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ABSTRACT

Experimental demonstrations of modified chemical structure and reactivity under strong light±matter coupling have spurred theoretical and
computational efforts to uncover underlying mechanisms. Ab initio cavity quantum electrodynamics (QED) combines quantum chemistry
with cavity QED to investigate these phenomena in detail. Unitary transformations of ab initio cavity QED Hamiltonians have been used
to make them more computationally tractable. We analyze one such transformation, the coherent state transformation, using perturbation
theory. Applying perturbation theory up to third order for ground state energies and potential energy surfaces of several molecular systems
under electronic strong coupling, we show that the coherent state transformation yields better agreement with exact ground state energies.
We examine one specific case using perturbation theory up to ninth order and find that coherent state transformation performs better up to
fifth order but converges more slowly to the exact ground state energy at higher orders. In addition, we apply perturbation theory up to second
order for cavity mode states under bilinear coupling, elucidating how the coherent state transformation accelerates the convergence of the
photonic subspace toward the complete basis limit and renders molecular ion energies origin invariant. These findings contribute valuable
insights into computational advantages of the coherent state transformation in the context of ab initio cavity quantum electrodynamics
methods.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0233717

I. INTRODUCTION

Strong interactions between photons resonant with molecular
transitions can lead to the emergence of new hybrid light±matter
states, known as polariton states, which can effect dramatic changes
in chemical structure and reactivity.1±20 The emerging field of polari-
ton chemistry seeks to understand and leverage these changes in
chemical structure and dynamics to perform novel chemistry, and
computational modeling has played a key role in shaping this under-
standing. For one or a few molecules under electronic strong cou-
pling, cavity quantum electrodynamics provides the tools to treat
the photonic degrees of freedom, and ab initio quantum chemistry
provides the tools to treat the electronic degrees of freedom. The
marriage of these approaches is often referred to as ab initio cav-
ity quantum electrodynamics (ai-QED), which has seen a surge of
developments in recent years.18,21±51 Traditional quantum chemistry

already presents a challenging example of the many-body problem,
and strong coupling to photons introduces additional difficulties
that must be overcome to yield accurate and computationally facile
approaches.

Unitary transformations have a long history in the development
of many-body theories, where a common strategy is to identify or
design transformations that bring a many-body Hamiltonian into a
representation, which is more computationally tractable.52±56 Recent
efforts to develop computationally tractable and predictive methods
for molecules under strong light±matter coupling has brought these
techniques to bear on ai-QED Hamiltonians to partially decouple
the light±matter interactions that arise in this context.43,57±60 In the
Pauli±Fierz Hamiltonian that is the basis for much of the work on
ai-QED, there are several examples of unitary transformations that
are based upon products of the photonic momentum operator and
the matter dipole operator (which is the matter position operator
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scaled by the electron charge). These transformations impart shifts
in the photonic positions and the matter momenta and render the
Pauli±Fierz Hamiltonian diagonal in the infinite coupling limit. In
particular, Koch and co-workers,59 as well as Li and Zhang,60 have
used such unitary transformations to parameterize reference states
for QED Hartree±Fock procedures that have many attractive prop-
erties at arbitrary coupling strengths, including energies and orbitals
that are fully origin invariant. Reichman and co-workers43 recently
investigated an analogous approach for correlated theories where,
similar to the approach of Zhang and Li for QED Hartree±Fock,
the transformation is variationally optimized, yielding the so-called
Lang±Firsov transformation. In the current work, we focus on a
related but simpler unitary transformation known as the coherent
state transformation, which shares a similar form as the transfor-
mations discussed in the independent investigations in Refs. 43, 59,
and 60 with a key difference being that it is formulated as a product
of the photonic momentum operator with the expectation value of
the matter dipole operator. The coherent state transformation thus
shifts the photonic coordinates but does not transform the matter
degrees of freedom. The coherent state transformation has been used
to parameterize QED Hartree±Fock reference wavefunctions29,36

and in correlated ai-QED calculations,37,41,48,61 has been shown to
yield origin invariant energies (not orbitals), and can significantly
accelerate the convergence of the photonic subspace. In this work,
we utilize perturbation theory to elucidate how the coherent state
transformation engenders these favorable properties in ai-QED cal-
culations. We specifically formulate perturbation theory using the
Pauli±Fierz Hamiltonian and its coherent state transformed ana-
log projected onto a tensor product basis of photonic Fock states
and adiabatic many-electron states from cavity-free electronic struc-
ture calculations. In other words, we use a parameterized ai-QED
approach that avoids the need to make any modifications to the
underlying quantum chemistry method. We find that applying the
coherent state transformation yields second- and third-order esti-
mates to the ground state energy that are in consistently better
agreement with the exact ground state across a range of coupling
strengths compared to the same orders without transformation of
the Hamiltonian. We apply arbitrary order perturbation theory for
one test system to confirm that perturbative series for both the
Pauli±Fierz Hamiltonian and its coherent state transformed ana-
log converge to the exact answer. Surprisingly, in this test case, we
find that the advantage of the coherent state transformation is only
a feature of low orders of correction and that perturbative correc-
tions of order 6 and higher to the Pauli±Fierz Hamiltonian yield
better agreement with the exact ground state. We hypothesize that
this behavior is consistent with the coherent state transformation
primarily enhancing the convergence with respect to the photonic
subspace. To further elucidate this feature, we treat the bilinear
coupling between matter and photon degrees of freedom as a per-
turbation to the cavity Hamiltonian, which reveals that the coherent
state transformation decouples the photonic subsystem from the
matter subsystem to within a magnitude that is related to the error
in the reference estimate of the dipole moment expectation value
that parameterizes the transformation for a target coupled state.
Importantly, this error is manifestly origin invariant, and so this
result sheds light on why the coherent state transformation accel-
erates photon convergence and restores origin invariance in ai-QED
calculations.

II. THEORY

The starting point for many ai-QED treatments of molecu-
lar polariton systems is the Pauli±Fierz Hamiltonian in the dipole
approximation,62 which we write in atomic units as

ĤPF ≙ Ĥe + ω(b̂ ²
b̂ +

1
2
) −√ω

2
d̂(b̂ ²

+ b̂) + 1
2
d̂
2. (1)

In Eq. (1), Ĥe is the standard electronic Hamiltonian within the

Born±Oppenheimer approximation,63 and Ĥcav ≙ ω(b̂ ²b̂ + 1
2) is the

bare Hamiltonian for the cavity photon mode, where ω represents
the frequency and b̂ ² and b̂ are raising and lowering operators for
the photon mode, respectively. The last two terms capture the cou-
pling between the photonic and matter degrees of freedom and are
called the bilinear coupling, Ĥblc ≙ −

√
ω
2 d̂ (b̂ ²

+ b̂), and dipole self-
energy terms Ĥdse ≙

1
2 d̂

2, respectively. In these interaction terms,

d̂ ≙ λ ⋅ μ̂ couples the field associated with the photon mode to the
molecular dipole operator.64 The second term, Ĥcav, represents the
Hamiltonian for the bare cavity mode, which is a harmonic oscilla-
tor with fundamental frequency ω. We may also write this in terms
of the canonical position and momentum operators for the cavity
photon,65

