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Abstract
The Amazon Basin is experiencing large-scale land use conversion from primary forest to pasture. While several land cover 
datasets map cleared areas in the Amazon, the percent cover of woody vegetation (trees and shrubs) in cleared areas and 
its association with clearing age, soil type, and geology is poorly understood, despite its importance for carbon emissions, 
biodiversity, land–atmosphere interactions, and monitoring of pasture condition. We used temporal mixture analysis on Sen-
tinel-2 imagery from 2019 to map woody vegetation cover on cleared areas in Rondônia, Brazil. Binary woody vegetation 
masks were generated at 10-m resolution using a threshold of the evergreen endmember, with an overall accuracy of 84%. 
The age of clearing for each pixel was calculated from MapBiomas (Sousa and Davis, Remote Sens Environ 247, 2020) with 
a 2019 base year. We find little evidence of large-scale abandonment of pasture: most (53%) of the cleared area in 2019 was 
“clean pasture” (< 10% woody vegetation cover), 34% was “dirty pasture” (10–90% woody vegetation cover), 10% was for-
est (90–100% woody vegetation cover), and 3% was early stage clearing (> 10% woody vegetation cover, cleared 1–5 years 
ago). Recently cleared areas (1–2 years) had high (60%) woody vegetation cover, woody vegetation cover decreased with 
pasture age, and older pastures (20–34 years) had consistently low woody vegetation cover (25% on average). The com-
monly observed decrease in greenness with increasing clearing age, which is sometimes interpreted as decreasing grass 
health, was due in part to decreasing woody vegetation cover as pastures were gradually cleared over a decade. These results 
suggest modifications to existing conceptual models that describe clearing as a rapid process with high rates of secondary 
growth. We found a gradual and semi-permanent clearing of woody vegetation and proposed a revised conceptual model of 
deforestation dynamics.

Keywords  Deforestation · Land cover · Amazon · Remote sensing

Introduction

Tropical deforestation is one of the most important land use 
changes in the twenty-first century, with major implications 
for the global climate (Salati and Nobre 1991; McGuffie 
et al. 1995; Lawrence and Vandecar 2014), biodiversity, and 
economy (Barbier et al. 1991). The Amazon biome has lost 
approximately 20% of its primary forests since the 1960s 
(Assis et al. 2019), releasing carbon and potentially disrupt-
ing the regional climate (Lovejoy and Nobre 2018; Davidson 
et al. 2012). Pasture expansion is the leading cause of defor-
estation in the Amazon (Henshall 1982; Buschbacher 1986; 
Batistella et al. 2003; Sy et al. 2015; Veiga et al. 2002), so 
mapping land cover transitions on areas cleared for pasture 
is a key step to understanding the consequences of deforesta-
tion. In particular, the dynamics of woody vegetation, both 
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during and following clearing, play a key role in maintaining 
regional energy and carbon balances.

The transition from forest to pasture is sometimes 
described as relatively rapid (1–2 years) and complete, with 
subsequent partial abandonment and regrowth of secondary 
forest (Silva et al. 2020). In the Brazilian Amazon, pastures 
may be abandoned due to poor pasture productivity and to 
household lifecycles (Perz and Skole 2003; Laue and Arima 
2016; Perz and Walker 2002). However, grass dominance 
with low woody vegetation cover can persist for decades 
due to either active management of productive pastures 
(Stahl et al. 2017) or to slow recovery of woody vegetation 
on infertile soils (Moran et al. 2000). The initial conver-
sion to pasture may also not be complete; some pastures 
have woody scrub or shrubs, called “dirty pasture” (pasto 
sujo) (Carvalho et al. 2019), but such pastures are difficult to 
map. An improved understanding of woody vegetation cover 
dynamics is also needed to interpret time series of satellite 
imagery, which often show a significant decline in greenness 
in the first 5 years following initial clearing in the Amazon 
(Numata et al. 2007). While the decline in greenness with 
pasture age may indicate decreasing productivity of pasture 
grass, it may also be due to high woody vegetation (tree and 
shrub) cover in recently cleared areas and gradual clearing 
of that woody vegetation over time (Davidson et al. 2008), 
but the temporal patterns of woody cover in cleared areas 
have not been widely documented.

