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Surface segregation, whereby the surface composition of an
alloy differs systematically from the bulk, has historically been
hard to study, because it requires experimental and modeling
methods that span alloy composition space. In this work, we
study surface segregation in catalytically relevant noble and
platinum-group metal alloys with a focus on three ternary
systems: AgAuCu, AuCuPd, and CuPdPt. We develop a data set
of 2478 fcc slabs with those compositions including all three
low-index crystallographic orientations relaxed with Density
Functional Theory using the PBEsol functional with D3
dispersion corrections. We fine-tune a machine learning model
on this data and use the model in a series of 1800 Monte Carlo

simulations spanning ternary composition space for each sur-
face orientation and ternary chemical system. The results of
these simulations are validated against prior experimental
surface segregation data collected using composition spread
alloy films for AgAuCu and AuCuPd. Our findings reveal that
simulations conducted using the (110) orientation most closely
match experimentally observed surface segregation trends, and
while predicted trends qualitatively match observation, biases
in the PBEsol functional limit numeric accuracy. This study
advances understanding of surface segregation and the utility
of computational studies and highlights the need for further
improvements in simulation accuracy.

Introduction

Throughout history, alloys such as bronze and steel have played
an important role in commerce and industry due to their
mechanical and chemical properties. In modern surface science,
catalysts may be alloyed to take advantage of novel combina-
tions of electronic or structural properties to maximize activity,
selectivity, or stability while minimizing the use of precious
metals.[1] Because catalysis is an interfacial phenomenon, the
structure and composition of the alloy surface are critical in
determining whether alloying will have catalytically favorable
effects.

The breadth of elements and structures available to make
catalytic materials creates a significant combinatorial search
space for scientists seeking to optimize catalyst activity. This
challenge is only compounded by the requirement that catalyti-
cally active surfaces be stable and active under reaction
conditions. Meanwhile, although the scope of experiments is
increasing as a consequence of the digital revolution, the high-
quality experimental data sets and characterization needed to
scale to industrial processes remain orders of magnitude smaller

than the feasible search space. To address this disparity,
scientists may turn to computational tools that use physics to
predict properties of materials and interfaces to augment
experimental approaches. In heterogeneous catalysis, Density
Functional Theory (DFT) has frequently been found to reason-
ably balance computational speed and physical accuracy for
modeling crystalline material surfaces.[2] More recently, compu-
tational chemists have looked to machine learning using large
data sets as a way to further accelerate discoveries with minimal
loss in accuracy.[3,4]

However, even as the accuracy of machine learned DFT
surrogate models improves, important challenges remain in
applying these models to understanding or supplementing
real-world data to achieve rational materials design.[5] One
challenge for accurate materials simulations is the need to
model disorder, which is computationally costly and can stymie
materials discovery efforts that assume materials are ordered
crystals.[6] A challenge more specific to ab initio catalyst design
is the need to understand surface stability. Surface structure
and area are crucial determinants of catalyst activity, and while
laboratory experiments can utilize single-crystal materials with
known surface area and geometry, real-world catalysts are
polymorphic nanoparticles that express many surfaces and
surface orientations that may differ dramatically in their ability
to catalyze a target reaction.[7] The stability of these nano-
particles also depends in part on the stability of their surfaces.[8]

This poses a dual inference problem for computational
representations: models must simultaneously predict structures
and their exposed surfaces. While this problem pervades
interfacial materials design, it is especially challenging in
catalysis because of the need to consider interacting phenom-
ena on both sides of the interface simultaneously.[9,10]
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One example of the unique complexity that catalysis poses
for surface modeling is adsorbate-induced surface segregation.
In multicomponent materials, one element is often preferen-
tially enriched at the surface relative to the bulk due to differing
surface energy or lattice mismatch. If the surface has significant
chemical interaction with its environment, chemisorbed mole-
cules can exert substantial influence over surface composition.
However, the chemical composition of the surface also
influences the quantity and composition of adsorbates. This
phenomenon has been shown to modify catalyst activity in real
materials,[11,12] and computational studies have also modeled
these effects using Monte Carlo methods with DFT-based
potentials.[13-15]

Machine-Learned DFT Surrogates

While DFT can assay materials faster than conventional experi-
ments, its computational cost and poor scaling with electron
count imposes practical constraints on simulation size and
quantity. In predicting surface compositions, this ultimately
limits the variety of compositions and segregation trends that
can be observed and may induce size effects in small slabs.
Some researchers have instead turned to machine learned
potentials, which can be trained on DFT data and then utilized
in larger simulations.[15] Although at first these potentials were
narrowly limited to the specific data they were trained on,
recent approaches have involved generating extremely large
data sets that can be used to train generalized interatomic
potentials that work across entire classes of materials.[16,17]

Because these models have seen a wide variety of elemental
atomic interactions, they can be fine-tuned on specific tasks or
subdomains that they were not initially trained to describe,
ultimately requiring less new data than a model trained from
scratch.[4]