Ĥcav ≙
1
2
p̂
2
+
1
2
ω
2
q̂
2, (2)

where (in atomic units)

p̂ ≙ i

√
ω

2
(b̂ ²
− b̂), (3)

q̂ ≙

√
1
2ω
(b̂ ²
+ b̂). (4)

Next, we apply the coherent state transformation to Eq. (1),
which has been done, e.g., in QED-Hartree±Fock, QED-CC, QED-
CIS, and QED-CASCI,28,29,36,41 yielding the Pauli±Fierz Hamilto-
nian in the coherent state basis,

ĤCS ≙ Ĥe + Ĥcav −

√
ω

2
∥d̂ − ⟨d̂⟩0∥(b̂ ²

+ b̂) + 1
2
∥d̂ − ⟨d̂ ⟩0∥2. (5)

This follows from a unitary transformation of the Pauli±Fierz
Hamiltonian,

ĤCS ≙ ÛCSĤPFÛ
²

CS, (6)

where the unitary coherent state transformation is defined as

ÛCS ≙ exp(z(b̂ ²
− b̂)), (7)

where the parameter z may be computed as

z ≙ −
⟨d̂⟩0√
2ω

. (8)

The expectation value ⟨d̂⟩0 will depend on the choice of electronic
state. Often, the Hartree±Fock (or QED-HF) reference state is used
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to compute this expectation value, but there are other valid choices.
We will discuss in a Sec. II B how the coherent state transforma-
tion can be seen as shift operator to the photonic position operator,
although we can also see the impact of the transformation directly
on the photonic ladder operators as follows:

ÛCSb̂Û
²

CS ≙ b̂ − z, (9)

ÛCSb̂
²
Û

²

CS ≙ b̂
²
− z. (10)

Although we will refer to the terms −
√

ω
2 ∥d̂ − ⟨d̂⟩∥(b̂ ²

+ b̂) and
1
2 ∥d̂ − ⟨d̂ ⟩0∥2 in Eq. (5) as the bilinear coupling and dipole self-
energy terms in the coherent state Hamiltonian, respectively, we
note that the coherent state transformation does not render these
terms fully equivalent to their counterparts in the Pauli±Fierz
Hamiltonian.With this caveat inmind, we will endeavor to elucidate
the properties of the coherent state transformation that can acceler-
ate the convergence of ai-QED approaches by specifically examining
the behavior of the Eqs. (1) and (5) projected onto a subspace
of many-electron states that arise from full configuration interac-
tion (FCI) calculations, which is also called a parameterized QED
approach (pQED).18,40,44 In our analysis of these projected Hamilto-
nians, we will take ⟨d̂⟩0 from the ground state wavefunction from a
FCI calculation of the molecule without coupling to the cavity.

A. Perturbation theory for the coupled ground state

Wewill perform perturbation theory on the Pauli±Fierz Hamil-
tonian and on the coherent state Hamiltonian, Eq. (1) or (5),
projected onto a truncated basis of adiabatic electronic states. For
additional details and discussion of the details of this projection and
its use in ai-QED methods, see Refs. 18, 40, 44, and 61. The pro-
jected molecular electronic Hamiltonian has the form (for both the
Pauli±Fierz and coherent-state Hamiltonians)

He ≙∑
α

Eα∣ψα⟩⟨ψα∣, (11)

where Eα and ∣ψα⟩ are the energy eigenvalues of the adiabatic eigen-
states, respectively. In this work, we will obtain these energies and
eigenstates from FCI calculations outside of the cavity, and we will
denote the projected Hamiltonian operators with calligraphic font as
in Eq. (11). The bilinear coupling terms has the form

HPF,blc ≙ −

√
ω

2
∑
αβ

dαβ∣ψα⟩⟨ψβ∣(b̂ ²
+ b̂) (12)

for the Pauli±Fierz Hamiltonian and upon coherent state transfor-
mation, takes the form

HCS,blc ≙ −

√
ω

2
(b̂ ²
+ b̂)⎛⎝∑αβ dαβ∣ψα⟩⟨ψβ∣ − ⟨d̂⟩0∑

α

∣ψα⟩⟨ψα∣⎞⎠,
(13)

where dαβ ≙ ⟨ψα∣d̂∣ψβ⟩ results from dotting the coupling vector into
the transition dipole moment between adiabatic states α and β or

the total dipole moment of state α when α ≙ β. Finally, the dipole
self-energy has the form

HPF,dse ≙
1
2
∑
αβγ

dαγdγβ∣ψα⟩⟨ψβ∣ (14)

for the Pauli±Fierz Hamiltonian and

HCS,dse ≙
1
2

⎡⎢⎢⎢⎢⎣∑αβ dαβ∣ψα⟩⟨ψβ∣ − ⟨d̂ ⟩0∑
α

∣ψα⟩⟨ψα∣⎤⎥⎥⎥⎥⎦
2

(15)

for the coherent state Hamiltonian.
If we identify our zeroth-order Hamiltonian as

H0 ≙ He + Hcav, (16)

we can see that the product states of the adiabatic states ∣ψα⟩
and photon number states ∣m⟩ are appropriate zeroth-order states
satisfying

H0∣ψ(0)N ⟩ ≙ E(0)N ∣ψ(0)N ⟩, (17)

with ∣ψ(0)N ⟩ ≙ ∣ψμN ⟩⊗ ∣mN⟩ and E
(0)
N ≙ EμN +mN(ω + 1

2). In this
notation, we are using Greek letters subscripted by upper-case
Roman letters (e.g. μN) to label the electronic contribution to the
zeroth-order product state N and lower-case Roman letters sub-
scripted by upper-case Roman letters (e.g.mN) to label the photonic
contribution to the zeroth-order product stateN. It follows then that
the perturbation can be regarded as

H
′

≙ Hblc + Hdse, (18)

so that we can write the total the perturbative expansion of the
Pauli±Fierz or coherent state Hamiltonian as

H ≙ H0 + ϵH
′. (19)

Using this partitioning, we can derive perturbative energy correc-
tions with and without application of the coherent state trans-
formation and compare these corrections for the same coupling
parameters.

