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Summer snow on Arctic sea ice modulated by 
the Arctic Oscillation

Melinda A. Webster    1  , Aku Riihelä    2, Sahra Kacimi3, Thomas J. Ballinger4, 
Edward Blanchard-Wrigglesworth    5, Chelsea L. Parker6,7 & Linette Boisvert7

Since the 1970s, Arctic sea ice has undergone unprecedented change, 
becoming thinner, less extensive and less resilient to summer melt. Snow’s 
high albedo greatly reduces solar absorption in sea ice and the upper ocean, 
which mitigates sea–ice melt and ocean warming. However, the drivers of 
summertime snow depth variability are unknown. The Arctic Oscillation 
is a mode of natural climate variability, influencing Arctic snowfall and 
air temperatures. Thus, it may affect summertime snow conditions on 
Arctic sea ice. Here we examine the role of the Arctic Oscillation in summer 
snow depth variability on Arctic sea ice in 1980–2020 using atmospheric 
reanalysis, snow modelling and satellite data. The positive phase leads to 
greater snow accumulation, ranging up to ~4.5 cm near the North Pole, 
and higher surface albedo in summer. There are more intense, frequent 
Arctic cyclones, cooler temperatures aloft and greater snowfall relative to 
negative and neutral phases; these conditions facilitate a more persistent 
summer snow cover, which may lessen sea-ice melt and ocean warming. 
The Arctic Oscillation influence on summertime snow weakens after 2007, 
which suggests that future warming and Arctic sea-ice loss might modify the 
relationship between the Arctic Oscillation and snow on Arctic sea ice.

Snow is one of the most reflective1–3 and insulative4–6 natural materials 
on Earth. As a consequence, snow on sea ice is an integral part of the 
sea-ice and climate systems7,8. Understanding the mechanisms that 
control the magnitude and timing of snow accumulation is of critical 
importance for reliably predicting sea-ice conditions. However, there 
are challenges in accurately predicting snow conditions on sea ice. 
Because snow is tightly coupled to sea-ice and atmospheric condi-
tions9,10, the snow processes that dominate changes in space and time. 
There is generally good understanding of the physical processes that 
affect the spatial distribution of snow, but acute knowledge gaps exist 
on the drivers of snow’s temporal variability.

For snow distribution on the pan-Arctic scale, the timing of sea-ice 
formation is key. Later ice formation reduces the amount of time that 

snowfall can accumulate on sea ice, leading to a thinner snowpack11,12. 
This relationship is most evident in the pan-Arctic gradient in spring 
snow depth, from the relatively thin snow (15–25 cm) on seasonal ice 
in the Chukchi Sea to the thicker snow (30–45 cm) on multiyear ice in 
the Lincoln Sea10,13–16. There are regional exceptions to this spatial gradi-
ent in snow depth, however. In the North Atlantic sector, considerably 
deeper snowpacks (40+ cm averages) can occur despite much of the 
sea ice being seasonal (ref. 17 and references therein). The deeper snow 
in this region is attributable to the position of the North Atlantic storm 
track, which brings frequent, heavy snowfall throughout the sea-ice 
growth period18. It is the interplay between the timing of snowfall and 
the presence of sea ice that dictates the regional distribution of snow 
on Arctic sea ice in autumn–spring.
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period in which the presence of snow has a large albedo effect on solar 
absorption in sea ice21–24 and, consequently, surface melt.

Summer snow depth variability and albedo
The AO played a large role in summer snow depth variability on Arctic 
sea ice in 1980–2020. We found that the summertime snow depth anom-
alies and their leading pattern (first principal component) were strongly 
related (95% significance) to the AO in the central Arctic (Fig. 1b,c,f and 
corresponding maps with statistical significance in Extended Data 
Fig. 1). The linear response (composite difference) of snow to the AO 
was stronger than that of the nonlinear response (composite sum) 
(Fig. 1d,e), further indicating that, during positive AO summers ( June–
August average), there is deeper snow on Arctic sea ice. For context, 
only ~0.5 cm (2 cm) of fine-grained (coarse-grained) snow is needed 
to reflect nearly 80% of incoming solar radiation1,25,26. During positive 
AO summers, there is up to ~4.5 cm more snow accumulation near the 
North Pole relative to neutral AO conditions. Thus, it can be expected 
that such variability can greatly influence the surface albedo of Arctic 
sea ice in summer.

Regarding large-scale temporal variability, relatively little is under-
stood about snow on Arctic sea ice. This is in large part due to limited, 
routine sampling. Historical observations13,19 give the first long-term 
time series of snow on Arctic sea ice spanning 1954–1991. The tempo-
ral variability is presented as the standard deviation of snow depth 
anomalies from transect measurements, giving an ~6-cm value for 
springtime conditions13. Because the measurements originated from 
different drifting ice floes, the variability represents a combination 
of interannual variability, local-scale heterogeneity and large-scale 
geographic differences. These measurements are largely limited to 
the autumn–spring seasons, as sampling ceased during the summer 
if snow covered less than 50% of the transect line or was less than 5-cm 
deep19. Thus, a substantial knowledge gap exists on the drivers of sum-
mertime snow depth variability on Arctic sea ice.

