Regional Environmental Change (2024) 24:173
https://doi.org/10.1007/510113-024-02337-x

ORIGINAL ARTICLE q

Check for
updates

Woody vegetation cover on cleared areas in the Amazon Basin:
temporal mixture mapping suggests a revised conceptual model
of deforestation

Mallorie Honey'® - Trent Biggs' - Daniel Sousa' - Camila Abe' - Katrina Mullan?

Received: 3 August 2023 / Accepted: 6 November 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

The Amazon Basin is experiencing large-scale land use conversion from primary forest to pasture. While several land cover
datasets map cleared areas in the Amazon, the percent cover of woody vegetation (trees and shrubs) in cleared areas and
its association with clearing age, soil type, and geology is poorly understood, despite its importance for carbon emissions,
biodiversity, land—atmosphere interactions, and monitoring of pasture condition. We used temporal mixture analysis on Sen-
tinel-2 imagery from 2019 to map woody vegetation cover on cleared areas in Rondonia, Brazil. Binary woody vegetation
masks were generated at 10-m resolution using a threshold of the evergreen endmember, with an overall accuracy of 84%.
The age of clearing for each pixel was calculated from MapBiomas (Sousa and Davis, Remote Sens Environ 247, 2020) with
a 2019 base year. We find little evidence of large-scale abandonment of pasture: most (53%) of the cleared area in 2019 was
“clean pasture” (< 10% woody vegetation cover), 34% was “dirty pasture” (10-90% woody vegetation cover), 10% was for-
est (90-100% woody vegetation cover), and 3% was early stage clearing (> 10% woody vegetation cover, cleared 1-5 years
ago). Recently cleared areas (1-2 years) had high (60%) woody vegetation cover, woody vegetation cover decreased with
pasture age, and older pastures (20-34 years) had consistently low woody vegetation cover (25% on average). The com-
monly observed decrease in greenness with increasing clearing age, which is sometimes interpreted as decreasing grass
health, was due in part to decreasing woody vegetation cover as pastures were gradually cleared over a decade. These results
suggest modifications to existing conceptual models that describe clearing as a rapid process with high rates of secondary
growth. We found a gradual and semi-permanent clearing of woody vegetation and proposed a revised conceptual model of
deforestation dynamics.
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changes in the twenty-first century, with major implications
for the global climate (Salati and Nobre 1991; McGuffie
et al. 1995; Lawrence and Vandecar 2014), biodiversity, and
economy (Barbier et al. 1991). The Amazon biome has lost
approximately 20% of its primary forests since the 1960s
(Assis et al. 2019), releasing carbon and potentially disrupt-
ing the regional climate (Lovejoy and Nobre 2018; Davidson
et al. 2012). Pasture expansion is the leading cause of defor-
estation in the Amazon (Henshall 1982; Buschbacher 1986;
Batistella et al. 2003; Sy et al. 2015; Veiga et al. 2002), so
mapping land cover transitions on areas cleared for pasture
is a key step to understanding the consequences of deforesta-
tion. In particular, the dynamics of woody vegetation, both

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10113-024-02337-x&domain=pdf
http://orcid.org/0009-0004-8262-8711

173 Page 2 of 12

Regional Environmental Change (2024) 24:173

during and following clearing, play a key role in maintaining
regional energy and carbon balances.

The transition from forest to pasture is sometimes
described as relatively rapid (1-2 years) and complete, with
subsequent partial abandonment and regrowth of secondary
forest (Silva et al. 2020). In the Brazilian Amazon, pastures
may be abandoned due to poor pasture productivity and to
household lifecycles (Perz and Skole 2003; Laue and Arima
2016; Perz and Walker 2002). However, grass dominance
with low woody vegetation cover can persist for decades
due to either active management of productive pastures
(Stahl et al. 2017) or to slow recovery of woody vegetation
on infertile soils (Moran et al. 2000). The initial conver-
sion to pasture may also not be complete; some pastures
have woody scrub or shrubs, called “dirty pasture” (pasto
sujo) (Carvalho et al. 2019), but such pastures are difficult to
map. An improved understanding of woody vegetation cover
dynamics is also needed to interpret time series of satellite
imagery, which often show a significant decline in greenness
in the first 5 years following initial clearing in the Amazon
(Numata et al. 2007). While the decline in greenness with
pasture age may indicate decreasing productivity of pasture
grass, it may also be due to high woody vegetation (tree and
shrub) cover in recently cleared areas and gradual clearing
of that woody vegetation over time (Davidson et al. 2008),
but the temporal patterns of woody cover in cleared areas
have not been widely documented.