Several datasets map deforestation in the Amazon Basin, 
including MapBiomas (Souza et al. 2020) and the Brazil-
ian Amazon Deforestation Monitoring Program (PRODES 
Instituto Nacional de Pesquisas Espaciais 2020), both of 
which use Landsat data with a spatial resolution of 30 m 
with a 14–16 day revisit time (Markman et al. 2004). Others 
have also used Landsat data and supervised classification 
algorithms, such as decision trees (Roberts et al. 2002) and 
random forest classifiers (Mu et al. 2021; Souza et al. 2020) 
to map land cover and rates of deforestation and secondary 
regrowth in the Amazon. Launched in 2015, the Sentinel 2A 
and 2B satellites offer improved spatial resolution (10 m) 
and a combined revisit time of 5 days (Drusch et al. 2012) 
and have been used to map forest and deforestation in the 
Amazon biome (Silva et al. 2022; Prudente et al. 2022).

Despite significant progress in mapping deforestation, 
there is little documentation of the rate of change in woody 
vegetation cover following clearing. Visual interpretation 
of high-resolution (< 1 m) aerial imagery indicates that 
existing land cover datasets do not sufficiently capture the 
heterogeneity of land cover at fine spatial scales, and many 
areas classified as pasture by MapBiomas have high woody 
vegetation density (Fig. 1). Previous work (Mu et al. 2021) 
mapped pastures with different woody vegetation cover, 
finding large areas with woody vegetation in pastures, and 
Carvalho et al. (2019) mapped pasture vegetation in the Bra-
zilian state of Para in the Amazon biome based on woody 

Fig. 1   Landcover in the State 
of Rondônia, Brazil, from the 
MabBiomas dataset (Souza 
et al. 2020) (left). Example of 
the heterogeneity of land cover 
in areas classified as “Pas-
ture” by MapBiomas (Souza 
et al. 2020), from high-resolu-
tion imagery in Google Earth 
(top right) and 10-m resolution 
imagery from Sentinel-2 (bot-
tom right)
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cover, but few studies document differences in woody cover 
by clearing age, geology, or soil type.

Differences in seasonal phenology of grass and woody 
vegetation may help distinguish them in remote sensing 
imagery. The arc of deforestation in the southern Brazilian 
Amazon has a pronounced dry season from June to Septem-
ber, and woody vegetation often maintains greenness during 
the dry season longer than grasses, due to the shallow roots 
of grass (Davidson et al. 2012). Temporal mixture analysis 
uses differences in phenology to quantify the fraction of an 
image pixel that is covered by land cover with a given green-
ness pattern (Piwowar 1998; Small 2012). Temporal mixture 
models have been used to map dynamic surfaces like sea ice 
(Piwowar 1998), impervious surfaces (Yang et al. 2012), 
fractional tree cover (Wu et al. 2021; Sousa and Davis 2020), 
and crop types (Sousa and Small 2018; Zhong et al. 2015). 
We use temporal mixture analysis on Sentinel-2 imagery to 
map woody vegetation cover in the southwestern Brazilian 
Amazon and analyze how woody vegetation cover varies 
with clearing age, geology, and soil type to address the fol-
lowing questions:

(1)	 Mapping woody vegetation cover: How accurately can 
single-year temporal mixture modeling map woody 
vegetation cover, validated against the visual interpre-
tation of high-resolution imagery? Does the error vary 
with soil type?

(2)	 Spatial patterns in woody vegetation cover: How com-
mon are “dirty” pastures with high woody vegetation 
cover? How does woody vegetation cover vary with 
clearing age?

We find that woody cover is initially high following clear-
ing, decreases gradually for clearings between 5 and 7 years 
old, and is then stable with clearing age for clearings more 
than 10 years old. We find little evidence of widespread 
woody vegetation encroachment or secondary forest regen-
eration on old pastures. The patterns we observe contrast 
with some conceptual models of deforestation in the Ama-
zon, so we propose a revised conceptual model of clearing 
that accommodates our observed changes in woody cover 
with clearing age.

Study area

The state of Rondônia (Fig. 1) is at the western end of the 
arc of deforestation in the Brazilian Amazon. Rondônia has 
experienced large-scale land use change since the 1970s, 
when the National Institute for Colonization and Land 
Reform (INCRA) began incentivizing agricultural pro-
duction in the Amazon by providing zero-interest loans to 
small-scale farmers and investing in infrastructure and road 
networks (Henshall 1982; Sills and Caviglia-Harris 2009). 

By 2019, 34% of the forest in the state had been cleared for 
pasture (Souza et al. 2020). The original forest cover is a 
closed and open-canopy tropical forest (RADAMBRASIL 
1978). Cleared areas are dominated by pasture for cattle. 
Soybeans are limited to the southern part of the state, and 
coffee and other crops are present but uncommon.

Soils in Rondônia include highly weathered Oxisols with 
low fertility in the north, fertile Alfisols in the central part 
of the state, and less fertile Ultisols and sandy Entisols in 
the south (Figure S4,; Cochrane and Cochrane 2006; Bal-
lester et al. 2012). Geology includes deep clay deposits in 
the north, granite and gneiss in the center, metamorphosed 
sedimentary rocks, and sandstone in the south (Figure S9).