In this study, we aim to remedy this knowledge gap by investigating 
the linkages between snow on Arctic sea ice and atmospheric variabil-
ity. We examined the role of the Arctic Oscillation (AO), the dominant 
atmospheric mode of natural climate variability in the Arctic20, in snow 
conditions on Arctic sea ice. Our focus is the summer melt season, a 

0

0

0

0

0

0

0

0

0

0

–8

–6

–4

–2

0

2

4

6

8

 Snow
 depth (cm

) 

0

1

2

3

4

5

6

7

8

 Snow
 depth (cm

) 

100

0

0

0

0

0

0

0

–1
00

–1
00

–100

–100

–100

–100

–2
00

–2
00

–200

–2
00

–200

–300

–300

–300

–300

–4
00

–400

–400

–400

–5
00

–500

–500

–500

–6
00

–600

–600

–700

–700

–8
00

–900

–8

–6

–4

–2

0

2

4

6

8

 Snow
 depth (cm

) 

4

0

0

0

0

0

0

–4

–4

–4

–4

–4

–4

–8

–8

–8

–8

–8

–8

–12

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0
Snow

 depth anom
aly (cm

) 

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

C
orrelation coe�icient (r)

0.12
5

0.1

0.1

0.1 0.075

0.075

0.
07

5

0.075

0.0
5

0.
05

0.05

0.
05

0.05

0.025

0.025

0.025

0.0
25

0.025

0

0

0

0

0

0

0

0

0

0

–0
.0

25

–0
.0

25

–0.025

–0.025

–0.05

–0.020

–0.015

–0.010

–0.005

0

0.005

0.010

0.015

0.020

Snow
 depth anom

aly (cm
) 

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

C
orrelation coe�icient (r)

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

C
orrelation coe�icient (r)

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

C
orrelation coe�icient (r)

June July August

a b c

d e f

g h i

Fig. 1 | The relationship between snow depth on Arctic sea ice and the Arctic 
Oscillation. a–f, The June–August mean for 1980–2020 in snow depth (a), the 
correlation between snow depth anomalies and the Arctic Oscillation (AO) (b), 
snow depth anomalies regressed onto the AO index (c), the linear response 
(composite difference) in snow depth anomalies to the AO (d), the nonlinear 
response (composite sum) in snow depth anomalies to the AO (e) and snow 

depth anomalies regressed onto the first principal component of snow depth 
(f). Correlation coefficients between anomalies in snow depth and blue-sky 
surface albedo in June (g), July (h) and August (i) for areas with at least 80% sea-ice 
concentration. The light grey contours in c–f are the corresponding results using 
1,000 hPa geopotential height anomalies.
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We, therefore, evaluated the relationship between summer snow 
accumulation, surface albedo and the AO. The variability in snow 
depth and blue-sky surface albedo are strongly correlated in most of 
the Arctic in June (Fig. 1g). The exception to this is in the Greenland 
and Lincoln seas, which tend to have the deepest snowpack on Arc-
tic sea ice10,13. Thus, variations in the thickness of deep snow, which 
already exceeds the snow optical thickness, will not affect the surface 
albedo2. In July, statistically significant correlations are concentrated 
north of 75° N and in the Kara Sea (Fig. 1h), whereas, in August, they 
are concentrated in the peripheral seas (Fig. 1i). The spatial pattern in 
August is notable in the context of freeze-up timing, which we found 
to be significantly correlated with August snow depth variability  
(below).

To separate the possible effects of seasonal ice coverage on the 
albedo results, we investigated the relationship between albedo vari-
ability and the AO in the continuous sea-ice zone, following ref. 27. We 
found that positive AO indices in June–July correlate with higher mean 
surface albedos in the continuous sea-ice zone in July (Fig. 2a). This is 
consistent with the preceding finding of a deeper, more expansive sum-
mer snowpack on sea ice during the positive AO phase. The AO index 
and surface albedo are significantly correlated (r = 0.49, P = 0.001). The 
low correlation may be due to several factors, including the presence 
of melt ponds, variations in ice coverage, limited sampling during the 
earlier satellite era, a negligible albedo effect over pre-existing deep 
snow and others.

To explore the albedo effect of melt ponds, which have an albedo 
of 0.12–0.32 (ref. 3), we analysed the 2000–2020 period using avail-
able, independent satellite retrievals of melt pond coverage (Fig. 2b). 
After correcting for mean melt pond albedo effects, the relationship 
between surface albedo and the AO remains noisy (r = 0.46) but statisti-
cally significant (P = 0.030). This suggests that other factors, such as 
small variations in sea-ice coverage and, thus, open leads (albedo of 
0.07)28, may have a larger effect on the average July surface albedo than 
interannual melt pond variability. The increasingly warm summers 
of the Arctic Ocean (Fig. 2b) are altering the reflective properties of 
the snow and sea-ice covers and increasing the proportion of liquid 
precipitation29. Both effects will further decrease surface albedo and 
weaken the correlation.