Of particular interest is the Open Catalyst Project (OCP),
which developed a large data set and associated general
interatomic potentials for the purposes of analyzing catalyst
surfaces. It joins a growing number of large, high-quality DFT
data sets for materials discovery; other notable databases
include the Materials Project and Open DAC.[18,19] Besides big
data, what unites these projects are community challenges -
benchmark tasks that can be used to judge the effectiveness of
machine learning algorithms for comprehending the data set as
a whole.[20] Like ImageNet for computer vision and CASP for
protein folding, these challenges provide a systematic frame-
work for comparing the accuracy of various models used as DFT
surrogates in materials science.[21,22] However, while models
associated with the Open Catalyst Project continue to improve
in their ability to predict DFT, there is no corresponding
benchmark for accurately predicting catalyst activity, the
ultimate goal of the project and the field of computational
catalysis.[23]

The main reason that this benchmark does not exist is the
difficulty of collecting large amounts of high-quality experimen-
tal catalysis data. While material properties or crystallized
protein structures can be used to directly verify bulk formation

energy or protein structure predictions, the single crystal
adsorption energy experiments corresponding to values that
could be calculated with DFT or predicted by surrogate models
are limited in scope and scale, and their connection to the
activity of polycrystalline and nanoparticle catalysts is unclear.
Meanwhile, attempting to benchmark DFT- and DFT surrogate-
based catalyst discovery models using industrially relevant real-
world examples is fraught, in part because the distribution of
interface compositions and morphologies is extremely broad.
Nanoparticle size, morphological dispersion, stability, and
catalytic activity are sensitive to variations in synthesis and
reactive environment that cannot be effectively described
computationally with current methods and may be unreprodu-
cible experimentally.[10,24–26] Measurement of even conceptually
simple properties like size distribution can be low-throughput
and require the use of proxy metrics.[27]

The difficulty in establishing widely applicable data-driven
models creates demand for physically motivated models like
DFT surrogates that can describe trends in materials independ-
ently of real-world benchmarks. However, modern discovery
campaigns that utilize both DFT and experiments tend to use
DFT just to corroborate phenomena discovered by
experimentation,[28] and purely computational campaigns can
search broad regions of materials space but are difficult to
connect to experimental outcomes.[29] To connect these two
methods halfway, we propose comparing DFT surrogate models
and experimental data on a simpler task that is still highly
relevant to catalysis: understanding surface segregation in
noble metal fcc ternary alloys.

Noble Metal Alloys

Noble metal alloys are an important class of materials for
studying surface segregation. Noble metals tend to be able to
form stable nanoparticles and alloys, and have been inves-
tigated for a variety of industrial applications in catalysis and
biomedicine.[30–33] Although noble metal- and especially plati-
num group-based catalysts are state of the art for many
important reactions, their expense created a subfield of catalysis
focused on reducing the use of precious metals by finely
controlling surface composition and structure to maximize their
precious metal surface exposure.[34,35] Earlier works also tried to
design catalysts with strained overlayers to maximize activity,
although in practice these materials often reconstructed.[36–38]

Even in applications with near-stoichiometric quantities of
noble metals, surface composition plays an important role in
determining activity and selectivity.

Alloys of silver, gold, copper, palladium, and platinum have
been found to have good catalytic properties for a wide range
of reactions, including ethanol oxidation,[39] hydrogen
storage,[40] and CO2 reduction.

[41] Mun et al. notes that, although
pure copper offers good cost, activity, and stability for CO2

reduction, it tends to result in the formation of a variety of
gases that can be difficult to separate. Combining copper with
palladium in an alloyed phase can reduce hydrogen adsorption
and adsorbed CO protonation, improving Faradaic efficiency
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and CO production.[41] Alternatively, combining gold with
copper can stabilize copper against oxidation at higher temper-
atures, but the ratio of these elements must also be tuned to
balance activity and stability.[42] Fu et al. discovered a similar
phenomenon in AuPt alloys, where an underlayer of gold was
found to stabilize the catalyst against poisoning by CO and
organic compounds. Analysis of the surface combined with DFT
study revealed that the formation of the catalytically active
platinum overlayer depended on adsorbate-induced surface
segregation.[43]

DFT has also been utilized to determine trends in the
enthalpy of surface segregation in noble metal alloys. For
example, Pt3M alloys were simulated using a 2 � 2 � 5 (111)
slab with reasonable agreement between the energies of
segregation calculated using DFT and the experimental surface
energy of slabs of the same composition across a range of
metals.[44] DFT was used to analyze the chemical and mechan-
ical components of AuPd surface segregation in 3 � 3 � 6 and
5 � 5 � 6 slabs using an LDA functional[45] and general agree-
ment with an experimental segregation isotherm at 800 K was
found.

