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ABSTRACT

Molecules under strong or ultra-strong light-matter coupling present an intriguing route to modify chemical structure, properties, and reac-
tivity. A rigorous theoretical treatment of such systems requires handling matter and photon degrees of freedom on an equal quantum
mechanical footing. In the regime of molecular electronic strong or ultra-strong coupling to one or a few molecules, it is desirable to treat the
molecular electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach referred to as ab initio cavity
quantum electrodynamics (ai-QED), where the photon degrees of freedom are treated at the level of cavity QED. We analyze two comple-
mentary approaches to ai-QED: (1) a parameterized ai-QED, a two-step approach where the matter degrees of freedom are computed using
existing electronic structure theories, enabling the construction of rigorous ai-QED Hamiltonians in a basis of many-electron eigenstates, and
(2) self-consistent ai-QED, a one-step approach where electronic structure methods are generalized to include coupling between electronic
and photon degrees of freedom. Although these approaches are equivalent in their exact limits, we identify a disparity between the projec-
tion of the two-body dipole self-energy operator that appears in the parameterized approach and its exact counterpart in the self-consistent
approach. We provide a theoretical argument that this disparity resolves only under the limit of a complete orbital basis and a complete
many-electron basis for the projection. We present numerical results highlighting this disparity and its resolution in a particularly simple
molecular system of helium hydride cation, where it is possible to approach these two complete basis limits simultaneously. In this same
helium hydride system, we examine and compare the practical issue of the computational cost required to converge each approach toward the
complete orbital and many-electron bases limit. Finally, we assess the aspect of photonic convergence for polar and charged species, finding
comparable behavior between parameterized and self-consistent approaches.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0230565
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. INTRODUCTION

Strong interactions between molecular electronic and pho-
tonic degrees of freedom (i.e., electronic strong and ultra-strong
coupling) can fundamentally alter chemical structure, reactivity,
and phenomenology. >’ Predictive theoretical and computational
models for molecules under electronic strong coupling must capture
the quantum nature of electronic and photonic degrees of freedom.
In the limit of molecular electronic strong or ultra-strong coupling
to one or a few molecules, it is desirable to treat the molecular
electronic degrees of freedom using the tools of ab initio quantum

chemistry, yielding an approach referred to as ab initio cavity
quantum electrodynamics (ai-QED), where the photon degrees of
freedom are treated at the level of cavity quantum electrodynamics.
Two complementary approaches have emerged for ai-QED: (1)
parameterized CQED*"""*” (pQED), a two-step approach where the
matter degrees of freedom are computed using existing electronic
structure theories, enabling one to build rigorous ai-QED Hamilto-
nians in a basis of many-electron eigenstates, and (2) self-consistent
CQED'"*! (scQED), a one-step approach where electronic struc-
ture methods are generalized to include coupling between electrons
and photon degrees of freedom.
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Although these approaches are equivalent in their exact limits,
it is practically impossible to reach these exact limits for the vast
majority of physically relevant systems. Outside their exact limits,
the variety of approximations inherent in electronic structure
calculations makes it quite difficult to assess these two approaches
on equal footing. In this work, we attempt to provide a fair assess-
ment of these two approaches based upon simple analysis of their
underlying formalisms and through comparable numerical results
approaching exact limits. To this end, we implement two approaches
to pQED and scQED using full configuration interaction (FCI) to
parameterize the former and a self-consistent QED-FCI scheme
for the latter. Analysis of the formalism of both approaches shows
that these approaches are indeed equivalent in the limit of a
complete orbital and many-electron basis, but have a key disparity
in a quadratic light-matter coupling term, known as the dipole
self-energy, outside this limit. While scQED utilizes the exact form
of the dipole self-energy operator in a given orbital basis, the pro-
jected dipole self-energy that arises in pQED is inexact, except for in
a complete orbital and many-electron basis. We present numerical
results highlighting this disparity and its resolution in a particu-
larly simple molecular system of helium hydride cation, where it is
possible to approach these two complete basis limits simultane-
ously. In this same helium hydride system, we examine and compare
the practical issue of computational cost required to converge each
approach toward the complete orbital and many-electron bases
limit. Finally, we assess the aspect of photonic convergence for
polar and charged species, finding comparable behavior between
parameterized and self-consistent approaches.

Il. THEORY

We will discuss two complementary approaches to ai-QED
that seek to find accurate eigenstates of the Pauli-Fierz (PF)
Hamiltonian™”’ represented in the length gauge and within the
dipole and Born-Oppenheimer approximations. Here, we write
down the Pauli-Fierz Hamiltonian for a molecular system coupled
to a single photonic mode in atomic units as

e = He v @bb -\ /24T +B) + 2% 1)
In Eq. (1), H, is the standard electronic Hamiltonian within the
Born-Oppenheimer approximation;”* wb b is the bare Hamiltonian
for the photon mode, where w represents the frequency; and Al
and b are raising and lowering operators for the photon mode,
respectively. The final two terms capture interactions between the
photonic and electronic degrees of freedom. In these interaction
terms, known as the bilinear coupling and the quadratic dipole self-
energy, d = A - ji couples the field associated with the photon mode
to the molecular dipole operator.™

The formulation of several ai-QED methods (e.q. QED-
Hartree-Fock, QED-CC, and QED-CASCI) has been performed
after transforming Eq. (1) to the coherent-state basis, """