Melt onset, sea-ice conditions and remnant snow
Snow depth variability during the melt season is influenced by many 
time-varying physical processes. For example, the timing of melt onset 
could influence summer snow depth variability by way of a positive 
albedo feedback. As snow melts, snow grains coarsen, which reduces 
the reflectivity and increases the transmittance, thereby increasing 
solar absorption within the snowpack2. We found that the relation-
ship between melt onset timing and snow depth variability was weak 
and not statistically significant when averaged over June–August in 
1980–2020 (Fig. 3a–c and corresponding maps with statistical sig-
nificance in Extended Data Fig. 2). However, for June only, the timing 
of melt onset and snow depth variability were strongly correlated in 
much of the eastern and central Arctic (Fig. 3a). Melt onset was strongly 
correlated to the AO, where, during positive AO summers, the eastern 
and central Arctic tended to have later melt onset than in negative AO 
summers. In July and August (Fig. 3b,c), no significant correlations 
between melt onset and snow depth variability were found, which indi-
cates that melt onset has a short-lived effect on snow depth variability 
during the melt season.

Sea ice is a platform onto which snow accumulates. Accordingly, 
sea-ice coverage could affect summer snow depth variability across 
the Arctic. During the early melt season ( June), the variability in June 
sea-ice coverage significantly explains 19% of the snow depth variance 
in areas with 95% statistical significance (Fig. 3d and Extended Data 
Fig. 3d). These areas are concentrated in the peripheral seas (Extended 
Data Fig. 3d). Sea-ice concentrations from earlier months have no 
statistically significant relationship with snow depth variability for the 
remainder of the melt season (Extended Data Fig. 3), which suggests 
no lag effect between prior months’ ice coverage and subsequent 
months’ snow conditions. In July, the relationship between sea-ice 
concentration and snow depth was weakest. In August, sea-ice concen-
trations play a significant role in August snow depth variability in most 
peripheral seas (Fig. 3c and Extended Data Fig. 3l). This relationship 
partly results from the timing of sea-ice freeze up, which can occur in 
August (Extended Data Fig. 4a).

As observed in the western Arctic12, earlier sea-ice freeze up may 
allow more total snowfall to accumulate, creating a deeper snowpack. 
Deeper snow requires more energy to completely melt. Consequently, 
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Fig. 2 | The relationship between surface albedo and the Arctic Oscillation. 
a,b, The mean July blue-sky albedo from satellite observations over the 
continuous (sea-ice concentrations greater than 80%) sea-ice domain of the 
Arctic Ocean (y axis) against the June–July mean Arctic Oscillation (AO) index 
for 1980–2020 (a) and 2000–2020 (b) with a correction for mean albedo effect 

of melt ponds. Marker colour indicates mean June–July 2 m air temperature of 
areas poleward of 75° N from ERA5 reanalysis. In b, the years 2000–2007, before 
the weakening of the snowy AO response, are highlighted in black. Note that the 
temperatures are the same for points between a and b.
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the previous year’s freeze-up date could affect the following summer’s 
snow depth conditions. We found that the timing of sea-ice freeze 
up explains 13% of the variance in June snow depth variability in the 
Kara, E. Laptev, E. Siberian and Chukchi seas. From July onward, the 
timing of the previous year’s freeze up had a negligible effect on snow 
depth variability (Extended Data Fig. 4b–d). This suggests that the 
effects of freeze-up timing on snow depth variability may propagate 
into the early melt season in regions with seasonal ice, but the effects  
are short-lived.

Remnant snow, or snow that persists from preceding months, 
plays an important role in snow depth variability during the early melt 

season (Fig. 3g–i). Remnant snow from April and May significantly 
contributes 30% and 74%, respectively, to the snow depth variability in 
June (Extended Data Fig. 2d–f). In July, remnant snow from June explains 
22% of the snow depth variability on average. Snow depths in April–May 
have the lowest contribution (11%) to August snow depth variability, 
albeit with no statistical significance. In short, snow depths from late 
winter, spring and early summer strongly covary, but their impact on 
mid and late summer snow depth progressively weakens. Sea-ice drift 
may complicate the causal inferences about remnant snow and summer 
snow variability. During June–August, Arctic sea-ice drifts ~6 km per 
day on average30. This equates to an ~550-km distance from early June 
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available as Extended Data Fig. 3.
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to late August. Hence, snow depths in one region in early summer may 
not strongly correlate with those in the same region in late summer. The 
weaker correlations in snow depths between May and later months may 
be influenced by such drift effects (Fig. 3g–i).

To summarize, the influence of melt onset and remnant spring 
snow on summer snow depth variability appears to be largely limited 
to June. This suggests that snowfall and air temperature, rather than 
sea-ice state and pre-existing snow conditions, play a larger role in 
snow depth variability during the mid-to-late summer melt season, 
which we demonstrate next.