Surface Segregation Simulations

Monte Carlo simulations offer a method for incorporating
entropic effects into segregation analyses and predicting
equilibrium states.[46] However, size effects can confound slab
simulations in smaller slabs, causing qualitatively incorrect
behavior. If there are insufficient atoms of one type to coat the
surface of a slab, an experimentally consistent equilibrium may
be theoretically unobtainable. Segregation-driven depletion
from the bulk may also substantially change the chemical
environment of the interior of the slab, modifying chemical
potentials and therefore predicted segregation relative to a
larger slab.[47] Smaller slabs may also lack bulk-like interior
atoms independent of segregation.[48]

Historically, lack of high-quality consistent segregation data
across composition space has made direct evaluation of the
effectiveness of Monte Carlo-derived surface segregation simu-
lations challenging. Recently, composition spread alloy films
(CSAFs) have investigated large regions of ternary alloy phase
space with near-continuous resolution. Using a rotating mask to
partially block the vapor flux from an electron beam deposition
source, consistent multicomponent alloys with multiple compo-
sition gradients can be created in vacuum.[49] These CSAFs can
then be analyzed using tools such as X-ray photoelectron
spectroscopy (XPS), angle-resolved XPS, low-energy ion scatter-
ing (LEIS), and energy-dispersive X-ray spectroscopy (EDX) to
generate continuous maps of surface and near-surface compo-
sition as a function of the bulk composition. This data offers a
new lens into the efficacy of DFT-based Monte Carlo surface
segregation studies.

A recent study by Yang et al. compared ternary AuCuPd
composition spread surface segregation data with Monte Carlo
simulations using energies from a DFT-based machine learned
potential on (111)-oriented slabs.[50] They found that simulations

predicted some of the observed experimental behavior, but
was qualitatively incorrect for others. The machine-learned
potential used in that work was trained only on unrelaxed DFT
single points of slabs oriented in the (111) direction, and so it
could not be used on other surfaces. They conducted a
preliminary investigation with DFT suggesting that surface
relaxation may play an important role in (110)-oriented CuPd,
and that the segregation energies on the (110) surface were
consistent with experimentally observed segregation trends. A
study of bimetallic segregation across many noble metals finds
that segregation energies in bulk platinum are minimized along
the (110) direction, although the orientation dependence in
bulk palladium is nuanced.[51] The PBE functional used in both
of these works is also less accurate than other more recent GGA
functionals at predicting surface energies and other surface
properties of common metals.[52] Although the PBE functional is
commonly used across many applications in heterogeneous
catalysis, the PBEsol functional is designed to better predict
properties of dense solids and surfaces (see Figure 1).[53]

In this work, we develop a new data set of DFT relaxations
across three disordered alloy systems – AgAuCu, AuCuPd, and
CuPdPt – for the (111), (110), and (100) orientations using one
of two DFT settings. Slabs ranging from 7 to 60 atoms were
relaxed using either PBEsol functional with Becke-Johnson
damping[54] (n=2478) or the PBE functional with no dispersion
correction (N=2118). We fine-tune a model that had been pre-
trained on the Open Catalyst data set to this data set and use
this as the potential in canonical Monte Carlo simulations for
each chemical system and orientation at a variety of bulk
compositions (n�200 for each combination of orientation,
system, and functional). This model architecture takes as its
input a graph representation of a slab of arbitrary shape and
size and predicts the total energy that DFT would calculate. See
Section “Model Training” for further details on the model used.
We examine trends in segregation as a function of slab
composition and compare these to surface composition data
from CSAF-based segregation experiments conducted on
AgAuCu and AuCuPd alloys. Because the target used in training
and validation, raw energy, is not directly relevant to Monte
Carlo simulations, we analyze the relationship between accu-
racy in raw energy and transition probability, and we show how
accuracy in both contexts varies as a function of training data.
We vary the training data used to demonstrate how these

Figure 1. (left) Error in the lattice constants predicted using PBE (dark blue)
and PBEsol (light blue). Figure taken directly from Zhang et al.[55] under the
Creative Commons 3.0 Attribution License. (right) Error in the surface
energies of common metals, including PBE (red) and PBEsol (blue). Taken
directly from Patra et al.[52] under the PNAS License. Copyright 2017 National
Academy of Sciences.
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models can learn within a chemical system, across multiple
systems, and how they can be fine-tuned from one category of
DFT settings to another. Finally, we discuss how discrepancies
between simulation and experiment can be understood
primarily in terms of underlying errors in the DFT functionals
used, highlighting the importance of functional accuracy in
describing the behavior of real physical systems.

Results and Discussion

Model Accuracy and Learning Curves

We began by evaluating model accuracy in contexts where it
extrapolates to slabs that are larger than its training data (see
Section “Model Training” for methodological details). Figure 2
compares a model trained on small (< =35-atom) disordered
AuCuPd slabs to a publicly available checkpoint that was
pretrained only on RPBE slabs and no disordered structures.[56]

Here, the test data is pairs of large (60-atom) disordered
AuCuPd PBE slabs that differ by a single atomic exchange,
mimicking a slab before and after a random Monte Carlo step.
(Note that because the pretrained checkpoint was only trained
on RPBE data, all outputs must be shifted by a constant
amount). Although the >1 eV error of the pretrained bench-
mark would be unacceptably high in many contexts, accuracy is
improved in a Monte Carlo context by cancellation of errors in
the graph model that has been described before.[57] Because
Monte Carlo simulations use only the energy differences
between chemically and geometrically near-identical slabs, we
can instead consider those differences to be the target: the
differences in predicted energies of slabs that differ by only one
atom swap were very close to the differences in DFT energies,
with an error of only 0.08 eV using the pretrained model,

compared to 0.05 eV for the trained model. This translates into
accurate probabilities in a Monte Carlo simulation.

