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A B S T R A C T   

The standard model is applied for partial disclination pairs in hard materials. These defects comprise two partial 
disclinations and an intervening fault that can be a twin boundary, grain boundary or interphase boundary. In 
three dimensions there are six types. Two of them can be considered Somigliana disclinations. The standard 
model includes geometrically nonlinear embedded coordinates. It entails partitioning of displacements that 
result in configurations and strain fields not considered classically for partial disclinations. These concepts are 
applied to boundary junctions, disconnections, and multiple twins. Recovered stress-free structures are 
considered.   

1. Introduction 

The continuum theory for straight disclinations originated with the 
work of Volterra [1] and Somigliana [2]. The theory was augmented in 
[3]. The relation to crystalline defects came later in [4–7]. Both aspects 
are reviewed in [8–10]. The coherency disclination has been added 
recently [11]. The theory usually begins with Mura [12] and deWit [13] 
and use dislocation fields as Green’s function kernels for integral solu
tions, a method that is followed here. There is a large literature on the 
linear elastic theory of disclinations as reviewed in [9,10]. We use these 
results but focus here on disclinations as represented in the standard 
model [14]. The paper is not a review of disclination theory. The model 
differs from the traditional one in that it entails embedded coordinates 
fixed on lattice sites, includes crystal symmetry, and is nonlinear 
geometrically. 

A perfect disclination is a line defect for which there is a character
istic rotational gap. The associated elastic strains are so large that perfect 
disclinations are very rare as isolated defects in elastically hard metallic, 
ionic, and covalent materials. Partial disclination pairs (PDs), consisting 
of two partial disclinations and an intervening fault, do exist and are 
considered here. The faults entail surface defects such as subgrain, grain 
or twin boundaries, or interphase interfaces (such as coherent bound
aries). Partial disclinations have been considered in [15–18]. The PDs 
were called generalized disclinations in [17,18] but what is generalized 

is not the structure but the theory. 
In this paper, we treat fault planes, the partitioning of elastic and 

plastic displacements and distortions, arrays of PDs, the disclination 
content of twinning disconnections, multipolar arrays of disclinations, 
recovery of strain fields at disclinations, and PDs in phase trans
formations. In what follows, we treat mainly wedge PDs although the 
same methods apply for other disclination types. 

2. Partial disclination methodology 

There are two descriptions of the faults in PDs. In the traditional 
extended disclination model, the fault is a perfect boundary with a 
rotational discontinuity, as for a twin boundary or a coherent terrace. 
The dislocation model of the fault is a set of dislocations with spacing 
d and a total dislocation content nb. For distances from the PD greater 
than the fault width, the field is identical to that of a super-dislocation. 
Close to the PD the strain field deviates from that of a dislocation. The 
PD is equivalent to an extended super-dislocation. The quantity nb is 
independent of d. In the limit the dislocations are continuous infinites
imal Bilby dislocations [19,20] and the result is identical to the perfect 
fault for the PD. 
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2.1. Extended coordinates for PDs 

There are two ways that embedded coordinates influence defect 
structures. The first is the elastic field. In linear elastic analyses for 
which the strain is assumed to be infinitesimal, there is no distinction 
whether the coordinates are the undeformed coordinates prior to the 
introduction of the dislocation or the deformed coordinates arising from 
it. Therefore, there is no shift in the origin of a displacement accompa
nying deformation. For a crystal lattice, one resolves this issue by 
imposing crystal symmetry and using embedded (Lagrangian) co
ordinates fixed on atom sites. This is the standard model (SM) [3]. The 
embedded and laboratory coordinates then differ because the embedded 
lattice sites shift as a result of local strain, whereas they do not in linear 
elasticity. The use of the embedded coordinates in the standard model is 
a nonlinear geometrical effect. 

The second is the topological model (TM) of interfaces. The TM [20] 
was developed to describe complex defects such as disconnections and 
disclinations as a combination of the topological theory of Pond [21] 
and the structural definition of a disconnection [22]. The TM adopts 
embedded coordinates and partitioned displacements to satisfy 

symmetry requirements. Defect characteristics are described by circuits 
in the dichromatic pattern, the superposition of the matrix and twin with 
a common origin, on a twin plane for example. The circuits reduce to 
translation vectors t in the dichromatic pattern. The TM was developed 
to describe complex defects such as disconnections and disclinations as a 
combination of the topological theory of Pond [21] and the structural 
definition of a disconnection [22]. It is topological in the limited 
geometrical sense of using embedded coordinates, consistent with gen
eral topological theory. 

We select a type I twin to demonstrate the model. Fig. 1(a) shows a 
wedge PD described in the dislocation representation by crystal sym
metry, leading to the partitioning of the displacements. The sense vector 
ξ, coordinates x, y, z, and unit vectors i, j, k are depicted. These are used 
throughout the paper unless otherwise noted. Fig. 1(b) shows the dis
placements associated with the usual model of insertion of a wedge on 
the right and removal of a wedge on the left. Fig 1(c) displays the overall 
displacement vectors f, the overall rotations 2Δθ, and the associated 
Frank vectors: 

ω = 2Δθk (1) 

Fig. 1. (a) A wedge PD described in the dislocation representation. (b) Traditional model of a PD created by removing wedge at left and inserting one at right. The 
Δ notation [9]. (c) The overall displacement vectors f, the overall rotations 2Δθ, and the associated Frank vectors for the PD in (a). (d) ED represented as an edge 
dislocation array enclosed by a circuit. (e) FS/RH circuit in perfect reference crystal. (f). Partitioned circuit with origin at midpoint. (g). FS/RH circuit in reference 
crystal. (h). Overall changes in angle. (i) Equivalent of (h) for the traditional case. (j). Simple representation of vectors. 
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A local closed circuit, right-handed relative to the sense vector ξ, is 
constructed in Fig. 1(d). The same circuit in a perfect reference crystal, 
shown in Fig. 1(e), has a closure vector FS equal to the disclination 
vector 2D’: the FS/RH convention. For either a continuum or for many 
high symmetry crystals, this procedure does not satisfy the 2 symmetry 
in the y-direction. In the SM, symmetrical partitioning is applied. Two 
circuits are introduced relative to the origin o as in Fig. 1(f), as shown in 
Fig. 1(g), each has a disclination vector D’ and symmetry is satisfied. The 
far field is again equivalent to that of a super-dislocation B, but this is 
misleading. The near field of the singularities varies markedly from that 
of a dislocation. 

The reason for the difference between D and D’ is seen in Fig. 1(h) 
and (i). With the symmetric arrangement in Fig. 1(h), the magnitude of 
D is: 

D = (L / 2) tan(2Δθ) (2) 

If instead one chose the origin at the left, as in Fig. 1(i), the closure 
magnitude would be: 

D′ = L tan(Δθ′) (3) 

This result is correct linearly, but agrees with Eq. (2) only in the 
infinitesimal limit that r approaches ∞. Thus, both give the super- 
dislocation B, but only the TM gives a precise D. The PD characteristic 
vectors are shown in Fig. 1(j) and (k). These include the Frank vector ω,

of use as a continuity vector. The vector ω represents the crystallo
graphic rotation across the twin plane. In Fig. 1, the local circuits 
terminate at ±L so that D relates directly to 2Δθ and ω. Each is a parallel 
indication of the strength of the PDs. A circuit for x > L would have a 
varying closure vector and after a St. Venant distance ≈ 2L would 
become the constant B. 

Also of interest is the rotational component ΔθT of the plastic 
deformation that creates the twin., which can analogously be expressed 
as the vector Ω:

Ω = 2ΔθT ξ (4) 

If the mechanism of twinning involves only one twinning discon
nection (TD), e.g., one with the Burgers vector Aδ for a twin in face 
center cubic structure, then ω = Ω. However, growth or annealing 
twins in Cu [23] are formed by successive sets of TDs, Aδ, Bδ, Cδ, with 
the same ω, but with Ω = 0.