A

Bes = He+ b'b =\ [S1d~ (316 + ) + %[dc (@) @)
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This follows from a unitary transformation of the Pauli-Fierz
Hamiltonian,

Hcs = UcsHprUlsg, (3)
where the unitary coherent state transformation is defined as
Ucs = exp (z(lAaJr - b)) (4)
The parameter z may be computed as

z= ﬂ (5)

V2w

Often, (d) is computed for a given electronic reference state, for
example, in the QED-HF reference in scQED formulations.”°
Here, we will also investigate the CS transformation of the projected
Pauli-Fierz Hamiltonian for a pQED formulation, where (d) will
be computed in the adiabatic many-electron basis. We note that
within the Born-Oppenheimer approximation, the nuclear contri-
bution in (d) exactly cancels with the nuclear contribution to d,
hence we write Eq. (2) with d. and (de) to denote only the electronic
contribution to both terms.

We can approach the solution to Egs. (1) or (2) in two com-
plementary ways. The pQED approach will first find the adiabatic
eigenstates that define He|yy(R)) = Eo(R)|wa(R)) using standard
quantum chemistry tools, where R denotes the coordinates of the
nuclei, which are fixed within the Born-Oppenheimer approxi-
mation. In a subsequent step, one builds a Hamiltonian matrix
from Egs. (1) or (2) in the basis of direct products between these
adiabatic eigenstates and photonic Fock states. The approach
denoted scQED will seek the eigenstates of Egs. (1) or (2) directly
in a product basis of many-electron states (Slater determinants in
this work) and photonic Fock states.

Both approaches can reach an exact limit. For pQED, the exact
limit can be achieved when one builds Egs. (1) or (2) in the com-
plete basis of exact adiabatic eigenstates and photonic Fock states.
Of course, it is practically impossible to reach this limit for most
molecular systems, so a practical approach will consider building
the pQED Hamiltonian in a truncated basis of many-electron states.
In practice, this basis of adiabatic eigenstates is not only incom-
plete, but the states themselves are inexact because they results
from an approximate quantum chemistry method. The approxima-
tions inherent in practical quantum chemistry calculations include
truncation of the single-particle basis (e.g., using a finite number of
Gaussian-type orbital basis functions), and truncation of the many-
electron space through, for example, truncation of the excitation
rank in a configuration interaction (CI) ansatz. The exact limit of
the scQED approach includes a complete single-particle basis for
the electronic subsystem, a complete many-electron basis (through,
e.g., an FCI ansatz that includes all excited electronic configura-
tions, often represented as Slater determinants or configuration state
functions), and a complete photonic Fock space, which is also not
practical in general. Our goal in this current paper is to study the
convergence properties of both methods toward their exact limits
and to point out quantitative differences that arise outside of the
complete basis limit.
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A. pQED

In the pQED approach, we can build Egs. (1) or (2) in a prod-
uct basis of adiabatic electronic states |y, ) and photonic Fock states
|n) corresponding to n photons in the cavity mode, such that the
coupled eigenstates can be expressed as linear combinations of these
product basis states,

Yep) =2 D Canlyre) @ [1). (6)

Here, the dependence of the adiabatic many-electron states on the
nuclear coordinate R is implied. We briefly review the expressions
that arise in the pQED approach leading to a matrix representation
of Eq. (1) in a truncated basis of adiabatic electronic states; the salient
differences that arise in the matrix form of Eq. (2) are pointed out at
the end of this development.

We define the following projection operator:

A

P=), [va){val 7

=M=

which defines the truncation of the full electronic Hilbert space to
a subspace of N states. We can also define the complementary
projector Q, such that these two operators obey

i=P+ 9, (8)

where the resolution of the identity is satisfied by the complete
electronic Hilbert space. Following the discussion by Huo and
co-workers, we can think of the truncated version of Eq. (1) as aris-
ing from transformation with a projected Power-Zienau-Woolley
(PZW) operator from the minimal coupling Hamiltonian.”” The
projected PZW operator has the form

Upzw = e 1 FTA, 9)

where PP denotes the matter dipole operator projected onto the
electronic subspace and A is the vector potential operator, which

J

[E+D d 0
d E+D+Q V2
0 V2d  E+D+20
Hpr =
Here, the elements of E are given by
Eanpm = ("|(Wa|7'le\1//ﬁ)|m) Eq aﬁaﬂﬂh (15)

the elements of D are

Dan,ﬁm = <”|<1//0¢|Hdse|1//ﬁ |m Z daydyﬁ6nm, (16)
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only acts on the photonic subspace and is not projected. From this
perspective, we can write the projected Hamiltonian as follows:

HPF = He + Hcav + Hblc + Hdse) (10)

where the calligraphic operators denote they have been projected
into a subspace defined by P, that is, H = PHP. It is important to
note that the projector only acts on matter operators, so we need
only consider the impact of truncation on He, Hy, and Hyge. The
projected molecular electronic Hamiltonian has the form

A A A Nél
PHeP = ) Eolya)(Yal, (11)

where E, = E,(R) are the energy eigenvalues of the adiabatic
eigenstates noted in Eq. (6). The bilinear coupling terms has the form