Methods

The methods have four components (Fig. 2): (1) woody 
vegetation mapping using temporal mixture analysis on a 
time series of Sentinel 2 imagery for 1 year (2019) (“Woody 
vegetation mapping”), (2) validation of the map using visual 
interpretation of high-resolution imagery (“Validation and 
evergreen thresholds”), (3) creation of land cover maps of 
cleared areas according to woody cover (“Land cover maps 
based on woody vegetation cover”), and (4) chronosequence 
analysis of woody vegetation cover by clearing age, soil fer-
tility, and geology using a time series of land cover (“Chron-
osequence of woody vegetation cover”).

Woody vegetation mapping

Data selection and preprocessing

Sentinel-2 level 2A surface reflectance images were selected, 
preprocessed, and downloaded for the study area using 
Google Earth Engine (GEE). Level 2A images have under-
gone atmospheric and geometric correction and identifi-
cation of clouds and cloud shadows. We selected images 
acquired during the dry season (June–August) when woody 
vegetation and grass are most likely to have different green-
ness time series (Davidson et al. 2012).

Sentinel-2 images are organized as 110 km × 110 km 
tiles (Fig. 3). We selected images with low cloud cover (less 
than 15%) and ensured that acquisition dates were consist-
ent among tiles. The final selection comprised 30 scenes: 
five dates for each of the six tiles covering June–August of 
2019. Each image was cloud-masked using the “s2cloud-
less” algorithm available through GEE. A water mask was 
created of pixels with a Normalized Difference Water Index 
(NDWI) value greater than zero and a Normalized Differ-
ence Vegetation Index (NDVI) value less than zero. Lay-
ers of the Enhanced Vegetation Index (EVI) were mosaiced 
and stacked for each tile, resulting in temporal stacks with 5 
bands, one for each date.
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Temporal mixture modeling

The time series of EVI for each pixel was modelled as 
a linear combination of temporal endmembers, each of 
which represents a phenological sequence such as persis-
tent high greenness, gradually decreasing greenness, or 
low greenness (Piwowar 1998). Areal fractions of tempo-
ral endmembers (fi) were estimated for each pixel using:

where EVI obs is the observed EVI time series of a given 
pixel, Ei(EVI) is the time series of EVI for endmember i, and 
fi is the fractional estimate of the cover of each endmember 
in the given pixel (Yang et al. 2012).

(1)EVIobs = f
1
E
1
(EVI) + f

2
E
2
(EVI)⋯ + fnEn(EVI) + �

Temporal endmembers of evergreen vegetation, grass, 
and low-EVI (Ei(EVI)) were identified from the temporal 
mosaic using PCA following Small (2012) (Figure S1). 
These endmembers were selected because they were repre-
sentative of the landscape in our study zone (Fig. 4), which 
is comprised of rainforest fragments (evergreen vegetation), 
rain-fed pastures (seasonal grass), and urban areas with 
minimal natural vegetation (low-EVI). A fourth endmem-
ber with increasing EVI over the dry season was initially 
selected, but visual interpretation of Google Earth imagery 
suggested that this endmember did not represent a specific 
land cover type (Figure S2), as it highlighted small areas 
in both forested areas and grasslands, and included forest 
fragments recovering from disturbance, grass in floodplains, 

Fig. 2   Workflow diagram of data sources and methods. Workflow is 
split into four subsections: “Woody Vegetation Mapping,” “Valida-
tion,” “Cover Type and Chronosequence,” and “Environmental Con-
trols.” Each subsection visualizes connections between input and 
output datasets (displayed in circles), processing steps (displayed in 

rectangles), and decision trees (displayed in diamonds with arrows 
pointing towards resulting processes). Additional figures are refer-
enced throughout the flowchart near their corresponding dataset or 
processing step
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or grass recovering from grazing during pasture rotation. 
Models with this fourth endmember underestimated woody 
cover (Figure S3), so the fourth endmember was omitted 
from the model, and the temporal mosaic was unmixed using 
the evergreen, grass, and low EVI endmembers.