2.2. PD pairs and dipoles 

There is a minor issue with the nomenclature for a PD, related to the 
formation proves in Fig. 2. Li [24] called the PD a dislocation wall and 
related it to what he called a disclination dipole. That terminology has 
been followed in many works, historical [25] and recent as reviewed in 
[9]. DeWit [26] defined two types of dipoles, a PD and a pair of opposite 
sign PDs. Thus, there is an ambiguity in terminology. The formation 
process [16,24,25] is nicely displayed in [9]. The notation in Fig. 2(a) is 
related to the dislocation version in Fig. 2(b). Two opposite sign PDs AB 
and CD, a dipole, are superposed as in Fig 2(b), cancelling the rotations 
to the right of B. The result in Fig. 2(c) is the PD extending from E to F. 
The result is simply to shorten the original PD. In terms of the relaxed, 
equilibrium elastic displacements, the addition of the negative D for CD 
(or ω, or Δθ) in Fig. 2(b) results in a positive D (or ω, or Δθ) for the right 
PD in EF. Instead, the notation in Fig. 2(a) refers to the sign of the 
imposed plastic wedge displacements f. Because of the symmetrical 
origin, the PD vectors D, ω, and Δθ all have the same sign, and the 
singularities have the same sign strain fields, so calling a PD a dipole is at 
variance with the terminology for dislocations and all other physical 
dipoles such as electron-hole pairs. Fig. 2(f), a version of that in [9], 
illustrates the incongruity. The addition of two like-sign super-
dislocations B eliminate the long-range field, so Fig. 2(f) would have two 
dislocations constituting a monopole canceling a disclination dipole. 

Here, we recommend calling the two PDs in Fig. 2(d) a like-sign partial 
pair and reserving the name dipole for interactions between opposite 
sign PDs, as in Fig. 2(e). The latter is DeWit’s second case. The 
description in Fig. 2(a) is correct, but it is not a conventional dipole. We 
know of no examples, but a perfect disclination could dissociate into 
partial disclinations: a Cauchy cut could be constructed. In this example 
the rotation would tend to be suppressed on the intervening cut but 
added outside the cut. 

Both the dipoles and the like-sign pairs in Fig. 2 are unstable with 
respect to out-of-plane displacement. The long-range field of a perfect 
wedge disclination dipole in Fig. 3(a) would be stable when the two 
disclinations are aligned at 45∘, exactly like a dislocation dipole [14]. At 
short range, the interaction force increases in magnitude and the stable 
angle is less as in Fig. 3(b). At long range, the equilibrium position is 
shown in Fig. 3(c). The similar arrangement for short-range interactions 
is presented in Fig. 3(d). A lattice dislocation is attracted to the end of an 
PD as in Fig. 3(e), extending it, with the decrease in energy. Similarly, if 
there is a gap between repelling, like-sign PDs, lattice dislocations are 
attracted to fill the gap. The same is true for the filling of a spacing 
defect. 

2.3. The mechanism of forming a PD 

The mechanism of formation of the PD at twin plane is depicted in 
Fig. 4 [27]. TDs glide to create the interface, whether formed by the 
glide of lattice dislocations from the matrix, bgM, or the twin, bgT or both: 
the latter is shown in Fig. 4(a). Once the glide dislocations are in the 
boundary, as in Fig. 4(b), they rearrange to form the symmetrical array 
in Fig. 4(c). The separate vectors are inclined to the boundary normal by 
ω/2. The in-plane coherency components of the lattice dislocations 
cancel, and the remaining leaving the unit, tilt, interface dislocations. In 

Fig. 2. (a). Traditional view of a PD. (b). Formation of a PD by the super
position of opposite sign partials. (c) Resultant PD. (d)Like-sign pair of PDs. (e) 
Opposite-sign pair of PDs. (f). PD dipole with long range field canceled by a 
dislocation pair constituting a monopole. 
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principle the PD could be formed by the climb of the interface disloca
tions, but this is a much more unlikely mechanism. 

When dislocations enter from one side, the relaxed elastic displace
ments must partition so that the resultant boundary remains symmet
rical and strain free. This is a key feature of the TM. For low-angle 
boundaries, the lattice is bent locally [28] and the partitioning occurs 
spontaneously. For intermediate angles the partitioning is achieved by a 
small amount of glide of the tilt dislocations. For high-angle boundaries, 
the simplest mechanism is symmetrical glide as in Fig. 4(a). Other cases 
still require simulation studies to determine the details. 

2.4. Inhomogeneous extension 

The above analysis applies for unconstrained equilibrium interfaces 
in the SM. Several situations still entail partitioning, but it is unequal. 
For an embedded twin with associated incompatibility strains, similar to 
an Eshelby inclusion [29], the compatibility strains are partitioned to 
the smaller crystal [30]. Analogously, when the elastic constants differ, 
the remote distortion strain is greater for the material with softer elastic 
constants for both the anisotropic elastic [31,32] and orthotropic elastic 
cases [33]. An important consequence is that the vector ω still describes 
continuity [34]. This agrees with Frank [35] in that any shaped interface 

can be constructed by a cut-and-paste process. 

3. Types of DS 

3.1. Straight PDs 

Fig. 5 shows the three types of straight PDs described in [1,9,10] 
together with the associated fault planes. A negative wedge partial is 
shown in Fig. 5(a). The defect is characterized by a tangential imposed 
(or plastic) displacement with magnitude uθ = rδθ in the isotropic 
elasticity approximation. In vector form, the imposed displacement u =
(0, uθ, 0) diverges with r, and is related to the rotation vector ω by the 
following: 

u = r (ω × i) (5) 

Here, ω = Δθ k, and k = ξ. If a through defect extending to free 
surfaces, the long-range elastic distortion is a pure rotation. 

A twist disclination is shown in Fig. 5(b), another of Volterra’s par
tials [1]. The screw-glide partial has an equivalent array of like sign 
screw dislocations, right-handed here. The imposed displacement u =
(0, 0, uz), which diverges with r, is given by the following: 

u = r (ω × i) = f (6)  

with ω = Δκj, and with j a unit vector in the θ direction. The angle Δκ is 
the characteristic angle of rotation of the disclination in the fault plane 
with y as the 2 axis. In this case, the Burgers vector is b = (0,0,bz). The 
distortion field of a through defect is a superposed rotation and shear 
strain. Two orthogonal twist partials comprise a spin disclination, with a 
pure rotation of the fault. There is an issue with the name for this PD. 
Historically it was given the present definition, including the naming of 
the defect [36]. Later, as in the reviews in [9,10] it was used for the 
orthogonal sets of PDs in a twist boundary, described in the next section. 
Here we retain the Volterra description and describe the orthogonal set 

Fig. 3. (a). Stable position with respect to y displacements for a perfect co
herency disclination dipole. (b). Equivalent for a PD dipole. (c) Equivalent for 
two like-sign perfect coherency disclinations. (d). Equivalent for two like-sign 
coherency PDs. (e) Lattice dislocation attracted to the end of a wedge PD. 

Fig. 4. (a). Lattice dislocations glide to create the interface, whether formed by 
the glide of lattice dislocations from the matrix, bgM, or the twin, bgT or both. 
(b). In-plane coherency components of the glide dislocations, inclined by the tilt 
angle 2α, cancel, leaving the unit, tilt, interface dislocations b in (c). 

Fig. 5. Three types of straight partial disclinations and equivalent dislocation 
array. Displacement vectors f, and dislocation Burgers vectors are shown. 
Partial A is a partial wedge disclination with opening angle 2Δθ. Partial B is a 
partial twist disclination with opening angle 2Δκ. Partial C is a partial co
herency disclination. 
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as a spin disclination [37]. 
The edge-glide partial is shown in Fig. 5(c). It also can be either a 

coherency partial or a one-dimensional misfit partial. For the edge glide 
disclination, the displacement u = (ux, 0, 0) is: 

u = Δri (7)  

with i a unit vector in the r direction. The magnitude of the field is 
represented by Δr, which diverges with r. In this case, the Burgers vector 
is b = (br,0,0). The atomic configurations are symmetrical in the x and y 
directions. Local one-dimensional coherency stresses are associated with 
the fault for this case. To first order, there is no long-range rotation for 
the coherency disclination, although second-order elastic rotations can 
be associated with coherency stresses (Poisson and nonlinear effects). 

While not common, secondary PDs are possible. An example is the 
dissociation of a 1/6[112] partial bounding a (111), Σ3 twin in fcc Al 
into a pair of 1/6 < 110> partials bounding a (110), Σ9 twin [21]. Such 
PDs also are present at twin junctions [38]. 

The recent modification of the elastic field of a dislocation [38] en
tails the addition of a line force f to the traditional field. This suggests 
that line force partial pairs might be of future interest. This would add 
three more linear types. Two would be plane-strain defects with 
orthogonal f vectors and the other would be an anti-plane-strain defect 
with f parallel to ξ. 