Fig. 1 Landcover in the State
of Ronddnia, Brazil, from the
MabBiomas dataset (Souza

et al. 2020) (left). Example of
the heterogeneity of land cover
in areas classified as “Pas-
ture” by MapBiomas (Souza
et al. 2020), from high-resolu-
tion imagery in Google Earth
(top right) and 10-m resolution
imagery from Sentinel-2 (bot-
tom right)
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Several datasets map deforestation in the Amazon Basin,
including MapBiomas (Souza et al. 2020) and the Brazil-
ian Amazon Deforestation Monitoring Program (PRODES
Instituto Nacional de Pesquisas Espaciais 2020), both of
which use Landsat data with a spatial resolution of 30 m
with a 14—16 day revisit time (Markman et al. 2004). Others
have also used Landsat data and supervised classification
algorithms, such as decision trees (Roberts et al. 2002) and
random forest classifiers (Mu et al. 2021; Souza et al. 2020)
to map land cover and rates of deforestation and secondary
regrowth in the Amazon. Launched in 2015, the Sentinel 2A
and 2B satellites offer improved spatial resolution (10 m)
and a combined revisit time of 5 days (Drusch et al. 2012)
and have been used to map forest and deforestation in the
Amazon biome (Silva et al. 2022; Prudente et al. 2022).

Despite significant progress in mapping deforestation,
there is little documentation of the rate of change in woody
vegetation cover following clearing. Visual interpretation
of high-resolution (<1 m) aerial imagery indicates that
existing land cover datasets do not sufficiently capture the
heterogeneity of land cover at fine spatial scales, and many
areas classified as pasture by MapBiomas have high woody
vegetation density (Fig. 1). Previous work (Mu et al. 2021)
mapped pastures with different woody vegetation cover,
finding large areas with woody vegetation in pastures, and
Carvalho et al. (2019) mapped pasture vegetation in the Bra-
zilian state of Para in the Amazon biome based on woody

Google Earth (10-15 cm spatial resolution)

Sentinel-2 (10 m spatial resolution)
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cover, but few studies document differences in woody cover
by clearing age, geology, or soil type.

Differences in seasonal phenology of grass and woody
vegetation may help distinguish them in remote sensing
imagery. The arc of deforestation in the southern Brazilian
Amazon has a pronounced dry season from June to Septem-
ber, and woody vegetation often maintains greenness during
the dry season longer than grasses, due to the shallow roots
of grass (Davidson et al. 2012). Temporal mixture analysis
uses differences in phenology to quantify the fraction of an
image pixel that is covered by land cover with a given green-
ness pattern (Piwowar 1998; Small 2012). Temporal mixture
models have been used to map dynamic surfaces like sea ice
(Piwowar 1998), impervious surfaces (Yang et al. 2012),
fractional tree cover (Wu et al. 2021; Sousa and Davis 2020),
and crop types (Sousa and Small 2018; Zhong et al. 2015).
We use temporal mixture analysis on Sentinel-2 imagery to
map woody vegetation cover in the southwestern Brazilian
Amazon and analyze how woody vegetation cover varies
with clearing age, geology, and soil type to address the fol-
lowing questions:

(1) Mapping woody vegetation cover: How accurately can
single-year temporal mixture modeling map woody
vegetation cover, validated against the visual interpre-
tation of high-resolution imagery? Does the error vary
with soil type?

(2) Spatial patterns in woody vegetation cover: How com-
mon are “dirty” pastures with high woody vegetation
cover? How does woody vegetation cover vary with
clearing age?

We find that woody cover is initially high following clear-
ing, decreases gradually for clearings between 5 and 7 years
old, and is then stable with clearing age for clearings more
than 10 years old. We find little evidence of widespread
woody vegetation encroachment or secondary forest regen-
eration on old pastures. The patterns we observe contrast
with some conceptual models of deforestation in the Ama-
zon, so we propose a revised conceptual model of clearing
that accommodates our observed changes in woody cover
with clearing age.

Study area

The state of Rondonia (Fig. 1) is at the western end of the
arc of deforestation in the Brazilian Amazon. Ronddnia has
experienced large-scale land use change since the 1970s,
when the National Institute for Colonization and Land
Reform (INCRA) began incentivizing agricultural pro-
duction in the Amazon by providing zero-interest loans to
small-scale farmers and investing in infrastructure and road
networks (Henshall 1982; Sills and Caviglia-Harris 2009).

By 2019, 34% of the forest in the state had been cleared for
pasture (Souza et al. 2020). The original forest cover is a
closed and open-canopy tropical forest (RADAMBRASIL
1978). Cleared areas are dominated by pasture for cattle.
Soybeans are limited to the southern part of the state, and
coffee and other crops are present but uncommon.