The first-order energy correction for the Pauli±Fierz Hamilto-
nian is

E
(1)
N,PF ≙ ⟨ψ(0)N ∣H′∣ψ(0)N ⟩ ≙ ⟨ψ(0)N ∣HPF,dse∣ψ(0)N ⟩ ≙ 1

2
∑
γ

dμNγdγμN ,

(20)

and the first-order energy correction for the coherent state Hamilto-
nian is

E
(1)
N,CS ≙ ⟨ψ(0)N ∣H′∣ψ(0)N ⟩ ≙ ⟨ψ(0)N ∣HCS,dse∣ψ(0)N ⟩
≙
1
2
∑
γ

dμNγdγμN − ⟨d̂⟩0dμNμN + 1
2
⟨d̂⟩20. (21)

The bilinear coupling term does not contribute to the first-order
correction since the bra and ket have the same photon occupation
state.
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The second-order correction to Pauli±Fierz energy is given as

E
(2)
N,PF ≙ ∑

M≠N

∣⟨ψ(0)M ∣H′∣ψ(0)N ⟩∣2
E
(0)
N − E

(0)
M

≙ ∑
M≠N

∣⟨ψ(0)M ∣HPF,blc∣ψ(0)N ⟩∣2
E
(0)
N − E

(0)
M

+
∣⟨ψ(0)M ∣HPF,dse∣ψ(0)N ⟩∣2

E
(0)
N − E

(0)
M

≙
ω

2
∑
μM

∣dμMμN√mN + 1∣2
EμN − EμM − ωh̵

+
ω

2
∑
μM

∣dμMμN√mN ∣2
EμN − EμM + ωh̵

+
1
4
∑

μM≠μN

∣∑γ dμMγdγμN ∣2
EμN − EμM

. (22)

In this case, both the bilinear coupling and the dipole self-energy
terms contribute to the second-order energy correction, but we note
that the second line of Eq. (22) does not contain cross terms between
the dipole self-energy and the bilinear coupling because the former
can only contribute when the bra and the ket have the same pho-
ton occupation number, and the latter only contributes when the bra
and ket differ by one photon occupation number. Similarly, for the
second-order correction to the coherent state energy contains both
bilinear coupling and dipole self-energy terms, and the cross terms
between them vanish as well. Here, we will first expand out these
contributions separately as

E
(2)
N,CS blc ≙ ∑

M≠N

∣⟨ψ(0)M ∣HCS,blc∣ψ(0)N ⟩∣2
E
(0)
N − E

(0)
M

≙
ω

2
∑
μM

∣(dμMμN − ⟨d̂ ⟩0δμMμN)√mN + 1∣2
EμN − EμM − ωh̵

+
ω

2
∑
μM

∣(dμMμN − ⟨d̂ ⟩0δμMμN)√mN ∣2
EμN − EμM + ωh̵

(23)

for the bilinear coupling and

E
(2)
N,CS dse ≙ ∑

M≠N

∣⟨ψ(0)M ∣HCS, dse∣ψ(0)N ⟩∣2
E
(0)
N − E

(0)
M

≙
1
4
∑
μN≠μN

∣∑γ dμMγdγμN − ⟨d̂ ⟩0dμMμN ∣2
EμN − EμM

(24)

for the dipole self-energy.
The third-order corrections can be written generically as

E
(3)
N ≙ ∑

P,Q≠N

⟨ψ(0)N ∣H′∣ψ(0)P ⟩⟨ψ(0)P ∣H′∣ψ(0)Q ⟩⟨ψ(0)Q ∣H′∣ψ(0)N ⟩(E(0)N − E
(0)
P )(E(0)N − E

(0)
Q )

− ⟨ψ(0)N ∣H′∣ψ(0)N ⟩∑
M≠N

∣⟨ψ(0)M ∣H′∣ψ(0)N ⟩∣2(E(0)N − E
(0)
M )2 . (25)

We provide more detailed expressions for the third-order correc-
tions, as well as ways to factorize the evaluation of these terms, in
the supplementary material. We can see in the above-mentioned

expressions that the coherent state transformation introduces off-
sets to the matrix elements that arise in the perturbative corrections,
particularly along the diagonal elements of these corrections. A gen-
eral trend is that each additional even valued correction provides
coupling to one additional photonic Fock state. For example, the
second-order correction provides coupling between photonic num-
ber states ∣0⟩ and ∣1⟩, and the fourth-order correction provides
coupling between ∣0⟩, ∣1⟩, and ∣2⟩, and so on. Further details are
provided in the supplementary material.

B. Perturbation theory for cavity photon

We can take a slightly different perspective than given in
Sec. II A and consider the matter subsystem to provide a pertur-
bation on the cavity mode. Here, we will define the zeroth-order
Hamiltonian as only the bare cavity Hamiltonian and will consider
the perturbation as arising strictly through the bilinear coupling.
This will provide insight into the convergence of the photonic sub-
space in practical coupled calculations. We neglect the dipole self-
energy term in this discussion because the dipole self-energy does
not contain photonic operators, it only contains matter operators.

The bare cavity Hamiltonian can be written as

Ĥ0,cav ≙
1
2
p̂
2
+
1
2
ω
2
q̂
2
≙ h̵ω(b̂ ²

b̂ +
1
2
), (26)

where p̂ and q̂ were defined in Eq. (3). Recalling the definitions of

d̂ ≙ λ ⋅ μ̂, where λ ≙
√

1
ϵ0V

ê, we can express the bilinear coupling as

Ĥblc ≙ −

√
ω

2
d̂(b̂ ²

+ b̂) ≙ −ωd̂q̂. (27)

We can now take the point of view that the matter perturbs the cav-
ity Hamiltonian through the bilinear coupling term. In this point of
view, the bare cavity Hamiltonian can be used as the zeroth-order
Hamiltonian satisfying the eigenvalue equation,

Ĥ0,cav∣n(0)⟩ ≙ E(0)n ∣n(0)⟩ ≙ h̵ω(n + 1
2
)∣n(0)⟩, (28)

and the bilinear coupling term can be the perturbation. The per-
turbed Hamiltonian for the cavity mode interacting with a polarized
matter subsystem can then be written as

Ĥcav ≙ Ĥ0,cav + Ĥblc,

Ĥcav ≙
1
2
p̂
2
+
1
2
ω
2
q̂
2
− ωd̂q̂,

Ĥcav ≙
1
2
p̂
2
+
1
2
(ωq̂ − d̂)2 − 1

2
d̂
2,

Ĥcav ≙ h̵ω(b̂ ²
b̂ +

1
2
) −√ω

2
d̂(b̂ ²

+ b̂).
(29)

The perturbation contains a product of d̂ and q̂, where the former is
a matter operator and the latter a photon operator. The exact eigen-
states of this Hamiltonian will self-consistently balance the impact
of the photon field on the charges in the matter subsystem and the
polarization of the photon field by the charges in the matter subsys-
tem. If, however, we replace the operator d̂with an expectation value
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⟨d̂⟩ representing the average polarization of the charges in the mat-
ter subsystem subject to the photon field, an intuitive picture arises
for the photon field subject to an effective potential that arises from
the polarized matter. Here, we can look specifically at the third line
of Eq. (29) and integrate over the electronic degrees of freedom,

Ĥcav ≙
1
2
p̂
2
+
1
2
(ωq̂ − ⟨d̂ ⟩)2 − 1

2
⟨d̂ ⟩2, (30)

where ⟨d̂⟩ in an expectation value in terms of an exact electronic
eigenstate of the coupled system, which of course is not typically
known a priori. We can see that this is simply the original cavity
Hamiltonian displaced from equilibrium by ⟨d̂⟩ and with the total
energy shifted by the constant− 1

2 ⟨d̂ ⟩2. This shiftedHamiltonian will
have the same spectrum of eigenstates as the original Hamiltonian
save for a constant shift of all eigenvalues by − 1

2 ⟨d̂ ⟩2.
Here, we will use perturbative analysis to elucidate how the

coherent state transformation can accelerate the convergence of
practical calculations of the eigenstates of the Pauli±Fierz Hamil-
tonian, where one generally takes as the basis the photon number
states that are eigenstates of the zeroth-orderHamiltonian. Although
the shapes of these zeroth-order states match those of the eigen-
states of the perturbed Hamiltonian, it will require an expansion of a
number of these zeroth-order functions to reproduce the perturbed
eigenstates, and this number will increase with the magnitude of the
displacement of the potential that goes as ⟨d̂⟩.