Atmospheric conditions
The positive phase of the AO in summer facilitates enhanced Arctic 
snowfall by way of cooler temperatures aloft and a more active, north-
erly Atlantic storm track (Extended Data Fig. 5). The leading pattern of 
variability in summer snowfall is strongly related to the AO (Fig. 4c,d,f). 
During positive AO summers, there are cooler temperatures at the 
850-hPa level, which promotes higher snowfall-to-total precipitation 
ratios (Fig. 5). Although more rainfall and more total precipitation 
occur during positive AO summers, snowfall dominates the precipi-
tation increase. In particular, snowfall in the central Arctic, north of 
Alaska, Lincoln Sea and the northern Canadian Arctic Archipelago is 
most strongly (95% significance) correlated with the AO (Fig. 4b). Dur-
ing positive AO summers, there is ~5 mm more snow water equivalent 
on average, which is ~2.5 cm of snow accumulation assuming a fresh 
snowfall density of 0.2 g cm−3 (ref. 19).

Cyclones are the key mechanism for establishing the snowpack 
over Arctic sea ice in autumn–spring18, and in June–August, they are 
associated with cooler conditions and greater snowfall31. We, there-
fore, explored the relationship between the AO and cyclone activity to 
determine whether cyclones’ precipitation plays an important role in 
summer snow depth variability. We found that more cyclones penetrate 

deeper into the Arctic during positive AO summers, as indicated by the 
high significant correlations and strong linear response (Fig. 6b,d). 
This result agrees with previous studies investigating Arctic cyclone 
activity and the Northern Atlantic Oscillation and AO32–35. However, 
we found a strong negative nonlinear response north of Greenland 
and the Canadian Arctic Archipelago (Fig. 6e), which suggests that 
fewer cyclones may occur in that region during extreme positive and 
negative AO summers.

On average, cyclones were more intense during positive AO sum-
mers (Extended Data Fig. 7); minimum sea level pressures (SLPs) were 
~3 hPa and ~8 hPa lower relative to neutral and negative AO phases, 
respectively. This, together with cooler temperatures aloft (Fig. 5a–c), 
probably contributed to greater snowfall in the central Arctic during 
positive AO summers in 1980–2020. Indeed, there is ~1 mm of additional 
water equivalent from enhanced cyclone snowfall during positive AO 
summers. Collectively, these results demonstrate that a positive AO 
contributes to more frequent summer snow accumulation on Arctic 
sea ice by way of enhanced storm activity and snowfall.

In addition to enhanced snowfall, freezing conditions at the sea-ice 
surface can allow snow to persist longer during summer. Accordingly, 
we evaluated 2 m air temperatures and found weak, inverse correla-
tions with the AO. This suggests that during positive AO summers, 
there could be cooler surface air temperatures. However, statistically 
significant correlations were limited to the central Arctic (Extended 
Data Fig. 1). The leading pattern of variability, as well as the linear and 
nonlinear responses, are within the noise of the 2 m air temperature 
time series based on a Z-test (Extended Data Fig. 6).

We performed a monthly lag analysis to explore the possibility 
of preconditioning effects of atmospheric variability on snow depth 
variability. The zero-month lag for 2 m temperatures, snowfall and 
cyclones yielded the highest and only statistically significant (95%) cor-
relation. This suggests that the AO affects storm tracks, precipitation 
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Fig. 4 | The relationship between snowfall and the Arctic Oscillation.  
a–f, The June–August mean for 1980–2020 in snowfall (a), the correlation 
between snowfall anomalies and the Arctic Oscillation (AO) (b), snowfall 
anomalies regressed onto the AO index (c), the linear response (composite 
difference) in snowfall anomalies to the AO (d), the nonlinear response 

(composite sum) in snowfall anomalies to the AO (e) and snowfall anomalies 
regressed onto the first principal component of snowfall (f). The light grey 
contours in c–f are the corresponding results using 1,000 hPa geopotential 
height anomalies.
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and surface temperatures on relatively short timescales and has a 
near-immediate (but short-lived) effect on snow depth variability 
during the mid-to-late summer melt season.

Effects of Arctic sea-ice loss
There has been a profound loss of Arctic sea ice since the late 1970s36. 
Given the state change in the Arctic sea-ice cover, we re-examined 
the relationship between snow depth variability, the AO, sea ice and 

atmospheric variables before and after the breakpoint of 2007 in the 
June–August sea-ice concentration time series (Extended Data Fig. 8). 
Post 2007, we found weaker summertime relationships between the AO 
and snow depth, snowfall and air temperature and cyclone frequency, 
intensity, 2 m temperature and snowfall. In particular, negative correla-
tions emerged between the AO and snow depth, snowfall and cyclone 
frequency in the coastal areas of the Pacific sector, albeit, not statisti-
cally significant. Interestingly, negative (but not statistically significant) 
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Fig. 5 | The relationship between 850-hPa air temperature, snowfall-to-total 
precipitation ratio, total precipitation, rainfall and the Arctic Oscillation.  
a–l, The June–August results for 1980–2020 of column 1 correlations with the 
Arctic Oscillation (AO), column 2 regressions onto the AO and column 3 linear 

response (composite difference) for 850-hPa air temperature (a–c), snowfall-to-
total precipitation ratio (d–f), total precipitation (g–i) and rainfall (j–l), computed 
as the difference between the total precipitation minus snowfall. The yellow dots 
represent 95% statistical significance in a, d, g and j.
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correlations emerged between the AO and sea-ice concentration (SIC) 
post 2007. The loss of sea ice may contribute to warmer temperatures, 
less snowfall and less snow accumulation during positive AO summers. 
Indeed, earlier work37 found a weakening in Arctic cyclones over the 
1979–2009 period, which was attributed to atmospheric warming. We 
found no statistically significant trend in cyclone intensity for 1980–
2020, 1980–2006 or 2007–2020, agreeing with recent findings31. Note, 
care should be taken when interpreting trends in cyclone characteris-
tics, as they are dependent on the algorithm and reanalysis product38. 
Furthermore, the results and statistical significance presented here 
should be interpreted with caution considering that the breakpoint 
of 2007 gives 14 sample years for the post 2007 period.