Because this distribution is extremely modal, probabilities
are shown in Figure 2 alongside a confusion matrix. This figure
highlights that the trained model can accurately differentiate
favorable and highly unfavorable swaps from moderately
unfavorable swaps in a random alloy, but that regression
accuracy within the indeterminate region is low. This region
only includes about a fifth of the data set, however: half of all
energy differences are negative and have transition probabil-
ities of unity, and in about 60% of the remaining energy swaps,
energy differences are so high that the probability of a
transition occurring is below 10%. Accuracy in a probabilistic
context can be determined by the Brier score (see Figure 4),
which falls from 0.07 with the pretrained model to 0.05 with the
fine-tuned one (or 0.09 and 0.07 respectively if the favorable,
negative-energy swap is excluded from each pair). This finding
indicates that while the fine-tuned models used in this work are
accurate for the purposes of determining segregation, further
training or higher-quality benchmarks would be needed to
evaluate more complex phenomena such as long- or short-
range order. This finding also shows that models trained on
smaller slabs can extrapolate to larger ones, which is necessary
because a relaxation of a 1500-atom slab using DFT would be
intractable.

Figure 3 shows how the DFT calculations were used to
develop the learning curves. The results of the learning curve
experiments described in the Methods section are depicted in
Figure 4. Two metrics are shown, corresponding to the metrics

Figure 2. (left) The differences in energies between two slabs that have the
positions of two atoms swapped between them calculated using DFT and
the PBE functional (x-axis) and a machine learned model (y-axis) that is
either a publicly available OCP checkpoint (blue) or one that has been fine-
tuned on small AuCuPd slabs and all AgAuCu and AuCuPd slabs (blue).
(right) The differences in PBE energies calculated using DFT (x-axis) and
predicted by the fine-tuned model (y-axis) are transformed using a
Boltzmann distribution at 500 K to compare the differences in probability of
a transition occurring. The probabilities are classified into high (>90%),
medium (10–90%), and low (<10%) probabilities, and a confusion matrix is
overlaid on the parity plot. The mean-squared error of a probabilistic
prediction is the Brier score. In this Figure, the Brier score is 0.05; with
negative values excluded, this value rises to 0.07. See Figure 4 for further
investigation of these metrics.

Figure 3. A flowchart demonstrating how DFT data is used to construct one
of the learning curves in Figure 4 and in Monte Carlo simulations, as
described in Section “Model Training”. PBEsol+D3 DFT data generated
during this study is shown on the left, and light-red flow lines demonstrate
that the �35-atom AgAuCu and CuPdPt slabs are pooled with variable
amounts of �35-atom AuCuPd slabs. This data is then split into 90%
training and 10% validation and used to fine-tune various models. These
models are then used to predict the energies of 60-atom AuCuPd slabs. Their
accuracies are plotted in Figure 4 as the line of the same color, where the x-
axis shows the number of �35-atom AuCuPd slabs used in finetuning, and
the y-axis shows the accuracy. Yellow flow lines show how the PBEsol+D3
Monte Carlo model is trained using all available data, and it is then used to
iteratively update a 1500-atom slab as part of a Monte Carlo simulation.
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described previously: the error in predicting the energy differ-
ence between pairs of atom-exchanged slabs and the Brier
score in predicting the probabilities of transition based on
applying a Boltzmann distribution to energy differences.
Consistent with the previous section, the pretrained model is
highly accurate. The authors note that models can be trained in
S2EF mode to yield significantly higher accuracies (0.03 eV error
in predicting energy differences) at significant cost (approx-
imately 10× increase) to simulation times. Among the trained
IS2RE models, those trained on PBE data converged relatively
quickly, needing only about 200 data points in either the
AuCuPd or AgAuCu system to reach the level of the pretrained
S2EF model, and then plateauing. Models trained on the
dispersion-corrected PBEsol data required significantly more
data to reach saturation (n�1000), but pretraining on all PBE
data (n=1872) results in small but noticeable improvements in
learning. Like the PBE training curves, significant improvements
were also found by training on data from chemically similar
systems: in fact, if AgAuCu and CuPdPt data is excluded, there
is insufficient AuCuPd PBEsol data (n�600) to reach data
saturation. With these data sets included, models are highly
accurate even without AuCuPd data, implying that this method

may be extended to similar systems with little or no additional
training data.