In particular, let us consider the first- and second-order
correction to photonic state ∣n⟩,

∣n(1)⟩ ≙ −∑
m≠n

⟨m(0)∣ω⟨d̂⟩q̂∣n(0)⟩
E
(0)
n − E

(0)
m

∣m(0)⟩,
∣n(2)⟩ ≙∑

k≠n

∑
n≠n

⟨k(0)∣ω⟨d̂⟩q̂∣m(0)⟩⟨m(0)∣ω⟨d̂⟩q̂∣n(0)⟩
(E(0)n − E

(0)
m )(E(0)n − E

(0)
k
) ∣k(0)⟩. (31)

We note that the position operator q̂ can only couple adjacent
zeroth-order states, that is, only ⟨n(0)∣q̂∣(n ± 1)(0)⟩ are non-zero.
However, we have a contribution to the first-order correction to
state ∣n⟩ that scales linearly with ω⟨d̂⟩ and couples to states adja-
cent to ∣n⟩. The second-order correction scales quadratically with
ω⟨d̂⟩ and brings in coupling to states with ∣(n ± 1)⟩ and ∣(n ± 2)⟩.
This trend will continue to higher orders of correction to the states
and is illustrative that for large values of ω⟨d̂⟩, it will become very
difficult to practically converge calculations using the zeroth-order
photon basis. This echoes the numerical findings of DePrince III and
co-workers36 and Vu et al.41 who found that large numbers of pho-
ton number states were required to converge variational calculations
for polar molecules with strong coupling and for charged molecules
under displacements from the origin, both circumstances where⟨d̂⟩ can become large. We will see that application of the coher-
ent state transformation can, at least in certain cases, diminish the
magnitude of the couplings that necessitate these corrections. We
have also observed that the coherent state transformation can render
ai-QED methods manifestly origin invariant for charged molecules,
and we can examine these perturbative corrections to examine how
this arises.

We can view the coherent state transformation as applying shift
to the position coordinate as follows:

ÛCS q̂ Û
²

CS ≙ q̂ +
⟨d̂⟩0
ω

, (32)

so that we can view the coherent state transformed Hamiltonian for
the cavity coupled to polarized matter as

ÛCSĤcavÛ
²

CS ≙
1
2
p̂
2
+
1
2
(ωq̂ + ⟨d̂ ⟩0 − d̂)2 − 1

2
d̂
2. (33)

If we again average over the electronic degrees of freedom in
the coherent state transformed cavity Hamiltonian, then Eq. (34)
becomes

ÛCSĤcavÛ
²

CS ≈
1
2
p̂
2
+
1
2
(ωq̂ + ⟨d̂ ⟩0 − ⟨d̂ ⟩)2 − 1

2
⟨d̂ ⟩2, (34)

which un-shifts the potential to within the difference between the
expectation value of ⟨d̂⟩0 evaluated with a specific reference func-
tion and the exact expectation values ⟨d̂⟩, which we will denote
δ⟨d⟩ ≙ ⟨d̂⟩ − ⟨d̂⟩0. Inserting the same relationship into the perturba-
tive correction to the states yields

∣n(1)⟩ ≙ −∑
m≠n

⟨m(0)∣ωδ⟨d⟩q̂∣n(0)⟩
E
(0)
n − E

(0)
m

∣m(0)⟩,
∣n(2)⟩ ≙∑

k≠n

∑
m≠n

⟨k(0)∣ωδ⟨d⟩q̂∣m(0)⟩⟨m(0)∣ωδ⟨d⟩q̂∣n(0)⟩(E(0)n − E
(0)
m )(E(0)n − E

(0)
k
) ∣k(0)⟩.

(35)

Thus, while the perturbative corrections in Eq. (31) scale as orders
of ω⟨d̂⟩, the corrections in Eq. (35) scale as orders of ωδ⟨ d̂⟩, which
will tend to be small as long as the cavity coupling does not lead
to changes to the molecular dipole moment that are larger than the
uncoupled dipole moment itself.

To see how the coherent state transformation imparts origin
invariance, recall that d̂ is defined as the lambda vector dotted into
the dipole, d̂ ≙ λ ⋅ μ̂, where the dipole operator μ̂ ≙ ∑i ziri, so we
can rewrite d̂ ≙ λ ⋅∑i ziri. The expectation value is then defined as⟨d̂⟩ ≙ λ ⋅∑i zi⟨ψ∣ri∣ψ⟩, where ψ is the electronic contribution to the
target eigenstate, which is unaffected by the coherent state transfor-
mation since ÛCS acts only on photonic coordinates. While d̂ itself
is not origin invariant if the molecule has net charge, δ⟨d⟩ is origin

invariant. To see this, we will consider the expectation value ⟨d̂ ′⟩
following displacement by Δr,

⟨d̂ ′⟩ ≙ λ ⋅ (∑
i

zi(⟨ψ∣ri∣ψ⟩ + Δr)) ≙ ⟨d̂⟩ + λ ⋅ Δr∑
i

zi, (36)

which shows that ⟨d̂⟩ is itself origin-dependent. Similarly, we will
write ⟨d̂ ′⟩0 following displacement by the same Δr as

⟨d̂ ′⟩0 ≙ λ ⋅ (∑
i

zi(⟨Φ0∣ri∣Φ0⟩ + Δr)) ≙ ⟨d̂⟩0 + λ ⋅ Δr∑
i

zi, (37)

so that we see ⟨d̂⟩0 has the same origin dependence. Finally, we
consider δ⟨d′⟩,
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δ⟨d′⟩ ≙ ⟨d̂⟩ + λ ⋅ Δr∑
i

zi − ⟨d̂⟩0 − λ ⋅ Δr∑
i

zi ≙ ⟨d̂⟩ − ⟨d̂⟩0, (38)

which is origin invariant.

III. COMPUTATIONAL DETAILS

We formulate perturbative corrections to Pauli±Fierz and
coherent state transformed Hamiltonians projected onto a subspace
of adiabatic many-electron states and photonic Fock states. The
adiabatic many-electron states are computed using full configura-
tion interaction (FCI) using the qed-ci package,66 which interfaces
with the psi4 package for standard electron integrals.67,68 We take
variational calculations of the projected Pauli±Fierz Hamiltonian in
a sufficiently large basis of electronic and photonic states (herein
referred to as variational pQED) to be the numerically exact answer
and compare the perturbative corrections to this variational calcula-
tion in all cases. All the variational and perturbative calculations are
also performed using the qed-ci package.We apply these approaches
to the helium hydride cation (HeH+), lithium hydride (LiH), and
hydroxide anion (OH−). We represent the HeH+ system in the cc-
pVQZ69 (the results from cc-pVDZ and cc-pVTZ are shown in the
supplementary material), and we represent LiH in a 6-311G basis
set70 and OH− in a 6-31G basis set. For all variational calcula-
tions, we consider a photonic Fock space with ten number states
(∣0⟩, ∣1⟩, . . . , ∣9⟩); these details are summarized in Table I. A glos-
sary of acronyms used in describing the various perturbative and
variational approaches is presented in Table II.