3.2. PD arrays 

The corresponding two-dimensional PDs are shown in Fig. 6. Three 
disclinations are added to the three Volterra types. Fig. 6(a) is a wedge 
PD. The PD can end at free surfaces in the z direction. If terminated 
within a crystal, the Bilby or discrete dislocations must satisfy the con
tinuity axiom. They can continue as out-of-plane segments as at a 
junction. Alternatively, they could continue as partitioned, symmetrical 
in-plane super-dislocations. This duality extends to Fig. 6(b) and (c). The 
2Δθ rotation is in the (x, y) plane. The screw glide PD is depicted in Fig. 6 

(b). The rotation is in the (x, z) plane. It corresponds to a twist PD if 
terminated or if the ends are accommodated. The edge glide PD is shown 
in Fig. 6(c). The latter two can superpose to provide a mixed glide dis
clination, and for both the dislocations must satisfy the continuity 
axiom. 

The remaining disclinations can also correspond to dislocation arrays 
[40], but that application is not unique. They also must satisfy conti
nuity. If in-plane, their termini are partitioned, symmetric, Somiglinana 
disclination loops [41–44]. Fig. 6(d) is a skew-wedge disclination. The 
skew-wedge disclination has orthogonal wedge disclinations, but they 
can interact to form an equivalent, single wedge disclination with in
clined to x and y and larger D vectors. In [37], this defect was called 
prismatic because half of a loop is the same as that of a prismatic 
super-dislocation (B normal to the plane of the loop). However, the 
present terminology seems more relevant. Fig. 6(e) shows the spin PD 
with orthogonal twist disclinations, formed from screw dislocation ar
rays. This PD could have rotated lines with mixed dislocations [30]. In 
the limit, there could be orthogonal edge dislocations with opposite 
signs The screw arrays would have minimum energy. Fig. 6(f) is a 
coherency/misfit PD, with two sets of dislocations. With Bilby disloca
tions, the PD corresponds to a coherent interface such as a type-I twin 
boundary or the fault in an extended dislocation. With discrete dislo
cations, the defect corresponds to a misfit PD, relieving coherency 
strains in two orthogonal directions. 

3.3. Circular and other curved PDs 

In the Green’s function approach, the integrals can be written for the 
displacement field of an arbitrary curved or piece-wise straight dislo
cation in a plane [17]. However, they cannot be analytically solved 
except for special shapes such as circles, squares, etc. The fields of cir
cular ring dislocations have been derived [45,46]. These can be used as 
Green’s functions for some circular disclinations. Of the PDs in Fig. 6, 
the spin and coherency PDs can be represented as arrays of ring dislo
cations with Somigliana vectors s, analogous to Burgers vectors for 
standard dislocations, and PD vectors Σ replacing D as show in Fig. 7. 
The other Ds in Fig. 6 cannot be meaningfully represented by ring 
dislocation arrays. Ring dislocations are circular loops with s pointing in 
the radial direction [45,46]. The Somigliana solutions are closed, and no 
added defects are needed to satisfy continuity at the periphery. For the 
spin PD of Fig. 7(a), the Σ and ω vectors are uniform but Σ is tangent to 
the line and ω is normal to the loop. The ring dislocations have tangent 
vectors s: they are screw Somigliana ring dislocations [37,41-44]. The 

Fig. 6. Six two-dimensional types of PDs with vectors D and dislocation ana
logs, with Burgers vectors b. We show discrete dislocations, but the figures also 
apply for infinitesimal dislocation, (a). A wedge PD with characteristics b, ξ, D, 
ω, and 2Δθ. (b). An edge-glide PD with a single array of edge dislocations. (c). A 
screw-glide PD with right-handed screw dislocations and a characteristic angle 
2Δκ. (d). A spin disclination with two sets of orthogonal screw dislocations. (b). 
An edge-glide PD with a single array of edge dislocations. (e). A skew edge PD 
with two orthogonal tilt arrays of edge dislocations in the fault plane. Figs. (a)– 
(c) are Volterra PDs, while Figs. (d)–(f) are pairs of Volterra disclinations. The 
dislocations cannot terminate within a crystal. They could terminate at free 
surfaces or as summed defects at the periphery. For (a)–(d), the result would be 
super-dislocations at the ends. For (e)–(f), the result would be Somigliana super- 
dislocations at the end. 

Fig. 7. The prismatic, spin and coherency PDs in Fig. 5. The figures on the right 
are the ring Somigliana PD equivalents of the arrays on the left. 
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Somigliana coherency disclination in Fig. 7(b) has D and ω vectors that 
also vary in magnitude as a function of ϑ, from a maximum at θ = 0 to 
zero at θ = π/2, then to a minimum at θ = π and then an increase back 
to a maximum at θ = 0. There is no ring equivalent for this case. For the 
coherency disclination, the Σ and s vectors point in a radial direction 
and ω is zero to linear order. There can be weak nonlinear rotations near 
the singularity. 

Except for simple configurations like ring dislocations or ring dis
clinations, there are no analytical solutions for the fields. Curved in
terfaces of arbitrary shape are also Somigliana disclinations and 
Somigliana super-dislocations [37,41-44], often mixed in type. There is 
an integral for curved dislocations [12]. 

∂um(r)

∂xs
= bicijkl

∫

A

∂2umk(R)

∂x′
s∂x′

l
dAj (8) 

As reviewed in [46] this leads to line integral expressions for curved 
dislocations. In turn these lead to line integrals of piecewise straight 
segments of dislocations. The extension has not been accomplished, but 
the equivalent for Somigliana dislocations is similar but with bi replaced 
by the variable Somigliana vector si which is moved to the kernel. 

∂um(r)

∂xs
= cijkl

∫

A

∂2umk(R)

∂x′
s∂x′

l
sidAj (9) 

Here A is normal to an area element on a closed, curved area ter
minating at a curved dislocation loop, R = r′ − r, r′ is a vector from the 
origin to a point on the loop, and r is a vector from the origin to an 
arbitrary field point. The vector s is a function of r′ for a circular loop or a 
loop of any shape. Eq. [8] is useful in numerical computation methods, 
so-called discrete dislocation dynamics, in turn useful for arrays of dis
locations for a PD. Similarly, Eq. [9] could be useful for arrays of 
Somigliana dislocations and for curved PDs. 

3.4. The stress and self-energy of PDs 

The form of the stress field of a PD is exemplified by the result for a 
discontinuous tilt wall in Eqs. (21)–(54) in [14], and by the treatment of 
an extended core in [47], exactly equivalent to that for a PD. The 
complete stress field for a wedge PD, given in [3], can also be deter
mined for a discontinuous tilt wall [14]. For example, the stress σyy to 
the right of a wedge ED and on the same plane is 

σyy = −
μD

4π(1 − ν)L

[
r2

r2 + (2L)
2 +

1
2

ln
r + 2L

r

]

≅ −
μD

4π(1 − ν)L

[
L
r

+
L2

r2

]

, r→L (10)  

≅ −
μB

2π(1 − ν)r
, r >> L 

This form holds for all stress components in all directions. Eventu
ally, at large r, the dependence assumes the super-dislocation form σ ∝ 
1/r. For the tilt wall case, the Burgers vector of the tilt dislocations is b, 
and n is the number of them in the length L. Aside from a constant core 
term, the total elastic energy (elastic contribution to the free energy) of a 
wedge PD, per unit length of line, is the same as that for an edge 
dislocation with a standard core of width L [47]. 

We =
μB2

4π(1 − ν)
ln

R
L

(11) 

Here, R is the outer cutoff for the elastic field. The field within L 
varies and is not that of a super-dislocation. There are two cases of in
terest. With n constant, D = B is constant, and the We decreases loga
rithmically with increasing L With the density of dislocations n 
/L constant, D ∝L, and We increases with increasing L. The presence of 

the (L/r)
2 term in Eq. (10) raises an issue. The use of the SM and the 

associated linear elasticity means that (1/r)2, second-order, terms in 
stress are neglected if (1/r) terms are also present. Such (1/r)2 terms are 
physically present because dislocations have two-dimensional dilatation 
fields and disclinations have rotational fields, both with displacements ∝ 
(1/r) and shear stresses ∝(1/r2). There are similar line force fields in 
some cases. Thus, there is an issue as to whether the magnitude of the 
(L/r)

2 terms is sufficient for them to be consistently included in SM re
sults without following a fully nonlinear elastic model [48]. Solutions 
for We and the stress fields in the literature differ slightly [14]. This 
difference is associated with different assumptions for core fields. Thus, 
in comparing results one must use consistent core descriptions [13,49]. 