Soils in Rondonia include highly weathered Oxisols with
low fertility in the north, fertile Alfisols in the central part
of the state, and less fertile Ultisols and sandy Entisols in
the south (Figure S4,; Cochrane and Cochrane 2006; Bal-
lester et al. 2012). Geology includes deep clay deposits in
the north, granite and gneiss in the center, metamorphosed
sedimentary rocks, and sandstone in the south (Figure S9).

Methods

The methods have four components (Fig. 2): (1) woody
vegetation mapping using temporal mixture analysis on a
time series of Sentinel 2 imagery for 1 year (2019) (“Woody
vegetation mapping”), (2) validation of the map using visual
interpretation of high-resolution imagery (“Validation and
evergreen thresholds”™), (3) creation of land cover maps of
cleared areas according to woody cover (“Land cover maps
based on woody vegetation cover”), and (4) chronosequence
analysis of woody vegetation cover by clearing age, soil fer-
tility, and geology using a time series of land cover (“Chron-
osequence of woody vegetation cover”).

Woody vegetation mapping
Data selection and preprocessing

Sentinel-2 level 2A surface reflectance images were selected,
preprocessed, and downloaded for the study area using
Google Earth Engine (GEE). Level 2A images have under-
gone atmospheric and geometric correction and identifi-
cation of clouds and cloud shadows. We selected images
acquired during the dry season (June—August) when woody
vegetation and grass are most likely to have different green-
ness time series (Davidson et al. 2012).

Sentinel-2 images are organized as 110 kmx 110 km
tiles (Fig. 3). We selected images with low cloud cover (less
than 15%) and ensured that acquisition dates were consist-
ent among tiles. The final selection comprised 30 scenes:
five dates for each of the six tiles covering June—August of
2019. Each image was cloud-masked using the “s2cloud-
less” algorithm available through GEE. A water mask was
created of pixels with a Normalized Difference Water Index
(NDWI) value greater than zero and a Normalized Differ-
ence Vegetation Index (NDVI) value less than zero. Lay-
ers of the Enhanced Vegetation Index (EVI) were mosaiced
and stacked for each tile, resulting in temporal stacks with 5
bands, one for each date.

@ Springer
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Fig.2 Workflow diagram of data sources and methods. Workflow is
split into four subsections: “Woody Vegetation Mapping,” “Valida-
tion,” “Cover Type and Chronosequence,” and “Environmental Con-
trols.” Each subsection visualizes connections between input and
output datasets (displayed in circles), processing steps (displayed in

Temporal mixture modeling

The time series of EVI for each pixel was modelled as
a linear combination of temporal endmembers, each of
which represents a phenological sequence such as persis-
tent high greenness, gradually decreasing greenness, or
low greenness (Piwowar 1998). Areal fractions of tempo-
ral endmembers (f;) were estimated for each pixel using:

ey

where EVI obs is the observed EVI time series of a given
pixel, E,(EVI) is the time series of EVI for endmember i, and
fiis the fractional estimate of the cover of each endmember
in the given pixel (Yang et al. 2012).

EViobs = f,E,(EVI) + foE,(EVI)--- + f,E,(EVI) + €

@ Springer

rectangles), and decision trees (displayed in diamonds with arrows
pointing towards resulting processes). Additional figures are refer-
enced throughout the flowchart near their corresponding dataset or
processing step

Temporal endmembers of evergreen vegetation, grass,
and low-EVI (E,(EVI)) were identified from the temporal
mosaic using PCA following Small (2012) (Figure S1).
These endmembers were selected because they were repre-
sentative of the landscape in our study zone (Fig. 4), which
is comprised of rainforest fragments (evergreen vegetation),
rain-fed pastures (seasonal grass), and urban areas with
minimal natural vegetation (low-EVI). A fourth endmem-
ber with increasing EVI over the dry season was initially
selected, but visual interpretation of Google Earth imagery
suggested that this endmember did not represent a specific
land cover type (Figure S2), as it highlighted small areas
in both forested areas and grasslands, and included forest
fragments recovering from disturbance, grass in floodplains,
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Fig.3 a Map of Sentinel-2 tiling grid labeled by tiling ID. b RGB
display of the temporal stack (right). In the temporal stack, each chan-
nel is represented by EVI values for a given date in the time series.
Dates represented in (b) are June 10th (R), July 15th (G), and August
4th (B); white indicates high EVI in all dates, black indicates low
EVlin all dates, and red indicates highest EVI in June