A. Physical meaning of coupling strengths

We consider a range of coupling strengths quantified by the
magnitude of the fundamental coupling vector λ ranging between

TABLE I. Summary of the orbital basis, size of the adiabatic many-electron basis,
and (for variational calculations) size of the photonic Fock state basis for calculations
presented in the results section.

System Orbital basis Nel Np

HHe+ cc-pVQZ 2880 10
LiH 6±311g 500 10
OH− 6-31G 50 10

0.001 and 0.1 a.u. We can relate the magnitude of this coupling

vector to the cavity volume using the relation λ ≙
√

1
ϵV
≙

√
4π
V
,

where 1
ϵ0
≙ 4π in atomic units. The smallest coupling magnitude of

0.001 a.u. corresponds to a cavity volume of ∼1860 nm3, and the
largest coupling strength of 0.1 a.u. corresponds to a cavity vol-
ume of ∼0.186 nm3. These ranges are specifically explored for the
helium hydride cation system. For the lithium hydride and hydrox-
ide cation, we report results with the magnitude of the coupling
strength fixed at 0.05 a.u., which corresponds to a cavity volume of
∼0.75 nm3.

We can also relate the coupling to an energy scale and com-
pare that to the resonance or cavity energies in each case, where
the energy corresponding to a given coupling strength can be deter-
mined as Ecoupling ≙

√
ω
2 λ ⋅ μ. For the helium hydride system, we

are coupling specifically through the S0 → S2 transition that has a
transition dipole moment along the z axis of 0.8 a.u. Given that
the transition energy is 26 eV, the range of coupling energies is
between 0.015 and 1.5 eV. This puts the relative coupling energy
roughly between 0.06% and 6% of the transition energy for the
helium hydride cation system. For the lithium hydride system, we
are coupling the S0 → S1 transition with a transition dipole moment
of roughly 1 a.u. with a transition energy of 3.28 eV, so the coupling
energy is roughly 0.33 eV, or about 10% of the transition energy.
For the hydroxide anion, we do not couple to any specific transition,
but we find the permanent dipole moment is roughly 0.18 a.u. and
the photon energy is 5.96 eV, so the coupling energy is 0.08 eV or
about 1.4% of the photon energy. For all systems, this could be con-
sidered strong coupling, provided the cavity dissipation energy scale
is less than roughly 3.75 meV (this condition is generally considered
to be reached when the coupling energy scale exceeds one fourth of
the dissipation energy scale), but not ultra-strong coupling, which
requires the coupling energy scale to be on the order of 50% of the
transition energy.17,18

IV. RESULTS

We provide several illustrative numerical examples of the
behavior of the coherent state transformation following the discus-
sion in Secs. II A and II B. In particular, to illustrate the discussion
in Sec. II A, we will consider the second- and third-order perturba-
tive corrections to the ground state energy of the helium hydride ion

TABLE II. Glossary of acronyms used to describe different methodologies used in this work.

pQED(Nel, Np) Variational solution of Eq. (1) projected onto a basis of Nel adiabatic
many electron states and Np photonic Fock states

PF-PT2(Nel) Second-order perturbative approximation to Eq. (1) projected onto a
basis of Nel adiabatic many electron states

PF-PT3(Nel) Third-order perturbative approximation to Eq. (1) projected onto a
basis of Nel adiabatic many electron states

CS-PT2(Nel) Second-order perturbative approximation to Eq. (5) projected onto a
basis of Nel adiabatic many electron states

CS-PT3(Nel) Third-order perturbative approximation to Eq. (5) projected onto a
basis of Nel adiabatic many electron states
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and the lithium hydride molecule. In both cases, we will compare
the resulting ground state estimates to the variational result that we
obtain after projecting the Pauli±Fierz Hamiltonian onto a very large
subspace of electronic states and photonic states, which we will take
to be the exact ground state of the projected Pauli±Fierz Hamilto-
nian. The orbital, many-electron, and photonic Fock basis details for
each system are provided in Sec. III A.

A. Peturbation theory for the coupled ground state

1. Helium hydride cation

We first consider the HeH+ cation coupled to a cavity mode
resonant with the first dipole allowed transition (S0 → S2), which has
a transition dipolemoment oriented along the inter-nuclear axis (the
z axis shown in Fig. 1). We fix the geometry at the equilibrium bond
length found at the (cavity free) FCI/cc-pVTZ level, which is 0.77 Å.
At this geometry, the ground state has a permanent dipole moment
of 1.73 Debye along the z axis, and the S0 → S2 transition energy
has an energy of 26.1 eV. We fix the energy of the cavity mode to
be on resonance with this transition and consider values λz ranging
from 0 to 0.1 a.u. Although these coupling conditions can lead to
the formation of polariton states, in this work, we focus exclusively
on the ground state of the coupled system. Degenerate perturba-
tion theory is required to resolve the degeneracies that will arise
when polariton states are targeted and will be the subject of future
work.

The behavior of the ground-state energies to second- and third-
order of perturbation theory to Eq. (1) (PF-PT2(2880)/cc-pVQZ and
PF-PT3(2880)/cc-pVQZ) and Eq. (5) (CS-PT2(2880)/cc-pVQZ and
CS-PT3(2880)/cc-pVQZ) are shown in Figs. 2 and 3, with errors
reported relative to the exact variational ground state computed
at the pQED(2880,10)/cc-pVQZ level. In the top panel of Fig. 2,
we have Eg(λ) − Eg(0) plotted vs coupling strength, where Eg(λ)
is the energy of the coupled system with λ representing the cou-
pling strength, and Eg(0) is the energy of the uncoupled system.
This plot shows the exact Eg(λ) − Eg(0) from pQED(2880,10)/cc-
pVQZ and the CS and PF formulations of second-order pertur-
bation theory. The energy of the system increases as coupling
between the molecule and the cavity increases; thus, the size of
the perturbation also increases. We observe that both the PT2

FIG. 1. Schematic of HeH+ coupled to a cavity mode polarized along the inter-
nuclear axis (z) and tuned to the first optically allowed transition from S0 → S2 at
∼26 eV.