Summertime snow and the AO in past and 
contemporary periods
For 1980–2020, the positive phase of the AO in summer led to cooler 
temperatures aloft and enhanced snowfall, which increased snow accu-
mulation on Arctic sea ice and, consequently, raised the surface albedo. 
Because our analysis is largely based on reanalysis and model data, we 
examined historical and contemporary snow observations from the 
North Pole drifting ice stations39 and ice mass balance buoys40 for pos-
sible corroborating results. Averaged over June–August, the snow depth 
observations from 1962–2017 were positively correlated with the AO 
(r = 0.37) with 86% statistical significance (Extended Data Fig. 9). While 
the result lends supporting evidence of this study’s conclusions, the 
interpretation of the correlation warrants caution as some years con-
sisted of only one to three-point measurements from different locations.

The relationship between the AO and summertime snow may be 
useful for analyses on the preconditioning and predictability of Arctic 
sea ice during the melt season. Given that most variables in our analysis 
exhibited a strong linear response to the AO in 1980–2020, it is insightful 
to consider that during negative AO summers, the opposite phenom-
enon tends to occur: during negative AO summers, there are warmer 

temperatures aloft, less snowfall, less snow accumulation and lower  
surface albedo, all of which would promote greater surface melt. While 
the results presented in this work largely summarize the mean pan-Arctic 
response to the AO in summer, there are regional exceptions. Notably, 
the Barents Sea experienced enhanced warming during positive AO 
summers, which contributed to anomalously low snowfall, anomalously 
high rainfall, thinner snow depths and less extensive sea-ice coverage 
in that region in 1980–2020. This result underscores the complexity in 
atmosphere–ice–ocean interactions across the Arctic.

The influence of the AO on summertime snow weakens after 2007, 
which suggests that future warming and Arctic sea-ice loss may modify 
the relationship between the AO and snow on Arctic sea ice. We specu-
late the link weakened after 2007 due to the combined effects of the 
warming trend in the Arctic41. There is less sea-ice coverage36 to capture 
falling snow, and more summer precipitation is coming in the form of 
rain rather than snow29 in the contemporary period. With Arctic sea-ice 
loss projected to continue42,43, it will be especially relevant to revisit this 
analysis in future decades to better understand the evolving relationship 
between the AO and Arctic snow–sea ice system in a warmer climate.

Online content
Any methods, additional references, Nature Portfolio reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author  
contributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41561-024-01525-y.
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Methods
To investigate the relationship between the AO and summertime snow 
on Arctic sea ice, we use regression, composite and principal com-
ponent techniques on reanalysis, model and satellite data. While the 
summer melt season in the Arctic Ocean tends to comprise May–Sep-
tember44, we placed emphasis on the June–August months, since they 
represent peak insolation and melt. All data were averaged to monthly 
values, and anomalies were computed and detrended on the basis of 
the 1980–2020 mean. Excluding the albedo dataset, anomalies were 
weighted by the square root of the cosine of latitude for determining 
principal components.

Correlation maps with statistical significance corresponding 
to those in in Figs. 1b, 3b, 4b and 6b are available in Extended Data 
Fig. 1. Regressions of a given variable onto the AO index (or onto the 
first principal component) were linear. We refer to the first principal 
component as the leading pattern of variability. We applied composite 
techniques to investigate the linearity of a given variable’s response to 
the AO. The linear response is defined as the difference between the 
positive and negative composites, whereas the nonlinear response was 
defined as the sum of the positive and negative composites, following 
refs. 45,46. Composites were determined using the extreme 5 years that 
exceeded one standard deviation of the mean. The interpretation of 
a linear response is that a variable changes in an equal and opposite 
manner based on whether the AO phase is positive or negative. For a 
nonlinear response, a variable changes in the same manner, regardless 
of the sign of the AO phase.

We performed lead-lag correlations to better understand the 
relationship between sea-ice coverage, melt–freeze onset timing, 
pre-existing snow and summer snow depth variability from the per-
spective of preconditioning. We also correlated the former variables’ 
first principal components against the leading mode in monthly snow 
depth anomalies. A Bayesian time series decomposition method devel-
oped by Zhao et al.47 was applied to the 1980–2020 June–August SIC 
time series to identify a breakpoint in 2007. The breakpoint represents 
an abrupt shift in the sea-ice concentration trend (Extended Data Fig. 8) 
using a polynomial fit model. The model fit yields a root mean square 
error of 0.7% and a correlation coefficient of 0.85. The code is freely 
available at https://github.com/zhaokg/Rbeast.