Low EVI

Evergreen

Fig.4 Three band temporal mixture model shown in RGB color
space compared with Google Earth imagery. Property boundaries and
roads have high values in the low-EVI endmember band (R), and pas-
tures are a combination of evergreen (G) and grass (B) endmembers.
The close-up of a densely forested area (far right) demonstrates that
forested pixels have high values in both the evergreen endmember (G)
and low-EVI endmember, likely due to shade cover

or grass recovering from grazing during pasture rotation.
Models with this fourth endmember underestimated woody
cover (Figure S3), so the fourth endmember was omitted
from the model, and the temporal mosaic was unmixed using
the evergreen, grass, and low EVI endmembers.
Histograms for each of the three endmembers (evergreen,
grass, low-EVI) were generated for pixels within validation
polygons that had all woody vegetation cover (forest, n=304
polygons) or no woody vegetation cover (grass, n =381
polygons). Forested pixels contained a mix of “evergreen”
(mean=0.61) and “low-EVI” (mean=0.42) endmembers,
and pastures contained a mix of “evergreen” (mean=0.2),
“low-EVI” (mean=0.48), and “grass” (mean=0.32) end-
members (Figure S5). The low-EVI endmember in forests
is mostly shade, while low-EVI in pastures is mostly bare
soil. The mix of evergreen and shade endmembers in forests

prevented us from interpreting the evergreen endmember
fraction directly as the percent cover of woody vegetation, so
we established a threshold of evergreen cover above which
a pixel is labeled as “woody vegetation.” We created mul-
tiple maps with evergreen thresholds ranging from 0.25 to
0.50 in increments of 0.05. For each woody vegetation map,
pixels with an evergreen endmember fraction over the given
threshold were classified as “Woody Vegetation” (1), and
pixels falling below this threshold were classified as “No
Woody Vegetation” (0).

Validation and evergreen thresholds

The woody cover maps were validated using visual inter-
pretation of high-resolution aerial imagery available through
Google Earth (GE) Pro. We selected 10 zones where 2019
GE imagery was available (Figure S8). Zones were cho-
sen that had a range of woody vegetation cover, and zone
sizes ranged from 1 to 3 km?. Within each zone, validation
points (n=100) were randomly generated, for a total of 1000
points. To minimize potential errors introduced by co-reg-
istration issues between high-resolution Google Earth and
Sentinel-2 imagery, 30 X 30 m plots (3 X 3 Sentinel-2 pixels)
were created centered on the randomly generated points. The
resulting validation plots (n=1000) were assigned values
of sparse (< 10%), partial (10-90%), and full (90-100%)
woody vegetation cover using visual interpretation of the GE
imagery. Due to uncertainty in estimating a specific value for
woody cover fraction, we opted for categories that identified
either all non-woody vegetation or some woody vegetation.
In practice, most validation plots were either non-woody
(n=304) or fully woody (n=381), so estimating the exact
percentage of woody was not essential. The mean woody
fraction for each validation plot was then calculated from
the 10-m binary woody vegetation map (“Woody vegeta-
tion mapping”), and plots with any 10-m pixel over a given
evergreen endmember threshold were labeled as “woody.”
Each validation plot was then classified as a true positive
(TP), true negative (TN), false positive (FP), or false nega-
tive (FN); TS is the sum of all samples. The total error is cal-
culated as (FP + FN)/(TS). Commission error measures the
frequency of false positives as FP/(FP + TP). Omission error
measures the frequency of false negatives as FN/(FN + TP).

Healthy grass that is green in the dry season might have
the temporal EVI profile of woody vegetation, resulting in an
overestimation of woody vegetation cover. Fertile soils may
have healthier grass, so we compared the accuracy metrics
of the woody cover maps for different levels of percent base
saturation (PBS), which is the percent of cation exchange
sites occupied by base cations (calcium, magnesium, potas-
sium). PBS data from 3000 + soil cores were obtained from
the SIGTERON project (Cochrane and Cochrane 1998) and
interpolated to a 4-km resolution grid using kriging. Kriging

@ Springer
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was implemented using the gstat package in R (Pebesma
2004). The variogram was calculated for each depth sepa-
rately, using a spherical model. The sill, range, and nugget
were determined using the fit.variogram function, which
uses reweighted least squares and Gauss—Newton fitting.
The gridded PBS map was reclassified as high (> 60%),
medium (30-60%), and low (<30%) (Figure S4, S8). The
grass may also be greener in younger pastures (Numata et al.
2007), which could be confused with green woody vegeta-
tion. As our 10 initial validation zones had minimal recent
land cover change, we created 5 additional zones (Figure S4)
with recent deforestation (2014-2019). Accuracy metrics
were summarized by PBS category for both stable cover
(Table S1) and newly cleared areas (Table S2).

