melt and freeze were incorporated into the analysis.

Forsurfacealbedo, we use satellite-based estimates from the third
edition of the Satellite Application Facility on Climate Monitoring
Clouds, Albedo and Radiation (CLARA) Climate Data Record®. The
CLARA-A3 record is based on intercalibrated Advanced Very High
Resolution Radiometer data spanning1979-2020 for the Climate Data
Record component, whichis used here. The albedo datain CLARA-A3
have been evaluated against awide array of reference in situ observa-
tions and benchmarked against other similar satellite data records;
the mean retrieval bias over the cryospheric domain, inclusive of sea
ice, is evaluated at 10-15% (relative). The retrievals have been shown
to be capable of tracking the albedo decrease of the seaice during
the melting season. The monthly mean blue-sky albedo estimates
for July were selected and filtered with OSI SAF OSI-450-a SIC data®
to contain only the continuous sea-ice zone, that is, the area where
ice concentration is larger than 80%. Then, continuous ice grid cells,
where the albedo estimate was based on less than 100 Advanced Very
High Resolution Radiometer-Global Area Coverage observations, were
discarded to ensure sufficient sampling for robust estimation. Note
that by 2020, the continuous sea-ice zone in July shrank to approxi-
mately two-thirds of its early 1980s areal coverage. Nonetheless, the
ice-covered area remained large enough to reliably investigate the
effect of enhanced snowfall on the mean surface albedo of sea ice.
July albedos were selected in the comparison with the June-July AO
based on two findings from the analysis: (1) May snow conditions
have minimal effect on July snow depth variability but a noteworthy
impact on June snow depth variability, and (2) the freeze-up timing
affects August snow depth variability. Thus, July is a representative
month for comparison of peak summer melt conditions, surface albedo
and the AO.

We obtained spatially resolved MODIS-Peng (NENU-MPF) melt
pond fraction (MPF) data for 2000-2020 from ref. 67, and nearest
neighbourresampled it to the CLARA grid as monthly means and used
ittoremove the mean melt pond impact onJuly surface albedo. Due to
asizable pole holein the MPF data product, this was done by deriving a
mean linear relationship between MPFs and CLARA albedoin]July from
all valid grid cell data (V=125,422, r=-0.20, P=0) and applying the
slope (delta-albedo—0.326 x MPF) with the Arctic-wide mean July MPF
to correct for melt pond albedo effectsin the mean July sea-ice albedo.

Data availability

SnowModel-LG data are available via the National Snow and Ice Data
Centerat https://doi.org/10.5067/27A0P5M6LZBI. The CLARA-A3 sur-
facealbedodataareavailable at https://doi.org/10.5676/EUM_SAF_CM/
CLARA_AVHRR/V0O03.ERAS reanalysis dataare available via Copernicus
Climate Change Service Climate Data Store at https://doi.org/10.24381/
cds.adbb2d47. Melt onset and freeze-up dates are available on the
Goddard Space Flight Center website at https://earth.gsfc.nasa.gov/
cryo/data/arctic-sea-ice-melt. MPFs are available viaZenodo at https://
zenodo.org/records/6888170 (ref. 68). The North Pole drifting ice sta-
tion data are available at https://doi.org/10.7265/N5SMS3QN]J. The ice
mass balance buoy data are available at https://imb-crrel-dartmouth.
org/results/. The OSI SAF sea ice concentration data are available at
https://osi-saf.eumetsat.int/products/osi-450.

Code availability

While not used for the analysis, we point interested parties in the Uni-
versity of Melbourne cyclone detection and tracking algorithm® to
the following website for the cyclone tracker code at https://cyclon-
etracker.earthsci.unimelb.edu.au/. We refer interested parties in the
Bayesian breakpoint methodology to the following website for down-
loadingthe code: https://doi.org/10.1016/j.rse.2019.04.034. The code
for creating stereographic maps was developed by Andrew Roberts
andisavailable at https://www.mathworks.com/matlabcentral/fileex
change/30414-ncpolarm, while the basemap information is provided
in the Matlab Mapping Toolbox dataset.
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Extended Data Fig. 1| Correlations and statistical significance between the of cyclones, and (d) 2 m air temperature anomalies. The yellow dots indicate
Arctic Oscillation and different environmental variables. The June-August correlations with 95% statistical significance. Note that the different spatial
mean correlations for 1980-2020 between the Arctic Oscillation and (a) snow resolutions between data products yield different spacing between yellow dots