PP = -\ [5 Pap(b' +b) = - ‘;)Nzﬁ deglyed (b + ),

(12)

where dyg = (1//0[|(3|1[/ﬁ> results from dotting the coupling vector into
the transition dipole moment between adiabatic states o and f
or the total dipole moment of state « when a = f8; this quantity
also depends explicitly on the nuclear coordinates, but we are sup-
pressing the dependence on R in our notation for simplicity. The
transition dipole moments are purely electronic, while the total
dipole moments have both an electronic and nuclear contribution.
Finally, the dipole self-energy has the form

Pl P = - S PdPPdP = Z daydyp| ) (5. (13)
If we build a matrix from the projected Pauli-Fierz matrix (here,

denoted Hpr) in the basis given in Eq. (6), we have the general
structure,

0 0
0
0
(14)
E+D+ (N, -2)Q (N, -1)d
V(N,-1)d  E+D+(N,-1)Q|

the elements of d are

\/7d0(,3 Nnm; (17)

where fum = \/m + 18y,mr1 + /Mbym—1. The elements of Q are

dan,ﬂm = <n|(v/“|/HblC|V/ﬁ |m

Qanpm = {nl{Yal Heavlyp)m) = mwdyp. (18)
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The structure of the matrix in Eq. (14) reflects the Kronecker delta
functions that appear in the respective block equations. The struc-
ture of the matrix of the projected version of Eq. (2) is comparable
to that in Eq. (14), with the only substantive difference being that
the matrix elements of Pd P are offset by (d), i.c., dop - (ﬁ)éa,;. We

have a choice in what state to compute (d), and in this work, we
choose the ground state of the uncoupled system unless otherwise
specified.

B. scQED

In the self-consistent approach, one adapts their quantum
chemistry method to directly include the terms beyond H. in Egs. (1)
or (2). In this approach, we begin with the exact matter operators,

J

[A+A G 0
G A+A+Q V2G
0 V2G  A+A+20
Hpr_c1 = .
0 0 0
| 0 0 0
The elements of A are
Apngm = (n|{@]|He|D])|m) = (OF|He|DF ) S (21)

The elements of A are
1 .
Apnjm = 5("I<<D?Id2|®f)lfn)

1 A N
= 2 ((f1de>107) + 24 Of de|0F) + oy )Sums (22)
where aie denotes the electronic contribution to d and dn denotes the
nuclear contribution. The matrix elements of G are

Gunm = —\/ 5 (nl{®]] d (b7 + b)|®f)|m)

(0] Y- (23)
Finally, the elements of Q are given by

Qg = (1| (D |wb T b|©F)|m) = mwdy&um. (24)
More explicit expressions for these matrix elements, as well as
those for the elements corresponding to Eq. (2), can be found in

Ref. 44,

C. Dipole self-energy in pQED vs scQED

A key difference between practical implementations of pQED
and scQED resides in the treatment of the dipole self-energy,

ARTICLE pubs.aip.org/aip/jcp

which will be denoted in an ordinary font, not a calligraphic font
like the projected matter operators in Subsection II A.

An scQED approach can be formulated based on the following
configuration interaction ansatz for the mixed electronic-photonic
eigenstates:

Wep) =2 37 Cral®1) ® |n), (19)
n I

where |®;) represents an electronic Slater determinant, |n) is a
photon-number state, and Cy,, is an expansion coefficient.** Then,
an scQED approach can be formulated as a matrix diagonalization
problem, where Egs. (1) or (2) is built in the basis of product states in
Eq. (19). The matrix representation of Eq. (1) (here denoted Hpg.cr)
has a similar structure as Eq. (14),

0 0
0 0
0 0

(20)

(Np -1)G
A+A+ (N, -1)Q]

A+A+ (N, -2)Q

V(N -G

specifically arising from the product of electronic operators
in oie 2,

In the scQED approach, we are not starting with any specific
state truncation in mind, and so our scQED Hamiltonian is written
in terms of exact electronic operators. In the first quantization, we
can expand cfe 2 as

de* =3 de(i) de(j) + 3 [de(D)], (25)

i#j i

where i and j represent different electronic coordinates; hence we
see that the dipole self-energy operator contains both a one-electron
contribution and a two-electron contribution. The one-electron
contribution can be recognized as the negative of the quadrupole
operator multiplied by coupling vector components. A practical
scQED approach will depend on introducing an orbital basis (e.g.,
an orthonormal spin orbital basis). In this case, we can write the
right-hand side of Eq. (25) in second-quantized notation as

de’ =Y dpgdriitllasag " Qpodthig, (26)
pars Pq

where &' and 4 represent fermionic creation and annihilation oper-
ators, respectively. The symbols dypg and Q,, represent modified
electric dipole and electric quadrupole integrals, respectively.”* We
can see that this form of the dipole self-energy operator employed
in the scQED approach maintains the exact structure to within the
discretization error introduced by a finite orbital basis.