Histograms for each of the three endmembers (evergreen, 
grass, low-EVI) were generated for pixels within validation 
polygons that had all woody vegetation cover (forest, n = 304 
polygons) or no woody vegetation cover (grass, n = 381 
polygons). Forested pixels contained a mix of “evergreen” 
(mean = 0.61) and “low-EVI” (mean = 0.42) endmembers, 
and pastures contained a mix of “evergreen” (mean = 0.2), 
“low-EVI” (mean = 0.48), and “grass” (mean = 0.32) end-
members (Figure S5). The low-EVI endmember in forests 
is mostly shade, while low-EVI in pastures is mostly bare 
soil. The mix of evergreen and shade endmembers in forests 

prevented us from interpreting the evergreen endmember 
fraction directly as the percent cover of woody vegetation, so 
we established a threshold of evergreen cover above which 
a pixel is labeled as “woody vegetation.” We created mul-
tiple maps with evergreen thresholds ranging from 0.25 to 
0.50 in increments of 0.05. For each woody vegetation map, 
pixels with an evergreen endmember fraction over the given 
threshold were classified as “Woody Vegetation” (1), and 
pixels falling below this threshold were classified as “No 
Woody Vegetation” (0).

Validation and evergreen thresholds

 The woody cover maps were validated using visual inter-
pretation of high-resolution aerial imagery available through 
Google Earth (GE) Pro. We selected 10 zones where 2019 
GE imagery was available (Figure S8). Zones were cho-
sen that had a range of woody vegetation cover, and zone 
sizes ranged from 1 to 3 km2. Within each zone, validation 
points (n = 100) were randomly generated, for a total of 1000 
points. To minimize potential errors introduced by co-reg-
istration issues between high-resolution Google Earth and 
Sentinel-2 imagery, 30 × 30 m plots (3 × 3 Sentinel-2 pixels) 
were created centered on the randomly generated points. The 
resulting validation plots (n = 1000) were assigned values 
of sparse (< 10%), partial (10–90%), and full (90–100%) 
woody vegetation cover using visual interpretation of the GE 
imagery. Due to uncertainty in estimating a specific value for 
woody cover fraction, we opted for categories that identified 
either all non-woody vegetation or some woody vegetation. 
In practice, most validation plots were either non-woody 
(n = 304) or fully woody (n = 381), so estimating the exact 
percentage of woody was not essential. The mean woody 
fraction for each validation plot was then calculated from 
the 10-m binary woody vegetation map (“Woody vegeta-
tion mapping”), and plots with any 10-m pixel over a given 
evergreen endmember threshold were labeled as “woody.” 
Each validation plot was then classified as a true positive 
(TP), true negative (TN), false positive (FP), or false nega-
tive (FN); TS is the sum of all samples. The total error is cal-
culated as (FP + FN)/(TS). Commission error measures the 
frequency of false positives as FP/(FP + TP). Omission error 
measures the frequency of false negatives as FN/(FN + TP).

Healthy grass that is green in the dry season might have 
the temporal EVI profile of woody vegetation, resulting in an 
overestimation of woody vegetation cover. Fertile soils may 
have healthier grass, so we compared the accuracy metrics 
of the woody cover maps for different levels of percent base 
saturation (PBS), which is the percent of cation exchange 
sites occupied by base cations (calcium, magnesium, potas-
sium). PBS data from 3000 + soil cores were obtained from 
the SIGTERON project (Cochrane and Cochrane 1998) and 
interpolated to a 4-km resolution grid using kriging. Kriging 

Fig. 3   a Map of Sentinel-2 tiling grid labeled by tiling ID. b RGB 
display of the temporal stack (right). In the temporal stack, each chan-
nel is represented by EVI values for a given date in the time series. 
Dates represented in (b) are June 10th (R), July 15th (G), and August 
4th (B); white indicates high EVI in all dates, black indicates low 
EVI in all dates, and red indicates highest EVI in June

Fig. 4   Three band temporal mixture model shown in RGB color 
space compared with Google Earth imagery. Property boundaries and 
roads have high values in the low-EVI endmember band (R), and pas-
tures are a combination of evergreen (G) and grass (B) endmembers. 
The close-up of a densely forested area (far right) demonstrates that 
forested pixels have high values in both the evergreen endmember (G) 
and low-EVI endmember, likely due to shade cover
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was implemented using the gstat package in R (Pebesma 
2004). The variogram was calculated for each depth sepa-
rately, using a spherical model. The sill, range, and nugget 
were determined using the fit.variogram function, which 
uses reweighted least squares and Gauss–Newton fitting. 
The gridded PBS map was reclassified as high (> 60%), 
medium (30–60%), and low (< 30%) (Figure S4, S8). The 
grass may also be greener in younger pastures (Numata et al. 
2007), which could be confused with green woody vegeta-
tion. As our 10 initial validation zones had minimal recent 
land cover change, we created 5 additional zones (Figure S4) 
with recent deforestation (2014–2019). Accuracy metrics 
were summarized by PBS category for both stable cover 
(Table S1) and newly cleared areas (Table S2).

