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CrossMark
Abstract

Gravitational memory effects and the BMS freedoms exhibited at future null
infinity have recently been resolved and utilized in numerical relativity sim-
ulations. With this, gravitational wave models and our understanding of the
fundamental nature of general relativity have been vastly improved. In this
paper, we review the history and intuition behind memory effects and BMS
symmetries, how they manifest in gravitational waves, and how controlling
the infinite number of BMS freedoms of numerical relativity simulations can
crucially improve the waveform models that are used by gravitational wave
detectors. We reiterate the fact that, with memory effects and BMS symmetries,
not only can these next-generation numerical waveforms be used to observe
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never-before-seen physics, but they can also be used to test GR and learn new
astrophysical information about our Universe.

Keywords: numerical relativity, gravitational waves, gravitational memory,
BMS

1. Introduction

One of the most pressing challenges for physics in the near future is performing stringent
and robust tests of Einstein’s theory of general relativity (GR). These tests are of the utmost
importance because they will inform us about the nature of gravity within our Universe and
will reveal when our long-standing theory of GR fails to explain real world phenomena. At
present, the most prospective tests of GR that we can perform are those which involve analyses
of the gravitational waves (GWs) that are created by binary black hole mergers (BBHs)®. This
is because the GWs that are produced by BBHs are largely influenced by the strong-gravity
regimes sourced by two coalescing black holes and should thus capture whatever deviations
from GR there may be. However, to verify whether certain features in observed GWs are
evidence for unknown physics, we first need to have a sound understanding of the GWs that
GR predicts.

At present, the best solutions to Einstein’s equations, i.e. the GW templates used to perform
tests of GR, are those produced by numerical relativity (NR) simulations. Calculating the GWs
sourced during the coalescence of two black holes is impossible to work out with pen and paper
due to the overall complexity of the partial differential equations that need to be solved.

Furthermore, even if one uses perturbation theory to try to predict the GWs, this fails to pro-
duce reliable results during the merger phase of the binary, which is typically the loudest and
most detectable part of the GW signal. Consequently, GW models that are built by using per-
turbation theory or GW phenomenology, like effective one-body (EOB) or Phenomenological
(Phenom) GW models [1-11], always need to be calibrated against NR waveforms. Thus, NR
simulations, which can achieve arbitrary accuracy with the right computational tools, are at
the heart of producing accurate and robust solutions for GW-emitting phenomena in GR.

Nonetheless, NR can still fail to accurately simulate GR if the code infrastructure is not for-
mulated correctly or if the necessary numerical resolution is not achieved. One such example
of this inaccuracy was the inability of NR simulations to resolve a collection of observables
in GR colloquially referred to as memory effects [12—14]. These effects are not-yet observed,
nonlinear predictions of GR that physically correspond to the net displacement that two freely-
falling observers will experience due to the passage of transient GWs. However, apart from
being a curious prediction of GR, what makes memory effects particularly tantalizing is that
they are intimately tied—through conservation laws—to the symmetry group of future null
infinity—part of the asymptotic boundary of spacetime. This symmetry group is not the usual
Poincaré group of special relativity, but is a larger group called the BMS group, named after
Bondi, van der Burg, Metzner, and Sachs [15, 16]. Thus, there is hope that with the detection
of memory we can not only conduct more stringent tests of GR, but we may even obtain a
better understanding of the asymptotic structure of our encompassing Universe, which is of

6 While the imaging of black holes, such as those performed by the EHT Collaboration, can also test Einstein’s theory
of GR, this typically probes much lower curvatures than are accessible by the LIGO-Virgo-KAGRA Collaboration
and thus probe alternative, but also complementary, regimes of GR.
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immense interest to theorists trying to formulate a theory of quantum gravity through topics
such as celestial holography [17-21].

In this review, we highlight recent advancements made in the NR community to resolve
memory effects as well as some work showing how fixing the BMS freedoms at future null
infinity drastically improves both the accuracy and robustness of GW models and analyses.
Specifically, in section 2 we begin by providing some motivation for and intuition behind the
BMS group and memory effects. Next, in section 3 we provide a review of the literature on
memory, the BMS group, and BMS frame fixing. Then, in section 4, we provide a more formal
explanation of the origins of the BMS group and how memory effects can be understood as
stemming from certain conservation laws related to the symmetries of null infinity. In section 5,
we transition to a review of the code frameworks used to compute GWs at null infinity and
we highlight the advancements in the NR community that has made the resolution of memory
effects possible. Then, in section 6, we demonstrate the formalism from section 4 using BBH
simulations. In particular, we present how the BMS conservation laws can be used to efficiently
analyze gravitational waves and understand memory effects. Furthermore, in this section we
also provide a review of the detectability of memory and the forecast for its detection in the
coming decade. In section 7 we highlight the often-overlooked importance of fixing the BMS
freedom of NR waveforms to ensure that modeling of NR waveforms is performed accurately
and robustly. We show this by introducing the superrest frame, and demonstrating its utility by
comparing NR waveforms to post-Newtonian waveforms and by fitting NR waveforms with
predictions made by black hole perturbation theory. Finally, in section 8 we summarize the
main points of this review and provide some outlook regarding the future of NR, memory
effects, and testing the nature of gravity with GW.

2. Pedagogical approach to BMS and memory

Despite its importance and interesting characteristics, many relativists are not familiar with the
BMS group or its effect on asymptotic data. In this section, we provide a pedagogical intro-
duction to the BMS group, with the intention of making the rest of the paper more accessible.
We begin by motivating the need for a coordinate system that is adapted to inertial observers,
e.g. GW detectors, and discuss how such a coordinate system is provided by ‘Bondi gauge’—
in which the metric asymptotes to the usual Minkowski metric at large radius. This is cru-
cial because GW waveforms are always studied in a certain coordinate system, so to provide
meaningful waveforms we need a meaningful coordinate system that matches that of our iner-
tial detectors. As we will see, it turns out that once such a coordinate system is constructed by
mapping the metric to Bondi gauge, there is a residual ambiguity in the coordinates, i.e. a sym-
metry, which is described by the BMS group. The BMS group, however, is simply the usual
Lorentz group, augmented by a generalized class of spacetime translations called supertrans-
lations [15, 16]. Consequently, it is fairly straightforward to understand the BMS group once
the origin of and intuition behind supertranslations is understood. Thus, once we motivate the
need for a meaningful coordinate system, we will then provide some intuition for supertransla-
tions through a few informative examples involving null rays propagating in Minkowski space.
Following this, we then conclude this pedagogical overview by showing how the BMS group
changes the asymptotic data that can be measured by an inertial observer. This action forms
the basis for fixing the BMS frame in NR, as outlined in section 4, and also provides a unique
way to study memory effects, which we utilize in section 2.6 and in the rest of the paper.
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2.1. Motivation

Choosing coordinates in GR is one of the more delicate and, at times, confusing compon-
ents of Einstein’s theory. In fact, for decades after GR’s development, researchers—including
Einstein—wavered over the issue of whether or not GW were really physically observable or
simply gauge artifacts [22]. Ultimately, the reason for their misgivings was that GWs are often
studied in terms of components of the metric or Riemann tensors, with respect to some basis
determined by the coordinates’, and expressed as functions of those coordinates. Fortunately,
this confusion regarding the observability of GWs was resolved by Pirani in 1956, who cla-
rified their existence using tetrad methods and worldlines of particles [25]. Pirani’s approach,
however, was really only useful for formulating theoretical perspectives and could not be used
to make statements about particular systems, like black hole mergers. For this, a more suitable
framework was developed in a series of works by Bondi ez al and Sachs [15, 16, 26-28]. Their
approach to studying GWs, which we describe in section 2.2, involves constructing an explicit
coordinate system and assuming a particular, but well-motivated asymptotic behavior of the
spacetime metric in those coordinates.

As an alternative perspective regarding the subtleties of coordinates in GR, consider a
numerical simulation. At the simplest level, numerical relativists must produce waveforms
as tables of timestamps and corresponding GW strain values measured at various angular loc-
ations encompassing the source®. However, the meaning of those time coordinates, the angu-
lar locations at which the strain is measured, and the basis with respect to which the strain
is evaluated rely on the essentially arbitrary coordinates used in the numerical simulation—
coordinates imprinted by the vagaries of initial data and complicated gauges. Despite confus-
ing declarations that may be found in the NR literature, no GW extraction method can produce
‘invariant’ results in the sense of being independent of the choice of coordinates [29]. Even at
linear order in the size of the gauge perturbation, every waveform description is coordinate-
dependent. But this issue is not unique to NR simulations. Other gravitational wave modelers,
such as those working in post-Newtonian (PN) or even post-Minkowskian (PM) theory, face
similar ambiguities. Ideally, we would resolve these coordinate issues in a consistent way, so
that waveforms from other simulations, or other models, can be compared to each other.

Due to the diffeomorphism invariance of GR, there is a rich set of coordinate systems that,
in principle, could be used to study GWs. In practice, however, working with so many possible
coordinate systems is not feasible. Instead, we need some well-motivated way to limit the pos-
sible coordinate systems that we can use when studying GWs. To do this, one property that we
might impose is that the coordinate systems we consider be adapted to trajectories of inertial
observers. That is, curves that have constant spatial coordinates could be timelike geodesics,
and the time coordinate for those curves could be the proper time measured on those geodesics.
While this would certainly be possible, one issue that arises is that the coordinates we consider
would then depend on their initial conditions, and would surely encounter coordinate singu-
larities. But, it turns out that if we instead consider the region of spacetime infinitely far away

7 See, e.g. [23, 24] for interesting efforts to find tetrads specified by the geometry rather than arbitrary coordinates.

8 In reality, numerical relativists provide the angular dependence of the strain by representing the strain with respect
to some set of angular basis functions, like spin-weighted spherical harmonics. However, to make the connection to
coordinates more apparent, in this discussion we ignore this detail and instead consider the naive representation in
terms of points on the two-sphere.
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from the source, then it is sometimes possible’ to find a set of coordinates that is asymptotic-
ally inertial. This realization is exactly what Bondi ef al and Sachs came to in the 1960s [15,
16, 26-28]. The core idea is that one should instead model a GW source as an isolated system,
with the spacetime approaching Minkowski space far from the source, so that one can then
match the coordinates to the more familiar inertial trajectories of Minkowski space.

2.2. Bondi gauge and inertial observers

The Bondi-Sachs formalism'® begins with a collection of coordinates called Bondi-Sachs
coordinates that are suited to the problem of outgoing radiation. Essentially, in this formalism
we have the usual spherical coordinates (6, ¢) as well as a null, retarded-time coordinate u,
such that the u direction is orthogonal to the 6 and ¢ directions, and an areal coordinate r
relative to the (6, ¢) coordinates. Anywhere that such a set of coordinates exists, the metric
can be written in Bondi—Sachs form as

dS2 _ 7U€2ﬁdu2 o 2e25dudr+ VZ"YAB (dxA —Z,[Adu) (de 7UBdu) , 2.1

where capital Latin indices range over (6, ¢), and we have introduced the arbitrary functions
U, 3, U*, and vyap, each of which is a function of the coordinates (u, 7,60, ).