£2:00: 12 ¥20Z 49qUIaAON €1
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Let us turn to the projected dipole self-energy operator that
arises in pQED, which as we saw in Eq. (13), containing a product of
projected modified dipole operators,

Ne’ A A
PdePPdeP =) |ya)(aldelyy){yylve) (volde|ys) {ysl
aydp

= 5 (W) (Weldelyy) (wylde ) ()

ayp
N
=2 duydyplya)(ysl, (27)
ayp
A A A A A A NE’
Pd. PPd.P = Z da,,dy5|1//,,,)(1///;|. (28)
ayp

We note that we can express Eq. (28) in the same orbital basis as in
Eq. (26) by noting that the adiabatic electronic states can be written
as a linear expansion of Slater determinants as

lya) = > al®r), (29)

I

where each |®;) can be written as an antisymmetrized product of
canonical molecular orbitals. These Slater determinants include the
Hartree-Fock reference and all possible number conserving excita-
tions from it. We can then denote the matrix elements dqg in this
adiabatic basis as

(aldelyp) = > cf i {@ilde|®y) = 7 3" ¢ p(Di]afiag|®))dpg, (30)
7 7

where the matrix elements (<D1|&; a4|®@;) can be evaluated using the
Slater-Condon rules.”*® In general, these matrix elements will be
non-zero only if determinants |®;) and |®;) differ in the occupation
of zero or one orbitals. With this expression for the matrix elements
of d. in the adiabatic basis in terms of molecular orbitals in mind,
we can express the product of matrix elements appearing in Eq. (28)
as

daydys = 3 3" ¢f ) ek (Dir]aag alas
IJK pqrs

;) (D

Ok )dpgdrs.  (31)

Notably, the projected dipole self-energy is missing the
quadrupole terms that are present in the exact dipole self-energy
operator. Therefore, in addition to the discretization error that arises
from a finite orbital basis, the exact structure of the dipole self-
energy is lost upon projection onto an incomplete electronic sub-
space. We will see that this generally leads to a different variational
problem, whereby the pQED energies can converge to different
solutions than the scQED approach.

We now show that this difference resolves itself in the limit
of a complete orbital and many-electron basis. First, we will show
that the quadrupole term in the exact dipole self-energy operator
vanishes in the limit of a complete orbital basis. As a first step, we
utilize the anticommutation relations in the two-electron part of
Eq. (26),

ARTICLE pubs.aip.org/aip/jcp

> dpgdrsity] ity = =3 dpqdrsi[Ogr — gt} s

pqrs pqrs
=3y dritlas - dprdrgihag.  (32)
Pq rs pqr

We can now substitute the last line of Eq. (32) into Eq. (26),

de? =3 dpgthag> drsitlag - > (Z dprddrg + qu)a;aq. (33)
pPq rs pPq r

As a second step, we can insert a resolution of the identity into
>, dprdrg when the orbital basis is complete, which gives

> dprdrg = ~Qpos (34)

which means that when the orbital basis is complete, the quadrupole
contribution to the dipole self-energy vanishes, and we have

de = dpgithagy. dysitl . (35)
pq rs

Finally, we note that in the pQED approach, when the dipole self-
energy is projected onto an incomplete electronic subspace, the
product of d operators is replaced by the product of matrix ele-
ments of those operators. However, in the limit that the electronic
subspace is complete, we have P = 1 and we resolve the projected
dipole self-energy into a product of d operators,

Pd. PPd. P = ded.. (36)

Therefore, we conclude that the exact and projected dipole self-
energy operators agree in the limit that both the complete orbital
and many-electron basis limits have been reached.

Illl. COMPUTATIONAL DETAILS

The selection of model systems for comparing the convergence
behavior of pQED and scQED approaches includes a two-electron
system (helium hydride cation, HeH"), a four electron system
(lithium hydride, LiH) that is neutral but polar, and a ten electron
system (hydroxide anion, OH™); for all cases, we consider closed-
shell singlet states. We represent the HeH" system in the cc-pVXZ*
basis sets with X € D, T, Q to systematically approach the complete
orbital basis limit; we represent LiH in a 6-311G basis set®” and OH™
in a 6-31G basis set. We perform all calculations, including comput-
ing the adiabatic many electron states and dipole matrix elements for
PQED calculations, and the scQED calculations, utilizing the qed-ci
package developed by the authors,”" which obtains electron integrals
through the Psi4Numpy interface with the Psi4 quantum chemistry
package.”*’

A glossary of abbreviations and terms used to discuss the results
is presented in Table I.
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TABLE 1. Glossary of acronyms used to describe different methodologies used in this
work.

pQED

General approach where Egs. (1) or (2) are
built in a product basis of adiabatic electronic
states and photonic Fock states

scQED General approach where Egs. (1) or (2) are
built in a product basis of slater determinants

and photonic Fock states

pPF(Ne, Np) Projection of Eq. (1) onto a basis of N
adiabatic many electron states, including the
electronic ground state, and N, photonic

Fock states

PE-FCI-N, Self-consistent variational solution to Eq. (1)
in a product basis of all excited slater determi-

nants and N}, photonic Fock states

PCS(Nel, Np) Projection of Eq. (2) onto a basis of N
adiabatic many electron states, including the
electronic ground state, and N, photonic

Fock states

CS-FCI-N, Self-consistent variational solution to Eq. (2)
in a product basis of all excited Slater deter-

minants and N}, photonic Fock states

pRabi(Ne, Np) Projection of Eq. (1) without the dipole self-
energy term onto a basis of N adiabatic
many electron states, including the electronic

ground state, and Ny photonic Fock states

Rabi-FCI-Nj Self-consistent variational solution to Eq. (1)
without the dipole self-energy in a product
basis of all excited Slater determinants and Np
photonic Fock states

IV. RESULTS

A. Helium hydride ion (HeH")

HeH" is a two-electron system shown in Fig. 1 that has a per-
manent ground-state dipole moment and a dipole-allowed optical

hw =26eV,A=(0,0,4,)a.u.

s

é
—

FIG. 1. Schematic of HeH* coupled to a cavity mode polarized along the internu-
clear axis (z) and tuned to the first optically allowed transition from Sy — S; at
~26 eV.