Land cover maps based on woody vegetation cover

The mean woody vegetation cover was calculated for areas 
that were classified as pasture or secondary forest in 2019 
by the MapBiomas Collection 6 Dataset (Souza et al. 2020; 
MapBiomas 2021). The MapBiomas algorithm uses a 
random forest classification on Landsat imagery to assign 
each 30 × 30 m pixel to a land use category, such as for-
est, pasture, or water. The binary (0 or 1) woody vegetation 
layer (10-m resolution, “Woody vegetation mapping”) was 
then aggregated to 100 m, giving a woody cover fraction 
for each 100-m pixel (Figure S6). Some pixels classified as 
“woody vegetation” at 10 m may also contain some grass 
and soil, so the mean woody vegetation cover is an upper-
bound estimate. The classification scheme of Carvalho et al. 
(2019) was then modified and applied to the 100-m woody 
vegetation map to create a land cover map based on woody 
vegetation cover: clean pasture (< 10% woody vegetation), 
grass-dominant dirty pasture (10–50% woody vegetation), 
woody-dominant dirty pasture (50–90% woody vegetation), 
forest (90–100% woody vegetation), and early-stage clearing 
(> 10% woody vegetation, cleared < 5 years prior to 2019). 
See Figure S13 for examples of each cover type.

Chronosequence of woody vegetation cover

A space-for-time (chronosequence) (Walker et al. 2010) 
approach was used to analyze how woody cover varies with 
clearing age. The year of deforestation for each pixel was 
obtained from MapBiomas, which has annual land cover 
data for 1985–2020 at 30-m spatial resolution (Souza et al. 
2020). The year of deforestation was calculated as the first 
year in which a pixel was classified as “Pasture” in the Map-
Biomas annual map collection. The age of clearing for each 
pixel was calculated by subtracting the year of initial defor-
estation from 2019. Pixels that were not classified as “Pas-
ture” in any year (Primary Forest, Water, Urban Areas) were 
masked from analysis. Following Silva et al. (2020), pixels 

classified as “Pasture” in any previous year and “Forest” in 
2019 were labeled secondary forest.

Two versions of the clearing age map were generated: one 
excludes secondary forests and only includes areas classified 
as pasture in 2019, and another includes all pixels classified 
as pasture during any previous year, including those clas-
sified as secondary forest in 2019. The average percent of 
woody vegetation cover was summarized for each clearing 
age using the 100-m woody vegetation map created in the 
“Land cover maps based on woody vegetation cover” sec-
tion. To control for factors other than clearing age, a hydro-
geology map from the Serviço Geológico do Brasil (Brazil-
ian Geological Service) (Figure S9) was used to summarize 
woody cover by geology, and the PBS map created in the 
“Validation and evergreen thresholds” section was used to 
summarize woody cover by PBS (Figure S11).

Results

Temporal unmixing

The three endmembers identified from the PCA plots (ever-
green, grass, and low-EVI) represented distinct land cover 
types (Fig. 4). Roads had high values in the low-EVI end-
members (Red in Fig. 4), while pastures have high values in 
both the low-EVI and grass endmembers (Blue). Forest frag-
ments and riparian zones had high values in the evergreen 
endmember band (Green) interspersed with the low-EVI 
endmember (Red). The low-EVI endmember represented 
shade in forests and soil in pastures.

Validation

The 10-m woody cover map showed low overall error 
(16–21%). Omission and commission errors varied system-
ically with the evergreen fraction threshold value (Fig. 5, 
Figure S7): lower evergreen thresholds overestimated woody 
vegetation cover, while higher thresholds were underesti-
mated. Errors of commission for the forest class included 
pastures near perennial water sources that stayed green 
through the end of the dry season (Figure S13). The ever-
green endmember threshold of 0.35 was selected as the opti-
mal threshold because it resulted in the lowest overall error 
(16%).

The total error of the woody vegetation cover map did not 
vary significantly by PBS, but errors of omission were higher 
on low and medium PBS, indicating a potential underesti-
mation of woody cover on soils with low fertility (Table S1, 
Figure S8). The accuracy of the woody cover map was high-
est in newly deforested regions with high PBS (Table S2), 
while accuracy metrics for newly deforested validation zones 
with low and medium PBS levels were comparable to the 
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study zone average. Taken together, the accuracy assessment 
suggests that errors were not systematically higher on more 
fertile soils or in newly deforested areas.