Land cover maps based on woody vegetation cover

The mean woody vegetation cover was calculated for areas
that were classified as pasture or secondary forest in 2019
by the MapBiomas Collection 6 Dataset (Souza et al. 2020;
MapBiomas 2021). The MapBiomas algorithm uses a
random forest classification on Landsat imagery to assign
each 30 x30 m pixel to a land use category, such as for-
est, pasture, or water. The binary (0 or 1) woody vegetation
layer (10-m resolution, “Woody vegetation mapping”) was
then aggregated to 100 m, giving a woody cover fraction
for each 100-m pixel (Figure S6). Some pixels classified as
“woody vegetation” at 10 m may also contain some grass
and soil, so the mean woody vegetation cover is an upper-
bound estimate. The classification scheme of Carvalho et al.
(2019) was then modified and applied to the 100-m woody
vegetation map to create a land cover map based on woody
vegetation cover: clean pasture (< 10% woody vegetation),
grass-dominant dirty pasture (10-50% woody vegetation),
woody-dominant dirty pasture (50-90% woody vegetation),
forest (90-100% woody vegetation), and early-stage clearing
(> 10% woody vegetation, cleared <5 years prior to 2019).
See Figure S13 for examples of each cover type.

Chronosequence of woody vegetation cover

A space-for-time (chronosequence) (Walker et al. 2010)
approach was used to analyze how woody cover varies with
clearing age. The year of deforestation for each pixel was
obtained from MapBiomas, which has annual land cover
data for 1985-2020 at 30-m spatial resolution (Souza et al.
2020). The year of deforestation was calculated as the first
year in which a pixel was classified as “Pasture” in the Map-
Biomas annual map collection. The age of clearing for each
pixel was calculated by subtracting the year of initial defor-
estation from 2019. Pixels that were not classified as “Pas-
ture” in any year (Primary Forest, Water, Urban Areas) were
masked from analysis. Following Silva et al. (2020), pixels

@ Springer

classified as “Pasture” in any previous year and “Forest” in
2019 were labeled secondary forest.

Two versions of the clearing age map were generated: one
excludes secondary forests and only includes areas classified
as pasture in 2019, and another includes all pixels classified
as pasture during any previous year, including those clas-
sified as secondary forest in 2019. The average percent of
woody vegetation cover was summarized for each clearing
age using the 100-m woody vegetation map created in the
“Land cover maps based on woody vegetation cover” sec-
tion. To control for factors other than clearing age, a hydro-
geology map from the Servico Geoldgico do Brasil (Brazil-
ian Geological Service) (Figure S9) was used to summarize
woody cover by geology, and the PBS map created in the
“Validation and evergreen thresholds” section was used to
summarize woody cover by PBS (Figure S11).

Results
Temporal unmixing

The three endmembers identified from the PCA plots (ever-
green, grass, and low-EVI) represented distinct land cover
types (Fig. 4). Roads had high values in the low-EVI end-
members (Red in Fig. 4), while pastures have high values in
both the low-EVI and grass endmembers (Blue). Forest frag-
ments and riparian zones had high values in the evergreen
endmember band (Green) interspersed with the low-EVI
endmember (Red). The low-EVI endmember represented
shade in forests and soil in pastures.

Validation

The 10-m woody cover map showed low overall error
(16-21%). Omission and commission errors varied system-
ically with the evergreen fraction threshold value (Fig. 5,
Figure S7): lower evergreen thresholds overestimated woody
vegetation cover, while higher thresholds were underesti-
mated. Errors of commission for the forest class included
pastures near perennial water sources that stayed green
through the end of the dry season (Figure S13). The ever-
green endmember threshold of 0.35 was selected as the opti-
mal threshold because it resulted in the lowest overall error
(16%).

The total error of the woody vegetation cover map did not
vary significantly by PBS, but errors of omission were higher
on low and medium PBS, indicating a potential underesti-
mation of woody cover on soils with low fertility (Table S1,
Figure S8). The accuracy of the woody cover map was high-
est in newly deforested regions with high PBS (Table S2),
while accuracy metrics for newly deforested validation zones
with low and medium PBS levels were comparable to the
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Fig.5 Classification error of
woody vegetation cover by
evergreen endmember threshold
value. Omission error (short-