Correspondingly, the total thermodynamic force per unit line length 
on a partial in a PD is 

FT = ± Γ +

∫L

−L

(σ⋅ db × ξ)dx = ±Γ + F (12) 

Here, F is the elastic interaction force, Γ is the line tension associated 
with Γ, the interfacial free energy per unit area, excluding elastic con
tributions. Γ always points toward the fault. Also, db is the dislocation 
density between x and x + dx. For the discrete case the integral is 
replaced by the sum over n of (σ • nb £ ξ). The stress σ is the sum of any 
term in the applied stress σa, the interaction stress σi, or, for the special 
case of a partial disclination, the self-stress σs. The long-range interac
tion force between PDs is • B × ξ, replacing the integral in Eq. (12). The 
stress σ varies with x for the short-range interaction. For the self-stress, 
the extension force at either end is 

F = (dWe/dL)i (13) 

This is a Peach-Koehler thermodynamic force, equivalent to a J in
tegral, and is opposite in sign at either end where dL is opposite in sign. 
This emphasizes that the origin must be at the symmetric center of the 
PD. In contrast, a dissociated dislocation also has a fault, the stacking 
fault, but it is different in nature than for a PD. Eq. (12) applies, but there 
is no Bilby disclination content to the dissociated defect, and only sur
face energy in Γ, no core terms. 

The spreading of a PD corresponding to the constant D case entails a 
decrease in n/L, or equivalently, an increase in the dislocation spacing, 
d. The spreading is thermodynamically favored by the decrease in elastic 
strain energy (elastic free energy). The fault, while contributing only the 
rotation component of the distortion, has a surface energy associated 
with non-linear strain contributions from the core region and Gibbsian 
chemical terms arising from the symmetry breaking at the interface. 
Thus, analogous to the dislocation case, while the partials initially repel 
and move apart, there can be an equilibrium separation L0 in an un
stressed body where the strain energy term is offset by the increased 
total surface energy, given by the condition, 

F = ∓Γ (14) 

For the dissociated dislocation case, the extended dislocations are 
mixed, and the dominant edge or screw component follows the same 
rule. 

Physically, in many applications, e.g., for disc-shaped precipitates or 
certain composite phases, an PD is pinned at the ends and cannot extend 
and the same is true for a PD spanning a grain. For wedge PDs, extension 
requires dislocation climb and is suppressed at low temperatures. A rare 
equivalent possibility is the emission of a pair of slant dislocations with 
slant Burgers vectors whose sum is parallel to the tilt Burgers vector. In 
contrast, coherency or glide PDs are glissile, and are free to move until 
they encounter an obstacle. For the constant n/L case, Eq. (12) shows 
that the energy increases with increasing L. 

A different situation arises when the length changes because of the 
addition of a lattice dislocation, perhaps by the emissary dislocation 
mechanism [49], We increases, but the energy per dislocation decreases. 
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Essentially because the partials move apart. However, a lattice dislo
cation is removed so the total elastic energy of the system, ΔW,

decreases: 

ΔW =
μb2

4π(1 − ν)

(

ln
(

R
L

)

− ln
(

R
r0

))

(15) 

Hence, like the preceding case, there is a tendency for L to increase 
until pinned at the ends as discussed above. This is consistent with the 
recovery that takes place in stage I of work hardening. In stage I, 
dislocation mats tend to polygonize and form cells bounded by low- 
angle tilt walls. 

3.5. Extended disclinations junctions 

An example of the many nonlinear arrays of ODs is a slant junction, 
exemplified by an L junction. The elastic strains of a single PD can be 
relaxed by lattice super-dislocations at the ends as in Fig. 8(a). For the 
loops in Fig. 4, these would be super-Somigliana dislocations. Junctions 
between two slant PDs are stress-free [14,25,35] provided that the ω 
vectors of the two arms are the same and Δp = 0. The matrix and twin 
can be rigidly shifted by p, changing only shuffle vectors. However, if 
there is a difference Δp in the two vectors, a junction dislocation b = Δp 
is present. Thus, there is zero stress for two infinite arms or for two PDs 
of the same length, the same b, and the same p. An example is the L 
junction in Fig. 8(b), formed from two orthogonal PDs and with p = 0.

This junction has no dislocation content. Fault A is a type I twin inter
face, while fault B is a PD that has been relaxed by lattice dislocations in 
the emissary dislocation mechanism [47]. In a second example, fault A 
in Fig. 8(c) is a tilt wall, initially a PD with an incompatibility strain 
field. The superposed partial at B annihilates the strain field of the 

partial from A at B. Thus, after relaxation, there are no elastic strains, 
Ω = 0, and the rotation ω is the same for both arms. Thus, the continuity 
role of ω extends to nonlinear arrays such as junctions and curved sec
tions. The following axiom holds for either linear junctions or slant 
junctions.   

When ω = Ω, there is no stress at the junctions. When ω ∕= Ω, the 
difference represents an extrinsic, stressed PD. This agrees with the cut- 
and-paste notion of Frank as well as extending to the anisotropic elastic 
case [34]. 

The PD at B in principle could be on any plane for which ξ is a zone 
axis, but practically the choices are limited by symmetry [51–53]. An 
example of a relaxed L junction in a fcc crystal is a type I twin PD on 
(111) joining an orthogonal PD on the type II plane (112), as shown in 
Fig. 8(d). The recovery mechanism and resulting relaxed interfaces can 
occur with different fault structures for the same ED. There are two 
variants for the type II (112) plane, one with a repeated array of suc
cessive partial dislocations Aδ, Bδ, Cδ and the other with Aδ, Aδ, 2δA.

The former array is stable while the latter is metastable. Motion of pure 
h = 3ho steps has been observed in dynamic HRTEM [23]. There is no 
Peach-Koehler force for such motion, but there are second-order forces. 
The Aδ, Bδ, Cδ sequence provides a structural model for the 9R inter
layer phase observed for (110) twin boundaries in copper [54,55,56]. 
There are other possible arrays, but they are all unstable. 

All observed equilibrium multi-junctions of twins and grain bound
aries entail superposed PDs. If multiple grain boundaries meet at a 
junction line, e.g., a triple grain boundary junction, the condition that 
the junction is free of long-range elastic strains is that the sum of the ω 
vectors is zero, modulo 2π, for the partial disclinations meeting at the 
line, provided that all sense vectors ξ point away from or toward the line. 
Since the junction is stress free, the force in Eq. (12) reduces the surface 
tension Γ. Thus, the sum of the line tensions Γ must also be zero. This 
leads to the well-known dihedral angle relation, which for a three-fold 
junction is 

Γ1

sinω1
=

Γ2

sinω2
=

Γ3

sinω3
(17) 

Near the junction deviations can occur. For low-angle grain bound
aries, there could be pileup formation near the junction line, as observed 
in Fig. 9(a). Also, if the surface energy varies with angle, or anisotropic 
elasticity is applied, there can be local torques at the junction, so that the 
boundaries are twisted locally. 

One twin example is the classical 5-fold twin junction found in fcc 
crystals, as shown in Fig. 9(b). All partials have the same crystal sym
metry, so the angles between faults should be equal. In addition to the 
rotations of the twin boundaries, each a 70.32◦ intrinsic wedge partial 
disclination, there remains a net angular misfit of 7.35◦. Hence, in 
addition to the PDs satisfying Eq. (17), there are 5 superposed 1.47◦

wedge partial disclinations with the same ω. Fig. 9(c) is a simulation of 
such a 5-fold set in Cu, with a free-surface boundary condition. All 
partials have the same crystal symmetry, so some of the non-linearities 
mentioned for grain boundaries are absent. However, there are 
nonlinear strains near the junction line, probably associated with a weak 
tendency for dislocation pileup formation. The leading term in such a 
case would be a dilatational field with strains ϵrr = − ϵθθ, in agreement 
with Fig. 9(c). 

Fig. 8. (a) L junction where the elastic strains of a single PD can be relaxed by 
lattice dislocations at the ends. (b) A stress-free L junction with two PDs. (c) A 
stress-free L junction with the same ω, showing no strains at a junction of two 
tilt walls. (d) HRTEM image of an L junction composed of a (111) coherent twin 
boundary and a {112} incoherent twin boundary [23]. 

The crystallographic rotation is the same at a junction between two PDs if the continuity vector ω is the same. (16)   
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3.6. Extended disclinations multipoles 

There are two arrays of four PDs that comprise a fault quadrupole, 
important for disconnections, that have no long-range distortion 
component. The absence of long-range fields for polar arrays is the 
reason that there is a problem of scale dependence with the continuous 
dislocation model [57]. Contributions to the dislocation density are lost 
when the probe scale is large compared to multipole or dipole spacings. 