Classification of cleared areas based on woody cover

Clean pasture (< 10% woody cover) dominated (53%) the 
area classified as pasture or secondary forest by MapBiomas 
in 2019, followed by grass-dominant dirty pasture (21%), 
woody vegetation-dominant dirty pasture (13%), forest 
(10%), and early-stage clearing (3%) (Table 1). Woody-
dominant pasture was most common in the center of the 
study region (Fig. 6). Early-stage clearing was concentrated 
in the northern part of the study zone, with some hotspots 

in the center and south. High-resolution aerial imagery (Fig-
ure S13) suggests that areas in the early stages of clearing 
had high woody vegetation cover but were distinct from 
abandoned pastures; burn scars and trails in recently cleared 

Fig. 5   Classification error of 
woody vegetation cover by 
evergreen endmember threshold 
value. Omission error (short-
dashed line) is positively 
correlated with the evergreen 
fraction threshold value, while 
commission error (long-dashed 
line) is negatively correlated 
with the evergreen fraction 
threshold value. Overall error 
(solid line) is relatively consist-
ent for a range of threshold val-
ues but is lowest at 0.35, which 
was selected as the optimal 
threshold value

Table 1   Frequency of land cover types over cleared areas

Cover Type Percent Area

1 Early Clearing 3.3
2 Clean Pasture 52.7
3 Dirty Pasture: Grass Dominant 21.3
4 Dirty Pasture: Woody Cover Dominant 12.5
5 Forest 10.1

Fig. 6   Land cover types on 
cleared areas based on woody 
cover fractions displayed over a 
basemap of high-resolution aer-
ial imagery. Pixels classified as 
primary forest by MapBiomas 
are omitted from the analysis
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areas indicated recent anthropogenic disturbance. While 
some areas classified as dirty pastures may be abandoned, 
others were adjacent to actively managed clean pastures and 
may be part of a rotational system. Small riparian corridors 
were also commonly categorized as “dirty pasture.”

Chronosequence analysis

For pixels classified as either pasture or secondary forest in 
the MapBiomas dataset for 2019, woody vegetation cover was 
highest (60%) in the most recently cleared areas (1–2 years), 
dropped rapidly with clearing age, and was low (~ 25%) for 

clearings 20 years and older (Figs. 7a, 8). The histogram of 
woody cover at 100-m resolution is bimodal for areas cleared 
1–2 years ago (Fig. 7c) and areas cleared 20 or more years ago 
(Fig. 7b), with modes at 0–5% and 95–100% cover, though 
half (48%) of the recently cleared area had 10–90% woody 
cover. Most (61%) of the 100-m pixels in the recently cleared 
area (1–2 years) had woody cover greater than 50% (Fig. 7c), 
while few (18%) had very low woody vegetation cover (less 
than 10%), 48% had some woody vegetation cover (10–90%), 
and 34% had full woody vegetation cover (90–100%). In 
older clearings (≥ 20 years), most (55%) of the 100-m pixels 
had very low woody vegetation cover, 35% had some woody 
vegetation cover, and 10% had full woody vegetation cover 
(Fig. 7b). We conclude that recently cleared areas are domi-
nated by woody vegetation, and older clearings are dominated 
by non-woody cover (grass and soil).

For pixels only classified as pasture in the MapBiomas 
dataset for 2019, woody vegetation cover was also high on 
new clearings (average 58%), and low on clearings between 
20 and 34 years old (average 20%). Woody vegetation cover 
for pastures cleared 8–10 years (30%) was also lower when 
secondary forests were excluded (Fig. 7a).

Just 7% of cleared areas were classified as secondary for-
est in the MapBiomas dataset, and the percent cover of sec-
ondary forest (MapBiomas) varied only slightly with clear-
ing age (Figure S10). We conclude that older clearings do 
not have more secondary forest than recent clearings, and 
that woody cover is high on recently cleared areas, even after 
removing secondary forest from the analysis.

Effect of soil type and geology

The woody cover was similar for all soil fertility levels 
for older pastures (> 20 years) (Figure S11). For recently 
cleared (6–10 years), pastures on fertile soils had higher 
woody cover (51%) than the mean (42%). We conclude that 
woody cover remains higher for longer during clearing on 
fertile soils, but in the long term (> 20 years) woody cover 
converges to similar values for all soil types. The higher 
woody cover on recent clearings with fertile soils could be 
due to woody crops like coffee that were mapped as pasture 
or secondary forest by MapBiomas, to more rapid regrowth 
of forest on fertile soils, or to slower clearing rates on fertile 
soils.