ERA5 reanalysis
We used the fifth generation of the European Centre for Medium 
Range Weather Forecasts Reanalysis (ERA5)48 for investigating the 
spatiotemporal patterns of 1,000 hPa geopotential height, SLP, 2 m 
air temperature and snowfall. We computed monthly averages from 
6 hour timesteps. The monthly AO indices were constructed following 
refs. 49,50. Previous works51–53 have shown that this definition suc-
cessfully captures summertime atmospheric variability associated 
with blocking anticyclones, whereas the AO definition of Thompson 
and Wallace20 mainly reflects wintertime atmospheric variability. 
We applied empirical orthogonal function analysis on the temporal 
covariance matrix of monthly geopotential height fields using a 
zonally averaged, monthly geopotential height field from 1,000 hPa 
to 200 hPa north of 40° N. The seasonal cycle was removed from 
the monthly mean height field. The covariance matrix was used in 
the empirical orthogonal function analysis, and the gridded data 
were correspondingly weighted by the square root of the cosine of  
latitude. The time series were standardized by removing the long-term 
mean and dividing by the standard deviation of the monthly index. 
We note that the summer AO trends over 1979–2022 and 1950–2022 
are not significant, despite a positive trend in the winter AO (for 
example, ref. 54).

SnowModel-LG snow depth
SnowModel-LG55 output was used to investigate snow depth variabil-
ity over 1980–2020. The model provides snow depth estimates at 

25 km × 25 km resolution at daily time steps year round by simulating 
the surface energy and snow mass budgets in a Lagrangian framework. 
For consistency in this study, we use the model results forced by ERA5 
reanalysis48. Snowfall, rainfall, sublimation, blowing snow, snow melt, 
snow density evolution, superimposed ice, ice dynamics and heat flux 
are parameterized processes in the model.

The assessment of the SnowModel-LG performance in summer is 
understudied (for example, ref. 24), and in general, reanalysis-based 
models for snow on sea ice are difficult to assess due to the dearth of 
observations and the challenges plaguing remote sensing retrievals 
(for example, ref. 56). Nevertheless, we evaluated the SnowModel-LG 
output against ice mass balance buoy data from 1993–2017 (ref. 40) and 
found that the model underestimates summer snow accumulation by 
~27% across the Kara, central Arctic and Beaufort regions. The low bias 
is a known issue in other seasons, and accordingly, the precipitation 
forcing is scaled by a factor greater than one57. In further comparison 
with historical observations13, the springtime standard deviation in 
simulated snow depth ranges regionally from 3 cm (Greenland Sea) 
to 6 cm (Kara Sea), whereas historical observations from the central 
Arctic yield 6 cm. Even with the scaled precipitation, the low bias still 
persists, which may affect the correlations between summer snow 
depth variability and the AO.

Regarding sea-ice drift, in ref. 58, a comparison between the ice 
motion product used in SnowModel-LG and ice mass buoys revealed 
a slow bias in the ice motion data, particularly in the East Greenland 
Sea. Such a bias probably amplifies the spatial correspondence 
between cyclone-associated snowfall and simulated snow depth 
anomalies in areas with rapid ice drift. Given that sea ice moves on 
the order of 6 km per day in June–August30, we expect there to be a 
small effect on the regional results presented in this work, particu-
larly in the Fram Strait region where summer ice drift is largest. 
More details on the model physics in SnowModel-LG can be found  
in ref. 57.

Snow depth observations
We use snow observations from the 1954–1991 North Pole drifting ice 
stations39 and ice mass balance buoys from 1993–2017 (ref. 40) for cor-
roborating results from the SnowModel-LG analysis. Snow sampling 
at the drifting ice stations continued in summer as long as one of the 
following criteria was met: snow covered 50% of the transect line or 
the average snow depth on the transect line was at least 5 cm (ref. 13).  
Snow depth from the ice mass balance buoys was derived from 
downward-looking sonic rangefinders and has a reported accuracy 
of 1 cm.

Cyclones
Closed cyclone systems were identified using the Melbourne University 
cyclone tracking scheme35,59–61 applied to 6 hourly SLP fields from ERA5 
reanalysis. We refer readers to the references above for more details and 
briefly describe the methodology here. SLP fields were converted to 
polar stereographic coordinates and interpolated to a one-latitudinal 
grid using a bicubic spline. The Laplacian of the SLP fields was used to 
determine the local maxima relative to eight neighbouring grid cells. 
Closed cyclone systems were identified when the local maxima met the 
following criteria: the second derivative of the SLP was positive in the 
x and y directions, and the mean Laplacian in the immediate vicinity of 
the maximum was equal to or greater than 0.2 hPa per square degree. 
We fit an ellipse to the first and second derivatives of the SLP fields to 
identify the cyclone area. While the Melbourne University cyclone 
tracking scheme identifies both open and closed systems, only closed 
cyclone systems were used in this analysis due to the ill-defined bounda-
ries of open systems. We evaluated the number of days that cyclones 
were present in each grid cell per month, and these are defined as 
‘cyclones’ hereafter. For cyclone intensity, we examined the minimum 
SLP within the cyclone area.
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Satellite retrievals of SIC, melt-freeze dates and albedo
Four types of satellite retrievals were used in the analysis: SIC,  
melt–freeze onset dates, surface albedo and melt ponds. For SIC, we 
use Ocean and Sea Ice Satellite Applications Facility (OSI SAF) OSI-
450-monthly global SIC climate data record, release 3 (ref. 62), which is 
produced at 25 km resolution. For summertime retrievals, the retrieval 
errors can be more than 20% from the effects of weather and melt 
ponding on brightness temperatures63, but their influence on trends 
in sea-ice area and extent is generally considered to be small64. For 
the melt and freeze onset dates, we used the passive microwave melt 
product developed by Markus et al.65. The first dates of continuous 
melt and freeze were incorporated into the analysis.