0.4

—— Overall Error
~~~~~ Omission Error
—=- Comission Error

dashed line) is positively
correlated with the evergreen
fraction threshold value, while

Error

0.2

commission error (long-dashed
line) is negatively correlated
with the evergreen fraction
threshold value. Overall error
(solid line) is relatively consist-

0.0

-
.....

ent for a range of threshold val-
ues but is lowest at 0.35, which
was selected as the optimal
threshold value

study zone average. Taken together, the accuracy assessment
suggests that errors were not systematically higher on more
fertile soils or in newly deforested areas.

Classification of cleared areas based on woody cover

Clean pasture (< 10% woody cover) dominated (53%) the
area classified as pasture or secondary forest by MapBiomas
in 2019, followed by grass-dominant dirty pasture (21%),
woody vegetation-dominant dirty pasture (13%), forest
(10%), and early-stage clearing (3%) (Table 1). Woody-
dominant pasture was most common in the center of the
study region (Fig. 6). Early-stage clearing was concentrated
in the northern part of the study zone, with some hotspots

Fig.6 Land cover types on
cleared areas based on woody
cover fractions displayed over a
basemap of high-resolution aer-
ial imagery. Pixels classified as
primary forest by MapBiomas
are omitted from the analysis

Land Cover
[ Early Clearing
B Clean Pasture

[ Dirty Pasture: Grass Dominant

B Dirty Pasture: Tree Dominant
B Forest

0.30

0.35 0.40 0.45

Evergreen Fraction Threshold

Table 1 Frequency of land cover types over cleared areas

Cover Type Percent Area
1 Early Clearing 33
2 Clean Pasture 52.7
3 Dirty Pasture: Grass Dominant 21.3
4 Dirty Pasture: Woody Cover Dominant 12.5
5 Forest 10.1

in the center and south. High-resolution aerial imagery (Fig-
ure S13) suggests that areas in the early stages of clearing
had high woody vegetation cover but were distinct from
abandoned pastures; burn scars and trails in recently cleared

0 1.5 3km

0 0.751.5 km
-
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a 2019 Woody Vegetation Cover by Year of Deforestation
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Fig.7 Woody vegetation cover by year of deforestation for pixels
classified as “Pasture” in the base year (yellow line), pixels which
were classified as “Pasture” at any point between 1985 and the base-
year, labeled as “All Cleared Areas” (black line), and pixels classi-
fied as “Forest” in the base-year which were classified as “Pasture” at
any point prior to the base year, labeled as “Secondary Forest” (light
green line) (a). Histograms of woody vegetation cover for the base
year on areas cleared before 2000 (b) and between 2018 and 2019 (c)

Fig.8 Regions (delineated in red) and labeled by year of deforesta-
tion from MapBiomas overlayed on high-resolution imagery from
GoogleEarth Pro. Imagery is from May 14th, 2019

areas indicated recent anthropogenic disturbance. While
some areas classified as dirty pastures may be abandoned,
others were adjacent to actively managed clean pastures and
may be part of a rotational system. Small riparian corridors
were also commonly categorized as “dirty pasture.”

Chronosequence analysis
For pixels classified as either pasture or secondary forest in
the MapBiomas dataset for 2019, woody vegetation cover was

highest (60%) in the most recently cleared areas (1-2 years),
dropped rapidly with clearing age, and was low (~25%) for
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clearings 20 years and older (Figs. 7a, 8). The histogram of
woody cover at 100-m resolution is bimodal for areas cleared
1-2 years ago (Fig. 7c) and areas cleared 20 or more years ago
(Fig. 7b), with modes at 0-5% and 95-100% cover, though
half (48%) of the recently cleared area had 10-90% woody
cover. Most (61%) of the 100-m pixels in the recently cleared
area (1-2 years) had woody cover greater than 50% (Fig. 7¢),
while few (18%) had very low woody vegetation cover (less
than 10%), 48% had some woody vegetation cover (10-90%),
and 34% had full woody vegetation cover (90-100%). In
older clearings (>20 years), most (55%) of the 100-m pixels
had very low woody vegetation cover, 35% had some woody
vegetation cover, and 10% had full woody vegetation cover
(Fig. 7b). We conclude that recently cleared areas are domi-
nated by woody vegetation, and older clearings are dominated
by non-woody cover (grass and soil).

For pixels only classified as pasture in the MapBiomas
dataset for 2019, woody vegetation cover was also high on
new clearings (average 58%), and low on clearings between
20 and 34 years old (average 20%). Woody vegetation cover
for pastures cleared 8-10 years (30%) was also lower when
secondary forests were excluded (Fig. 7a).

Just 7% of cleared areas were classified as secondary for-
est in the MapBiomas dataset, and the percent cover of sec-
ondary forest (MapBiomas) varied only slightly with clear-
ing age (Figure S10). We conclude that older clearings do
not have more secondary forest than recent clearings, and
that woody cover is high on recently cleared areas, even after
removing secondary forest from the analysis.

Effect of soil type and geology

The woody cover was similar for all soil fertility levels
for older pastures (>20 years) (Figure S11). For recently
cleared (6-10 years), pastures on fertile soils had higher
woody cover (51%) than the mean (42%). We conclude that