Fig. 10(a) is composed of wedge or skew-wedge disclinations in a 
square/parallelogram arrangement with 90◦ junctions. Starting with a 

square in a perfect crystal, one can imagine PDs A and C shearing the 
square to a rhombus and PDs B and D restoring the rhombus to a square. 
The rotation vectors ω are the same for each PD as indicated in Fig. 10 
(b). If the PDs are comprised of Bilby dislocations, there are no elastic 
strain fields. If the PDs are comprised of discrete dislocations with 
spacing d, there are elastic strains within a distance ∼ d from the 
boundary. Twist PDs can exist as dipoles but are unlikely to exist as 
quadrupoles other than as components of the boundaries of a grain. An 
example is a fcc twin viewed along [110] with (111) and [112] planes. 

The square in Fig. 11(a) is formed from four coherency or glide edge 
PDs. One can imagine PDs A and C converting the square to a rectangle 
and PDs B and D restoring the rectangle to a square. As depicted in 
Fig. 11(b), there is no continuity at the junctions and there is a strain 
quadrupole with no rotation. The field is limited to a distance ~L. Fig. 11 
(c, d) illustrates such a strain quadrupole in Mg, corresponding to a twin 
nucleus with PM/BT and BM/PT, where P designates the prism plane and 
B the basal plane [58]. The nucleus is identical to a quadrupole like that 
in Fig. 11(a), but with coherent boundaries. These boundaries appear in 
deformed hcp crystals, including steps of multiple height TDs [59]. The 
basal and prism planes are closely matched. The nucleus has coherent 
interfaces to reduce the total surface energy as is typical for nucleation. 
Processes. There are no misfit dislocations, and the nucleus has formed 
by a purely shuffle mechanism [54]. The nucleus grows by TDs with 
Burgers vectors bm. Eventually misfit dislocations form by the emissary 

Fig. 9. (a) A bright-field TEM image showing multiple twins, low angle GBs and their junctions in a Ni sample synthesized by DC electrodeposition. (b) A bright-field 
TEM image showing multiple-fold twin boundaries [55]. The fivefold TBs are broadened to accommodate the mismatch angle as shown in the HRTEM image (inset). 
(c) Simulation of a 5-fold twin in fcc Cu [15], viewed along [110]. Differing colors indicate the magnitude of the hoop stress, σθθ.

Fig. 10. (a). Fault quadrupole formed from four wedge PDs. (b) Net ω vectors 
of (a) showing that there are no stresses. 
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mechanism, most likely moving into the twin. Once misfit dislocations 
are present, the passage of a TD must be accompanied by the displace
ment of the misfit dislocation. One possibility is dislocation climb as in 
Fig. 11(e), but this can only occur at high temperatures and with perfect 
dislocations. At low temperatures the mechanism is that shown in 
Fig. 11(f), analogous to that for deformation of nanolayer structures [60, 
61] and in oxidation reactions [62]. The misfit dislocation dissociates 
into a pair of glide dislocations. 

If the dislocations in Fig. 11(a) are perfect, there are no coherency 
strains. For the case where the dislocation spacing is an atomic spacing, 
PDs A and C remove an atom and PDs B and D restore it. The strains then 
are removed, and the quadrupole is a null defect, simply representing a 
perfect crystal. 

4. Twinning/transformation disconnections (TDs) 

4.1. Twinning disconnections 

The formation of a TD at a twin boundary is illustrated in Fig. 12(a) 
and (b). Once formed the Burgers vectors are determined by the dif
ference of t vectors in Eq. (1). Because of the limitation on disclination 
lengths in hard crystals, one of their most prevalent appearances is at 
multiple height disconnections. Fig. 12(c) and (d) summarize the char
acteristics of a TD on a twin boundary: a Burgers vector and a step height 
h = mho, with m an integer and ho the height of a unit disconnection. 
The TDs have both a structural role and a role as transformation or 
twinning defects. As a TD traverses a glide plane, the dislocation or 
disclination component shears a crystal, while the step component shifts 
the interface by h normal to the glide plane. The result is that a matrix 
plane becomes a twin plane. The equivalent for phase transformations is 
shown in Fig. 12(e). For this case, the lattice spacing normal to the glide 
plane also changes. This spontaneous change in length can be viewed as 
a set of spacing defects [28], and is represented by a dislocation 
component normal to the glide plane bn. This shift requires no climb so 
the bn component moves conservatively. The step motion produces a 
pure rotation as discussed below and is also accompanied by the shuffles 
required to complete the transformation. The shuffle analysis is 
simplified if one describes each atomic motif as a structural group [63] 
with an integer j of atoms: e.g., a dipole A–B with j = 2. There are many 
possible sets of b and h for given dichromatic pattern [14]. The pair 
selected is a balance between a small b to minimize elastic self-energy 
and a small h to minimize shuffles. 

Li [24] long ago showed that the displacement field of a disclination 
was equivalent to that of a pair of partials in a PD. Both descriptions 
have been used in describing disconnections as reviewed in [9,14]. In 
the small n limit, the arrangement would be a single dislocation. How
ever, the disconnection description is superfluous for unit disconnec
tions. Hence the disclination pair designation has never been used in 
dislocation theory [14,25,65,66]. The same is true for m = 2, as exem
plified for a partial dislocation bounding an extrinsic fault [14]. For 
some multiple height, as for a disconnection, the dislocation component 
transitions to a disclination. The issue is at what distance this occurs. The 

Fig. 11. (a) quadrupole of four coherency PDs. (b) Net D vectors. (c). 
Dichromatic pattern showing that there is coherency disregistry. (d). Simulated 
coherent nucleus with observable strains. (e). Displacement of misfit dislocation 
by climb as a TD shifts the interface. (f). Alternate shift by dissociation of a 
misfit dislocation into paired glide dislocations. 

Fig. 12. (a) Two crystals containing short surface steps are joined, creating a TD with Burgers vector b and step height h. Two terrace interfaces are created on either 
side of the defect. If h is large, a disclination with vector D is created. (b). Definition of the Burgers vector b or the disclination vector D, and step height h. (c) Unit 
twinning TD with dislocation content. (d) Twinning TD with disclination content. (e). Unit TD for a phase transformation. 
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suggestion in [11] was that the disconnection component be described 
as a dislocation if the transition distance were within the nonlinear core 
region and a disclination if it were outside the core. Results for dis
clination fields indicate that the transition occurs for m = 3 to 4. Hence, 
Li’s description must be used when m is greater than this transition 
length, but it does not apply for smaller m, and never for unit dis
clinations. Neither model is exact in the core region. Atomistic simula
tions reveal local nonlinear strains [67], rigid shifts by p [68,69], 
structural units in high-angle grain boundaries [70], and thin in
terphases in layer structures [71]. These are incorporated either in the 
line tension Γ in Eq. (13) or the core parameter r0 in Eq. (14). Solute or 
vacancy-interstitial adsorption atmospheres also cause strain gradients 
and non-linearity in the core region. The core region can extend for tens 
of nm for the solute case [72]. 

Some special effects are associated with multiple height TDs and 
those with j multiple atoms in the motif or structural group at a lattice 
site. While the TDs have the same discrete or Bilby Burgers vectors, the 
shuffles are more complex. More generally, the dislocation vectors can 
vary from layer to later within the TD. So-called zonal dislocations are of 
this type [73]. Secondly, for twins with irrational twinning directions 
such as (1011) twins in hcp crystals, multiple height TDs can entail 
successive dislocations with two different Burgers vectors [74,75]. 
Thirdly, synchro-shuffle can occur when j > 1. Suppose j = 2 with A and 
B sites for identical atoms. Then normal shuffles entail A-A shifts and B-B 
shifts. However, shuffle vectors can be greatly reduced in some cases, 
which would be favorable energetically, if a two atoms shuffle by 
changing site type: A→B and B→A. This process was originally called 
synchro-shear, but in the TM corresponds to synchro-shuffle since there 
is no associated shear in cited cases. True synchro-shear is very rare. 
Examples of synchro-shuffle include twins in sapphire [76], (1012) 
twinning in Zr [77], and phase transformations in Laves phases [78] and 
olivine [79]. If A and B are different elements, the resultant 
pseudo-structure contains anti-site defects. An example is twinning in 
albite [64]. 

4.2. Transformation disconnections 

Shear-shuffle phase transformations can be diffusional or martens

itic. The major difference between twinning and the transformations is 
the presence of a Burgers vector component bn in the TD. This compo
nent is a virtual climb dislocation associated with the difference in 
interplanar spacing normal to the commensurate terrace plane. The 
associated displacements are spontaneous as a TD moves. No atoms are 
added or removed, so no climb is needed. The presence of the virtual 
climb dislocation creates a mixed glide/wedge PD. This provides an 
added Peach-Koehler force for the motion of a TD, with magnitude nσbn, 
where the stress is now the normal stress relative to the terrace. 