FIG. 2. Ground state energy from second-order perturbation theory for HeH+ cou-
pled to a cavity photon with hω ≙ 26 eV across a range of coupling strengths. (Top)
Relative energy of the coupled ground state as a function of coupling strength as
computed by a fully converged variational approach to the Pauli±Fierz Hamilto-
nian and by second-order perturbation theory for the Pauli±Fierz and coherent
state Hamiltonians. (Bottom) Error of second-order perturbation theory for the PF
and CS Hamiltonians relative to the fully converged variational calculation as a
function of coupling strength.

results have negligible error when the coupling strength is less than
λz ≈ 0.025 a.u., but starts to depart for stronger coupling
(see Fig. 2, bottom panel). At the larger values of λz , CS-PT2 has
a consistently smaller error compared to PF-PT2. The top panel
of Fig. 3 is similar to Fig. 2 except the former now has the third-
order perturbative approximations to pQED. Again, we see that the
CS-PT3 and PF-PT3 energies have negligible error for small cou-
pling strength and again start to depart for values of lambda larger
than λz ≈ 0.025 a.u., and again, CS-PT3 has consistently smaller
errors than the PF-PT3 results (see Fig. 3, bottom panel).

2. Lithium hydride bond stretch

The LiH ground state potential energy surface is computed
between bond lengths of 1.4 and 2.2 Å coupled to a cavity mode
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FIG. 3. Ground state energy from second-order perturbation theory for HeH+ cou-
pled to a cavity photon with hω ≙ 26 eV across a range of coupling strengths. (Top)
Relative energy of the coupled ground state as a function of coupling strength as
computed by a fully converged variational approach to the Pauli±Fierz Hamilto-
nian and by third-order perturbation theory for the Pauli±Fierz and coherent state
Hamiltonians. (Bottom) Error of third-order perturbation theory for the PF and CS
Hamiltonians relative to the fully converged variational calculation as a function of
coupling strength.

with frequency hωcav ≙ 3.28 eV polarized along the z axis with
λz ≙ 0.05 a.u. (see Fig. 4). We compare PF-PT2(500)/6-311G and
CS-PT2(500)/6-311G to exact variational potential energy surface
[pQED(500,10)/6-311G] shown in Fig. 5, and the PT3 analogs are
compared to the exact variational potential energy surface shown in
Fig. 6.

As with the HHe+ system, the CS-PT2 and CS-PT3 results are
consistently closer to the numerically exact pQED results compared
to the PF-PT2 and PF-PT3 results. It can be seen in Fig. 5 that
the CS-PT2 and PF-PT2 curves are both lower bounds to the exact
variational curve, with the CS-PT2 being closer across the stretch.
Furthermore, we see in Fig. 6 that the CS-PT3 and PF-PT3 curves
are upper bounds to the exact curve, with the CS-PT3 being closer to

FIG. 4. Schematic of the LiH coupled to a cavity mode polarized along the inter-
nuclear axis (z) and tuned to the first optically allowed transition from S0 → S1 at
∼3.28 eV.

the variational curve across the stretch. In Table III, the root mean
squared (RMS) error between the perturbative approaches and the
pQED across the bond length scan are presented. Interestingly, we
see the CS-PT2 result has the smallest RMS error. While the CS-PT3
RMS error is smaller than the PF-PT3 RMS error, we observe that
the PF-PT3 RMS error is slightly larger than the PF-PT2 error just
as the CS-PT3 RMS error is slightly larger than the CS-PT2 RMS
error.

Plots of magnitude and relative errors for the pertur-
bative approaches vs pQED(500,10)/6-311G are shown in the
supplementary material for λz values of 0.01 and 0.05 shown in
Figs. S5 and S6, respectively. The trajectories of the errors shown
in Figs. S5 and S6 show a systematic increase with increasing bond
length, suggesting that the magnitude of the light±matter coupling

FIG. 5. Ground state potential energy surface for LiH coupled to a cavity photon
with hω ≙ 3.28 eV across a range of r values with a coupling strength of 0.05 a.u.
Relative energy of the coupled ground state as a function of bond length computed
by using a fully converged variational approach to the Pauli±Fierz Hamiltonian
and by second-order perturbation theory for the Pauli±Fierz and coherent state
Hamiltonians.
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FIG. 6. Ground state potential energy surface for LiH coupled to a cavity photon
with hω ≙ 3.28 eV across a range of r values with a coupling strength of 0.05 au.
Relative energy of the coupled ground state as a function of bond length computed
by using a fully converged variational approach to the Pauli±Fierz Hamiltonian
and by third-order perturbation theory for the Pauli±Fierz and coherent state
Hamiltonians.

TABLE III. Comparison of mean squared errors for different levels of theory for the LiH
PES under strong coupling. The errors are calculated with respect to pQED(500,10).

Level of theory Root mean squared error (hartrees)

PF-PT2(500) 5.58 ×10−4

PF-PT3(500) 5.97 ×10−4

CS-PT2(500) 2.18 ×10−4

CS-PT3(500) 2.36 ×10−4

increases similarly. This is likely attributable to the monotonic
increases in the magnitude of the dipole moment as the LiH bond
is stretched (see Fig. S7). An important requirement for the validity
of perturbation theory is that the magnitude of the perturbation is
relatively small, and failure of this criterion leads to non-convergent
perturbative series where subsequent orders of perturbation theory
take one further away, rather than closer, to the exact answer. To
investigate if these results are evidence of a non-convergent per-
turbative series, we apply perturbation theory up to ninth order
with and without the coherent state transformation for the same
LiH system at the shortest bond length (1.4 Å) with coupling
strength λz ≙ 0.05 a.u. In the top panel of Fig. 7, we show the
energy error relative to the exact pQED(500,10)/6-311G energy at
each order for PF-PTN and CS-PTN up to N ≙ 9, showing that
both series are systematically converging to the exact answer. In
the bottom panel of Fig. 7, we partition the Nth order energy cor-
rection into bilinear coupling (BLC) and dipole self-energy (DSE)
terms for both the Pauli±Fierz and coherent state Hamiltonians.
Additional details on computing arbitrary orders of perturbation
theory and partitioning the corrections into bilinear coupling and
dipole self-energy terms are given in Eqs. (S24) and (S25) in the
supplementary material. We see that in the progression of energy

FIG. 7. Perturbative corrections for LiH coupled to a cavity photon with hω

≙ 3.28 eV with r fixed at 1.4 Å and with a coupling strength of 0.05 au. The error of
the perturbative energy at a given order for both PF and CS Hamiltonians is plotted
relative to the exact ground state energy from the pQED(500,10)/6-311G level.