With this set of intuitive coordinates, we then restrict the possible metrics that we allow
by imposing certain boundary conditions, i.e. some asymptotic behavior in the limit of
large radius. In particular, to ensure that the metric in this Bondi—Sachs coordinate system
approaches the standard Minkowski metric in the large radius limit, we require that our metric
functions obey

U—1, (2.2a)

B —0, (2.2b)

Ut =0, (2.2¢)
1 0

YaB — (o sin2 9>. (2.2d)

This asymptotic restriction is exactly what is meant by being in ‘Bondi gauge’ or some
‘Bondi frame’. It provided an early notion of what is called ‘asymptotic flatness’.

After this work of Bondi, various authors introduced important generalizations of this fal-
loff condition [36—41], most of which will be beyond the scope of this paper. But one that
will be conceptually useful for this review is Penrose’s notion of conformal compactifica-
tion [37, 38]. This compactification, which introduces extra points to construct a boundary of

9 This possibility rests on some fairly stringent requirements about the spacetime, including the existence of the
infinite radius limit, and the fall-off behavior of the metric in that limit. In particular, these requirements rule out
direct application to, for example, FLRW spacetimes. Nonetheless, recent work has sought to extend similar analyses
to FLRW spacetimes [30-35].

10 For reasons that are not immediately apparent from the literature, various aspects of this formalism are credited
to various subsets of the authors of the papers in which they first appeared: Bondi ef al and Sachs [15, 16, 26-28].
In particular, Bondi is credited for the gauge or frame; Bondi and Sachs for the coordinates, metric, and formalism
generally; and Bondi, Metzner, and Sachs for the (BMS) group. For some reason, van der Burg seems to be left out
of the conversation. In this work, we follow this convention without claiming to understand why.
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spacetime in the r — oo limit, is essential for formulating ‘future null infinity’ ZT: the final
destination of outgoing radiation'!. This boundary is obtained by taking this » — oo limit for
fixed u, which yields a region of spacetime parameterized by (u, 0, ¢). When studying GWs
and other asymptotic data, we will be interested in the value of this data on this boundary.
This is because, as one approaches ZT, curves of constant (r,6, ) are nearly geodesics, with
u nearly parametrizing the proper time, and errors in this geodesic approximation falling off
as 1/r. Consequently, GWs measured by a distant inertial observer can be approximated (at
least over finite time spans) by GWs studied at ZT. In fact, the Bondi frame is sometimes even
referred to as the ‘asymptotic inertial frame’ [42].

Now, apart from constructing a coordinate system and a region of spacetime that can be
used to study GWs that agree (up to 1/r corrections) with what a distant, inertial observer
would see, the other import consequence of constructing the Bondi frame is that, by doing so,
we have drastically reduced the coordinate ambiguity that would otherwise plague our GW
waveforms. In particular, for the numerical simulation example, we no longer have to express
the waveform in terms of the simulation’s arbitrary coordinates, which are ambiguous up to the
entire diffeomorphism group. Nor do we have to integrate a family of timelike geodesics and
evaluate the waveform along those curves, still ambiguous up to the choice of initial conditions
for each geodesic. Instead, we can simply express the waveform as a function of (u,6,¢)
onZt.

But one obvious question persists: how much ambiguity still remains in this Bondi frame
description? Intuitively, we might expect that the answer would simply be the transformations
that leave the usual Minkowski metric unchanged, i.e. the Poincaré group. In fact, this is indeed
what Bondi, van der Burg, Metzner, and Sachs thought they would find when studying the
symmetry group of future null infinity. However, this intuition turns out to be only nearly
correct. Specifically, the symmetry group of future null infinity is the Poincaré group, but with
the usual four spacetime translations replaced by a larger set of spacetime transformations
called supertranslations. This is the BMS group.

2.3. The BMS group

The full BMS group is simply the set of transformations of the asymptotic coordinates—
that is, (u, 0, ¢)—that preserve the asymptotic form of the metric described in equations (2.1)
and (2.2)'2. It should be intuitively obvious that simple rotations satisfy these criteria, as do
boosts. Given that the Poincaré group is the group of symmetries in Minkowski space, we
might also expect analogs of spacetime translations to be allowed, but it turns out that our use
of the retarded time u and the fact that we are taking the r — oo limit complicates matters.
To see this consider the following. A time translation &¢ will surely affect only the retarded
time via u — u — dt, but it is not obvious what to do with a space translation by some finite JX.

1T Note that an identical description also exists at past null infinity. But, because we will focus on future null infinity
in this review, we ignore this subtlety for the remainder of this work.

12 With the condition that the angular metric 45 must asymptote to the usual unit sphere metric, equation (2.2d), the
asymptotic gauge conditions are preserved by the standard BMS group. However, by relaxing the condition on yap
so that it must asymptote to anything conformally related to the usual unit sphere metric (where the conformal factor
can depend on both the angular and retarded-time coordinates), we instead obtain the ‘extended’ [43] BMS group. By
relaxing the condition so that the determinant of 45 must asymptote merely to have a specified determinant (which
may be a function of u, 6, and ¢), we then obtain the ‘generalized’ [44-47] BMS group. While these BMS variants
are certainly interesting in some contexts, like celestial holography (see, e.g. [21]), they exhibit more freedom than
what is needed for the transformation of NR waveforms.
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If we take (6, ¢) as the direction of the unit vector 71, then the usual space translation changes
the radial coordinate via r — r+ 6X - 1. Clearly this has no effect on the r — oo limit, nor does
it affect the angular coordinates in that limit. However, it will affect the retarded time because
of the mixture of time and space that the retarded time represents. Considering the prototyp-
ical retarded time u =t — r, we can intuit the correct impact of a space translation, which is
simply u — u — 6x - in. The slightly surprising feature here is that a space translation affects the
retarded time in a direction-dependent way. While a time translation has a monopolar effect,
a space translation has a dipolar effect.

Naturally, this invites the intriguing question of whether higher-order multipoles might also
be permissible. In fact, if we pose

u—u—a(b, ), (2.3)

with an arbitrary (sufficiently smooth) function «(6, ¢), we can check that the asymptotic form
of the metric does not change under such a transformation. The function «(6, ¢) is exactly a
supertranslation and is the ingredient that is needed for constructing the BMS group. It contains
the usual spacetime translations as ¢ = 0,1 components, when viewed in terms of spherical
harmonic modes, and proper supertranslations as £ > 2 components.

Like the usual spacetime translations, we may combine two supertranslations by pointwise
addition, and can thus turn the set of supertranslations into an abelian group T. In fact, this
abelian group T is a normal subgroup of the full BMS group, with the factor group of the
BMS group by T being the usual restricted Lorentz group SO™(3,1). The latter, however,
is not a normal subgroup. Therefore, the full BMS group is formally the semidirect product
T x SO™ (3, 1). Put more simply, we can express any BMS transformation as a supertranslation
followed by a Lorentz transformation (see appendix for more details). For a boost with velocity
¥, and thus a conformal factor'?

k(6,0)= YT 2.4)

=1-v.a(0,9)

where 71(6, ¢) is the unit normal vector to the point (6, ¢), the effect on the retarded time of a
supertranslation «(6, ¢) followed by this Lorentz transformation is simply equation (2.3) but
with a Doppler factor, i.e.

i k(0,8) (u—a(0,0)). (2.5)

Note that the (0, ¢) angular coordinates are not affected by a supertranslation, but are altered
through the more familiar rotation and relativistic aberration (see [48]).

To summarize, the BMS group of future null infinity represents the remaining spacetime
coordinate freedom that must be fixed when working with asymptotic data, like GWs, in
Bondi gauge. It is made up of the usual Lorentz rotations and boosts, as well as a new set of
transformations called supertranslations that extend the spacetime translations of the Poincaré
group. While we hope that this section has provided some motivation for why the existence
of supertranslations is perhaps expected from a mathematical perspective, in the next section
we provide some physical intuition for why they are expected to be symmetries of future null
infinity.

13 See appendix D of [48] for more on why boosts induce a conformal transformation of the celestial sphere.
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2.4. Understanding supertranslations

For the moment, consider a proper supertranslation, i.e. a supertranslation which is not a time
or space translation. In terms of spherical harmonics, this corresponds to a function (6, ¢)
whose spherical harmonic decomposition only consists of £ > 2 modes. Formally, supertrans-
lations are rather elementary: they are angle-dependent offsets in the retarded time, as illus-
trated through equation (2.3). Specifically, for each distant inertial observer at ZT, a super-
translation corresponds to a simple change in the origin of the time coordinate. To understand
why they are symmetries of future null infinity, we consider the following thought experiment.

Consider some asymptotically flat spacetime with an isolated astrophysical event—like a
supernova explosion or a BBH—that is emitting radiation, such as photons or GWs, outward
in a spherical manner. Furthermore, imagine a network of distant inertial observers that are
surrounding this event, each at some finite radius from the event that need not be the same as
the other observers. If these observers can communicate, then they could—in principle—use
their knowledge of their locations relative to each other and to the central event to synchronize
their clocks to ensure that their measurements of the central event are simultaneous in some
sense. Now, consider what happens if these observers were placed at larger (but finite) radii. At
these new, farther away positions, the signals that they use to synchronize their clocks will take
longer to travel between them, but there is no fundamental obstacle to this synchronization in
principle.

However, as this network of inertial observers limits to an infinite radius away from this
central event, then they become causally disconnected from each other. Formally, what this
means is that each observer approaches some generator of Z*, and because every generator
of Z7 is causally disconnected from any other, so too are the inertial observers. In this r — co
limit, the observers can no longer synchronize their clocks, and therefore they can no longer
ensure that they receive the same radiation from the central event at the same time. That is, the
invariance with respect to standard time and space translations of the Poincaré group at finite
radius yields, at infinite radius, the invariance to the angle-dependent supertranslations. This
fact, i.e. the notion that each and every point on Z7 is causally disconnected from any other, is
one way to intuit why supertranslations are indeed symmetries of future null infinity and thus
elements of the BMS group.

2.5. The effects of BMS transformations

As mentioned earlier, waveforms are not invariant in any useful sense. At best, they are com-
ponents of tensors defined with respect to a coordinate basis. Consequently, as we change the
coordinates, the value of the waveform at each physical point will also change. Thus, when
working with waveforms and their coordinate freedom we really have two main concerns: first,
to transform the waveform, and second to transform the coordinates upon which the waveform
is evaluated. As we have already explained, the latter can be expressed rather simply via the
following.