As shown in Figure 5, there was significant variation in
atomic segregation energies (defined in the “Computational
Methods” section) within chemically similar slabs. These values

Figure 4. Learning curves for IS2RE models for PBE (left) and PBEsol+D3
(right) AuCuPd data. A number (indicated on the x axis) of small (�35-atom)
AuCuPd slabs are optionally combined with varying amounts of AgAuCu
and CuPdPt data (indicated in the legend, with total the number of
additional slabs) and split into 10% validation and 90% training. For all runs,
the test data was 60-atom AuCuPd slabs. The top two plots compare the
ability of models to predict the energy differences of pairs of slabs that had
the positions of two atoms swapped, while the bottom two plots compare
the differences between transition probabilities after transforming these
energy differences with a Boltzmann distribution at 500 K. The accuracy of a
publicly available checkpoint run in S2EF mode was included, represented
by a black star.[56] Although this model does fairly well at predicting energy
differences (MAE=0.08 eV in both contexts) and probabilities (Brier score of
0.07 in both contexts), it is too slow at inference to be used in a Monte Carlo
simulation. For further discussion, see the “Computational Methods” section.

Figure 5. A Monte Carlo simulation progressing from left to right. (top) The
slab before (left) and after (right) simulation. (middle) Observed Cu�Pt
segregation events, where one atom was present in the top layer and
another was not, and their associated energy differences. The average
steady-state segregation energy is marked in red: this value is plotted as a
function of composition in Figure 9. (bottom) The overall surface composi-
tion over the course of the simulation. The surface composition is initially
approximately identical to the slab, and over time, copper segregates over
platinum. Cu is in orange, Pd in blue, and Pt in purple. The final surface
composition is compared to the slab composition using Eq. (2), defined in
Section “Monte Carlo Simulations”.
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also changed as slabs segregated, and they differed systemati-
cally between the two functionals. However, because there are
13 interior layers and 2 surface layers, most attempted Monte
Carlo steps did not involve surface segregation. This effect
along with surface depletion resulted in some regions of ternary
composition space having few or no observed segregation
events at equilibrium during the sampling window.

Experimental Comparison

Parity plots comparing simulated and experimentally observed
segregation trends across both exchange-correlation function-
als and in all orientations are shown in Figure 6. Simulated
surface compositions were linearly interpolated onto composi-
tions matching experimental observations. In describing the
AgAuCu ternary space, simulations that utilized surrogates for
the PBEsol exchange-correlation functional with D3 dispersion
corrections and slabs oriented in the (110) direction more
closely matched experimentally observed trends in surface
composition than any other setting. We note, however, that we
do not know the relative fraction of (110) surfaces in the
polycrystalline samples. No setting accurately predicted the
observed strong silver segregation, although surface silver
mobility was observed experimentally and was not included as
a factor in simulations. Experimentally observed segregation in
the AuCuPd ternary system is predicted less well: gold is
predicted to segregate over copper and palladium much more
strongly than was observed in experiment, and copper
segregated into the bulk much more strongly in simulated slabs
than in CSAFs. Although no setting agreed better with the
experimental surface segregation trends observed on AuCuPd
CSAFs, simulations utilizing slabs oriented in the (110) and (111)
directions were more effective than those that used slabs
oriented in the (100) direction, and simulations utilizing a
surrogate for the PBEsol functional were at least as good as
those utilizing the PBE surrogate. However, these parity plots
do not capture composition-level trends, which will be exam-
ined next.

The effects of variation in predicted surface composition as
a function of bulk composition at varying simulation exchange-
correlation functionals and surface orientations are shown for
the AgAuCu ternary system in Figure 7. A comparison of the
experimental data with simulations suggests that the best
agreement comes from slabs in the (110) orientation and the

Figure 6. (top) Parity plots for predictions of experimental CSAF-derived
measurements of surface composition of silver (left), gold (middle), and
copper (right) for the AgAuCu ternary system for PBE (teal) and PBEsol+D3
(red) using slabs oriented in the 100 (circle), (110) (x), and (111) (triangle)
directions. The mean absolute errors across all experimental data points for
each setting are listed and the best setting for each plot is highlighted with
a black box. A black dashed line is drawn for parity. (bottom) Parity plots for
predictions of experimental CSAF-derived measurements of surface compo-
sition of gold (left), copper (middle), and palladium (right) for the AuCuPd
ternary system for PBE (teal) and PBEsol+D3 (red) using slabs oriented in
the (100) (circle), (110) (x), and (111) (triangle) directions. The mean absolute
errors across all experimental data points for each setting are listed. For
parity plots of thermodynamic segregation energies, see the Supporting
Information.

Figure 7. A comparison between experimental ternary segregation enrichment (left-most column) and surface excess calculated using Eq. (2) (see Section
“Monte Carlo Simulations” and Figure 5 for definitions) on Monte Carlo simulations for the AgAuCu ternary, both at 800 K. Surface excess compositions of
silver (top) gold (middle) and copper (bottom) are compared between experiment (column 1) and the results of simulations on the (100) (columns 2 and 5),
(110) (columns 3 and 6), and (111) (columns 4 and 7) for PBE (columns 2–4) and PBEsol+D3 (columns 5–7). An experimental ternary phase diagram for
AgAuCu at 798 K is overlaid on each plot, where the fcc alloy is present at all corners of the ternary, and the region along the Ag�Cu binary exhibits Ag�Cu
immiscibility, separating into Ag-rich and Cu-rich fcc alloys.[58]