The woody cover was lowest on older pastures across 
most geologic categories. Woody cover on pastures cleared 
between 6 and 10  years ago varied by geology (Fig-
ure S12): sandstone (arenitos) and schist (xistos) had the 
highest woody cover (67% and 58%, respectively), followed 
by phyllite (filitos) and shale (folhelho) (44% and 38%, 
respectively). Woody cover on pastures on granite and 
gneiss (granitos and gnaisses) followed a similar pattern 
to the study zone average. On most geologies, woody cover 

Fig. 7   Woody vegetation cover by year of deforestation for pixels 
classified as “Pasture” in the base year (yellow line), pixels which 
were classified as “Pasture” at any point between 1985 and the base-
year, labeled as “All Cleared Areas” (black line), and pixels classi-
fied as “Forest” in the base-year which were classified as “Pasture” at 
any point prior to the base year, labeled as “Secondary Forest” (light 
green line) (a). Histograms of woody vegetation cover for the base 
year on areas cleared before 2000 (b) and between 2018 and 2019 (c)

Fig. 8   Regions (delineated in red) and labeled by year of deforesta-
tion from MapBiomas overlayed on high-resolution imagery from 
GoogleEarth Pro. Imagery is from May 14th, 2019
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for areas cleared more than 35 years was low (~ 25%). The 
only exception was sandstone (arenitos), which had the 
highest woody cover for most clearing ages. We conclude 
that woody cover varies by soil and geology, especially for 
recent clearings (< 10 years old).

Discussion

Quantifying woody cover fractions on cleared areas is 
important for many applications, including carbon budg-
ets, climate models, assessments of land cover stability and 
sustainability, and biodiversity. We found that older pas-
tures (deforested more than 20 years) have on average 20% 
woody vegetation cover, with potential implications for 
carbon stocks and regional climate modeling. The chron-
osequence analysis also suggests that existing concep-
tual models of deforestation require revision in our study 
region. In the Amazon (e.g., Silva et al. 2020; Rudel et al. 
2010), the deforestation cycle has been described as a rapid 
process of deforestation-abandonment-regrowth, where (1) 
land is cleared for pasture with near-complete removal of 
forest vegetation using a combination of mechanical clear-
ing and burning, (2) some of the cleared area is abandoned 
after several years, and (3) slowly replaced by secondary 
forest and shrubland or dirty pasture (Fig. 9). Our results 
suggest that deforestation is instead a gradual, multiyear 
to decadal process in which stands of contiguous forest 
are only partially cleared and disturbed, then gradually 

cleared by rows or sections (Figs. 7, 8, 9). In the gradual 
clearing model, woody cover declines monotonically with 
clearing age, and older pastures have relatively low woody 
vegetation cover, indicating complete clearing rather than 
abandonment. This finding agrees with Rufin et al. (2015) 
who document increased land use intensity and less woody 
cover in older pastures compared with recent clearings. 
The low woody cover on pastures in Rondônia may be 
related to lower primary deforestation rates in the “old 
frontier” (Caviglia-Harris et al. 2015), which increases 
pressure on existing cleared areas and encourages their 
re-conversion to clean pasture (Carvalho et al. 2019). The 
effect of socioeconomic and policy pressures on woody 
vegetation dynamics requires further investigation.

The deforestation-abandonment-regrowth model assumes 
that pastures are abandoned after several years due to declin-
ing productivity, indicating a negative feedback loop in 
which farmers lose the incentive to cultivate the land, allow-
ing the natural landscape to recover. Our results indicate that 
clearing increases over time to near completion, with little 
land abandonment and regrowth.

The temporal pattern in woody vegetation also has impli-
cations for monitoring the health and productivity of pasture 
grass. The gradual decline in woody vegetation cover on 
newly cleared pastures coincides with an apparent decline 
in pasture health after 5–10 years found in previous studies 
(Numata et al. 2007). Based on our results, the drop in green 
vegetation on new pastures is likely caused by the clearing 
of woody vegetation, rather than the degradation of grass 

Fig. 9   Existing conceptual 
model of deforestation show-
ing clear-cutting and regrowth 
(Silva et al. 2022) (left) and 
proposed conceptual model 
showing gradual clearing and 
stabilization of woody vegeta-
tion cover (right)
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quality or condition, as noted by Davidson et al. (2008), 
although further research is needed to understand the impact 
of woody vegetation on pasture health estimates.

Limitations

We used a chronosequence (space-for-time substitution) to 
analyze temporal patterns of woody vegetation cover on pas-
tures and tested for the impact of soil fertility (percent base 
saturation) and geology on woody cover, in part because it 
was difficult to find cloud-free imagery of the same dates for 
multiple years. Our chronosequence analysis therefore does 
not illustrate how woody cover changes over time at a given 
location, but rather how woody cover varies over space, 
with clearing age as a major explanatory variable. Spatial 
variations in woody cover may also be influenced by factors 
other than clearing age that were not analyzed here, such as 
variations in policies or enforcement, demographics, history 
of settlement and clearing, topography, and infrastructure 
development such as road construction and paving.