ARTICLE pubs.aip.org/aip/jcp

TABLE II. Comparison of Rabi splitting as predicted by PF-FCI-10/cc-pVXZ and
pPF(Ng, 10)/cc-pVXZ methods for HHet when hiw = 26 eV and A, = 0.1 a.u. The
error reported in meV is defined as the Rabi splitting predicted by the pPF approach
minus the Rabi splitting predicted by the PF-FCI approach.

Rabi splitting (eV)

Basis set PF-FCI pPF Error (meV)
cc-pVDZ 2.922 2.905 -17.26
cc-pVTZ 3.033 3.026 -7.64
cc-pvVQZ 3.041 3.037 —-4.76

transition (So — S, with transition energy of 26.1 eV), which will
permit us to study the behavior of the dipole self-energy on the
ground and polariton states using scQED and pQED approaches as
we approach the complete basis limit. We optimize the geometry of
this system at the FCI/cc-pVTZ level; at this level, the equilibrium
bond length is ~0.776 A and the dipole moment has a magnitude of
1.73 D along the internuclear axis. We fix the nuclei of this system so
that its center of mass resides at the origin of the cavity coordinate
system for all calculations. We study the ground state and polariton
states at the PF-FCI and pPF levels using cc-pVXZ basis sets, where
Xis D, T, and Q, to progress toward the complete orbital basis limit
(Table I1).

We first report the absolute energy error of the ground state
energy as computed by pPF(Ng, 10) relative to PF-FCI-10 for each
basis set, where N¢ is the number of many-electron basis states
used to parameterize the pPF Hamiltonian (see Fig. 2). We find
that Np = 10 is more than sufficient to converge the photonic Fock
space and so PF-FCI-10 provides the exact energies for this system
in a given orbital basis. We see that the energy error decreases
as we increase N in a given orbital basis and also decreases
with increasing size of the orbital basis. The energy error of
PPF(Nel, 10)/cc-pVDZ converges to ~10 microhartrees in the limit
that all the FCI states are used to parameterize the Hamiltonian,
while the energy error of pPF(N, 10)/cc-pVQZ converges to

—&— pPF(Ne/10)/cc-pVDZ
10-3 4 —&— pPF(Ne;,10)/cc-pVTZ
=5 —&— pPF(Ne,10)/cc-pvVQZ
: E_B\S\S_E_E-E_B—E_&EFE—E—E—E—E—E—E—E—E
O
8
t: 10“4,
m
8
—
&
g 10-5
10-¢

20 40 60 80 100
% Of Total Electronic States

FIG. 2. Absolute error of the pPF(Ng, 10) ground state energy relative to the
PF-FCI-10 ground state energy computed within the cc-pVDZ, cc-pVTZ, and
cc-pVQZ basis sets, where we plot this error as a function of the percentage
of the FCI electronic states used to parameterize the pPF(Ng, 10) method. The
photon frequency in each case is tuned to the Sy — S; transition, and A is fixed at
0.02 a.u.

J. Chem. Phys. 161, 174105 (2024); doi: 10.1063/5.0230565
© Author(s) 2024

161, 174105-6

€2:00:1. 20T J8quisAoN g1



The Journal

of Chemical Physics

0.1 microhartrees in the comparable limit (see Fig. 2). These results
are consistent with the argument that the projected dipole self-
energy approaches the exact dipole self-energy in the limit that both
the orbital and many-electron basis are complete. We also note
that the fraction of electronic states needed for energy convergence
increases from around 50% in cc-pVDZ to 80% in cc-pVQZ.

Similarly, in Fig. 3, the curves represent the absolute energy
error vs coupling strength of the pPF(N,, 10) ground state ener-
gies in each basis set, where we have fixed N¢ at the value
where we observed the energy converge in Fig. 2. All the methods
show errors of less than a microhartree for coupling strengths
smaller than ~0.01 a.u. but show increasing errors as the coupling
strength increases. For pPF(2880, 10)/cc-pVQZ, we see a micro-
hartree error with the largest coupling strength (A, = 0.1), and we
see ~100 microhartree error for pPF(60, 10)/cc-pVDZ at this cou-
pling strength. Because the dipole self-energy is quadratic in the
coupling strength, we expect to see that the disparity between pQED
and scQED will become more dramatic as the coupling strength
increases. The progression shown in Fig. 3 shows that differences
between the exact and projected dipole self-energy operators have
not been fully resolved even when using a cc-pVQZ orbital basis and
2880 many-electron states. In particular, this arises because the state-
ment ;7 dprdrg = —Qpq does not hold, meaning the one electron
residual of Eq. (30) does not vanish. We compute the magnitude
of this residual by tracing both the Q matrix and the product of d
matrices against the converged one electron reduced density matrix
for the ground state of the PF-FCI-10 Hamiltonians in Fig. 4. Indeed,
we see that this residual increases quadratically with A, but also
converges toward zero as we approach the complete basis limit.
There is still a non-zero residual for the cc-pVQZ results, so the
complete basis limit has not been reached in this case.