For surface albedo, we use satellite-based estimates from the third 
edition of the Satellite Application Facility on Climate Monitoring 
Clouds, Albedo and Radiation (CLARA) Climate Data Record66. The 
CLARA-A3 record is based on intercalibrated Advanced Very High 
Resolution Radiometer data spanning 1979–2020 for the Climate Data 
Record component, which is used here. The albedo data in CLARA-A3 
have been evaluated against a wide array of reference in situ observa-
tions and benchmarked against other similar satellite data records; 
the mean retrieval bias over the cryospheric domain, inclusive of sea 
ice, is evaluated at 10–15% (relative). The retrievals have been shown 
to be capable of tracking the albedo decrease of the sea ice during 
the melting season. The monthly mean blue-sky albedo estimates 
for July were selected and filtered with OSI SAF OSI-450-a SIC data62 
to contain only the continuous sea-ice zone, that is, the area where 
ice concentration is larger than 80%. Then, continuous ice grid cells, 
where the albedo estimate was based on less than 100 Advanced Very 
High Resolution Radiometer-Global Area Coverage observations, were 
discarded to ensure sufficient sampling for robust estimation. Note 
that by 2020, the continuous sea-ice zone in July shrank to approxi-
mately two-thirds of its early 1980s areal coverage. Nonetheless, the 
ice-covered area remained large enough to reliably investigate the 
effect of enhanced snowfall on the mean surface albedo of sea ice. 
July albedos were selected in the comparison with the June–July AO 
based on two findings from the analysis: (1) May snow conditions 
have minimal effect on July snow depth variability but a noteworthy 
impact on June snow depth variability, and (2) the freeze-up timing 
affects August snow depth variability. Thus, July is a representative 
month for comparison of peak summer melt conditions, surface albedo  
and the AO.

We obtained spatially resolved MODIS-Peng (NENU-MPF) melt 
pond fraction (MPF) data for 2000–2020 from ref. 67, and nearest 
neighbour resampled it to the CLARA grid as monthly means and used 
it to remove the mean melt pond impact on July surface albedo. Due to 
a sizable pole hole in the MPF data product, this was done by deriving a 
mean linear relationship between MPFs and CLARA albedo in July from 
all valid grid cell data (N = 125,422, r = −0.20, P = 0) and applying the 
slope (delta-albedo −0.326 × MPF) with the Arctic-wide mean July MPF 
to correct for melt pond albedo effects in the mean July sea-ice albedo.

Data availability
SnowModel-LG data are available via the National Snow and Ice Data 
Center at https://doi.org/10.5067/27A0P5M6LZBI. The CLARA-A3 sur-
face albedo data are available at https://doi.org/10.5676/EUM_SAF_CM/
CLARA_AVHRR/V003. ERA5 reanalysis data are available via Copernicus 
Climate Change Service Climate Data Store at https://doi.org/10.24381/
cds.adbb2d47. Melt onset and freeze-up dates are available on the 
Goddard Space Flight Center website at https://earth.gsfc.nasa.gov/
cryo/data/arctic-sea-ice-melt. MPFs are available via Zenodo at https://
zenodo.org/records/6888170 (ref. 68). The North Pole drifting ice sta-
tion data are available at https://doi.org/10.7265/N5MS3QNJ. The ice 
mass balance buoy data are available at https://imb-crrel-dartmouth.
org/results/. The OSI SAF sea ice concentration data are available at 
https://osi-saf.eumetsat.int/products/osi-450.

Code availability
While not used for the analysis, we point interested parties in the Uni-
versity of Melbourne cyclone detection and tracking algorithm59 to 
the following website for the cyclone tracker code at https://cyclon-
etracker.earthsci.unimelb.edu.au/. We refer interested parties in the 
Bayesian breakpoint methodology to the following website for down-
loading the code: https://doi.org/10.1016/j.rse.2019.04.034. The code 
for creating stereographic maps was developed by Andrew Roberts 
and is available at https://www.mathworks.com/matlabcentral/fileex
change/30414-ncpolarm, while the basemap information is provided 
in the Matlab Mapping Toolbox dataset.
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Extended Data Fig. 1 | Correlations and statistical significance between the 
Arctic Oscillation and different environmental variables. The June-August 
mean correlations for 1980–2020 between the Arctic Oscillation and (a) snow 
depth anomalies, (b) snowfall anomalies, (c) anomalies of the daily presence 

of cyclones, and (d) 2 m air temperature anomalies. The yellow dots indicate 
correlations with 95% statistical significance. Note that the different spatial 
resolutions between data products yield different spacing between yellow dots 
of statistical significance across the panels.