depth anomalies, (b) snowfall anomalies, (c) anomalies of the daily presence of statistical significance across the panels.
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Extended Data Fig. 2| Correlations and statistical significance between June, (b)July, and (c) August snow depths; May snow depths and (d) June, (e) July,
snow depth across different months and timing of melt onset. Correlation and (f) August snow depths. 95% statistical significance is marked by yellow dots.
coefficients of anomalies for 1980-2020 between: the date of melt onset and (a) Equivalent figure in the main text is Fig. 3.
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Extended Data Fig. 3| Correlations and statistical significance between prior toJune, (e-h) July snow depths and sea ice concentrations in months prior to
monthly snow depth and seaice concentration. Correlation coefficients of July, and (i-1) August snow depths and sea ice concentrations in months prior to
anomalies between (a-d) June snow depths and sea ice concentrations in months August. 95% statistical significance is marked by yellow dots.
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Extended Data Fig. 4 | Correlations and statistical significance between between the previous year’s freeze-up and July snow depth anomalies.
snow depth and sea-ice freeze-up timing. (a) Correlations between the same (d) Correlations between the previous year’s freeze-up and August snow
year’s freeze-up and August snow depth anomalies. (b) Correlations between depthanomalies. Areas with 95% statistical significance are indicated by
the previous year’s freeze-up and June snow depth anomalies. (c) Correlations yellow dots.
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Extended DataFig. 5| Cyclone tracks and the cyclone track density difference
between five years with the most extreme positive and negative Arctic
Oscillation index. (a) Cyclone tracks for the five years with the most positive
Arctic Oscillation index in June-August. (b) Cyclone tracks for the five years with

the most negative Arctic Oscillation index in June-August. (c) The difference
incyclone track densities of unique cyclones between the five most extreme
positive and negative Arctic Oscillation years for June-August. The density
difference north of 80°N was 99% statistically different using a standard t-test.
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Extended Data Fig. 6 | The climatology and relationship of 2-meter air
temperature with the Arctic Oscillation. The June-August mean for 1980-2020
in (@) 2 mair temperatures, (b) the correlation between 2 m air temperature
anomalies and the Arctic Oscillation, (c) 2 m air temperature anomalies
regressed onto the Arctic Oscillation index, (d) the linear response (composite
difference) in 2 m air temperature anomalies to the Arctic Oscillation, (e) the
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nonlinear response (composite sum) in 2 m air temperature anomalies to the
Arctic Oscillation, and (f) 2 mair temperature anomalies regressed onto the
first principal component of 2 m air temperatures. The light grey contoursin
panels (c)-(f) are the corresponding results using 1000-hPa geopotential height

anomalies.
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Extended Data Fig. 7 | The climatology and relationship of the minimum sea
level pressure within cyclones and the Arctic Oscillation. The June-August
mean for1980-2020 in (a) the minimum sea level pressure (SLP) within cyclones,
(b) the correlation between cyclone SLP anomalies and the Arctic Oscillation
with yellow dots indicating correlations with 95% statistical significance, (c)
cyclone SLP anomalies regressed onto the Arctic Oscillation index, (d) the
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linear response (composite difference) in cyclone SLP anomalies to the Arctic
Oscillation, (e) the nonlinear response (composite sum) in cyclone SLP anomalies
to the Arctic Oscillation, and (f) cyclone SLP anomalies regressed onto the first
principal component of cyclones. The light grey contours in panels (c¢)-(f) are the
corresponding results using 1000-hPa geopotential height anomalies.
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Extended Data Fig. 8 | The time-series breakpoint in June-Augustseaice model. (b) The probability (bold green line) of the break point within the
concentration. (a) The trend (bold greenline) in the June-August seaice time-series, with the time-series break point denoted by the vertical dashed line.
concentration (SIC) anomalies, in percentage, based on the 1980-2020 mean. (c) The polynomial order of the best fit line to the SIC anomaly time-series, with
The time-series break point is denoted by the vertical dashed line. Anomalies the time-series break point denoted by the vertical dashed line. (d) The residual
arerepresented by grey hollow circles and the light green shading denotes the error of the Bayesian model fitted to the SIC anomaly time-series, in percentage.

95% confidence interval. The trend is determined from a piece-wise polynomial
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Extended DataFig. 9| The linear fit between mean Arctic snow depths and the Arctic Oscillation index. The June-August average snow depths and Arctic
Oscillation (AO) indices from the North Pole drifting ice stations and ice mass balance buoys for the 1962,1970, and 1994-2017 period. The correlationis statistically

significant to 86%.
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