Wiley VCH Donnerstag, 20.06.2024

2413 / 349862 [S. 102/107] 1

ChemPhysChem 2024, 25, e202400073 (6 of 11) © 2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH

ChemPhysChem
Research Article
doi.org/10.1002/cphc.202400073

 14397641, 2024, 13, D
ow

nloaded from
 https://chem

istry-europe.onlinelibrary.w
iley.com

/doi/10.1002/cphc.202400073 by C
arnegie M

ellon U
niversity, W

iley O
nline Library on [02/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



model simulating the dispersion-corrected PBEsol functional.
This set of simulations accurately predicts silver segregation
throughout the ternary region and surface gold enrichment
along the Au�Cu binary and depletion along the Ag�Au binary.
The (110) as suggested by Yang et al. is the orientation that
best captures segregation trends in the CuPd system,[50] in spite
of the fact that the (111) orientation of fcc crystals is typically
the most stable. This behavior may be explained by Han
et al.,[59] which finds that a significant mismatch in atomic size
can drive segregation especially to step and kink sites where
undercoordination can relieve lattice strain. Gold and silver are
both larger than copper and have lower surface energies,
suggesting that multicomponent alloys may prefer the (110)
orientation to minimize lattice strain. This is supported by other
works finding alloying is most favored in the (110) orientation
for the Cu�Pd binary and unfavorable in the close-packed (111)
direction[60] and that the (110) orientation minimized interfacial
energy in ordering Ag�Au and Au�Cu systems.[61] An additional
factor complicating predictions on AgAuCu is the high lateral
surface mobility of Ag, which may be mediated by the unique
structure of the (110) orientation.[62] This could explain why the
degree of silver segregation is systematically underpredicted.
Although the surface structure and orientation of experimental
alloys is not known, they probably consist of polycrystalline
grains and the surface is likely dominated by a distribution of
low Miller index orientations.

A similar trend was found for AuCuPd, where simulations
run using (110)-oriented slabs and a model trained on data
generated using the D3-corrected PBEsol functional were in
best agreement with the experimental trends. Figure 8 com-
pares experimental data to simulations for only these settings;
see the Supporting Information for equivalent plots for results
across all orientations and functionals. An experimental phase
diagram at 623 K is overlaid on each plot: all interior phases are
tetrahedral, whereas both phases present at the ternary points
are fcc.[58] However, comparing only the fcc regions, comparison
with experiment makes clear that the surface favorability of
gold is being overpredicted, a result of the surface energy of
pure gold being underpredicted by both the PBE and PBEsol
functionals (see Figure 1). Surface energy errors calculated using
PBEsol are significantly reduced relative to PBE, resulting in
improved segregation predictions, but the surface energies
predicted for silver, gold, and platinum with this functional are
still substantially lower than those measured by experiment.

Although DFT energies of segregation calculated using
Eq. (4) and macroscopic free energies of segregation calculated
with Eq. (5) are not directly analogous, comparing them is a
useful exercise for two reasons. (These equations are defined in
Section “Segregation Energies”). In cases where there is extreme
enrichment or depletion of one component, the energetics of
swapping the other two elements can give additional computa-
tional insight into chemical equilibria where the surface excess
compositions of these components are strongly determined by
the third component. In these cases, size effects can distort
binary equilibria in model slabs. Additionally, observations of
trends in DEsegABh i (calculated using Eq. (4)) within a ternary can

give additional insight into the sources of distortion between
experiment and theory.

Figure 9 provides further support to the idea that differ-
ences between theory and experiment can be explained by
errors in surface energies. In the AgAuCu ternary system, the
average segregation energy of the Ag�Au binary somewhat
favors silver, correctly predicting that silver segregates slightly
over gold across the ternary space; the surface energies of silver
and gold are underpredicted by approximately the same
amount. Meanwhile, the average segregation energies of both
silver and gold over copper at simulated equilibrium are higher
than those inferred from observed experimental trends. In
AuCuPd, a parallel story can be told: although the substantial
underprediction of gold’s surface energy results in more gold
segregation than observed, simulations predict favorable
copper segregation over palladium, consistent with the rela-
tively smaller and more consistent underpredictions for those
elements. Comparing average segregation energies between
PBE-based and PBEsol-based simulations in the fcc regions
along the AuCuPd Au�Pd binary and near pure Cu, the PBE
results showed significantly higher underprediction of the gold
surface energy resulting in greater overestimation of the
average gold surface segregation energy. Additionally, copper

Figure 8. (left) Experimental AuCuPd segregation data and (right) PBEsol-
based Monte Carlo simulations on (110) oriented slabs for each component
of the AuCuPd ternary system, both at 500 K. The experimental ternary
phase diagram at 623 K is overlaid on the plot: the phase at all three corners
is soluble fcc; the other phases are ternary but not fcc.[58]
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segregation over palladium is better predicted by PBEsol
segregation energies than PBE, possibly owing to substantially
higher and more varied errors in the surface energies of those
two elements with the PBE functional.