woody cover remains higher for longer during clearing on
fertile soils, but in the long term (> 20 years) woody cover
converges to similar values for all soil types. The higher
woody cover on recent clearings with fertile soils could be
due to woody crops like coffee that were mapped as pasture
or secondary forest by MapBiomas, to more rapid regrowth
of forest on fertile soils, or to slower clearing rates on fertile
soils.

The woody cover was lowest on older pastures across
most geologic categories. Woody cover on pastures cleared
between 6 and 10 years ago varied by geology (Fig-
ure S12): sandstone (arenitos) and schist (xistos) had the
highest woody cover (67% and 58%, respectively), followed
by phyllite (filitos) and shale (folhelho) (44% and 38%,
respectively). Woody cover on pastures on granite and
gneiss (granitos and gnaisses) followed a similar pattern
to the study zone average. On most geologies, woody cover
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for areas cleared more than 35 years was low (~25%). The
only exception was sandstone (arenitos), which had the
highest woody cover for most clearing ages. We conclude
that woody cover varies by soil and geology, especially for
recent clearings (< 10 years old).

Discussion

Quantifying woody cover fractions on cleared areas is
important for many applications, including carbon budg-
ets, climate models, assessments of land cover stability and
sustainability, and biodiversity. We found that older pas-
tures (deforested more than 20 years) have on average 20%
woody vegetation cover, with potential implications for
carbon stocks and regional climate modeling. The chron-
osequence analysis also suggests that existing concep-
tual models of deforestation require revision in our study
region. In the Amazon (e.g., Silva et al. 2020; Rudel et al.
2010), the deforestation cycle has been described as a rapid
process of deforestation-abandonment-regrowth, where (1)
land is cleared for pasture with near-complete removal of
forest vegetation using a combination of mechanical clear-
ing and burning, (2) some of the cleared area is abandoned
after several years, and (3) slowly replaced by secondary
forest and shrubland or dirty pasture (Fig. 9). Our results
suggest that deforestation is instead a gradual, multiyear
to decadal process in which stands of contiguous forest
are only partially cleared and disturbed, then gradually

Fig. 9 Existing conceptual
model of deforestation show-
ing clear-cutting and regrowth

Existing Conceptual Model

Closed-Canopy Forest

cleared by rows or sections (Figs. 7, 8, 9). In the gradual
clearing model, woody cover declines monotonically with
clearing age, and older pastures have relatively low woody
vegetation cover, indicating complete clearing rather than
abandonment. This finding agrees with Rufin et al. (2015)
who document increased land use intensity and less woody
cover in older pastures compared with recent clearings.
The low woody cover on pastures in Ronddnia may be
related to lower primary deforestation rates in the “old
frontier” (Caviglia-Harris et al. 2015), which increases
pressure on existing cleared areas and encourages their
re-conversion to clean pasture (Carvalho et al. 2019). The
effect of socioeconomic and policy pressures on woody
vegetation dynamics requires further investigation.

The deforestation-abandonment-regrowth model assumes
that pastures are abandoned after several years due to declin-
ing productivity, indicating a negative feedback loop in
which farmers lose the incentive to cultivate the land, allow-
ing the natural landscape to recover. Our results indicate that
clearing increases over time to near completion, with little
land abandonment and regrowth.

The temporal pattern in woody vegetation also has impli-
cations for monitoring the health and productivity of pasture
grass. The gradual decline in woody vegetation cover on
newly cleared pastures coincides with an apparent decline
in pasture health after 5-10 years found in previous studies
(Numata et al. 2007). Based on our results, the drop in green
vegetation on new pastures is likely caused by the clearing
of woody vegetation, rather than the degradation of grass

New Conceptual Model

Closed-Canopy Forest

(Silva et al. 2022) (left) and
proposed conceptual model
showing gradual clearing and -
stabilization of woody vegeta-
tion cover (right)
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quality or condition, as noted by Davidson et al. (2008),
although further research is needed to understand the impact
of woody vegetation on pasture health estimates.

Limitations

We used a chronosequence (space-for-time substitution) to
analyze temporal patterns of woody vegetation cover on pas-
tures and tested for the impact of soil fertility (percent base
saturation) and geology on woody cover, in part because it
was difficult to find cloud-free imagery of the same dates for
multiple years. Our chronosequence analysis therefore does
not illustrate how woody cover changes over time at a given
location, but rather how woody cover varies over space,
with clearing age as a major explanatory variable. Spatial
variations in woody cover may also be influenced by factors
other than clearing age that were not analyzed here, such as
variations in policies or enforcement, demographics, history
of settlement and clearing, topography, and infrastructure
development such as road construction and paving.