http://www.nature.com/naturegeoscience
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Extended Data Fig. 2 | Correlations and statistical significance between 
snow depth across different months and timing of melt onset. Correlation 
coefficients of anomalies for 1980–2020 between: the date of melt onset and (a) 

June, (b) July, and (c) August snow depths; May snow depths and (d) June, (e) July, 
and (f ) August snow depths. 95% statistical significance is marked by yellow dots. 
Equivalent figure in the main text is Fig. 3.
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Extended Data Fig. 3 | Correlations and statistical significance between 
monthly snow depth and sea ice concentration. Correlation coefficients of 
anomalies between (a-d) June snow depths and sea ice concentrations in months 

prior to June, (e-h) July snow depths and sea ice concentrations in months prior to 
July, and (i-l) August snow depths and sea ice concentrations in months prior to 
August. 95% statistical significance is marked by yellow dots.
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Nature Geoscience

Article https://doi.org/10.1038/s41561-024-01525-y

Extended Data Fig. 4 | Correlations and statistical significance between 
snow depth and sea-ice freeze-up timing. (a) Correlations between the same 
year’s freeze-up and August snow depth anomalies. (b) Correlations between 
the previous year’s freeze-up and June snow depth anomalies. (c) Correlations 

between the previous year’s freeze-up and July snow depth anomalies.  
(d) Correlations between the previous year’s freeze-up and August snow  
depth anomalies. Areas with 95% statistical significance are indicated by  
yellow dots.
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Extended Data Fig. 5 | Cyclone tracks and the cyclone track density difference 
between five years with the most extreme positive and negative Arctic 
Oscillation index. (a) Cyclone tracks for the five years with the most positive 
Arctic Oscillation index in June-August. (b) Cyclone tracks for the five years with 

the most negative Arctic Oscillation index in June-August. (c) The difference 
in cyclone track densities of unique cyclones between the five most extreme 
positive and negative Arctic Oscillation years for June-August. The density 
difference north of 80°N was 99% statistically different using a standard t-test.
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Extended Data Fig. 6 | The climatology and relationship of 2-meter air 
temperature with the Arctic Oscillation. The June-August mean for 1980–2020 
in (a) 2 m air temperatures, (b) the correlation between 2 m air temperature 
anomalies and the Arctic Oscillation, (c) 2 m air temperature anomalies 
regressed onto the Arctic Oscillation index, (d) the linear response (composite 
difference) in 2 m air temperature anomalies to the Arctic Oscillation, (e) the 

nonlinear response (composite sum) in 2 m air temperature anomalies to the 
Arctic Oscillation, and (f) 2 m air temperature anomalies regressed onto the 
first principal component of 2 m air temperatures. The light grey contours in 
panels (c)-(f) are the corresponding results using 1000-hPa geopotential height 
anomalies.
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Extended Data Fig. 7 | The climatology and relationship of the minimum sea 
level pressure within cyclones and the Arctic Oscillation. The June-August 
mean for 1980–2020 in (a) the minimum sea level pressure (SLP) within cyclones, 
(b) the correlation between cyclone SLP anomalies and the Arctic Oscillation 
with yellow dots indicating correlations with 95% statistical significance, (c) 
cyclone SLP anomalies regressed onto the Arctic Oscillation index, (d) the 

linear response (composite difference) in cyclone SLP anomalies to the Arctic 
Oscillation, (e) the nonlinear response (composite sum) in cyclone SLP anomalies 
to the Arctic Oscillation, and (f ) cyclone SLP anomalies regressed onto the first 
principal component of cyclones. The light grey contours in panels (c)-(f) are the 
corresponding results using 1000-hPa geopotential height anomalies.
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Extended Data Fig. 8 | The time-series breakpoint in June-August sea ice 
concentration. (a) The trend (bold green line) in the June-August sea ice 
concentration (SIC) anomalies, in percentage, based on the 1980–2020 mean. 
The time-series break point is denoted by the vertical dashed line. Anomalies 
are represented by grey hollow circles and the light green shading denotes the 
95% confidence interval. The trend is determined from a piece-wise polynomial 

model. (b) The probability (bold green line) of the break point within the 
time-series, with the time-series break point denoted by the vertical dashed line. 
(c) The polynomial order of the best fit line to the SIC anomaly time-series, with 
the time-series break point denoted by the vertical dashed line. (d) The residual 
error of the Bayesian model fitted to the SIC anomaly time-series, in percentage.
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Extended Data Fig. 9 | The linear fit between mean Arctic snow depths and the Arctic Oscillation index. The June-August average snow depths and Arctic 
Oscillation (AO) indices from the North Pole drifting ice stations and ice mass balance buoys for the 1962, 1970, and 1994–2017 period. The correlation is statistically 
significant to 86%.
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