Instead of working with Bondi coordinates, i.e. (,0,¢), it tends to be simpler (at least
mathematically) to use the complex stereographic coordinate

¢(=e?cot(6)2). (2.6)

With this, the action of a BMS transformation on the coordinates of future null infinity can
then be written as

06 = (+(6.0) (1=a(6.0)

aC+b> ’ 27

Tel+d

8
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Figure 1. ‘Cylinder’ diagram of Z* to provide intuition about (i) boosts, (ii) space trans-
lations, and (iii) proper supertranslations. The retarded time coordinate u runs vertically
in each plot, while the polar coordinate 6 runs azimuthally. Black circles correspond to
surfaces of constant # in the untransformed frame. A Lorentz boost dilates u by some
factor at each 6 point, while a space translation and a proper supertranslation instead shift
u by some function of €, which can be written as some combination of £ = 1 spherical
harmonics for space translations, and some combination of ¢ > 2 spherical harmon-
ics for proper supertranslations. The boost is in the Z direction; the space translation is
proportional to the spherical harmonic Y(; oy (6, ¢), i.e. the Z direction; and the proper
supertranslation is proportional the spherical harmonic Y3 0) (6, ¢).

where the conformal factor (¢, ) is

5 1+[¢P
kG = laC+ b2+ [cC +d|?’ (2.8)

(a,b,c,d) are complex coefficients with ad — bc = 1 that encode the Lorentz rotation and
boost, and (¢, ¢) is a real, smooth function that encodes the supertranslation. See appendix for
details on how the Mobius transformation (a, b, c,d) is related to usual Lorentz rotations and
boosts. As an illustration of the impact of these transformations, see figure 1, which shows how
an example Lorentz boost, space translation, and proper supertranslation change the retarded
time u as a function of 6.

From this coordinate transformation, by examining how the coordinate tetrad on Z* trans-
forms, one can then ascertain how asymptotic data on Z* that describes the spacetime metric
transforms. But what is this data? Obviously, we want something on Z that represents the
gravitational wave strain A, since this is what our detectors measure. But is there other data that
we should also be interested in, e.g. something describing the mass or the angular momentum
of the spacetime that may be useful for, say, measuring the mass or the spin of an isolated
black hole? While often neglected in the majority of the NR literature, the answer to this, as
suggested by the isolated black hole example, is yes.

Apart from the strain, to fully reconstruct the metric on Z* one also needs other information
about the spacetime, which is neatly encoded in the five complex Weyl scalars Wy | 5 3 4,1.€. the
components of the Weyl tensor [49]'4. The Weyl tensor measures the curvature of spacetime.
However, the individual Weyl scalars each have their own unique interpretation. Specifically,
they can be viewed as

14 Note that even though these are called ‘scalars’, the Weyl scalars are also not invariant in any sense since they are
still functions of the spacetime coordinates.
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Wy: ingoing radiation;

U : current multipole moment;
U,: mass multipole moment;
W3: news (Niz);

W,: outgoing radiation (N}i),

where dots represent time derivatives'>. Consequently, it can be seen that U3 and W, are actu-
ally degenerate with with the strain and thus only the strain and ¥ ; , are needed to measure
physical features of the spacetime'®. As we will see later on in section 4, ¥, can be used to
measure the mass of the spacetime and W, can be used to measure the angular momentum of
the spacetime.

If we now study how this asymptotic data transforms under a BMS transformation, one can
ascertain through the tetrad transformation that the gravitational wave shear o, which is related
to the strain & via h = 25,'7 and the Weyl scalars transform as [15, 16, 36]

o' = %ezi)‘ [0 —0%], (2.9a)
4 a—A
1 : 4-A 1
b a—a)ia =)
V= ge ZA (a_A> ( kau ) v, (2.9b)
where A € {0,1,2,3,4}, X is the ‘spin phase’
=1 N\ 1 >

e = 874_ <8C) = fgil, (2.10)

o¢ \ 9¢ c¢+d

and O and O are the usual GHP spin-weight operators [51]. In spherical coordinates they can
be written as

of = f\% (sinf)** (9 + icscHDy) {(sint‘))ﬂf} , (2.11a)
= L . . s
of = v (sin®@) " (Og —icscHOy) [(sm@ﬁf} . (2.11b)

When acting on spin-weighted spherical harmonics ;Y ), they yield

0(Yiem) = +\2 (C—5)(L+s+ 1)1 Y (0 m), (2.12q)

_ 1
3 (Yiem) = ~ V) =5 Dt Yo, (2.12b)

Note that the conventions used here are consistent with the Moreschi—Boyle convention
that is used across [48, 52-57] and the code scri [58-60].

15 Note that other interpretations also exist, such as [50].

16 Formally, because of the Bianchi identities (see equation (4.4)), one only needs the strain on Z1 and Wo,1,20na
certain time slice of Z to fully reconstruct the asymptotic spacetime metric.

17 We introduce the shear because it makes many of the subsequent equations in this paper simpler; it is formally
constructed in equation (5.1) by contracting complex dyads on the two-sphere with the angular part of the Bondi-
Sachs metric.
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With this information, one then has everything that is needed to transform asymptotic data
on Z*1 and therefore fix the coordinate freedom of that data to match some canonical frame.
This notion of mapping asymptotic data to a certain frame is called BMS frame fixing and will
be reviewed in the context of NR simulations in section 7.

2.6. Pedagogical approach to memory

Without delving into the complicated mathematics of Einstein’s equations, memory effects
can be most easily understood as coming from conservation laws that stem from the symmet-
ries of null infinity: the BMS group. Consequently, to provide some motivation behind why
memory effects exist in GR and how they can be studied, before examining them with a more
mathematical lens, as is performed in section 4, we will first provide some insight by studying
them with respect to BMS transformations.

With these additional symmetries of the BMS group, Noether’s theorem'® interestingly
implies that there should be a conservation law for each supertranslation. Thus, because super-
translations are effectively angle-dependent spacetime translations, one can easily imagine that
such a balance law might be of the form

0 = ‘change in angle-dependent mass’ + ‘flux of angle-dependent energy’ (2.13)

This expression, in fact, is nearly correct. The one piece of information that is missing is that
these two terms on the right-hand side of equation (2.13) need not fully cancel out. One way
to realize this is by considering the scattering of two particles in linearized gravity [63]. First
note that, because of the linearization, there will be no energy flux. However, because the
particles scatter, there will still be a change in the angle-dependent mass, i.e. a change in the
mass multipole moment. Then, because a change in the mass multipole moment corresponds
to a change in the strain—or, equivalently, the shear—one can intuit that there should also be
a term on the left-hand side of equation (2.13) that corresponds to the shear, e.g.

‘shear’ = ‘change in angle-dependent mass’ + ‘flux of angle-dependent energy’ (2.14)

In fact, if one formally works through the mathematics, as is carried out in section 4 and shown
through equation (4.6a), one discovers that the conservation law stemming from supertransla-
tions states exactly this.

Using equation (2.14), one can then learn a large amount of interesting physics about
GWs. For one, we observe that, apart from the gravitational wave strain being sourced by
the mass multipole moment, there is also a contribution from an angle-dependent energy flux.
Furthermore, if we think about the net change in the strain between non-radiative regimes,
i.e. the memory, we immediately find that there are two contributions: one from the angle-
dependent mass and one from the angle-dependent energy. These unique contributions are the
ordinary and null contributions to the memory [64]'”. They can be understood as being sourced
by two types of physical processes. In particular, ordinary memory is sourced by systems
that contain unbound masses, i.e. massive particles approaching timelike infinity [64, 68, 69].

18 Note that Noether’s theorem is modified for this situation since the nonzero flux of gravitational radiation implies
that the charges are not conserved. We instead have non-conservation laws precisely quantifying how much each
charge changes. The interested reader can see [61, 62] to read about this subtlety.

19 Previously, these contributions were called linear and nonlinear (or Christodoulou). However, they have since been
renamed to better reflect the way in which they are sourced [12, 13, 64-67].
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Figure 2. Top: comparing the gravitational wave computed by a simulation of a binary
black hole merger when memory effects are not included (left, incorrect) and when
memory effects are included (right, correct). The binary black hole simulation is an
equal-mass, aligned spin system with a total mass of 60 M, a luminosity distance of
400Mpc, an edge-on orientation, and equal dimensionless black hole spins of magnitude
0.6 in the direction of the orbital angular momentum. Each waveform is shown in black
and in the plot on the right, we show the contribution to the gravitational wave coming
from the energy flux, i.e. a proxy for the memory, in blue. Bottom: the initial (black)
and final (orange) positions of a series of test particles before and after the passage of
a gravitational wave without (left) and with (right) memory traveling through the plane
of the figure. Because of the orientation of the binary black hole system relative to the
test particles, the GW exhibits a ‘+’ polarization.

Examples of systems that source this type of effect are hyperbolic black holes, neutron star
disruptions, or even supernovae events. Meanwhile, null memory is sourced by null radiation
that escapes to future null infinity, e.g. gravitational or electromagnetic waves. For an example
of what the null memory looks like in the GW produced by a BBH, see figure 2.

3. Literature review

Gravitational memory effects were first realized in 1974 when Zel’dovich and Polnarev suc-
cessfully calculated the gravitational radiation that is produced by two objects on flyby, i.e.
hyperbolic, trajectories [12]?°. By working with Einstein’s equations in linearized GR, they
found that, because the stress energy tensor exhibits a net change between early and late times
due to the change in the mass distribution of the flyby objects, the strain will also exhibit

20 Even earlier, in 1966, Newman and Penrose identified that, near null infinity, the strain of surfaces of constant
retarded time will change between spacelike and future timelike infinity [70].
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such a net change. Consequently, because this can also be understood as stemming from a
change in the Bondi mass aspect, the effect that they unearthed is what we now call ordinary
displacement memory. Later, in 1985, the consequences of their result was elaborated upon
by Braginski and Grishchuk who first named this effect the ‘memory effect’ [13]. Then, in
1987, Braginsky and Thorne found a simple equation for the memory for scattering scenarios
in terms of the four-momentum of the ingoing and outgoing massive particles [65]. It says that
for a system of N particles, the net change in the gravitational wave strain between early and
late times is

o TT
TT _ VZV,
Ah; AZ /1_vA (1—vAcos HA)> G-

where r is the distance from the observer to the source, M, is the mass of particle A, V4 is
the velocity with v/, the ith component and v4 the norm, 6, is the angle between V4 and the
observer, and the A in front of the sum on the right-hand side refers to the difference in this
sum evaluated for the outgoing and ingoing particles.

After these early works, it was largely thought that memory effects were understood. This
opinion, however, was completely overturned when in 1991 Christodoulou found that GWs
themselves will also source a certain type of memory effect, through a subtle, but detectable
nonlinear interaction with themselves [66]!. Christodoulou obtained this important result by
working with null hypersurface equations and asymptotic limits to obtain an equation that is
similar in spirit to equation (2.14). In particular, he found that the strain is related to the flux of
radiation through each point on the two-sphere. Because of this connection to the energy flux,
we now call this effect the null displacement memory. A year later, in [67] Thorne identified
Christodoulou’s finding as equivalent to that of [65], but with the various massive particles
being replaced by null radiation, i.e.

g T
4 ( dE &g
T _ 7 O’ 2
Ahy r/dQ’ (1—005(9’)) oy’ (3:2)

where E is the energy of the radiation, f", is a unit vector pointing from the source toward
dQ’, and #’ is the angle between fi/ and the observer [67]. In section 4, we will connect
equations (3.1) and (3.2) to the modern interpretation of memory, which is more straight-
forward to understand in terms of gravitational systems and radiation.