errors, the error of (both PF and CS) PT2 and PT3 are quite similar
in magnitude, that the errors of PT4 and PT5 are similar and have
decreased by about an order of magnitude relative to PT2 and PT3,
and that the errors associated with PT6 and PT7 are similar and have
decreased relative to PT4 and PT5. Thus, we see in this system that
PT3 does not provide a substantial reduction in error over PT2, but
PT4 does. This finding is similar to what is found in many chemical
contexts using Mùller±Plesset perturbation theory.71 What is par-
ticularly interesting to see for this case is that for correction orders
1 through 3, the coherent state transformation clearly performs bet-
ter than the same corrections to the Pauli±FierzHamiltonian, but the
perturbative series for the Pauli±Fierz Hamiltonian converges more
rapidly, and so by orders ≥ 6, the Pauli±Fierz Hamiltonian clearly
performs better (and both approaches behave similarly for orders
4 and 5, see Fig. 7, top panel). We hypothesize that the reason for
the better performance of lower orders of CS-PTN is that at these
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lower orders, the advantages of photonic Fock space convergence
afforded by the coherent state transformation are more significant,
whereas for larger perturbative orders, the errors associated with
photonic Fock space truncation in PF-PTN are negligible for the
coupling conditions considered in this work. To see the impact of
photonic Fock space truncation, we can look at the convergence
behavior of full diagonalization of the Pauli±Fierz and coherent state
Hamiltonians under different levels of Fock space truncation with
a saturated basis of adiabatic electronic states, shown graphically
in Fig. S8. We find that for the LiH system, four photonic Fock
states are required to converge the Pauli±Fierz ground state energy
to sub-microhartree errors; three photonic Fock states are required
to converge the ground state energy of the coherent state Hamilto-
nian to sub-microhartree error (see Fig. S8). The coupling between
up to four photonic Fock states will be included in the ground state
correction afforded at the PF-PN6 level, and so we should expect
that errors arising from truncated coupling between photonic Fock
states becomes negligible for orders greater than or equal to six.
Alternatively, PF-PN2 and PF-PN3 for the ground state only per-
mit coupling between two photonic Fock states and PF-PN4 and
PF-PN5 will enable coupling between three photonic Fock states.
The truncation error from full diagonalization of the Pauli±Fierz
Hamiltonian projected onto two photonic Fock states is associated
with an error of roughly a half a millihartree, as shown in Fig.
S8, and the truncation to three Fock states is associated with an
error of tens of microhartrees [see Fig. S8 and Eqs. (S3)±(S7) for
analysis of the third-order terms in terms of photonic Fock state cou-
pling, and see Eqs. (S21)±(S23) for the same analysis of orders four
through six].

B. Perturbation theory for the cavity ground state

To further elucidate the impact of the coherent state transfor-
mation on the convergence of the photonic subspace, we consider
two examples of the matter subsystem perturbing the cavity Hamil-
tonian. In the first example, we revisit the lithium hydride system as
an example of a polar molecule that can strongly perturb the cav-
ity Hamiltonian through bilinear coupling, and we illustrate how
the coherent state transformation can effectively mitigate this per-
turbation. In the second example, we consider the hydroxide anion
as a charged species that has an origin-dependent dipole moment.
This property of charged species can induce very large perturba-
tions to cavity modes when the molecule is displaced away from the
cavity origin, and in the un-transformed representation, can impart
a strong origin dependence in the energy that necessitates a large
photonic Fock spaces to numerically resolve.

1. Lithium hydride

We again consider the LiH molecule within the 6-311G basis
set with a bond length of 1.55 Å coupled to a photon with frequency
hωcav ≙ 3.28 eV (0.1208 hartrees) polarized along the z axis with
λz ≙ 0.2 a.u. We choose a large value of λ to clearly illustrate
the impact of strong coupling on the cavity potential, and the
bond length of 1.55 Å was chosen as the equilibrium bond length
for these cavity conditions. In the top panel of Fig. 8, we illus-
trate the bare cavity potential given by V(q̂) ≙ 1

2ω
2
cavq̂

2 indicated
by the solid black lines and the perturbed potential given by

FIG. 8. Top panel: illustration of the polarization of a cavity mode with ωcav

≙ 3.28 eV through bilinear coupling to the LiH molecule with coupling strength
λz ≙ 0.2 a.u. The unperturbed (solid black) and perturbed (dashed black) poten-
tials are plotted along with the exact ground-state wavefunction for the cavity
mode on the perturbed potential, and its first- and second-order corrections on the
unperturbed potential. Bottom panel: the same system is represented following
application of the coherent state transformation to the cavity Hamiltonian.

V′(q̂) ≙ 1
2ω

2
cavq̂

2
− ωcav⟨d̂⟩q̂ indicated by the dashed black lines. The

large displacement of these potentials is indicative of the magni-
tude of the cavity polarization imparted by the bilinear coupling
to the polar matter subsystem. The expectation value ⟨d̂⟩ is com-
puted at the pQED(500,10)/6-311G level and ⟨d̂⟩0 is computed at the
FCI/6-311G level (see Sec. III A for more details). We plot the exact
ground-state cavity wavefunction for the perturbed system ∣0⟩ on
the perturbed potential (see Fig. 8, top panel). Due to the polariza-
tion induced by the bilinear coupling, the ∣0⟩ state has considerable
coupling to excited zeroth-order states (∣n(0)⟩ with n > 0). We cap-
ture this coupling through the first- and second-order corrections to
state ∣0⟩ in the top panel of Fig. 8, where the contributions ∣0(1)⟩ and∣0(2)⟩ are shown on the unperturbed potential. In particular, these
corrections have the explicit form
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∣0(1)⟩ ≙ ⟨d̂⟩√
2ωcav

∣1(0)⟩,
∣0(2)⟩ ≙ ⟨d̂ ⟩2

2
√
2ωcav

∣2(0)⟩,
(39)

where we have evaluated Eq. (31) analytically to obtain these expres-
sions in terms of ⟨d̂⟩ and ωcav. Numerical values for the first- and
second-order coefficients are presented in Table IV, and we can
visually see that there is considerable contribution from the first-
and second-order corrections owing to the magnitude of the bilin-
ear coupling term. The bottom panel of Fig. 8 shows the perturbed
potential following coherent state transformation, ÛCSV

′(q̂)Û²

CS

≙
1
2(ωcavq̂ + ⟨d̂ ⟩0 − ⟨d̂ ⟩)2 − 1

2 ⟨d̂ ⟩)2, in a dashed black line against
the unperturbed potential in solid black line, and again, we plot
the exact state ∣0⟩ along the transformed perturbed potential and
the first- and second-order corrections (∣0(1)⟩ and ∣0(2)⟩) along
the unperturbed potential. We can clearly see the impact of the
transformation on the location of the minima of the potential,
which is now visibly indiscernible from the minima of the unper-
turbed potential. Similarly, we can see that the first- and second-
order corrections to state ∣0⟩ are vanishingly small following the
transformation (see Fig. 8, bottom panel). The first- and second-
order coefficients can again be evaluated analytically by substituting
δ⟨d⟩ for ⟨d̂⟩ in Eq. (39), and are tabulated in Table IV, where we see
the first-order coefficient is roughly 75 times smaller in magnitude
the second-order coefficient is more than 5000 times smaller inmag-
nitude following the coherent state transformation. This illustrates
how the coherent state transformation can effectively mitigate the
polarization of the cavitymodels by polarmatter that would typically
necessitate a large number of photonic Fock states to recover.

2. Hydroxide anion

To illustrate the ability of coherent state transformation
to ensure numerical origin invariance for energies of charged
molecules, we consider the hydroxide anion displaced 20 Å from
the cavity origin (see Fig. 9). We wish to emphasize that in the
long wavelength limit assumed by the Pauli±Fierz and coherent state
Hamiltonians, the vector potential and electric field associated with
the cavity mode does not have spatial variation, so the energy of the
coupled system should not depend on the placement of the molecule
relative to the cavity origin. Nevertheless, truncation of the photonic
subspace in finding the eigenstates of the Pauli±Fierz Hamiltonian
for charged systems can lead to origin-dependent energies as has
been discussed in several instances in the literature.36,37 We attempt

TABLE IV. Coefficients for first- and second-order corrections to the ground state
cavity wavefunction for the LiH and displaced OH− system with and without coherent
state transformation.