The MapBiomas dataset was used to calculate the age of 
clearing and to document temporal patterns of secondary for-
est regrowth. While the MapBiomas dataset has relatively 
high accuracy (91%), our results may be influenced by errors 
in this dataset. In particular, transitions from forest to pasture 
and pasture to secondary forest may be due to changes in 
spectral properties unrelated to changes in land cover, leading 
to errors in estimating clearing age. Additionally, the integra-
tion of datasets with different spatial resolutions may influ-
ence accuracy. The percent woody cover map at 100 m was 
aggregated from 10-m binary woody cover maps. Some 10-m 
pixels classified as “woody vegetation” also contained some 
bare soil and grass, so the percent woody cover is likely an 
upper-bound estimate. The year of deforestation layer derived 
from MapBiomas was aggregated to 100 m using nearest 
neighbor resampling, which relies on the assumption that 
adjacent pixels will have similar values. This assumption is 
likely not true for all pixels in our study zone, especially 
along the boundaries of old and new clearings, leading to 
potential errors in clearing ages. The soil fertility layer (PBS) 
had a 4 km resolution and the geology map had a scale of 
1:1,000,000, which is significantly coarser than the 10-m 
woody cover map, though we assume here that soil fertility 
is highly spatially autocorrelated and can be estimated well 
from coarse resolution maps. Finally, our maps of pasture 
condition based on woody cover (Fig. 6) is highly scale-
dependent; at fine resolution (10 m) most pixels are either 
all woody vegetation or all grass due to the canopy and stand 
size of woody vegetation; at coarser resolution (1 km) the 
histogram of woody cover would likely become less bimodal, 
resulting in less “pure” cover types (all grass, all woody) and 
more mixed pasture types. More work is needed to determine 

the spatial resolution that farmers use to classify and manage 
their land and to better understand how given classes result 
from management decisions and how the farmer’s under-
standing of pasture condition and woody cover translates into 
management decisions such as fallowing or abandonment or 
use of fire for clearing.

In the absence of ground observations of land cover, we 
used visual interpretation of high-resolution imagery, similar 
to other studies, to validate land use maps generated from 
lower-resolution satellite imagery (Roberts et al. 2002). 
While we are confident that woody cover could be identified 
with visual interpretation, additional ground data on woody 
cover fraction and species composition would assist with 
image interpretation. Additionally, spaceborne light detec-
tion and ranging (LiDAR) datasets have been used in more 
recent studies to validate vegetation mapping from multispec-
tral satellites (Milenkovic et al. 2022) by comparing eleva-
tion estimates from LiDAR data to verify that land cover 
maps can discriminate between classes with similar spectral 
signatures, such as trees and green grass, and could increase 
both the accuracy and interpretation of the woody cover maps 
generated here.

Some riparian grasslands were mapped as woody vegeta-
tion because evergreen woody vegetation has a similar temporal 
profile to riparian grasslands that maintain high EVI through 
the dry season. Therefore, some healthy pastures were miscat-
egorized as early-stage clearing or secondary forest in Fig. 6. 
This issue could be mitigated by including additional satel-
lite imagery such as Sentinel-1, which uses synthetic aperture 
radar (SAR), and GEDI (Di Tommaso et al. 2024), which uses 
LiDAR, into a rule-based classification system.

Conclusion

We used temporal mixture modeling on Sentinel-2 imagery 
to map woody vegetation in deforested areas of the south-
western Amazon. A binary thresholding approach yielded 
high overall accuracy (84%). A chronosequence (space-
for-time) approach documented that (1) woody cover was 
high from the year of clearing up to 5–10 years, and woody 
cover gradually decreased between 1 and 10 years and was 
low and similar for all clearings more than 10 years old; 
(2) large-scale land abandonment or reversion to “dirty pas-
ture” or secondary forest was uncommon; and (3) woody 
cover was higher on fertile than on infertile soils for clear-
ings 8–10 years old but was similar across all soil types 
for clearings older than 15–20 years. Our results suggest a 
revision to conceptual models of deforestation, with high 
woody cover during initial clearing phases and low but sta-
ble woody cover for older clearings, resulting in permanent 
grasslands with stable cover for decades following clearing. 
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Deforestation in our study region, then, was a gradual and 
permanent process with stable long-term cover rather than 
a rapid and temporary one with high rates of woody cover 
regrowth. This model may not hold in other regions of the 
Amazon with different soil, socioeconomic, or policy con-
texts, and more work is needed to determine which model 
(clear-abandon-regrowth or gradual-complete-stable) applies 
in different contexts. 

Supplementary Information  The online version contains sup-
plementary material available at https://​doi.​org/​10.​1007/​
s10113-​024-​02337-x.
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