As for the BMS group, this was realized well before memory effects in 1962 by Bondi ef al
Sachs [15, 16]. However, the connection between the BMS group and memory was not expli-
citly stated until [73-75] in 2014, even though this relationship has been largely understood
since, e.g. [61, 70, 76-78]. What makes this history even more interesting, though, is in [75,
79] the duality between memory effects and BMS symmetries was extended to be a triangle,
since it was found that BMS symmetries and memory effects could also be related to soft theor-
ems [80]. This finding created a large stir of interest in theory communities, since soft theorems
are inherently useful for studying the S-matrix of a quantum theory, so BMS symmetries seem
integral to understanding quantum gravity. The ‘soft limit’ means taking a particle’s energy
to zero, so soft particles can not be directly measured by particle colliders. However, memory
effects will soon be observed through GWs with current detectors [8§1-83], and therefore serve

21 This discovery was also realized by Payne (somewhat indirectly) as well as Blanchet and Damour in [71] and [72].
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as a natural probe of this exciting realm of physics. This excitement was only further enhanced
once more memory effects were unearthed through this connection. In particular, in [84-86],
by studying extensions of the BMS group to include ‘superrotations’ [87-90], i.e. extensions
of the Lorentz transformations, two new memory effects were found: the spin memory and the
center-of-mass memory. These two effects correspond to the net displacement that two observ-
ers with an initial relative velocity will experience due to the passage of transient radiation®?.
Ever since, the field of celestial holography, which aims to establish a kind of holographic
dictionary between gravitational scattering in asymptotically flat spacetimes and a conformal
field theory on the celestial sphere, has reached unprecedented levels of interest [17-21].

At the same time as these theoretical developments regarding memory were occurring,
significant progress in resolving memory effects in numerical simulations was also being
achieved. In particular, in early 2010 [92] was able to successfully simulate the memory
sourced by a BBH using a more robust method for extracting the NR waveforms at future
null infinity: Cauchy-characteristic evolution (CCE)®. Later, in 2020, [93] performed a sim-
ilar series of simulations using a more efficient version of the code and calculated the indi-
vidual contributions to the gravitational wave strain in terms of the charges and fluxes of
equations (2.14) and (4.6). This showed that, as expected, the memory in BBH is indeed
sourced by the null memory.

One complexity that arose, however, was, with these new NR waveforms that contained
memory, it was not exactly obvious how to compare these finite waveforms to PN waveforms
that had information about the entire past history of the binary inspiral and thus had a lar-
ger prediction for the instantaneous value of the strain [94]. This was important because if
one wanted to construct a hybridization between these NR waveforms and PN waveforms
to build a waveform model from, the hybridization would fail because the two predictions
would not agree (see, e.g. figure 6). This was resolved in a series of works which established
a program now called the BMS frame fixing program [52, 53, 95]. Ever since, numerous find-
ings and advancements in gravitational wave physics using these developments have been
made [96-100].

4. Mathematical overview

Recall that equation (2.1) provides the general form of the metric in Bondi gauge, in terms of
the functions U, 3, U4, and 5, where A and B range over (6, ¢). In general, these functions
can each depend on all four coordinates. However, Bondi gauge demands specific behavior in
the limit of r — oo. To proceed, we expand this behavior in powers of 1/r:

2 2M
U:177m77+(9(r73), .1a)
B:%+%+%+o(f“), (4.1b)
A UA 1 2 A 1 BC 1 AB nC —4
Uu :7+ﬁ[_§ +RDA(CBCC )+§C D CBc}—FO(F ), “4.1¢)
C D E
’YABZQAB+$+%+%+O(F4)’ 4.1d)

22 They can also be viewed as the magnetic and electric components of the more general drift memory [91].
23 We will elaborate more on this waveform extraction procedure, as well as others, in section 5.
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where the various coefficients on the right-hand sides are functions of (u,6") only, and gap(6*)
is the metric on the two-sphere, i.e. in the usual spherical coordinates gag (0, ¢)dx'dx? = d§* +
sin” 0 d¢?. Of these functions, the most important ones are the Bondi mass aspect 1, the Bondi
angular momentum aspect N4, and finally the shear tensor Cg, whose retarded time derivative
is the Bondi news tensor Nyg = 0,Cap, Which characterizes the presence of radiation in a
spacetime.

At this point one can then impose Einstein’s equations to obtain evolution equations for
the various functions. Specifically, from the O (uu,r~2) and O(uA,r~2) parts** of the Einstein
tensor one obtains [101]

1 1
Oym = ZDADBNAB — gNABNAB, (4.2a)

o 3
OuNa = 7 (DpDADCC™ — D’DPCyp) — {8[(NABDCCBC — CapDcN©)

1
-3 (N*CDpCyc — CBCDBNAC)} —uDpd,m, (4.2b)

where N is the angular momentum aspect with the Wald—Zoupas correction [62]:

A 1 1
Ny =Ny —uDpm — ZCABDCCBC ~ 1D (CpcCC). 4.3)

By contracting these evolution equations with dyads on the two-sphere?> and making use
of the Bianchi identities for the Weyl scalars, i.e.

Uy =00, 4+ 307,, (4.4a)
U, =00, + 2003, (4.4b)
U, = 005 + o0y, (4.4¢)
Im[¥,] = —Im [0°6 + 05|, (4.4d)
U3 = —07, (4.4¢)
U, =—5, (4.41)

one can then rewrite equations (4.2) rather simply in terms of spin-weighted functions as
d,m = —0,Re[¥, + 07], (4.5a)
N = -0, {\Iq + 006 + udm + %6 (aa)} . (4.5b)
Then, by reorganizing terms (for equation (4.6a)) or following the derivation in [93] (for
equation (4.60)), one can rewrite equations (4.2) with the shear on the left-hand side as
Re[0°6] =m+&, (4.6a)
Im [6%] = 9,0m 5" (V+7)] . (4.6b)

24 Here the first argument corresponds to the component of the metric tensor that is being examined, while the second
argument corresponds to the relevant term in the 1/r expansion.
25 See, e.g. [93] for more details.
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where
£ z/ &> du, (4.7a)
¢7§i/‘ %(3&56——30534—65&——650)du. (4.7b)

In equations (4.7), £ can be thought of as the total energy flux measured at Z+ and 7 as the
angular momentum flux. Equation (4.6a) is called the supertranslation conservation law and
can be thought of as the conservation law that stems from the supertranslation symmetry of Z+;
equation (4.6D), however, is not often presented in the literature, in part because it does not have
as clear of an interpretation as equation (4.6a) as being the conservation law corresponding to
a symmetry contained in the BMS group. Nonetheless, other symmetry groups of future null
infinity have also been proposed that contain more symmetries than the BMS group for which
equation (4.6b) can be understood as a conservation law [87-90]. Specifically, equation (4.6b)
has been referred to as the superrotation conservation law. These other groups are extensions
of the BMS group. They are obtained by relaxing the fall off conditions in equations (4.1) to
be less restrictive, which ends up enabling the existence of other symmetries that extend the
usual Lorentz transformations. But, because in this review we restrict our attention to focus
on the BMS group, for the remainder of this paper we will not consider these other symmetry
groups and instead refer the interested reader to explore these extensions further in [8§7-90].

To provide more motivation as to why, at least to some degree, equations (4.6) should be
viewed as conservation laws, let us first consider what the Bondi mass aspect and the angular
momentum aspect represent®®. In particular, from these aspects one can construct Poincaré
charges, i.e. the translation, rotation, and boost charges [61, 102—104]

P4 (u) = ﬁ /S2 n“mdQ, (4.8a)
1 - N
a — a
I ()= 4 /SZIm [(3n) V] a2, (4.8b)
1 - .
K (1) = — / Re [(9n") ] a2, (4.80)
47 S2
where n® with a € t,x,y, z is the four vector
n'=1=V4rY (o), (4.9q)
4 | 1
n* =sinfcos¢p =/ — |—= (Yq_ =Y , 4.9b
o 3 [\@( (1,—1) (1,+1))] (4.90)
n’ =sinfsin¢ (4.9¢)
4 | i
=\/—= |—=(Yq_+Y, , 4.9d
\V 3 [ﬁ( (1,-1) (1,+1))] (4.9d)
n° = cosf (4.9¢)
41
= ?Y(l,o)’ (4.91)

26 Note that the word aspect here corresponds to the fact that the mass and angular momentum aspects can be thought
of as angle-dependent generalizations of mass and angular momentum.
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with each component being a spin-weight 0 function. Meanwhile, the quantities £ and J
defined in equations (4.7) are the usual energy and angular momentum fluxes. So, if one takes
equations (4.6) and instead writes them in terms of spherical harmonics, it can readily be
seen that, since 3?4 has no £ = 0 or £ = 1 components, these equations are the four and angu-
lar momentum conservation laws that correspond to the translation and rotation symmetries.
Obtaining such charges can be achieved by following the prescription of Wald and Zoupas [62]
or the derivation of these exact charges by Dray and Streubel [61].

As for the £ > 2 components of equations (4.6), these parts correspond to the supertransla-
tion (and superrotation) conservation laws mentioned earlier. This can be seen, for example,
from the fact that here the energy flux that appears in equation (4.6a) is a function of angular
coordinates and thus corresponds to the energy radiated at each point on the celestial two-
sphere, which is reminiscent of the pedagogical example presented in section 2.6. However,
to view equation (4.6a) as a supertranslation conservation law, we should also identify the
charge that corresponds to supertranslations. Naively, one might expect that the supertransla-
tion charge is simply equation (4.8a), but with n“ replaced by some arbitrary function on the
two-sphere, e.g.

1
Pem) (”):E/Sz Z aem Yem | mdQ, (4.10)

£20,|m| <t

where (g, are spherical harmonic coefficients for some real-valued, smooth function
(6, ¢). This, in fact, is a reasonable hypothesis for this charge. In particular, the only pos-
sible expressions for the supertranslation charge, or what some call the ‘supermomentum’,
are

Ppg(u,0,0) =V 405 +p (526) —q(éza), (4.11)

where p and ¢ are real numbers [61]. This was pointed out by Dray and Streubel in [61] and
was also later independently realized by Wald and Zoupas in [62]. From this supermomentum
expression, it can be easily shown that if p + g = 1 then the supermomentum is real and if p = g
there is no supermomentum flux in Minkowski space, both of which are nice properties [61].
Consequently, the natural choice of supermomentum is the Geroch (G) supermomentum with
p=q=3[40,61]

P6 (1,0,¢) = ¥y + 05 +ilm [0°5] = —m, (4.12)

which, up to a sign, is exactly the Bondi mass aspect. Thus, the naive guess for the supermo-
mentum being that which appears in equation (4.10) is indeed correct.