In Figs. 5-7, we show both ground state and polariton excita-
tion energies of the HeH" system computed in all three basis sets
with the pPF and PF-FCI approaches for varying values of coupling

Energy Error (eV)

-~ pPF(60,10)/cc-pVDZ

7
16 —— pPF(468,10)/cc-pVTZ
—=— pPF(2880,10)/cc-pVQZ
10-8 T . -
0.000 0.025 0.050 0.075 0.100

Coupling Strength (atomic units)

FIG. 3. Absolute error of the ground state energy computed by pPF(Ne, 10) relative
to PF-FCI-10 computed within the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets
as a function of coupling strength. For each pPF(Ne;, 10) result, we choose N
based on the smallest number of electronic states for which the energy error was
converged with A, = 0.02 a.u., as shown in Fig. 2.
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FIG. 4. Ground state residual of the one electron contribution to the dipole self-
energy in Eq. (30) as a function of coupling strength for different basis set sizes.
The residual rigorously vanishes in the complete basis limit, and we see this trend
numerically as we progress from cc-pVDZ through cc-pVQZ.

strength. The ground state energies are plotted relative to the uncou-
pled ground state Eg(1) — Eg(A = 0), where the uncoupled ground
state energy is equivalent to the full configuration interaction ground
state energy in a given basis set. The excitation energies are defined
as the energy of a polariton state at a given coupling strength
minus the ground state energy at the same coupling strength,
Epo1(A) — Eg(1). An interesting feature of this study is that the pPF
(ground state and polariton) energies are consistently a lower bound
on the PF-FCI energies, and each approaches the corresponding
PE-FCI energy from below as we approach the complete basis
limit. We emphasize that because the projected dipole self-energy
is inexact outside of the complete basis limit, the pPF and PF-FCI
approaches provide a variational approach for two distinct Hamil-
tonians, and so we cannot make any concrete arguments about
which should provide a lower bound in general. We do observe in
these cases that the pPF(60, 10)/cc-pVDZ ground-state and polari-
ton energies are visibly lower than the PF-FCI-10/cc-pVDZ energies
(see Fig. 5). While the pPF(468, 10)/cc-pVTZ and pPF(2880, 10)/cc-
pVQZ also provide ground state and polariton energies below their
PF-FCI-10 counterparts, the difference is not visibly discernible (see
Figs. 6 and 7). We also note that progression of the Rabi split-
ting with increasing coupling strength is very comparable between
the pPF and PF-FCI results for all basis sets. The pPF(60, 10)/cc-
pVDZ result underestimates the Rabi splitting by about 17 meV
(~6-107* hartrees) relative to PF-FCI-10/cc-pVDZ, whereas the
pPF(2880, 10)/cc-pVQZ result underestimates the splitting by less
than 5 meV (~2 - 10™* hartrees) relative to PE-FCI-10/cc-pVQZ. We
expect that both methods should agree quite closely in the Rabi
splitting because this feature of the polariton states is dominated by
the bilinear coupling, and the projected bilinear coupling remains
in the same form as its exact counterpart. However, the systematic
convergence of the Rabi splitting with increasing basis set size is sug-
gestive of the fact that the dipole self-energy can play a quantitative
role in determining the energies of the polariton states, and the error
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FIG. 5. Relative energy of the ground-state and excitation energies of polariton
states of HHe™" as a function of coupling strength computed at the PF-FCI-10/cc-
pVDZ and pPF(60, 10)/cc-pVDZ levels.

in the projected dipole self-energy does not exactly cancel when
taking the difference between the polariton energies. We should also
note that the errors in the Rabi splitting could be sensitive to the
state truncation for the pPF methods that were chosen based on the
convergence of the ground state, not the polariton states.

Now that we have shown how the disparity between the pQED
and scQED resolves in the complete basis set limit, we can ask a
pragmatic question of which requires less computational effort to
converge. For this comparison, we use the same direct CI algorithm
for the scQED energies as we do for the N energies and dipole
moments required for the pQED results. Although we are typically
only interested in a few low-energy eigenstates of Eqgs. (1) or (2), as
shown in Fig. 2, one often needs to project the pPF Hamiltonian onto
many more states than the number of eigenstates that are of inter-
est when the coupling is strong. Because the scQED approach solves
Egs. (1) or (2) directly in a coupled basis, we need only solve for
the number of roots of interest. Then, the germane question is how
does the effort of solving for the N, adiabatic states required for the
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FIG. 6. Relative energy of the ground-state and excitation energies of polariton
states of HHe™ as a function of coupling strength computed at the PF-FCI-10/cc-
pVTZ and pPF(468, 10)/cc-pVTZ levels.

lowest N¢p coupled states from pQED compare to directly solving
for the lowest coupled N states from scQED.

In Table I1I, we present the timings to solve for Nep = 10 cou-
pled states of HeH* under the same conditions as shown in Fig. 2
using PF-FCI-10/cc-pVXZ compared to the time required to solve
for N =40, 312, and 1296 states at the FCI/cc-pVDZ, FCI/cc-pVTZ,
and FCI/cc-pVQZ levels, respectively. We choose these N as 40% of
the total roots of the FCI matrix at each basis set, which is approach-
ing the upper limit of what can be performed with our direct CI
approach. We note that for the study shown in Fig. 2, we performed
full diagonalization of each FCI matrix, not direct CI; this is because
the iterative eigensolver used in the direct CI approach generally
becomes unsuitable for finding 50% or more of the total eigenvalues
of a given matrix. We see that in the cc-pVDZ basis set, it is faster to
compute the lowest 40 roots of the FCI matrix than to compute the
lowest 10 coupled states. However, the time required for finding the
FCI roots increases by roughly 2 orders of magnitude as we progress
from cc-pVDZ to cc-pVTZ and again to cc-pVQZ, whereas the time
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FIG. 7. Relative energy of the ground-state and excitation energies of polariton
states of HHe™ as a function of coupling strength computed at the PF-FCI-10/cc-
pVQZ and pPF (2880, 10)/cc-pVQZ levels.