Figure 10 shows predictions for the (110) orientation of the
CuPdPt ternary system at 600 K using the PBEsol-based model.
This choice of system is constrained by the analytical methods
used. Computationally, the Monte Carlo algorithm would be
significantly hindered by the need to infer magnetic states,
precluding analysis of iron, cobalt, or nickel ternaries. Addition-
ally, elements from different rows of the periodic table are
suitable for comparison with ion scattering experiments, the
spectra of which are well resolved for elements of different
masses. Because these elements are likely to have very different
lattice constants, this selection could bias the observations
made here in favor of the (110) orientation, which can reduce
lattice strain relative to the closer-packed (111) and (100) due to
its more open rows. However, the CuPdPt system is unlikely to
violate this trend. In keeping with the comparisons made using
the AgAuCu and AuCuPd ternaries and surface energy errors
shown in Figure 1, we expect the Cu�Pd binary to be well-
predicted by this method, but platinum to be overrepresented
on the surface. As such, it is interesting that even this model
predicts platinum to strongly deplete from the surface across
the ternary space.

Figure 9. Experimental DGseg (columns 1 and 3 respectively) calculated using Eq. (5) plotted next to the average DFT energy of segregation (columns 2 and 4)
calculated with Eq. (4) using PBEsol-based Monte Carlo simulations on (110)-oriented surfaces for the 800 K AgAuCu (left) and 500 K AuCuPd (right) ternaries,
overlaid with experimental ternary phase diagrams at 798 K and 623 K respectively.[58] Plots are grey in places where no segregation event was observed at
equilibrium. The results of PBE-based simulations of AuCuPd slabs on (110) are also included for comparison (column 5).

Figure 10. Monte Carlo predicted segregation (left) and average predicted
segregation energy (right) for the CuPdPt ternary system at 600 K using a
PBEsol-based model and (110)-oriented model surfaces. Segregation ener-
gies are gray when few segregation events were observed at equilibrium.
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Conclusions

In this work, we simulated surface segregation using a lattice
Monte Carlo algorithm for three ternary systems, AgAuCu,
AuCuPd, and CuPdPt, and three crystallographic orientations,
(111), (110), and (100), using 10 � 10 � 15 simulated fcc slabs.
The potential used to evaluate slab energies is a graph neural
network trained on fcc slabs up to 60 atoms in size in each
ternary system and orientation that were relaxed using the
PBEsol functional with D3 corrections. We first demonstrated
that this model can extrapolate to larger slabs at an acceptable
accuracy for Monte Carlo simulations. Then, we evaluated its
ability to make predictions across chemical composition space
and its data efficiency and found that it is data saturated and
capable of quickly learning a new ternary given that it has seen
each of the elements in the new composition. After running
200 Monte Carlo simulations for each ternary system and
orientation, we compared sets of simulations to experimental
data obtained for AgAuCu and AuCuPd segregation from other
studies. We found that the (110) orientations showed the best
agreement with experimental segregation trends for both
ternaries evaluated, and that simulations using a model that
simulates relaxation using the PBEsol functional with D3
corrections is more accurate than using one trained on PBE
data. We then examined atomic segregation energy to compare
binary segregation trends against experimental data where one
component dominates the simulated surface. In both aggregate
and atomic simulated segregation, we found that differences
between DFT and experiment can largely be explained by
known biases in the choice of functional, highlighting the
importance of accurate functionals for materials discovery
efforts and the need for improvements in simulation technolo-
gies to achieve high predictive accuracies in furtherance of
those efforts. This work comprises experimental validation of
key components of computational materials interface discovery
efforts at large scales and high resolution across a span of
catalytically important compositions, highlighting areas where
methodological improvements are needed and demonstrating
the potential of computational simulations to aid in materials
discovery efforts.

Computational Methods

DFT Settings

The Vienna Ab Initio Simulation Package (VASP) with Projector
Augmented Wave pseudopotentials was used to conduct DFT
atomic relaxations of simulated ternary alloy slabs.[63,64] Two func-
tionals were used: the GGA-PBEsol[53] with D3 Beck-Johnson
damping[54] and GGA-PBE.[65] A kinetic energy cutoff of 400 eV was
used, and KPOINTS were set to a minimum spacing of 0.2 Å�1. In
the ionic relaxation loop, only atomic positions were allowed to
relax, and they were optimized using the conjugate gradient
algorithm until the total energy difference fell below 0.0001 eV or
to 150 atomic steps. Slabs that did not converge were discarded.
Computational resources used in this work are discussed in the
Supporting Information.

DFT Slab Creation

Slabs of various sizes from 7–35 atoms oriented in the (100), (110),
or (111) direction were created using ASE and Pymatgen.[18,66] The
slabs were initialized on an ideal fcc lattice with the lattice
constants set randomly between those of the smallest and largest
elements present. Slab compositions were assigned using a
Dirichlet distribution. Elements were randomly assigned to lattice
sites so that slabs were either ternary AgAuCu, AuCuPd, or CuPdPt,
or a constituent binary. To test the ability of interatomic potentials
to evaluate energetic differences in larger slabs, 60-atom ternary
AgAuCu, AuCuPd, or CuPdPt slabs were created in pairs, with the
position of two atoms swapped between them and the lattice
constant set according to Vegard’s Law using experimentally
observed lattice constants.