At this point, having established the BMS charges, i.e. equations (4.8) as well as
equation (4.10), we can now return to the examination of equations (4.6) as the BMS conser-
vation laws. In particular, since 3°G has no £ = 0 or £ = 1 components when written in terms
of spherical harmonics, we readily find that the £ = O component of equation (4.6a) is stating
energy conservation, while the £ = 1 component is stating linear momentum conservation. As
for equation (4.6b), the £ = O component of this equation is trivially zero. But, the £ = 1 is stat-
ing angular momentum conservation. And, finally, if we now examine the ¢ > 2 components
of equation (4.6a), we readily find a statement regarding the conservation of supermomentum.
For equation (4.6b), this has sometimes been viewed as a statement regarding the conservation
of super angular momentum, but we stress that to do so requires extending the symmetry group
of future null infinity to be larger than the BMS group [105].
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Now, besides providing a clear and straightforward connection between the various BMS
symmetries and the conservation of charges and fluxes at null infinity, equations (4.6) also
provide a unique and useful means for studying GWs. In particular, because the right-hand
side of equations (4.6) contain the shear, which is related to the gravitational wave strain &
via h = 24, one can readily use equations (4.6) to study contributions to the strain in terms
of BMS charges and fluxes. In particular, as explained in section 2.6, the contribution from
the charges in equations (4.6) correspond to the ordinary memory while the flux contributions
corresponds to the null memory.

5. Numerical code frameworks

In this section we briefly outline the code frameworks that are required to simulate a BBH
and extract the waveform data to future null infinity. Readers who are primarily interested in
examining the waveforms output by the numerical simulations and how they can be studied
using equations (4.6), rather than the details of the numerical simulation, may skip to section 6.

When simulating a BBH, there are two types of numerical evolutions that need to be run®’.
The first, and the bulk of the computation, is what is typically called the Cauchy evolution. This
part of the NR simulation involves solving Einstein’s equations on a finite region of spacetime
near the binary black holes to obtain the metric and its derivatives at a finite radius.

Once the Cauchy evolution is complete and the metric and its derivatives are obtained at
a finite radius, it is then possible to run a waveform extraction to obtain the waveform data
at future null infinity. This is what we use as a proxy for the data that GW detectors should
observe on Earth, because the extra information from being at a finite distance from the GW-
sourcing event are higher order in the 1/r expansion of the angular part of the metric and should
therefore be highly subdominant. Ultimately, there are two ways this can be performed:

e extrapolation, which consists of fitting metric data (y4p in equation (4.1d)) to polynomials
in 1/r to extract waveform data at future null infinity [107]; or

e a characteristic evolution, which consists of solving Einstein’s equations on hypersurfaces
that connect a finite radius worldtube to future null infinity.

The primary output of these extraction methods is the gravitational wave strain 4, which, with
respect to the shear tensor C4p in equation (4.1d), is defined via

h(,0,0) = qagsCas = Y hiem () 2Y(e.m) (0,0) (5.1)
022,|m| <L

and is a spin-weight —2 function often decomposed into spin-weight —2 spherical har-
monics _»Y () with the complex coefficients Ay ) (u). In equation (5.1), g4 is the dyad
ga = — (1,isin(6)) /V2 (see, e.g. [93]).

As one may imagine, the characteristic evolution, albeit more challenging to perform, is
much more accurate than extrapolation: both in terms of the numerical precision that can be

27 In practice constructing initial data for the binary that one aims to simulate is also an important part of the simulation.
However, because here we aim to review the parts of the simulation that produce meaningful waveform data, we will
restrict ourselves to a discussion of the different types of evolutions. The interested reader can look to [106] for more
on initial data construction.
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achieved as well as ensuring that the expected physics is accurately captured”®. Effectively,
the way that the characteristic evolution works, which is formally called a CCE, is through
the following. First, treat the worldtube at some finite radius and the initial null hypersurface
that connects the worldtube to future null infinity as two sets of initial data. Then, reduce
Einstein’s equations to a series of ordinary differential equations (ODEs). Finally, solve this
series of ODEs by integrating in retarded time to obtain data for the waveforms on subsequent
null hypersurfaces and eventually the whole of future null infinity. By performing this sequence
of tasks, one can then accurately compute the strain as well as the Weyl scalars at future null
infinity. One subtlety, however, is that choosing the initial data on the first null hypersurface
is a highly nontrivial problem. An incorrect choice of this initial data effectively amounts to
putting the output waveform data in some arbitrary BMS frame that needs to be manipulated
in order to perform robust waveform model comparisons or analyses. This issue is covered in
more detail in section 7.1.

The idea of CCE was first theorized in 1996 [108, 109]. However, it was not until 2009
when a CCE code was first used on a binary black hole simulation [92, 110-112]. This version
of CCE was run using the finite-difference Pitt Null code [92, 110-112]. Later, in 2014, an
improved version of CCE using spectral methods was incorporated into the SpEC code [113—
115]. And, finally, throughout 2020 and 2021 an even more-improved version of CCE that
could extract the Weyl scalars was developed by [116] and incorporated into the SpECTRE
code [117] by [118]. This version of CCE is the most advanced version and is what will be
used throughout this review.

6. Numerical waveforms and memory effects

6.1. Examining conservation laws in equations (4.6)

With the pedagogical and mathematical theory behind the BMS group, its corresponding con-
servation laws, and memory effects presented in earlier sections, we now turn to a numer-
ical study of GWs in the context of asymptotics. In particular, to highlight the usefulness of
equations (4.6), we first present figure 3 to illustrate how the gravitational wave strain can be
easily interpreted in terms of BMS charges and fluxes. In this figure we show four spin weight
—2 spherical harmonic modes of the gravitational wave strain as well as the contributions to
the strain coming from the BMS charges and fluxes in the right-hand sides of equations (4.6).
The system considered is a mass ratio ¢ = 1.22 binary black hole, whose black hole spins are
parallel to the system’s orbital angular momentum and have the dimensionless magnitudes
Xgl) =0.33 and X§2) = —0.44. These parameters resemble the most likely parameters of the
first gravitational wave detection, GW150914 [119].

Let us first consider what is shown in the top left panel, i.e. the (¢,m) = (2,2) mode. As
can be seen, the strain is nearly entirely sourced by the Bondi mass aspect. This, however, is
expected because the Bondi mass aspect can effectively be thought of as the mass multipole
moment. So all that this plot is showing is an illustration of the fact that GW's are predominantly
sourced by the mass quadrupole moment. If we now examine the top right panel, we see a
similar phenomenon, but now illustrating the fact that gravitational waves are also sourced by
the current multipole moment. In this panel we show the (3, 2) mode of the strain as well as the
two contributions from the angular momentum aspect and the angular momentum flux. Like

28 In particular, waveform data produced using extrapolation is known to not capture memory effects. We will discuss
this failure, and how it can be mitigated, more in section 6.3.
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Figure 3. Four different spin-weight —2 spherical harmonic modes of the gravitational
wave strain and the contributions from the BMS charges and fluxes appearing in the
right-hand side of equations (4.6). The system is a mass ratio g = 1.22 binary black
hole, whose black hole spins are parallel to the system’s orbital angular momentum and
have the values y." = 0.33 and x>’ = —0.44. Note that this system (SXS:BBH:0305)
has parameters which are consistent with those of the first GW detection GW150914.
Top left: the real part of the (¢,m) = (2,2) mode of the strain. The Bondi mass aspect’s
and energy flux’s contributions are shown in blue and green. Bottom left: identical to
that shown in the top left panel, but for the real part of the (2,0) mode. Top right: the
real part of the (3,2) mode of the strain. The angular momentum aspect’s and flux’s
contributions are shown in orange and purple. Bottom right: identical to that shown in
the top right panel, but for the imaginary part of the (3,0) mode. The horizontal axis for
each plot is the retarded time u, with upeqx the peak of the L? norm of the news over the
two sphere.

the top left panel, we find that the strain is primarily sourced by the charge in equations (4.6).
And, since the angular momentum aspect can be related to the current multipole moment, this
plot also highlights the fact that the current multipole moment also sources the strain, albeit
subdominantly.

The perhaps more interesting panel in figure 3, however, is the bottom left panel. In this plot
we now show the (2, 0) mode of the strain as well as the contributions from both the Bondi mass
aspect and the energy flux. As can be seen, instead of the strain being sourced by the Bondi
mass aspect, we instead find that there is a large and dominating contribution from the energy
flux. Furthermore, there is the unique phenomenon that the strain no longer decays to zero; this
is the memory effect?®! More specifically, this is the term that we associate with the memory.
What we mean by this is the following. Formally, gravitational wave memory is a phenomenon
that can only be measured between two non-radiative regions of spacetime, e.g. before and
after the passage of a burst of gravitational radiation. In practice, however, gravitational wave

29 One also may observe that there is a nonnegligible contribution from the Bondi mass aspect near the peak of the
strain. This is because when the black holes are merging, they form an excited remnant black hole that emits GWs in a
process called the ringdown. The contribution from the mass aspect is exactly this ringing that occurs as the remnant
black hole settles to be in a state of equilibrium, i.e. a Kerr black hole.
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detectors are not really freely-falling®® and analyze the strain in the frequency domain. Thus,
to measure memory we need to associate the memory with some nonzero frequency, which
is most naturally whatever the frequency of the energy flux is, because it is the source of the
memory for these binary systems, as illustrated through the bottom left panel of figure 3. So,
for the remainder of the paper when we refer to memory what we will really be referring to is
the evolution of the memory, as measured through the BMS fluxes.

Finally, in the bottom right panel of figure 3 we again highlight a similar result to that of
the bottom left panel, but now illustrated through the imaginary part of the (3, 0) mode of the
strain. As is shown, the strain is again predominantly sourced by the flux contribution, but now
the contribution looks like a delta function, rather than a step function; this is the spin memory
effect. As outlined in section 3, unlike the displacement memory, which affects initially co-
moving observers, the spin memory instead affects observers with a non-zero initial relative
velocity. This can be understood in part by thinking about the time integral of the strain, in
which case this contribution would instead manifest as a step function.

6.2. Detectability of memory effects

While figure 3 is useful in that it clearly illustrates the fact that the energy flux is the contribu-
tion responsible for the memory exhibited by the gravitational wave strain, it does not provide
the overall magnitude of this effect. This is because when the strain is evaluated at a point on
the celestial sphere, e.g. if the strain were observed by a gravitational wave detector, one needs
to consider the sum of the strain’s modes weighted by the spin weighted spherical harmonics.
As a result, while the memory looks fairly prominent in the bottom left panel of figure 3, if
one evaluates the strain at a point on the sky the memory can be noticeably suppressed. This
is in part because the (2, 0) spin weight —2 spherical harmonic is

1 /15 .
2Y(2,0)(0,0) = 7\/ 5, sin (0)°, 6.1)

so the memory is maximized for systems that, from the binary’s viewpoint, are viewed edge-on
(0 = 7/2) and is minimized for systems that are viewed face-on (6 =0). This fact is clearly
highlighted in figure 2, which shows what the whole gravitational wave strain looks like for a
binary black hole system when evaluated at the point on the sky with (6, ¢) = (7/2,0). As can
be seen, even for an ideal orientation (as well as an ideal binary, i.e. equal mass and large black
hole spins in the direction of the orbital angular momentum), the net memory that is induced
on the gravitational wave detector is <50% of the magnitude of the full signal.