to solve for the lowest 10 coupled PF-FCI roots increases by only 1
order of magnitude for the same progression. Therefore, we see it
is ~10x faster to find the lowest 10 roots with PF-FCI-10/cc-pVTZ
compared to finding 312 FCI/cc-pVTZ roots, and it is ~100x faster

TABLE Ill. Comparison of the time to converge the Davidson iterations for the coupled
electronic-photonic roots of the PF-FCI method and the FCI electronic roots of the
pPF method for cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets. For each pPF case, we
converge the Ny roots chosen to be 40% of the total number of FCI states in that
basis. For each PF-FCI case, we solve for the lowest 10 coupled roots with Np = 10
photonic Fock states.

PF-FCI pPF
Basis set Np tconvergence (S) Nel tconvergence
cc-pVDZ 10 34x1072 40 24x1072
cc-pVTZ 10 42x107" 312 3.5 x 10°
cc-pVQZ 10 9.2 x 10° 1296 4.0 x 10?
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to find the lowest 10 roots with PF-FCI-10/cc-pVQZ than to find
the lowest 1296 FCI/cc-pVQZ roots. This scaling is suggestive that it
will generally be more computationally facile to directly solve for a
small number coupled states in a scQED approach than to solve for
a large number of uncoupled states to perform subsequent pQED
calculations for the same system size. For example, in recent theo-
retical studies of ground state modification to the halogenation of
nitrobenzene through electronic strong coupling with [A| ~ 0.1 a.u.,
Huo and co-workers found that roughly 100 electronic states were
required to converge relative energies to less than 1 kcal/mol;*’ in
this case, scQED approaches will likely be more computationally
efficient. However, as shown in Fig. 3, state truncation does not yield
a significant error when the coupling is relatively small, and so there
may be many practical cases of moderate coupling when pQED can
be more computationally facile.

B. Lithium hydride (LiH)

The LiH molecule provides a four-electron system that has a
permanent ground-state dipole moment and a dipole-allowed opti-
cal transition (So — S with transition energy of 3.29 eV) as seen
in Fig. 8. Although we can no longer afford to perform full diago-
nalization to obtain all FCI many-electron states for the cc-pVXZ
series, we can perform FCI (and QED-FCI) in a split-valence triple
zeta basis set (6-311G) and obtain hundreds of many-electron states.
We will use this system to illustrate the behavior of the pQED
and scQED methods in incomplete orbital and many-electron basis
limits under strong coupling with A = (0,0,0.05) a.u.

We first compute the ground state potential energy scan of LiH
at the pPF(500, 2)/6-311G and pPF(500, 10)/6-311G levels of theory,
where the latter is fully converged with respect to the size of the elec-
tronic and photonic spaces. While we again see that the pPF(500,
10)/6-311G energies are a lower bound to the PF-FCI-10/6-311G
energies, we see that the pPF(500, 2)/6-311G energies are an upper
bound to the PF-FCI-10/6-311G energies (see Fig. 9). This suggests
that the photonic Fock space is incomplete in the latter case. In prior
work on scQED approaches, we showed that scQED approaches
based on Eq. (2) lead to faster convergence of the photonic Fock
space. In Fig. 10, we consider the same potential energy scan and
compare the pCS(500, 2)/6-311G and pPF(500, 10)/6-311G levels to
PE-FCI-10/6-311G. In this case, we see that the pCS(500, 2)/6-311G
energies are indistinguishable from the pPF(500, 10)/6-311G ener-
gies, suggesting that the same convergence of the photonic Fock

hw = 3.29 eV,A = (0,0,0.05)a.u.

e

é
GO -

FIG. 8. Schematic of the LiH coupled to a cavity mode polarized along the inter-
nuclear axis (z) and tuned to the first optically allowed transition from Sy — Sy at
~3.29eV.
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FIG. 9. Ground-state potential energy scan of LiH coupled to a cavity mode
with A = (0,0,0.05) a.u. and ( hw =329 eV at the pPF(500, 2)/6-311G,
pPF(500, 10)/6-311G, and PF-FCI-10/6-311G levels.
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FIG. 10. Ground-state potential energy scan of LiH coupled to a cavity mode
with A = (0,0,0.05) a.u. and ( hw =3.29 eV at the pPF(500, 10)/6-311G,
pCS(500, 2)/6-311G, and PF-FCI-10/6-311G levels.

space can be realized from the coherent state transformation in
PQED approaches as has been observed in scQED approaches.
Finally, we perform the same scan with pQED and scQED
approaches that neglect the dipole self-energy operator altogether,
which we term pRabi and Rabi-FCI approaches, respectively, to
denote the analogy to the Rabi Hamiltonian. In these approaches,
the only coupling between the electronic and photonic degrees
of freedom arises through the bilinear coupling term. We com-
pute the coupled LiH scan at the pRabi(500, 2)/6-311G, pRabi(500,
10)/6-311G, and Rabi-FCI-10/6-311G levels. Here, we see that the
pRabi(500, 2) results are an upper bound to both the pRabi(500,
10) and Rabi-FCI-10 results, which again suggests an incomplete
photonic Fock space (see Fig. 11). However, unlike the pPF and

