

An interdisciplinary effort to integrate coding into science courses

The inclusion of computation in undergraduate STEM curricula varies widely, ranging from none at all to fully dedicated courses. We believe that building cyberinfrastructure skills within physical science courses would enhance domain-specific learning objectives and increase student understanding and engagement^{1–3}. Programming within a science course, rather than in a standalone coding class, gives students a better understanding of the context for applying computational tools^{4–6}.

In line with this teaching strategy, we established Enhancing Science Courses by Integrating Python (ESCIP), a collaborative initiative that promotes the teaching of cyberinfrastructure skills within standard science courses. Python was chosen because it is a widely used, open-source programming language that is common to the scientific research community of physicists, chemists and astronomers, which are the disciplines supported by the Research Corporation for Science Advancement's [Cottrell Scholars program](#). ESCIP has evolved from an initial team of eight early-career faculty members to a network of more than 177 scientists with an active Slack channel and a [website](#) with teaching resources.

Many faculty develop ad hoc notebooks for their own courses but do not have a place to share them more broadly. Our website currently hosts notebooks illustrating computation and modeling practices in chemistry, astronomy and physics courses. We [encourage notebook submission](#) (including via email or Slack) and provide [contributor guidelines](#) and a [notebook template](#) to help instructors adapt their content to a format that is easier for new colleagues to understand and adopt.

The establishment of ESCIP immediately prior to the COVID pandemic provided a platform where instructors could connect during a time when in-person laboratory activities were limited. Many repositories and communities – such as *Python in Chemistry*⁷, *PICUP*⁸, *Psi4Education*⁹, *MERCURY*¹⁰ and *chemcompute*¹¹ – support computational education that targets discipline-specific audiences,

but ESCIP is intentionally cross-disciplinary. Exchanging ideas with teachers from other fields and schools gives a broad view of computing across the university-wide curriculum and helps to inform professors who may want to advocate for curricular changes at their own institution. Additionally, more diverse examples and feedback from teachers in other disciplines can help to improve accessibility for students from different backgrounds.

Between 2020 and 2024, ESCIP has hosted six workshops, in which 119 attendees shared teaching materials and developed new coding exercises collaboratively. Some workshop participants had already taught Python coding¹², while others were interested in getting started and sought to learn best practices from experienced colleagues. The NSF-funded Molecular Sciences Software Institute (MolSSI)¹³ provided training for faculty members and postdocs to learn about Python libraries and tools that could be useful for undergraduate education, such as NumPy¹⁴, pandas, seaborn, scikit-learn and RDKit. Lessons learned by the organizers of ESCIP workshops influenced the establishment of the Accelerating Curricular Transformation in the Computational Molecular Sciences (ACT-CMS), which is a faculty professional development program at the MolSSI that supports the integration of cyberinfrastructure skills into the molecular sciences curriculum. ACT-CMS also supports a [Faculty Fellows program](#) aimed at developing and sharing curricular resources.

One challenge discussed at the ESCIP workshop held in April 2023 was how best to leverage programming-based assignments using large language models (LLMs) that can generate code (for instance, ChatGPT) that can easily produce solutions to many standard problems. A number of scientists advocated using these tools to reduce the barriers to entry for programming, with the strategy of explaining whether or not the generated code is correct and why¹⁵. Students who have developed strong algorithmic thinking skills can also cross-check their own understanding with the results provided by ChatGPT to ensure accuracy and identify errors in logic or scientific understanding. Motivated by widespread

interest in LLMs and AI-assisted coding, the theme of the 2024 ESCIP workshop was 'Teaching scientific computing at the dawn of AI'. One key takeaway was that students need support with learning prompt engineering to harness the power of their domain-specific expertise. Examples of effective strategies for including LLMs in assignments aimed at accelerating computational fluency and modeling were also discussed.

The ESCIP community aims to provide resources for teachers and students to develop broad cyberinfrastructure competency by emphasizing skills such as code reading, testing and editing, problem decomposition, and design strategies for program and function composition. Improved literacy in these areas will facilitate student engagement and learning, including in contexts where LLM code assistants are used in the classroom. One future direction of ESCIP is to create pedagogical materials that use free LLM assistants to teach cyberinfrastructure skills in science courses. Ideally, we will provide simple recipes to aid teachers to develop and adopt these tools in their own courses.

Christina L. Vizcarra ¹, **Ryan F. Trainor** ²,
Ashley Ringer McDonald ³,
Chris T. Richardson ⁴, **Davit Potoyan** ⁵,
Jessica A. Nash ⁶, **Britt Lundgren** ⁷,
Tyler Luchko ⁸, **Glen M. Hocky** ⁹,
Jonathan J. Foley ¹⁰,
Timothy J. Atherton ¹¹ &
Grace Y. Stokes ¹²

¹Department of Chemistry, Barnard College, New York, NY, USA. ²Department of Physics and Astronomy, Franklin & Marshall College, Lancaster, PA, USA. ³Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA.