Furthermore, a unique challenge for observing memory in a real-world detector is the fact
that detectors do not analyze the GW strain in the time domain, but rather the frequency
domain. This is an issue because the part of the strain that sources the memory, even though it
can have a large amplitude, is a low-frequency effect since it resembles a step function and is
not as oscillatory as the other modes of the strain. We highlight this in figure 4, which shows
the Amplitude Spectral Density (ASD), i.e. the root of the Power Spectral Density (PSD), of
the gravitational wave strain evaluated at (6, ¢) = (7/2,0). We also show the contributions to
the strain from the (2,4-2) modes and the energy flux. The NR system is the same as that in
figure 2. Before Fourier transforming the waveform we first pre-process it following [120],
i.e. we subtract a linear function from the waveform to remove the offset due to the memory

30 This is because the test masses in a gravitational wave detector are influenced by actuators that are always working
to restore the initial configuration of the detector.
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Figure 4. Amplitude spectral density of the GW strain (black) evaluated at (0,¢) =
(7/2,0) and the contributions to the strain from the (2,42) modes (blue) and energy
flux (green). The NR system is an equal-mass, aligned spin binary with a total mass of
60 M, a luminosity distance of 400 Mpc, and equal dimensionless black hole spins of
magnitude 0.6 in the direction of the orbital angular momentum. This simulation is used
to show a more optimistic observation of the memory. As a reference, we include the
LIGO A+ noise curve in orange and the CE noise curve in magenta.

effect and we apply a Planck window with an € of 10™* [121]. As is shown, the ASD of the
strain is primarily represented by the (2,+2) modes, while the energy flux, i.e. the memory,
only contributes to the ASD at frequencies below 10 Hz. This is what makes memory challen-
ging to observe in current ground-based detectors. Because of seismic noise, LVK detectors
are not sensitive to signals below ~10 Hz. In particular, the signal-to-noise ratio (SNR) p of
the strain and the memory contribution to the strain, i.e.

fimax lil(f)P
4 df 6.2
J. s ©r

where h(f) is the Fourier transform of the strain, S,(f) is the noise PSD, are ~65 and ~2.
Because of this low SNR, current efforts to observe memory rely on a procedure called ‘stack-
ing’ which combine the SNR estimates of the memory from various events to instead com-
pute a type of population measurement [§1-83]. Put differently, these stacking efforts aim to
show that memory has been detected in a population of events. To detect memory in a single
event, we will most-certainly need to rely on future ground-based detectors like the Einstein
Telescope or Cosmic Explorer (CE) or perhaps even one of the planned space-based detectors
like LISA, which are more susceptible to the lower frequency regimes.

6.3. Memory correction

Although we have so far primarily presented memory as being easily resolvable in NR sim-
ulations, this is not the case. In particular, prior to the creation of a CCE code framework by
[92] in 2010 and a more efficient framework by [93] in 2020, there was no memory in the
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Figure 5. Comparison of the real part of the (2,0) mode of the strain extracted using
CCE (gray) to that of the strain extracted using the extrapolation procedure (black) as
well as the its memory-corrected version (blue). We apply the memory correction by
computing the energy flux, equation (4.7a), using the extrapolated strain waveform and
then adding it to this waveform. The system used is the same as in figure 3.

waveforms that were produced by NR simulations. This was because, when not using CCE,
NR simulations relied on extrapolation to produce predictions for what the gravitational wave
strain should be at null infinity. However, because extrapolation is not an exact solution to
Einstein’s equations, it is unable to accurately resolve memory effects. This important fact is
shown in figure 5, which shows the (2,0) mode of the strain for waveforms extracted using
CCE and extrapolation. As can be seen, the CCE waveform captures both the memory and the
oscillations induced in the merger and ringdown phases, but the extrapolated waveform only
captures the later.

Even so, [122] showed that extrapolated waveforms can be corrected, through a post-
processing technique, to include the memory contribution and exhibit much better agreement
with CCE waveforms>'. In [122], it was found that for a wide range of binary simulations,
the extrapolated strain waveforms simply seem to fail to capture the energy flux contribution
in equation (4.6a). Thus, the authors argued that since the energy flux is only a function of
the strain, the extrapolated strain waveforms can be self-consistently corrected to include the
missing memory contribution. In doing so, they found that with such a correction the extrapol-
ated waveforms then satisfy the supertranslation conservation law to a higher degree and better
match the CCE waveforms. For completeness, we also show this phenomenon in figure 5. By
eye, one can easily see that once the extrapolated strain waveform is corrected to include the
missing energy flux contribution, it agrees much better with the CCE waveform.

Unfortunately, even with this useful memory correction, [122] found that extrapolated
waveforms still do not outperform CCE waveforms in terms of their accuracy and violation of
the Bianchi identities. Consequently, future waveform models should use CCE waveforms.

31 Talbot ez al [123] also performed a correction to extrapolated waveforms to include memory, but did not compare
the corrected waveforms to CCE waveforms, which naturally exhibit this effect.
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7. BMS frame fixing

Up until this point, we have primarily been focused on utilizing the charge/flux perspective
enlightened through the BMS group to understand memory effects and the means by which
the gravitational wave strain is sourced. For the rest of this review, we will turn our attention to
how the transformations of the BMS group are crucial for performing robust analyses with NR
waveforms and building waveform models to test Einstein’s theory of GR with gravitational
wave detector data.

71. Fixing the frame with BMS charges

As is the case in every field of physics, fixing the frame of the system that one is studying is
vitally important to ensure that the observed phenomena are physical and not just gauge arti-
facts. For BBH, the situation is no different. In particular, whenever we study the gravitational
radiation from a binary merger, we are often implicitly fixing part of the frame without know-
ing it. For example, by specifying a z-axis, e.g. the direction of the binary’s orbital angular
momentum or the direction of the remnant black hole’s spin axis, with respect to which we
construct spherical harmonics to decompose the gravitational wave strain in, we are inherently
fixing the rotation freedom by constructing a canonical direction. However, while this aspect
of the frame fixing may seem trivial, there are other freedoms that need to be fixed that are
more subtle.

When fixing the frame of a system, one needs to fix the transformations that are contained
within the system’s symmetry group. For gravitational radiation, in which the symmetry group
is the BMS group, this means that to fix the frame of, say, the waveform radiated to future null
infinity in a BBH, one must not only fix the rotation freedom, but also the boost and the super-
translation freedom. But, for an arbitrary system, how should these freedoms be fixed? In
principle, there is no canonical frame, since GR has no preferred frame. In practice, however,
whatever analysis one would like to conduct on a system often has its own canonical frame, in
the sense that there is a certain frame which makes the analysis much simpler. For example,
when using the quadrupole formula to compute the gravitational wave emitted by a binary sys-
tem, it tends to be easier to do the calculation in the frame in which the binary system’s orbital
angular momentum is aligned with the z-axis. If a different orientation is used, then certain
simplifications that would otherwise occur do not and one is instead met with many more terms
than are necessary to explain the underlying physics. For studying numerical simulations, the
same holds true. In particular, because working with NR results often consists of comparing
NR waveforms to certain perturbative solutions to Einstein’s equations, like PN in the early
inspiral phase or black hole perturbation theory (BHPT) in the ringdown, the ideal frame is
typically set by the perturbative result. Then, to map the NR system to this canonical frame
one must work with the charges corresponding to the frame freedoms, i.e. the BMS charges
in equations (4.8) and (4.10), and find the transformation which maps these charges in the NR
system to the values expected by the canonical frame. For example, to map to the system’s
center-of-mass frame, one can simply take the translation and boost charges in equations (4.8)
and find the translation and boost which maps these charges to zero.

While at first this business of fixing the frame may seem trivial, we stress that performing
this procedure is of the utmost importance to extract meaningful physics. To help highlight
this, we present figure 6, which shows the consequence of not accounting for the difference
in frames between a NR and a PN system. One important aspect of waveform modeling is
constructing waveforms which span the entire frequency band of GW detectors. This means
that one must build waveforms that contain thousands of orbits. NR simulations, however,
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Figure 6. The (2,0) mode of the strain waveform computed in a NR system (solid/
black), a PN system (dashed/blue), and the corresponding NR/PN hybrid waveform
(dash-dotted/green). The hybridization window is the highlighted region in yellow. An
unphysical feature in the NR/PN hybrid waveform as a result of an improper BMS frame
alignment is circled in red. The system is the same as that in figures 3 and 5.

typically only contain tens or perhaps hundreds of orbits, but not nearly as many as required
to span the frequency bands of current and future observatories. Therefore, there is a constant
need to ‘hybridize’ finite NR waveforms with perturbative solutions that are accurate during
the early inspiral regimes and can be more efficiently calculated. Often these hybrid waveforms
are built by hybridizing finite NR waveforms with PN waveforms. This results in waveforms
which are PN during the early inspiral phase, a smooth blend of PN and NR over a window
called the hybridization window, and NR for the remainder of the binary coalescence. As
is shown by figure 6, however, if one does not account for the freedoms resulting from the
BMS group, i.e. if one does not map the NR system to be in the same BMS frame as the PN
system, then this hybridization procedure will fail in the sense that it will introduce unphysical
features in the hybrid waveform. Fortunately, this issue can be mitigated rather easily by simply
mapping the NR system to be in the right frame. But, in order to do so, one needs to know how
the various BMS symmetries transform the asymptotic coordinates as well as the asymptotic
data of interest.

Fortunately, this was already presented in section 2.5. With both equations (2.7) and (2.9),
one has all of the information that is needed to transform asymptotic data. The only ingredi-
ent that remains for fixing the frame of the asymptotic data is which charges one should
use to constrain the BMS freedoms®?. Normally, one could just use the charges presented
in equations (4.8) and (4.10). However, because it is often the case that one wishes to compare
NR systems to PN predictions for which there is only the strain and not the Weyl scalars, it
turns out that there are more convenient BMS charges that can be used. In particular, rather
than working with the translation and boost charges, i.e. equation (4.8a) and equation (4.8c¢),
it is useful to construct the center-of-mass charge [105, 128]

G (u) = (K + uP) /P' = 4i Re [(én“) (N+ u3m)] aQ/P'. (1.1)

™ Js2

32 Note that throughout this review we ignore the subtle fact that the BMS charges presented in equations (4.8) and
in the remainder of this section are not supertranslation-invariant [66, 124—127].
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This measures the spacetime’s center-of-mass motion?. It is useful since we will always want
to examine systems in their center-of-mass frame, which can be mapped to by finding the
translation and boost which minimize equation (7.1). As for the rotation charge, again because
we typically do not have access to either of the U; or ¥, Weyl scalars in PN theory, one
typically utilizes a rotation-like charge that can be computed from the strain. In particular, in
[59] such a rotation charge was built by finding the angular velocity which keeps the radiative
fields, e.g. the strain, as constant as possible in the corotating frame of the binary system. This
‘charge’ is

& (u) = —(LL)~" - (LD)), (7.2)
where
<Zat>a = Z Im B(Am’)<€aml‘La|£7m>f(f,m)} ) (7.3a)
L,m,m’
(LD =" Fromn (€m! [LCLD 10, m)f 0 ), (7.3b)

’
£,m,m

and f(u, 0, ¢) is some function corresponding to the asymptotic radiation, such as the GW strain
or the news. In equation (7.2), L is the infinitesimal generator of rotations.