ARTICLE pubs.aip.org/aip/jcp

8.012 ] —B— PRabi(500,2)/6-311G
—E— pRabi(500,10)/6-311G
8.014{ —e— Rabi-FCI-10/6-311G

-8.016
-8.018 1
-8.020 -

8.0221 ¢

Energy (Hartrees)

-8.024

-8.026

-8.028

14 15 16 17 18 19 20 21 22
Bondlength (Angstroms)

FIG. 11. Ground-state potential energy scan of LiH coupled to a cavity mode
with A = (0,0,0.05) a.u. and hw =3.29 eV at the pRabi(500, 2)/6-311G,
pRabi(500, 10)/6-311G, and Rabi-FCI-10/6-311G levels.

PE-FCl results that we have examined so far, the pRabi and Rabi-FCI
results are indistinguishable in the limit of a complete photonic Fock
space (see Fig. 11). This is consistent with the proposition that the
projected bilinear coupling operator agrees with the exact counter-
part in a given orbital basis as long as it is projected onto a complete
many-electron subspace.

C. Hydroxide ion (OH™)

The OH™ anion is a charged model system represented within
the 6-31G basis set with a bond length of 0.9 A coupled to a pho-
ton with frequency hwcay = 5.96 eV (0.219 hartrees) polarized along
the z axis with A, = 0.05 a.u. We note that this field does not cou-
ple directly to a transition in the molecule; while there is a dipole
allowed transition at 5.96 eV, in this coordinate system, it does not
have a transition dipole moment along the polarization axis of the
field. Therefore, the coupling occurs through the permanent dipole
moment of the molecule. The number of electronic states used for
pCS and pPF calculations is N = 50, and we consider this molecule
both with its center of mass located at the cavity origin and displaced
by 20 A from the cavity origin along the z axis, which aligns with
the permanent dipole moment and the polarization axis of the field
(see Fig. 12). Charged molecules have origin-dependent dipoles***’
and this property can lead to numerical difficulties wherein PF-FCI
can show origin-dependent energies when the photonic Fock space
is incomplete. Our motivation is to examine the behavior of the
pPF and PF-FCI methods with systematically increasing photonic
Fock spaces and also to investigate if the pCS method is fully ori-
gin invariant just like the CS-FCI method. In Fig. 13, we show the
origin-dependent energy error for different levels of photonic Fock
space truncation using PF-FCI-N;,, pPF(50, N;), CS-FCI-Np, and
pCS(50, Np) methods all in the 6-31G basis set. In particular, we
define the origin-dependent error as the ground state energy of
the displaced system minus the ground state energy of the system
at the origin for the same level of truncation. We observe that
both PF-FCI and pPF approaches show a remarkably similar
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FIG. 12. Schematic of the OH~ displaced from the cavity origin. The cavity
mode has the energy of hw = 5.96 eV with A, = 0.05 a.u., polarized along the
internuclear axis of the molecule.

1.2 -8~ PF.FCIN/6-31G
? -EF pPF(50,N)/6-31G
£ 1.01 A CS-FCI-N/6-31G
E [0 pCS(50,N)/6-31G
= 0.8
o
=
sal
2 0.6
(]

o]
o
2,04
[
A
=]
‘5 0.2
£
'}
0.01 [AIA @& A i

5 1'0 1'5 20 25 30
Number of Photonic Fock States (N)

FIG. 13. Origin-dependent energy error of different approaches to computing
the OH~ ground state coupled to a cavity mode with A = (0,0,0.05) a.u. and

hw = 5.96 eV, where the ions center of mass is displaced by 20 A from the cavity
origin.

origin dependence that converges at the same rate as the photonic
Fock space is increased (see Fig. 13). Furthermore, we observe that
the pCS and CS-FCI methods are robustly origin invariant (see
Fig. 13).

V. CONCLUDING REMARKS

In this work, we have provided a theoretical and numeri-
cal comparison of two complementary approaches with ai-QED:
(1) parameterized CQED (pQED), a two-step approach where the
matter degrees of freedom are computed using existing electronic
structure theories, enabling one to build rigorous ai-QED Hamilto-
nians in a basis of many-electron eigenstates, and (2) self-consistent
CQED (scQED), a one-step approach where electronic structure
methods are generalized to include coupling between electrons and
photon degrees of freedom. Using simple theoretical arguments, we
have identified a disparity between the projection of the two-body
dipole self-energy operator that appears in the pQED approach and
its exact operator counterpart in the scQED approach. We provided

ARTICLE pubs.aip.org/aip/jcp

a simple theoretical argument that this disparity resolves only in the
limit of both complete orbital and many-electron basis for the pro-
jection. We provided numerical results highlighting this disparity
and its resolution on simple molecular systems, where it is pos-
sible to approach these two complete basis limits simultaneously.
We also examined and compared the practical issue of computa-
tional cost to converge each approach toward the complete orbital
and many-electron basis, suggesting that for light-matter coupling
strengths that require a large number of electronic states to converge
PQED approaches, directly solving for coupled states in scQED
approaches will likely be more computationally efficacious. We also
examined several situations that highlight that pQED and scQED
can show remarkably similar convergence behavior with respect to
the photonic Fock space. These findings should provide extremely
useful context for the further development and selection of both
approaches to strong light-matter coupling.
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