Model Training

For the models used in Monte Carlo simulations, all slabs relaxed
with a given pseudopotential were used to fine-tune a message-
passing neural network using the GemNet-OC architecture starting
from a publicly available checkpoint trained on the OC20 and OC22
data sets.[56,67,68] To assess model learning, various other models
were trained starting from the same checkpoint or the checkpoint
trained on all PBE data. To construct learning curves, either 0%,
10%, 25%, 50%, 75%, 90%, or 100% of all AuCuPd slabs less than
60 atoms for either functional was used. This data was then
optionally combined with other subsets of the remaining data.
Three additional learning curves were created using the slabs
relaxed with PBE: one included in its training data all AgAuCu slabs
under 60 atoms in its training data, another included all AgAuCu
and CuPdPt training slabs under 60 atoms, and a third used all
AgAuCu and CuPdPt slabs. With the PBEsol dispersion-corrected
data, one learning curve was run using only AuCuPd data, another
included all AgAuCu and CuPdPt slabs, and two more learning
curves were developed identical to these except that they were
initialized from a checkpoint that was trained on all of the PBE data.
In all cases, 10% of the data available to the model for training was
reserved for validation.

Monte Carlo Simulations

Monte Carlo simulations were run for three ternary systems:
Ag�Au�Cu at 800 K, Au�Cu�Pd at 500 K, and Cu�Pd�Pt at 600 K.
All Monte Carlo simulations were initialized using a unique random
number generator (RNG) instance that was stored and loaded
alongside the simulation. Ternary AgAuCu, AuCuPd, and CuPdPt
compositions created using a Dirichlet distribution were initialized
randomly onto a 10x10x15 (100), (110), or (111) slab in a perfect fcc
lattice with the lattice constant set using Vegard’s law. At every
Monte Carlo step, a random pair of atoms was swapped according
to the RNG instance, atomic positions were reinitialized onto an
ideal lattice, their relaxed energies were predicted using one of the
interatomic potentials described in the previous section, and the
energies calculated by the interatomic potential were used to
determine whether a swap occurred according to a Boltzmann
distribution defined by Eq. (1) that was controlled by the RNG
instance.

PtransðDEswapÞ ¼
1 if DEswap < 0

expð
�DEswap

RT Þ otherwise

(

(1)

In the Monte Carlo simulations, the relaxed energy must be
predicted directly, because relaxing a slab using an interatomic
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potential and then predicting the energy takes an order of
magnitude longer (0.6 seconds vs 6 seconds on an internal bench-
mark). However, relaxations using a pretrained interatomic poten-
tial were also included for reference. The authors note that with
relaxation-based simulations, if atomic positions were not reinitial-
ized to an ideal lattice, the simulation became strongly biased
against making atomic swaps and quickly became stuck in local
minima. All simulations were determined to be converged under
any of the following criteria: at any point, if the number of
consecutive Boltzmann steps taken was above 20, or 250 atomic
swaps had been attempted without finding two different elements,
or 15000 atomic swaps had been made, or 2000 steps had been
taken without a new energy minimum being observed. The surface
composition was determined using the 100 surface atoms on either
side of the slab. The surface excess of any component can then be
calculated using Eq. (2):

xexcessi ¼ Nsurf
i =200 � Nslab

i =1500 (2)

Segregation Energies

The energy of segregation was calculated directly from the DFT
energies of slabs that differed by a single atom swap where that
swap involving a surface atom and a bulk atom. This is defined in
Eq. (3), where E½Asurf; Bbulk� is the energy of the slab in which
element A is on the surface and element B is in the bulk.

DEsegAB ¼ E½Asurf; Bbulk� � E½Abulk; Bsurf� (3)

To define an average segregation energy, these values were then
averaged over later steps of the simulation that involved a swap
between a surface atom and a bulk atom, resulting in an expect-
ation value for DEsegAB shown in Eq. (4) that has been weighted
according to the Boltzmann sampling used to construct the
sequence.

hDEsegAB i ¼
1
n

Xn

i¼1

DEsegAB ðiÞPtransðDEsegAB ðiÞÞ (4)

It is important to note that, while both equations are antisymmetric
relative to atomic exchange (DEAB ¼ �DEBA and hDEABi ¼ h�DEBAi),
and the atomic reaction cycle is thermodynamically neutral
(DEsegA1B2 þ DEsegB1C2 þ DEsegC1A2 ¼ 0) for any two sites 1 and 2 and
components A, B, C, the analogous statistical cycle does not hold
hDEsegAB i þ hDEsegBC i þ hDEsegCA i6¼0. Using experimental measurements
of surface and bulk composition, an empirical free energy of
segregation can also be calculated using Eq. (5), where Asurf is the
composition of component A measured in the surface of the slab.

DGseg
AB ¼ �RT ln

jAbulkjjBsurfj

jAsurfjjBbulkj
(5)
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