When the system only consists of one black hole, as is the case, for example, when studying
the ringdown phase, this prescription can break down. In this case, it is more useful to fix the
rotation freedom using the intrinsic spin of the black hole, to ensure that one is in the frame of
the individual black hole. To compute this, one can either map to the center-of-mass frame of
the black hole and compute the angular momentum charge, or, for simplicity, they can instead
compute [54]

S Y (7,02 Y=l
X(u):M—%(l—l—vxK)— " (v'J)v, (7.4)

which achieves the same result. Here

y=(1-) " (1.5)
is the Lorentz factor,

Mp (u) = /=1, P*P” (7.6)
is the Bondi mass,

V(u) = P/P (1.7)

is the velocity vector, and the vectors J and K are the angular momentum and boost charges
found in equations (4.8b0) and (4.8c¢). With this ‘charge’, one can then map to the frame of the
black hole by, say, finding the rotation which aligns this charge with the positive z-axis. Again,
we stress that equations (7.2) and (7.4) have been introduced to help with fixing the rotation

33 One can think of the boost charge K as measuring the translation away from the origin and the uP? term as
measuring the change in center-of-mass due to a non-zero velocity.
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freedom by constructing a preferred axis, either through the angular velocity vector of a PN
waveform or the spin of an isolated black hole.

For fixing the supertranslation, since for fixing the Poincaré transformations we have been
able to rely on the charges in equations (4.8), one may naively think that we can simply
use the supermomentum charge in equation (4.10). This charge, however, turns out to be
supertranslation-invariant in nonradiative regimes of future null infinity, i.e. regimes where
the news is zero. As a result, it cannot be used to fix the supertranslation freedom™*. Instead,
one must construct a different supertranslation ‘charge’ which transforms in a meaningful way.
In [55-57, 129], such a charge was presented. It is simply equation (4.11) withp=1and g=0
and is the Moreschi supermomentum

u

Pu (u,0,¢) = Uy + 06 +0°6 = —m+Re [0%°5] = / |&|* du — Mapwm, (7.8)

—00

where Mapy is the ADM mass [130]. An important property of the Moreschi supermomentum
is that, because it transforms as

Pl = 5 (Pu—0°50) = 5 (-m+ Re [ (0~ T%a)]) (1.9)
in Minkowski space where m = 0, minimizing the Moreschi supermomentum corresponds to
finding the supertranslation that ensures the spacetime is really Minkowski, not supertranslated
Minkowski. Furthermore, this property is true so long as the ¢ > 2 components of the mass
aspect are zero, which is the same as there being no Geroch supermomentum. This is useful
because isolated black holes cannot have Geroch supermomentum, so if one instead uses the
Moreschi supermomentum to fix the BMS freedom, they ensure that they are always working
in the frame that is the most natural frame from the perspective of the individual black hole.
We will call the BMS frame in which the Moreschi supermomentum has zero-valued ¢ > 1
modes the superrest frame, as it is in some sense an extension of the notion of a rest frame. To
map to such a frame, one can simply solve equation (7.9) for P}, = —Mp, which yields

0202 =Py (= 0,0, 0) + keest (1, 0, 6)* M () (7.10)

where k. is a special case of the conformal factor in equation (2.4) in the sense that it is the
conformal factor for a boost whose velocity matches the momentum charge:

1 Mg
(1-v-7) P

krest (1,0, 0) = (7.11)
Y
Furthermore, in [57], the authors proved that, for a condition on the energy flux, which is
always obeyed in nonradiative regimes of future null infinity, equation (7.10) always has a
regular solution. It was also shown that equation (7.10) can be solved iteratively. That is, if
one wishes to find the supertranslation that maps a system to the superrest frame at some time
uy, they can evaluate the right-hand side of equation (7.10) at time u = uy, solve for «, evaluate
the right-hand side at time u = «, solve for a new «, etc until o converges to a solution. This
is the underpinning of the frame fixing program. Specifically, by utilizing this fact, one can
always solve for the infinite degrees of freedom in the BMS transformation and map to a target

34 This phenomenon should not necessarily come as a surprise, as this also happens for the translation-invariant
momentum charge.
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BMS frame in an iterative fashion. For example, to map a NR system to the PN BMS frame,
one can

(i) Construct a window during the early inspiral phase over which to align a NR system to a
PN system;

(ii) Iteratively solve equation (7.10) for the supertranslation which maps the ¢ > 2 compon-
ents of the difference of the NR/PN Moreschi supermomenta to zero; this is equivalent to
mapping to the superrest frame at u — —oo0, i.e. in the infinite past of the binary;

(iii) Find the frame rotation that maps the NR system’s angular velocity vector (see
equation (7.2)) to match that of the PN system;

(iv) Find the translation and boost which minimize the center-of-mass charge (see
equation (7.1));

(v) Perform a time and phase translation optimization to align the NR and PN waveforms in
the window;

(vi) Repeat steps (i)—(v), until the error between the NR and PN waveforms converges.

For mapping to the frame of an individual black hole, like a remnant black hole, the process
is identical, but in step (ii) one can minimize the Moreschi supermomentum, since the target
Moreschi supermomentum is —Mp and in step (iii) the rotation charge should instead be the
spin of the black hole (see equation (7.4)). Also, step (v) is no longer necessary since there is
no preferred way to fix the time or phase freedom from the perspective of the remnant black
hole. In the subsequent sections, we explain in more detail how to map a system to either the
PN BMS frame or the superrest frame of an individual black hole and provide some numerical
results showing why frame fixing is important and the success of this procedure at mapping
NR systems to some reasonable BMS frame.

72. PN BMS frame

At the end of section 7.1 the steps for mapping to the PN BMS frame through an iterative pro-
cess using the BMS charges was outlined. Ultimately, to map to this frame one must simply
find the BMS transformation which maps the charges of the NR system to match those of
the PN system. This, however, requires that one has knowledge of the charges in PN theory.
Unfortunately, most PN calculations focus on computing the strain and not the Weyl scal-
ars, so the majority of the canonical BMS charges can not be computed in a PN formulation.
Therefore, one can either compute these charges in PN or try to use alternative charges that are
functions of only the strain. Because the later is easier, this is what is typically used in BMS
frame fixing. But, even if one uses charges that are only functions of the strain, these charges
must still be computed in PN. Fortunately, the center-of-mass charge, which is zero for PN sys-
tems, and the angular velocity vector, which can easily be computed numerically from the PN
strain, are painless to obtain. The PN Moreschi supermomentum, however, because it involves
a time integral, cannot be computed numerically and must instead be worked out analytically.
This was first performed in [53], which computed it from the PN strain using equation (7.8) to
3PN order without spins and 2PN order with spins. They then implemented this iterative pro-
cedure for fixing the frame of NR systems in the publicly available python module scri [58].

In figure 7, we demonstrate the overall success of the BMS frame fixing procedure by map-
ping a NR system to the PN BMS frame and computing the error between the NR waveform
and the PN waveform in this frame. This figure is identical to figure 6, but correctly utilizes the
BMS freedoms at future null infinity to perform the waveform alignment. As can be seen, by
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Figure 7. The (2,0) mode of the strain waveform computed in a NR system (solid/-
black), a PN system (dashed/blue), and the corresponding NR/PN hybrid waveform
(dash-dotted/green). The hybridization window is the highlighted region in yellow. In
the bottom panel, we show he absolute error between the NR and PN waveforms (green),
the hybrid and NR (black), and the hybrid and the PN (blue). The NR simulation is the
same as that used in figures 3, 5 and 6.

mapping the NR waveform to the PN BMS frame, the absolute error between the two wave-
forms is decreased by three orders of magnitude. Also, as seen through the hybrid waveform
built from these two inputs, by fixing the frame properly the hybrid waveform no longer has
an unphysical feature that could bias data analyses that used this waveform. Furthermore, we
stress that although here the effects of fixing the frame are a bit pronounced due to us studying
the (2, 0) mode, if one instead studies other modes they will still find that the absolute error is
improved.

73. Superrest frame

Apart from comparing NR systems to PN predictions to construct more effective hybrid wave-
forms and models, NR simulations of black holes are also particularly useful for extracting the
quasi-normal mode (QNM) amplitudes expected by perturbation theory [131, 132]. A subtle
issue, however, is that when a perturbed black hole is formed, either through a black hole
merger or stellar collapse, it is not in the frame that BHPT is typically performed in. Put dif-
ferently, the remnant black hole formed in some astrophysical event may not be described by
the usual Kerr metric, but instead a boosted or a supertranslated version. Consequently, if one
tries to study the perturbations of the remnant black hole formed in a NR simulation without
accounting for the difference in BMS frames, then the analysis will fail in the same way that
the hybridization shown in figure 6 fails.

In particular, in figure 8, we show exactly this. In the top row we show two fits of QNMs
to the (2, 0) mode of the NR strain waveform from the simulation shown in figures 3, 5 and 6.
Meanwhile, in the bottom row we show the residuals. The QNM model that we consider has
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Figure 8. Top row: the (2, 0) mode of the strain waveform for a NR system (black) and
the best fit QNM model (blue). The QNM model contains seven (2,0) overtones. On
the left, the NR waveform is in the PN BMS frame, while on the right, it is instead in
the superrest frame of the remnant black hole. Bottom row: residual between the NR
waveform and the fit.

seven overtones and both mirror modes™®. As seen through the left-most column, which cor-
responds to the NR waveform in the PN BMS frame, i.e. the wrong frame for BHPT analyses,
when the NR system is not in the superrest frame of the remnant black hole the strain can
not be fit with QNMs, in part because of the nonzero asymptotic value resulting from the
memory effect. But, if one maps the NR system to the superrest frame of the remnant black
hole, then the QNM fit can be performed successfully and the residual is reduced by three
orders of magnitude. This illustrates that fixing the frame is essential for extracting physical
QNM amplitudes.