Since the collapse of the lattice associated with the removal of bn is 
spontaneous, there is a short-cut useful for transformations in low 
symmetry structures such as Pu [80]. One imposes a Crocker, affine 
transformation to the matrix to a structure where the difference in 
d-spacing of planes parallel to the interface is removed. The resultant 
transformation is more-simply analyzed as a twin. The resultant struc
ture then undergoes a reverse affine transformation to return the 
d-spacing, yielding the true product structure. This process can be 
applied for other types of affine transformation such as the shear version 
in ZrO [81] and CaCo3 [82]. 

Because the PD is mixed glide/wedge for the phase transformation, 
the interface is that shown in Fig. 13(a, b). The interface can be viewed 
as a twin plane with a superposed set of wedge PDs like the Crocker 
result. As for all wedge PDs, the rotation 2α′ associated with bn is equally 
partitioned between the two phases. The TDs also serve as misfit defects, 
unlike twinning TDs. For Fig. 13(c), the Burgers vector components 
parallel to the terrace plane, bg are equal and opposite to the sum of the 
Bilby dislocations bi on the terrace planes. Thus, the resultant long-range 
distortion field is a pure rotation, with local strains only within a dis
tance ~L from the interface. The process of growing the product phase is 
essentially the reverse of the faceting process. The true rotation 2Δθ 
differs from 2Δθ′ . This result and the partition of the rotation represent 
the major differences between the TM and aspects of the phenomeno
logical theory. Equations for Δθ are given in [20,83,84], where Δθ is 
designated as α. 

The analysis of macroscopic shapes is complicated by the misfit role 
of the TDs, discussed in detail in [84]. For the phase transformation 
version of the lenticular plate, if a TD on the right is a misfit defect, that 
on the left is an anti-misfit defect. Thus, there is a strong tendency for the 

Fig. 13. (a). Section of a type I phase transformation with coherent interfaces as Bilby PDS and TDs as misfit defects. (b). 3D representation. (c) View relative to 
coordinates fixed on the mean interface (the habit plane). The Burgers vectors differ from those in (a) for these rotated coordinates. The angle 2Δθ corresponds to the 
orientation relationship. 
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shape to be asymmetrical. And, for a set of TDs like those on the right, 
evenly spaced TDs are favored energetically in misfit relief. Conse
quently, the shape of one side of the plate tends to have a triangular 
shape instead of a curved shape. Many triangular shapes are depicted in 
[85]. 

The phenomenological theory of martensitic transformations 
(PTMC) [86,87] is the classical treatment. The theory seeks a plane 
strain shear that produces an invariant plane, common to the matrix and 
product. The theory first envisioned that this plane is rational, with TDs 
moving on it. Bowles and Mackenzie [87] recognized that there was a 
problem matching the physical glide plane for TDs with such an 
invariant plane and introduced an empirical factor to account for the 
change in lattice spacing across low index planes. That factor qualita
tively corresponds the normal component bn in the TM. Later treatments 
explicitly showed that the invariant plane, while present, was irrational, 
agreeing with the TM. The later treatments [88–90] determined the 
structure of the irrational plane, analogous to the mechanisms for 
twinning. Micro-twins traversing the martensitic plates were added and 
explained the interface for (225) martensite plates in steel [88]. A model 
with microlayers of a second martensite variant traversing the main 
plate was added in [89]. In a sense, these mechanisms resemble the dual 
shear mechanism accompanying partitioning in the TM Yet, in some 
applications [91,92], it was envisioned that a simple shear mechanism 
with the rational shear plane an invariant plane was possible. Several 
efforts, culminating in [93], proved that such a simple mechanism was 
impossible. There is a parallel among the different descriptions. The 
primary simple shear is provided by TDs. The recovery is provided by 
lateral emissary lattice dislocations in the TM, micro-twins [88], or 
microlayers of a different variant [89]. We mention again the Crocker 
procedure described above that reduces the phase transformation 
analysis to that for a simple shear mechanism. 

The above models for martensitic or diffusional phase trans
formations focus on type I/III mechanisms where the TDs glide on a k1 
plane. Another possibility that has received less attention for phase 
transformations is that the TDs glide on k2 planes [11,83], particularly 
for the fast, near sonic velocity case. For the fast motion, there is a factor 
favoring a type II martensite mechanism compared to a type I mecha
nism. For a unit advance of a plate, a type I TD must move a larger 
distance, LI, than for the type II twin, LII. The required speed for the type 
II case is slower by the asperity ratio, LII/LI , and hence type II is favored 
[94]. The type II mechanism would also be favored in this manner by a 
preceding glide dislocation. The photon emission accompanying the 
dislocation motion is an energetic factor favoring the nucleation of a TD 
pair at the growing tip. The midrib observed in martensite plates in steel 
also suggests a type II mechanism. 

5. Motion of TDs 

As discussed in [20], the components of TDs have different conse
quences when a disconnection moves. A pure step or the step component 
of a disconnection, shown in Fig 14(a), produces only rotation with no 
linear strain field. The corners all resemble L junctions and there are no 
strain fields, Ω = 0. As with the linear PDs treated previously, all ter
races in a step can be considered as PDs comprised of Bilby dislocations. 
A step has the same ω rotation vectors as the terrace. To separate these 
crystallographic PD components from those with strain fields, we 
represent them by an angle symbol. The dislocation or extrinsic PD 
component of a TD produces plastic shear or extension when it moves 
and elastic strain for a TD at rest. We represent these extrinsic compo
nents by arrays of dislocation symbols. Fig. 14(b) shows a multiple 
height PD and its step and extrinsic disclination components. Fig. 14(c) 
shows an analogous slant PD. Fig. 14(d) shows the relaxation of an PD 
into a pure step, e.g., by the emissary dislocation mechanism [51]. A 
pure slant step of any angle can be created in this manner. Fig. 14(e) 
shows an intrinsic curved step. There is no first-order strain field for the 
pure steps and the ω vectors are continuous. There are second-order 

effects at corners [95]. The absence of first-order elastic strain for 
these intrinsic steps is consistent with Frank’s formula for a general 
grain boundary [35]. There are examples where an intrinsic step relaxes 
to a slant step to reduce surface energy [15]. If this occurs without a 
change of the Bilby dislocation Burgers vector, bD as in Fig. 14(f), the TD 
becomes extrinsic, with mixed character tilt, bn, and coherency, bc [15]. 
The coherency disclination component produces a strain field. These 
results extend in general to all junctions. L-junctions in NaCl [96] and 
Mo [97] are examples. 

When unit TDs move, they tend to accumulate into larger steps 
[72–74]. This corresponds to the increase in step height of the multiple 
height disconnection by the continued addition of unit TDs. A single 
dislocation is attracted at short range and repelled at long range. As 
demonstrated by the calculations in [98], the distance from the PD at 
which the transition occurs increases monotonically with m. Thus, it 
becomes more favorable for a lattice dislocation to join an PD the greater 
is m. However, as suggested in [98,99], there is a value of m where 
further additions of TDs become unlikely. While the repulsive region 
becomes further from the PD with increasing m, the magnitude of the 
repulsive force increases with m, so it becomes more difficult for a lattice 
dislocation to the enter the attractive region. There is a likely maximum 
value of m in the range 10–15, and many observed PDs at twin bound
aries agree with this expectation [55]. Of course, there are configura
tions other than TDs where longer lengths are possible. A similar 
situation arises at the blunt tips of deformation twins [100]. 

6. Recovery 

A simple form of recovery is for dislocations with vectors −B/2 at 

Fig. 14. (a) Step in twin with continuous ω vector, (b) Disconnection composed 
of a pure step and a wedge PD. (c). Mixed PD composed of a wedge PD and a 
coherency PD. (d). Slanted disconnection composed of a pure step and a mixed 
wedge/coherency PD. (e). Disconnection with a curved step. (f). Curved 
pure step. 
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each end of an RD to compensate the disclination vectors D/2 [9]. In 
many crystals these vectors cannot exactly compensate, but there is a 
best choice with a minimum difference. This corresponds to the 
near-coincidence model [101]. 

While the mechanistic focus in twinning theory is on the formation of 
twins, observations of twins are of recovered structures. We first 
consider the fully recovered blocky type I/III twin in Fig. 15(a). The 
analysis resembles that for junctions. The three surfaces are identified as 
the glide plane, the forward plane, and the lateral plane. Most analyses 
are two dimensional, with faces ABCD shown in a projection along the 
TD line direction. Recently, attention was drawn to the lateral interface 
[102,103]. Severe incompatibilities exist on the BD faces. Depicted in 
Fig. 15(b), the edge Bilby dislocations on face A extend as screws on face 
C. As shown in Fig. 15(c), the edge Bilby dislocations on face B extend as 
screws on face C. Together the Bilby screw dislocations produce a twist 
boundary on face C as shown in Fig. 15(d), so all faces have the same ω. 
While maintaining the crystallographic rotation, the incompatibilities 
are removed by an array of lattice dislocations with spacing 
dL so that Ω ≅ 0 There are elastic strains only within a distance ~dL 
from the interface. The final description of the blocky twin is wedge PDs 
on faces A and B, and a spin PD on face C. 