⁴Department of Physics and Astronomy, Elon University, Elon, NC, USA. ⁵Department of Chemistry, Iowa State University, Ames, IA, USA. ⁶MolSSI, Department of Chemistry, Virginia Tech, Blacksburg, VA, USA.

⁷Department of Physics and Astronomy, University of North Carolina Asheville, Asheville, NC, USA. ⁸Department of Physics and Astronomy, California State University,

Correspondence

Northridge, Northridge, CA, USA.

⁹Department of Chemistry and Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA.

¹⁰Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC, USA. ¹¹Department of Physics, Tufts University, Department of Physics and Astronomy, Medford, MA, USA. ¹²Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, CA, USA.

✉ e-mail: gstokes@scu.edu

Published online: 22 October 2024

References

1. McDonald A. R. Teaching programming across the chemistry curriculum: a revolution or a revival? In *ACS Symp. Series* (eds McDonald, A. R. & Nash, J. A.) Vol. 1387 (American Chemical Society, 2021).
2. Van Staveren, M. *J. Chem. Educ.* **99**, 2604–2609 (2022).
3. De Haan, D. O., Schafer, J. A. & Gillette, E. I. *J. Chem. Educ.* **98**, 3245–3250 (2021).
4. Phillips, A. M., Gouvea, E., Gravel, B. & Atherton, T. J. In *2022 Physics Education Research Conf. Proc.* 353–358 (American Association of Physics Teachers, 2022).
5. Sweet, C., Akinfenwa, O. & Foley, J. *J. J. Chem. Educ.* **95**, 384–392 (2018).
6. Rowe, P. M. et al. *J. Geosci. Educ.* **69**, 178–191 (2020).
7. McCluskey, A. R., Rivera, M. & Mey, A. S. *J. S. Nat. Chem.* **16**, 1383–1384 (2024).
8. Caballero, M. D. et al. *Phys. Teach.* **57**, 397–399 (2019).
9. Magers, D. B. et al. In *ACS Symp. Series* (eds McDonald, A. R. & Nash, J. A.) Vol. 1387, 107–122 (American Chemical Society, 2021).
10. McDonald, A. R. et al. *Int. J. Quantum Chem.* **120**, e26359 (2020).
11. Perri, M. J., Akirmurele, M. & Haynie, M. In *ACS Symp. Series* (eds Grushow, A. & Reeves, M. S.) Vol. 1312, 79–92 (American Chemical Society, 2019).
12. Fuchs, W., McDonald, A. R., Gautam, A. & Kazerouni, A. M. *J. Chem. Educ.* **101**, 3085–3096 (2024).
13. Nash, J. A., Mostafanejad, M., Crawford, T. D. & McDonald, A. R. *Comput. Sci. Eng.* **24**, 72–76 (2022).
14. Harris, C. R. et al. *Nature* **585**, 357–362 (2020).
15. Hocky, G. M. & White, A. D. *Digit. Discov.* **1**, 79–83 (2022).

Acknowledgements

We thank all members of the ESCIP network for their participation in our workshops and online activities. This work was funded by two Cottrell Scholar Collaborative grants from the Research Corporation for Science Advancement (RCSA): “Development of the Enhancing Science Courses by Integrating Python (ESCIPI) Network” (grant number 27048) and “Infusing Computational Science Concepts into STEM Courses through Multidisciplinary Instructor Collaborative Networks” (grant number 27626).

The ESCIP workshop at NYU in April 2023 was sponsored by Simons Foundation grant number 839534. The Molecular Sciences and Software Institute (MoSSI) is supported by the US National Science Foundation through grant number CHE-2136142. J.J.F. acknowledges NSF CAREER Award CHE-2043215 and the Center for MAny-Body Methods, Spectroscopies, and Dynamics for Molecular POLaritonic Systems (MAPOL) under subcontract FWP 79715, which is funded as part of the Computational Chemical Sciences (CCS) program by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the US Department of Energy under DOE contract number DE-AC05-76RL1830. R.F.T. acknowledges support from the Pittsburgh Foundation (UN2021-121482) and RCSA (28289). G.M.H. acknowledges support from the NIH (R35GM138312). T.L. acknowledges support by NSF grants CHE-2102668, MRI-2320846 and MRI-2320718. G.Y.S. acknowledges the NSF CAREER Award CHE-1848583. C.T.R. acknowledges support from the CATL Scholar Program at Elon University.

Author contributions

G.Y.S., C.L.V., J.J.F., G.M.H., A.R.M. and T.L. drafted the article. B.L., R.F.T., D.P., T.J.A. and J.A.N. revised the article. All authors approved the final article.

Competing interests

The authors declare no competing interests.