The MapBiomas dataset was used to calculate the age of
clearing and to document temporal patterns of secondary for-
est regrowth. While the MapBiomas dataset has relatively
high accuracy (91%), our results may be influenced by errors
in this dataset. In particular, transitions from forest to pasture
and pasture to secondary forest may be due to changes in
spectral properties unrelated to changes in land cover, leading
to errors in estimating clearing age. Additionally, the integra-
tion of datasets with different spatial resolutions may influ-
ence accuracy. The percent woody cover map at 100 m was
aggregated from 10-m binary woody cover maps. Some 10-m
pixels classified as “woody vegetation” also contained some
bare soil and grass, so the percent woody cover is likely an
upper-bound estimate. The year of deforestation layer derived
from MapBiomas was aggregated to 100 m using nearest
neighbor resampling, which relies on the assumption that
adjacent pixels will have similar values. This assumption is
likely not true for all pixels in our study zone, especially
along the boundaries of old and new clearings, leading to
potential errors in clearing ages. The soil fertility layer (PBS)
had a 4 km resolution and the geology map had a scale of
1:1,000,000, which is significantly coarser than the 10-m
woody cover map, though we assume here that soil fertility
is highly spatially autocorrelated and can be estimated well
from coarse resolution maps. Finally, our maps of pasture
condition based on woody cover (Fig. 6) is highly scale-
dependent; at fine resolution (10 m) most pixels are either
all woody vegetation or all grass due to the canopy and stand
size of woody vegetation; at coarser resolution (1 km) the
histogram of woody cover would likely become less bimodal,
resulting in less “pure” cover types (all grass, all woody) and
more mixed pasture types. More work is needed to determine
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the spatial resolution that farmers use to classify and manage
their land and to better understand how given classes result
from management decisions and how the farmer’s under-
standing of pasture condition and woody cover translates into
management decisions such as fallowing or abandonment or
use of fire for clearing.

In the absence of ground observations of land cover, we
used visual interpretation of high-resolution imagery, similar
to other studies, to validate land use maps generated from
lower-resolution satellite imagery (Roberts et al. 2002).
While we are confident that woody cover could be identified
with visual interpretation, additional ground data on woody
cover fraction and species composition would assist with
image interpretation. Additionally, spaceborne light detec-
tion and ranging (LiDAR) datasets have been used in more
recent studies to validate vegetation mapping from multispec-
tral satellites (Milenkovic et al. 2022) by comparing eleva-
tion estimates from LiDAR data to verify that land cover
maps can discriminate between classes with similar spectral
signatures, such as trees and green grass, and could increase
both the accuracy and interpretation of the woody cover maps
generated here.

Some riparian grasslands were mapped as woody vegeta-
tion because evergreen woody vegetation has a similar temporal
profile to riparian grasslands that maintain high EVI through
the dry season. Therefore, some healthy pastures were miscat-
egorized as early-stage clearing or secondary forest in Fig. 6.
This issue could be mitigated by including additional satel-
lite imagery such as Sentinel-1, which uses synthetic aperture
radar (SAR), and GEDI (Di Tommaso et al. 2024), which uses
LiDAR, into a rule-based classification system.

Conclusion

We used temporal mixture modeling on Sentinel-2 imagery
to map woody vegetation in deforested areas of the south-
western Amazon. A binary thresholding approach yielded
high overall accuracy (84%). A chronosequence (space-
for-time) approach documented that (1) woody cover was
high from the year of clearing up to 5-10 years, and woody
cover gradually decreased between 1 and 10 years and was
low and similar for all clearings more than 10 years old;
(2) large-scale land abandonment or reversion to “dirty pas-
ture” or secondary forest was uncommon; and (3) woody
cover was higher on fertile than on infertile soils for clear-
ings 8-10 years old but was similar across all soil types
for clearings older than 15-20 years. Our results suggest a
revision to conceptual models of deforestation, with high
woody cover during initial clearing phases and low but sta-
ble woody cover for older clearings, resulting in permanent
grasslands with stable cover for decades following clearing.
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Deforestation in our study region, then, was a gradual and
permanent process with stable long-term cover rather than
a rapid and temporary one with high rates of woody cover
regrowth. This model may not hold in other regions of the
Amazon with different soil, socioeconomic, or policy con-
texts, and more work is needed to determine which model
(clear-abandon-regrowth or gradual-complete-stable) applies
in different contexts.

Supplementary Information The online version contains sup-
plementary material available at https://doi.org/10.1007/
$10113-024-02337-x.
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