An example of a blocky recovered twin like that in Fig. 15(e), is a fcc 
twin with orthogonal planes A = (111), B = (112) and C = (110). 
Another example is a recovered blocky (1012) twin in Mg [101], which 
is more complicated because the B face is irrational, and the C face is not 
a low index plane before relaxation. TEM characterizations and atom
istic simulations in [102] revealed that the B face is relaxed into low 
energy interfaces comprising (1012)||(1012) and (1010)||{0001}, and 

the C face is relaxed into low energy interfaces comprising (1101}M|| 
(0111)T and (1210)M||{1210}T, as shown in Fig. 15(f). 

When a TD with disclination character increases in step height, its 
strain energy continually increases. The long-range strain can be 
recovered dynamically or statically by the emission of a lattice dislo
cation with a Burgers vector equal in sign to the dislocations in the TD. 
An opposite-signed lattice dislocation then resides in the TD, cancelling 
part or all the TD field. An example is a twin in Mg with the k1, glide 
plane (1012), a glide vector bg = 1/15<1011>, a forward plane (1012), 
and a lateral plane (2110) [101,102]. For Mg the cancellation by a lat
tice dislocation is not perfect but is a minimum at m = 14, as shown in 
Fig. 16 (a, b). The structure with m = 14 corresponds to the near 
O-lattice structure described in [101]. Observations of many HRTEM 
steps summarized in Fig. 16(c) reveal that the actual favored step height 
is m = 7. This indicates that the lattice disconnection with m = 14 
dissociates into two partial disconnections, demi-defects in the topo
logical theory [50]. This observation agrees with the theoretical 
expectation. In a direct view of the lateral face, the resolution of screw 
dislocations is difficult, but the view normal to the forward face in 
Fig. 16(d) reveals the emergent points of the misfit screw dislocations. 

There is another form of recovery for a type II twin. As described in 
[105,106], the twin boundary for a type II twin is irrational. Yet in many 
cases it is close to a low index plane. In such a case, driven by the 
reduction in surface energy, the interface of Fig. 17(a) breaks up into 
low index facets bounded by disclinations with Burgers vectors, see 
Fig. 17(b), nearly equal and opposite to the net Burgers vector of the 
Bilby dislocations in the facet. As reviewed in [103], there are several 
faceted structures for Type II/IV twins that agree precisely with the TM 

Fig. 15. (a) Recovered blocky type I twin. Face A is the TD glide plane and twin plane with edge-glide Bilby dislocations. Face B is the forward plane with edge Bilby 
dislocations. Face C is the lateral plane with a cross grid of screw-glide dislocations. (b) Bilby dislocations producing the twin rotation on face A and contributing 
screw components on face C are shown for the recovered twin. (c). Bilby dislocations on face A extending to face C. (d). A lattice dislocation on face A extending to 
face C, making Ω = 0, and relaxing the interfaces. The total Bilby dislocations on face C form a twist boundary. (e). A HRTEM image of a recovered (111) twin in Al. 
(f). Atomistic simulations of a < 1012> twin nucleus showing multiple facets. PyPy1 and PrPr2 refer to (1101}M||(0111)T and (1210)M||{1210}T; PB refers to 
(1010)||{0001}, and (1012)||(1012) is a bonded k2 interface [103]. 
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Fig. 16. (a). Simulation of the glide and forward planes for a (1012) type I twin in Mg after recovery. (b). Displacement plot showing the TD vectors bg and a 
compensating lattice vector bL. (c). Distribution of step heights measures in HRTEM. (d). View normal to the forward face showing the emergent points for the misfit 
screw lattice dislocations on the lateral face. (e). High-resolution TEM and corresponding fast-Fourier transform (FFT) patterns of the lateral interface composed of 
CTBs and misfit dislocations [101]. The blue dash line on a (1012) plane roughly indicates the possible boundary location. 

Fig. 17. (a) HRTEM micrograph of [011] type II twins in NiTi martensite with [101]A || [1110]B. (b) IFFT HRTEM image of [011] type II twin boundaries between 
variants B1 and A [100,101]. (c) A bright field image of pericline twin in bytownite viewing along [401]. Twin boundary is faceted with 〈Ll〉 = 550 nm. (d) A HRTEM 
image of pericline twin boundary in bytownite containing a disconnection at the center [104]. 
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predictions, as shown in Fig. 17(c) and (d). 
The discussion here refers to emissary dislocations as the entities 

providing recovery. For the lenticular twins considered here, microtwins 
traversing the twin would be an alternative to emissary dislocations in 
providing recovery. An example is provided in the analysis of twins in 
uranium-niobium alloys [107]. 

7. Discussion 

As long known, the displacement field of an edge dislocation, while 
correct in the linear elastic approximation, contains a false, non-physical 
divergence in the y-direction [22]. This is reflected in a shift of origin 
and the presence of a non-zero M integral [108]. The motion of this false 
line force implies work done by σyy stresses, which would alter the 
Peach-Koehler relation, for example. A recent emendation [39] corrects 
this by adding a true equal and opposite line force that cancels the false 
one and cancels M. Thus, the only relevant plastic displacement is b. The 
resultant stress fields are modified by factors ranging up to 20 % in the 
isotropic elastic approximation and this affects defect interactions. The 
only change here is to add the factor η to Eqs. (11) and (12). 

η =
2(2 − 3ν + 2ν2)

(3 − 2ν)
(18) 

For example, η ≅ 1.046 when ν = 1/3. However, the present work 
emphasizes structure and symmetry which are unaffected. The major 
nonlinear changes presented in this application are associated with 
symmetry requirements in the TM together with the accompanying se
lection of origin and partitioning of displacements. 

There were many early associations of type I twin boundaries and 
wedge disclinations, extending to the present. The TM modifies these 
ideas by using embedded coordinates, adding geometrical nonlinearity, 
and emphasizing both the partial nature of the disclinations and parti
tioning. Moreover, partitioning causes type II twins to differ from the 
classical descriptions and leads to the new definitions of twin types in 
Appendix A. Added there are new types III and IV, extensions of I and II 
when the respective χ1 and χ2 twinning directions are irrational. The 
resultant twin boundaries are rotated significantly relative to the clas
sical twins, although the new results are consistent with general twin
ning theory [109,110]. As reviewed in [111], the TDs were defined 
earlier as twinning dislocations. However, the focus was only on the 
Burgers vector, not the step character nor on the disclination character 
for larger step heights, both key features in the TM, where the combined 
defect is the twinning disconnection. Again, with linear elasticity, there 
was no consideration of partitioning, with its important relation to local 
rotations. Thus, the TM modifies both aspects of classical theory. 

The TM modifications are consistent with the SM [14]. In the SM, the 
use of embedded coordinates is implied but not specified in the original 
topological theory [21]. This usage entails a geometrical nonlinearity. In 
linear elasticity, asymmetrical forms of displacements are invariably 
used in deriving the displacements for dislocations This procedure has 
no effect on the derived long-range stresses or strains, but there are 
asymmetries near the core. To obviate this, separate displacements are 
selected in the latest versions of the TM, consistent with the symmetry at 
the cut-plane. 

For a screw dislocation, the displacement fields are: 

uz =
bθ
2π [ − π / 2 < θ < π / 2] (19)  

uz = −
bθ
2π [π / 2 < θ < 3π / 2]

Similar results apply for edges. In the TM, the DP and DC are 
inherently embedded on lattice sites. Thus, symmetry is fulfilled auto
matically. The same is true for the TDs and PDs considered here, as well 
as lattice dislocations and perfect disclinations. These symmetrical 
forms are important, for example, in boundary conditions for atomistic 

simulations. We emphasize the need for a symmetrical origin for the 
elastic field in all cases as requires in the TM and SM. 

Rotational discontinuities produce strain-fields characterized by D. 
Unlike Burgers vectors for dislocations, these vectors do not sum for PDs 
and are supplanted by the continuity vector ω. Hence, the non-intuitive 
result is that ω vectors sum at a slant junction, but D vectors do not. The 
applications to blocky twins and recovered steps at TDs demonstrate this 
truism. The same concepts apply for shear-shuffle phase trans
formations, but the PDs and D vectors are mixed. As treated here, the TM 
readily explains the motion of simple tilt and twist grain boundaries by 
TDs. The TM applies for more general grain boundaries that can be 
considered as the superposition of multiple simple boundaries, but the 
applicable TD mechanism is diffusional, dominated by shuffles, 
including shear-type shuffles as treated in [14, Fig. 23.5]. 