Without transformation With transformation

System c(1) c(2) c(1) c(2)

LiH −9.06 × 10−1 5.80 × 10−1 −1.24 × 10−2 1.08 × 10−4

OH− −2.80 × 100 5.57 × 100 5.11 × 10−4 1.85 × 10−7

FIG. 9. Schematic of OH− displaced from the cavity origin. The cavity mode has
energy of hω ≙ 5.96 eV with λz ≙ 0.05 a.u., polarized along the internuclear axis
of the molecule.

to elucidate this numerical difficulty through the subsequent results
and discussion.

The OH− anion is represented within the 6-31G basis set
with a bond length of 0.9 Å coupled to a photon with frequency
hωcav ≙ 5.96 eV (0.219 hartrees) polarized along the z axis with
λz ≙ 0.05 a.u. We note that this field does not couple directly to a
transition in the molecule; while there is a dipole allowed transition
at 5.96 eV, in this coordinate system, it does not have a transition
dipole moment along the polarization axis of the field. There-
fore, the coupling occurs through the permanent dipole moment
of the molecule. The expectation value ⟨d̂⟩ is computed at the
pQED(50,10)/6-31G level, and ⟨d̂⟩0 is computed at the FCI/6-31G
level. The top panel of Fig. 10 shows the unperturbed cavity poten-
tial (solid black line), the perturbed potential when the molecule is
at the cavity origin (dashed±dotted black line), and the perturbed
potential when the molecule is displaced by 20 Å from the cav-
ity origin (dashed black line). We can see the profound influence
that the origin-dependent dipole moments have on the displacement
of the perturbed potential. While the perturbed potential from the
molecule at the cavity origin is almost indiscernible from the unper-
turbed potential at this coupling strength, the perturbed potential
from the displaced molecule is dramatically displaced. In other
words, the hydroxide anion provides some intrinsic polarization of
the cavity state and also has a polarizing effect that is proportional to
its displacement from the cavity origin owing to its origin-dependent
dipole moment. For this particular system (i.e. the cavity coupling
strength and the displacement), the polarization arising from the
molecular displacement is much more dramatic. We also see that
this polarization imparts even stronger coupling between the ground
state wavefunction of the perturbed cavity and excited zeroth-order
states (see the top panel of Fig. 10). However, application of the
coherent state transformation completely eliminates the polarization
that arises from displacement from the cavity origin and (similar to
what was demonstrated for LiH) results in cavity polarization that
is proportional to δ⟨ d̂⟩. Accordingly, we see that the transformed
potential aligns closely with the unperturbed potential, and the cou-
pling between the cavity ground state and excited zeroth-order states
is almost entirely eliminated (see the bottom panel of Fig. 10). In
this case, we see even more dramatic reduction in the magnitude
of the first- and second-order coefficients following coherent state
transformation: the first-order coefficient is more than 5000 times
smaller in magnitude and the second-order coefficient is more than
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FIG. 10. Top panel: illustration of the polarization of a cavity mode with ωcav

≙ 5.96 eV through bilinear coupling to the OH− anion with coupling strength
λz ≙ 0.05 a.u. with and without displacement of the anion from the cavity ori-
gin. The unperturbed (solid black) and perturbed potentials that arise when the
molecule shares the same origin as the cavity (dashed±dotted black) and when
it is displaced from the cavity origin (dashed black) are plotted along with the
exact ground-state wavefunction for the cavity mode on the perturbed potential,
and its first- and second-order corrections on the unperturbed potential. Bottom
panel: the same system is represented following application of the coherent state
transformation to the cavity Hamiltonian.

seven orders of magnitude times smaller following the coherent state
transformation.

V. CONCLUDING REMARKS

In this work, we utilized perturbation theory to elucidate favor-
able computational properties, namely, faster convergence of the
photonic Fock space and robustly origin-invariant energies, which
arise when coherent state transformation is applied to ab initioQED
methodologies. In particular, we found that applying the coherent
state transformation yields second- and third-order estimates to the
ground state energy that are in consistently better agreement with

exact ground state across a range of coupling strengths compared
to the same orders without transformation of the Hamiltonian. We
applied arbitrary order perturbation theory for one test system with
the largest relative coupling energy scale to confirm that the pertur-
bative series for both the Pauli±Fierz Hamiltonian and its coherent
state transformed analog converged to the exact answer. This analy-
sis showed that, for this system, the advantage of the coherent state
transformation was only a feature of low orders of correction and
that perturbative corrections of order 6 and higher to the Pauli±Fierz
Hamiltonian gave better agreement with the exact ground state. We
hypothesized that this behavior is consistent with the coherent state
transformation primarily enhancing the convergence with respect
to the photonic subspace and that perturbative orders of 6 and
higher to the Pauli±Fierz Hamiltonian effectively saturate the pho-
tonic Fock space under these coupling conditions and for the ground
state. It remains an open question if this behavior persists into the
ultra-strong coupling regime or if it applies to polariton states where
degenerate perturbation theory would be required. Consistent with
our hypothesis about photonic Fock space convergence, when we
treated the bilinear coupling between electron and photon degrees of
freedom as a perturbation to the cavity Hamiltonian, we found that
the coherent state transformation decouples the systems to within
a magnitude that is related to the error in the reference estimate of
the dipole moment expectation value that parameterizes the trans-
formation for a target coupled state. We showed that this error is
manifestly origin invariant, and so this result sheds light on why the
coherent state transformation accelerates photon convergence and
restores origin invariance in ab initio QED calculations.

SUPPLEMENTARY MATERIAL

The supplementary material contains detailed third order cor-
rections to the ground state, including factorized expressions for
efficient computational evaluation; analysis of fourth-, fifth-, and
sixth-order energy corrections in terms of photonic Fock state cou-
pling; key equations for arbitrary order perturbation theory; and
additional supporting figures illustrating the behavior of different
perturbative corrections to the systems provided in the main text,
as well as the photonic Fock space truncation error for the lithium
hydride system.
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Open-source implementation of the methods used for
the results presented within can be accessed in the following
GitHub repository: https://github.com/mapol-chem/qed-ci/tree/
jcp_submission.

The data that support the findings of this study are available
from the corresponding author upon reasonable request; json
data corresponding to the results in Sec. IV A may be found
https://github.com/FoleyLab/data_repository/; specifically for
HeH+ data here: https://github.com/FoleyLab/data_repository/tree
/main/Mapol/HHep/perturbation_theory and for LiH data here:
https://github.com/FoleyLab/data_repository/tree/main/Mapol/LiH
/perturbation_theory. An example Jupyter notebook produc-
ing the figures and coefficients used in results Sec. IV B may
be found here: https://github.com/FoleyLab/SCQED-PCQED
/blob/perturbation_theory/src/OHminus_PT_for_Cavity.ipynb.
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