Another important result that can be seen through figure 8 and the bottom-left panel of
figure 3 is an example of the nonlinear nature of GR and a highlight of the need for predic-
tions from second-order perturbation theory to study the ringdown of NR waveforms. More
specifically, since a large portion of the (2,0) mode of the strain is sourced by the energy flux,
i.e. equation (4.7a), this means that first-order perturbation theory is not sufficient to explain
the ringdown excitations of the strain near the point of peak luminosity upeax. In particular,
because the energy flux is inherently nonlinear, i.e. it goes as the strain squared, this means it
can only be modeled by second-order BHPT, e.g. by the quadratic QNMs studied in [96, 133].

8. Discussion

In this review, we have presented a vast amount of information regarding memory effects and
the BMS group. In particular, we began in section 2.1 by studying where in a NR simulation
one should extract gravitational wave information for gravitational wave detectors. While it
may be tempting to extract GWs on some timelike wordline, like that of an inertial detector,

35 We stress that here we use this model only for simplicity and to show the importance of fixing the frame. In reality,
when trying to correctly fit a NR waveform with QNMs, one should take precaution to ensure that the QNMs are
meaningfully resolved.
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we showed how this can quickly lead to coordinate ambiguities and thus motivated the need to
extract GWs at future null infinity Z+—the final destination of outgoing radiation. By working
with data on Z, instead of in the bulk, one is free from the full diffeomorphism invariance of
GR and obtains a more suitable set of coordinates to work with. However, as we outlined in
section 2.2, even on Z7 that are still troubling coordinate ambiguities that are present because
of the symmetry group of null infinity: the BMS group. Consequently, to work with dataon Z ™,
one must have a robust understanding of the BMS group and the way in which it transforms
coordinates and asymptotic data.

In section 2.3 we reviewed the infamous BMS group; specifically how it can be viewed as
the Poincaré group, but with the usual spacetime translations replaced by an infinite group of
transformations called supertranslations. These can be viewed as direction-dependent trans-
lations and arise from the fact that each point on ZT, which can each be thought of as a single
observer, ends up being casually disconnected from any other. Then, in section 2.5, we showed
how an arbitrary BMS transformation changes the spacetime coordinates that the asymptotic
data will be functions of. We also explained what this data on Z© should be, i.e. not only the
gravitational wave strain, but also the five complex Weyl scalars, which encode information
about the spacetime curvature.

Finally, in section 2.6, we used our understanding of the symmetries of Z* to construct
an intuition for why memory effects should exist in GR. In particular, because of Neother’s
theorem [62], one might expect that the supertranslation symmetries of Z7 yield some kind
of conservation law between an angle-dependent mass and an angle-dependent energy flux,
like that of equation (2.13). However, because changes to the ¢ > 2 harmonics of system’s
mass multipole moment source GWs, one needs an extra ingredient on the left-hand side of
equation (2.13), i.e. that of equation (2.14), to balance this fact. Therefore, the conservation
law that stems from supertranslations, equation (2.14) or equations (4.6), is really a statement
about the memory that is induced on the spacetime by any system that emits gravitational
radiation.

After our pedagogical overview, in section 3 we reviewed the literature behind memory
effects and the BMS group. Focusing on the memory first, we highlighted how this effect has
been known since 1974, but did not receive much attention until its connection to asymptotic
symmetries and soft theorems was found in 2013 and 2014 [73-75, 79]. Ever since this real-
ization, there has been a surge of interest and discovery in tangentially related fields, such as
celestial holography [17-21].

In section 4, we presented the more formal mathematics behind our earlier discussions. In
particular, we showed how the Bondi-Sachs metric and Einstein’s equations yield a series of
evolution equations for both the mass and angular momentum aspects (see equations (4.2)),
which, when integrated with respect to time, yield the formal version of the pedagogical con-
servation law of equation (2.14), i.e. equations (4.6). These equations show that the real and
imaginary parts of the gravitational wave strain (or shear) can be written in terms of mass and
angular momentum charges and fluxes, which help illustrate the different ways in which the
strain or memory can be sourced. That is, equations (4.6) present the modern interpretation of
memory: it can be sourced by a change in the system’s charges (linear or ordinary memory)
or a change in the fluxes (nonlinear, Christodoulou, or null memory).

In section 6, we implemented our mathematical results numerically for simulations of BBH.
In section 6.1 we took equations (4.6) and evaluated them for a GW150914-like NR simula-
tion in figure 3. This showed how useful equations (4.6) can be for studying NR simulations
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and extracting the memory contribution to the strain, as highlighted in the lower left panel
of figure 3. In section 6.2, in figure 4 we showed what the frequency spectrum of a typical
memory signal looks like relative to the LIGO and CE amplitude spectral densities. As shown,
even though memory is fairly pronounced in the time domain (see, e.g. figure 2), in the fre-
quency domain memory occupies the lower part of the band which makes it challenging to
detect in single events with current detectors. However, by stacking events and trying to detect
memory in a population [81-83] or by relying on future detectors like CE, ET, or LISA [83,
134], the chances for observing memory for the first time are much higher.

Last, in section 7 we highlighted the importance of controlling the BMS freedoms for study-
ing NR waveforms. First, in figure 6, we showed how NR and PN waveforms naturally disagree
with one another, due to the fact that PN waveforms have information about the past history
of the compact binary’s inspiral, while numerical simulations do not. Furthermore, figure 6
shows that, without resolving this issue, if one tries to construct a hybrid waveform which is
needed for building waveform models for the LVK collaboration, then the hybrid waveform
exhibits an unphysical feature due to this disagreement. Fortunately, this disagreement simply
turns out to be an issue of the two waveforms being in different BMS frames, i.e. they differ by
some arbitrary BMS transformation. In the text surrounding figure 6, we outlined how one can
use BMS charges to determine this transformation and fix the BMS frame of the NR wave-
form to match that of the PN waveform. After doing so, one obtains figure 7 which shows
much better agreement between NR and PN strain waveforms. Finally, in figure 8, we also
highlighted why fixing the BMS frame is important for studying the ringdown phase of NR
simulations with BHPT. In particular, because of the memory, the remnant black hole formed
in a black hole merger is not exactly Kerr, but supertransiated Kerr. Therefore, if one wishes
to fit the ringdown phase with QNMs, they need to find the BMS transformation that maps
the remnant black hole to the same frame of the usual Kerr metric: the superrest frame. After
doing so, one can then perform meaningful ringdown fits and analyses, as is illustrated through
the right-hand panels of figure 8.

It is our hope that this review will serve as a resource for those interested in learning more
about memory effects and the BMS group in the context of NR simulations and GW model-
ing more generally. As new and more accurate GW detectors come online, understanding the
complexities of the GWs that GR predicts, such as those we have covered here, will be of the
utmost importance, as they will likely be key to observing never-before-seen physics that will
futher illuminate how our Universe works.
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Appendix. Expressing a BMS transformation in terms of rotations, boosts,
and supertranslations

In this appendix, we briefly outline how one can write an arbitrary BMS transformation as a
supertranslation followed by a Lorentz transformation. This is useful for mapping NR wave-
forms to a particular BMS frame because it enables one to compose BMS transformations. We
begin by studying Lorentz transformations.

A.1 SL(2,C) representation of a Lorentz transformation

Let us begin with rotations. For a rotation R by an angle 6 about the axis 7 = (ry,ry,r;), one
may write this as the quaternion®

q=exp (;9?) =cos(0/2)1+ (rd+ryj+rk)sin(6/2), (A1)

where I, i, j, k are the elementary quaternions obeying the usual multiplication rules. Using
spin matrices, i.e. elements of SL(2,C), one may write these quaternions as

- (90 D6 D6 )

Therefore, the rotation R has the SL(2,C) representation

R=(cos(0/2),7sin(6/2)) o (A3)

Note that in equation (A3) R is a unitary matrix. Meanwhile, for boosts, since a boost B by
rapidity w along the axis v = (v, vy, V) is nothing more than a rotation by the angle iw about
the axis ¥, a boost has the representation

B = (cosh (w/2),i9sinh (w/2)) - . (A4)

Note that in equation (A4) B is a Hermitian matrix. Because L—the SL(2,C) represent-
ation of some Lorentz transformation—is invertible, it has a unique polar decomposition.
Correspondingly, a general Lorentz transformation can be written as a composition of a boost
followed by a rotation, which in the SL(2,C) representation is

L=R-B=/[(cos(6/2),isin(0/2))-a]-[(cosh(w/2),ivsinh (w/2))-o]. (A5)

Note though that what is shown above is for a passive Lorentz transformation. Put simply, the
transformation is acting on the coordinates themselves. Under L, our original coordinates X are
transformed to an intermediate coordinate system X’ by a boost, and then to a final coordinate
system X’ by a rotation. The parameters of the rotation should be interpreted as a rotation in
the X' coordinate system, not in the X coordinate system.

36 For a review of quaternions, see [135].
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A.2. Decomposing an SL(2,C) matrix into rotation and boost

Because SL(2,C) is a double cover of the restricted Lorentz group SO™ (3, 1), we can always
write the SL(2, C) representation of a Lorentz transformation L as

-~ f(a b
L:(c d) (A6)

for some a,b,c,d € C with ad — bc = 1. We would like to perform a polar decomposition as
gither L=R-BorL=B’-R’, where R or R’ is unitary and thus a rotation, and where Bor B’
is hermitian and thus a boost, as seen in equations (A3) and (A4). This is easily accomplished
with a singular value decomposition,

i—vU.s.Vi, (A7)

where U and V are complex unitary matrices and X is diagonal, and in this case Hermitian.
Using the inverse properties of U and V, we can write L in the more suggestive form

L=(U-V)-(v-5-VI) (A8)
or

L=(U-=-U") (U-V'), (A9)
which give our desired decompositions,

L=R-BwithR=U-V'andB=V-%- V' (A10)
or

L=B'-R'withB'=U-%-U'andR' =U- V. (A11)

A.3. Composition of BMS elements

Equipped with the SL(2, C) representation of arbitrary Lorentz transformations, we also want
a decomposition of BMS group elements as compositions of supertranslations followed by
Lorentz transformations, or vice versa. This will make it computationally convenient to com-
pose BMS transformations. Such a decomposition is possible since supertranslations T are a
normal subgroup of the BMS group ‘8. Namely, we can construct the homomorphism to the
quotient group ¢ : B — B /T ~ SO(3, 1). We can say that a BMS group element s is a ‘pure
supertranslation’ if s € ker .
Now let a BMS transformation be

g=los, (A12)

for [ a Lorentz transformation and s a supertranslation. The Lorentz transformation component
of a BMS transformation [ = ¢(g) is clearly well-defined. Alternatively we can write a g as

g==5ol (A13)
for § = losol~! some other pure supertranslation.
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We can now consider composing g1, g, € B,
g=g0og =hosoljos;. (Al4)

Because s, is in the normal subgroup, we can write it as conjugate to another pure supertrans-
lation, namely

sy=1los ol (A15)
for some s’ € T. Thus
g=(holi)o(s" os1) (A16)

with s’ = ll_l o s ol;. Note that here the composition of the Lorentz transformations can be
carried out via the SL(2,C) representation, whereas the composition of supertranslations is
simply additive.
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