We have clarified the historical nomenclature [43,44] in two senses. 
We showed that Li’s description of a dislocation [24], a TD in the present 
context, as a disclination dipole, applies for TDs with steps of triple or 
more height, but not for unit TDs. Also, what were called dipoles are 
divided into dipoles and like-sign pairs. The PD or perfect disclination 
dipoles have equal and opposite strain fields and annihilate upon con
tact, analogous to other examples such as electron-hole pairs. The like 
sign pairs repel one another. 

The steps or facets associated with deformation twins can be well 
described as PDs with a bounding fault in the hard crystalline materials. 
The faults consist of planar defects such as coherent and incoherent twin 
boundaries. An important observation is that these PDs may experience 
different kinetic barriers with respect to the direction of motion, i.e., 
directional asymmetry. Examples are twinning in hexagonal metals and 
{112} twinning in metals with a body center cubic structure. Corre
spondingly, these materials display strong plastic anisotropy. The pre
sent results can be incorporated into multiscale materials modeling and 
help develop the strategy of controlling twinning via tailoring the core 
structure of TDs. 

We treat only hard materials here. Perfect disclinations are prevalent 
in soft materials but partial disclinations exist and can be described by 
the present results. Somigliana defects have been described for soft 
materials as well [112,113]. 

The focus here is on structure, although many TM/SM calculations 
follow the Green-function approach of Mura [12]. Recently, a signifi
cant, alternate, generalized theory has been developed [17,18]. As dis
cussed, consistent with the usage established for fifty years of partial 
disclinations and faults, we prefer the designation PD to that of gener
alized disclinations, [17,18]. The theory provides an alternative to 
discrete dislocation dynamics theory and has the potential to determine 
fields for curved dislocation lines, PD faults, and Somigliana defects. An 
application of this theory to some of the concepts presented here, such as 
partitioning, would be valuable. 

While not discussed here, we note that many of the same concepts 
would apply for double-ended microcracks. 

8. Summary  

a) Previous linear elastic results are modified by the inclusion of 
embedded coordinates, a nonlinear geometry effect included in the 
topological model. The associated symmetry leads to equipartition
ing of crystallographic displacements and a symmetrically placed 
origin. 

b) The standard model is applied for extended disclinations. The sym
metry of plastic displacements is distinguished from crystal sym
metry. The latter relates to a continuity vector that establishes the 
condition for pure rotation at a twin, grain, interphase interface.  

c) Disclinations and uniform dislocation arrays are equivalent except 
for nonlinear core terms. Differences in local stress fields in the 
general literature arise from different core models. 
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d) Including curved defects, we identify six types of disclinations and 
relate them to curved dislocation arrays. Two of these can be 
described as arrays of Somigliana dislocations.  

e) Mechanisms are discussed for the recovery of disclination fields.  
f) Applications are presented for disconnections, lenticular and blocky 

twins, interface junctions, multipolar arrays, and shear-shuffle type 
phase transformations. 
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Ecole Normal. Super. 24 (1907) 401–517. 

[2] C. Somigliana, On the theory of elastic distortions, Rend. Accad. Lincei 23 (1914) 
463–472. 

[3] R. deWit, The continuum theory of stationary disclinations, Solid State Phys. 10 
(1960) 249–292. 

[4] G. Friedel, Les etats mesomorphe de la materié, Ann. Phys. 18 (1922) 273–274. 
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and {10-13} planes in hcp crystals, Acta Mater. 59 (2011) 3990–4001. 

[76] M. Kronberg, Plastic deformation of single crystals of sapphire: basal slip and 
twinning, Acta Metall. 5 (1957) 507–524. 

[77] H. Khater, A. Serra, R.C. Pond, Atomic shearing and shuffling accompanying the 
motion of twinning disconnections in zirconium, Phil. Mag. 93 (2013) 
1279–1298. 

[78] P.M. Hazzledine, P. Pirouz, Synchroshear transformations in Laves phases, Scr. 
Metall. 28 (1993) 1277–1282. 

[79] J. Poirier, On the kinetics of olivine-spinel transition, Phys. Earth Planetary Inter. 
26 (1981) 179–187. 

[80] A.G. Crocker, The crystallography of deformation-twinning in alpha plutonium, 
J. Nucl. Mater. 41 (1971) 167–173. 

[81] R.C. Pond, X. Ma, J.P. Hirth, T.E. Mitchell, Disconnections in simple and complex 
structures, Phil. Mag. 87 (2007) 2307–5289. 

[82] X. San, M.Y. Gong, J. Wang, X. Ma, R. Reis, P.J.M. Smeets, V.P. Dravid, X.B. Hu, 
Uncovering the crystal defects within aragonite CaCO3, PNAS 119 (2022) 
e2122218119. 

[83] R.C. Pond, J.P. Hirth, K.M. Knowles, Topological model of type II deformation 
twinning in NiTi martensite, Phil. Mag. 99 (2019) 1619–1634. 

[84] R.C. Pond, X. Ma, Y.W. Chai, J.P. Hirth, Topological modelling of martensitic 
transformations, in: F.R.N. Nabarro, J.P. Hirth (Eds.), Dislocations in Solids 13, 
Elsevier, Amsterdam, 2007, pp. 225–262. 

[85] G.F. Vander Voort (Ed.), Metallography and Microstructure, ASM Handbook, Vol. 
9, 2004. 

[86] M.S. Wechsler, D.S. Lieberman, T.A. Read, On the theory of the formation of 
martensite, Trans. AIME 197 (1953) 1503–1515. 

[87] J.S. Bowles, J.K. Mackenzie, The crystallography of martensite transformations, 
Acta Metall. 2 (1954) 2815–2822. 

[88] M.S. Wechsler, On the theory of martensite transformations, Acta Metall. 7 
(1959) 793–802. 

[89] L.M. Ball, R.D. James, Fine phase mixtures as minimizers of energy, Arch. Rat. 
Mech. Anal. 63 (1977) 337–403. 

[90] K. Bhattacharya, Microstructure of Martensite, Oxford Univ. Press, Oxford, 2003. 
[91] C.M. Wayman, Introduction to the Crystallography of Martensitic 

Transformations, Macmillan, NY, 1964. 
[92] P.M. Kelley, L.R.F. Rose, The martensitic transformation in ceramics-its role in 

transformation toughening, Prog. Mater. Sci. 47 (2002) 463–557. 
[93] R.C. Pond, J.P. Hirth, Response to “The phenomenological theory of martensite 

crystallography versus the topological model, in: G.B. Olson, D.S. Lieberman, 
A. Saxena (Eds.), Proc ICOMAT 2008, TMS, Warrendale, PA, 2000, pp. 107–114. 

[94] J.P. Hirth, A dislocation mechanism for phase transformation, in: J.A. Simmons, 
R. deWit, R. Bullough (Eds.), Fundamental Aspects of Dislocation Theory 1, 
National Bureau of Standards Special Vol. 317, 1970, pp. 547–552. 

[95] S. Akarapu, H. Zbib, J.P Hirth, Modeling and analysis of disconnections in tilt 
walls, Scr. Mater. 59 (2008) 265–267. 

[96] S. Amelinckx, Dekeyser W, The structure and properties of grain boundaries, 
Solid State Phys 8 (1959) 325–499. 

[97] A.H. Clauer, J.P. Hirth, An analysis of L and Y tilt boundary intersections formed 
during creep in molybdenum, in: Proceedings of the Second International 
Conference on the Strength of Metals and Alloys III, American Society of Metals, 
Cleveland, 1970, pp. 1113–1117. 

[98] M. Enomoto, J.P. Hirth, Computer simulation of ledge migration under elastic 
interaction, Metall. Mater. Trans. 27A (1996) 1491–1500. 

[99] J.W. Christian, Discussion, Metall. Mater. Trans 25A (1994) 1821. 
[100] S.V. Kamat, J.P. Hirth, P. Müllner, The effect of stress on the shape of a blocked 

deformation twin, Phil. Mag. 73 (1996) 669–680. 
[101] W.Z. Zhang, Decomposition of the transformation displacement field, Phil. Mag. 

78A (1998) 913–933. 
[102] Y. Liu, N. Li, S. Shan, M. Gong, J. Wang, R.J. McCabe, Y. Jiang, C.N. Tomé, 
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