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One can hear the shape of ellipses
of small eccentricity

By Hamid Hezari and Steve Zelditch

Abstract

We show that if the eccentricity of an ellipse is sufficiently small, then

up to isometries it is spectrally unique among all smooth domains. We

do not assume any symmetry, convexity, or closeness to the ellipse, on the

class of domains.

In the course of the proof we also show that for nearly circular domains,

the lengths of periodic orbits that are shorter than the perimeter of the

domain must belong to the singular support of the wave trace. As a result

we also obtain a Laplace spectral rigidity result for the class of axially sym-

metric nearly circular domains using a similar result of De Simoi, Kaloshin,

and Wei concerning the length spectrum of such domains.

1. Introduction

From the point of view of classical mechanics, elliptical billiards are very

special because their billiard maps are completely integrable. In fact the

Birkhoff conjecture asserts that ellipses are the only completely integrable

strictly convex billiard tables. It is natural to expect this uniqueness prop-

erty of ellipses to hold from the quantum mechanical point of view and ask, for

example, whether the Laplace eigenvalues of ellipses with respect to Dirichlet

or Neumann boundary conditions determine them uniquely. The only planar

domains that are known to date to be determined by their spectrum among

all smooth domains1 are disks D ⊂ R2. In this article we show that nearly

circular ellipses are spectrally determined among all smooth domains.
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1In fact disks are spectrally unique among all Lipschitz domains by the isoperimetric

inequality, because area and perimeter are spectral invariants of a Lipschitz domain by the

heat trace asymptotic of Brown [Bro93].

1083

http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2022.196.3.4


1084 HEZARI and ZELDITCH

Theorem 1.1. There exists ε0 > 0 such that any ellipse with eccentricity

less than ε0 is uniquely determined by its Dirichlet (or Neumman) Laplace

spectrum, among all smooth domains.

Henceforth, we use the term “nearly circular ellipse” as short for “eccen-

tricity less than ε0.” This inverse spectral result should be compared with

the recent dynamical inverse results of Avila-De Simoi-Kaloshin [ADK16] and

Kaloshin-Sorrentino [KS18]. They prove a “local” version of the Birkhoff con-

jecture: if a strictly convex (finitely smooth) planar domain is sufficiently close

to an ellipse and is rationally integrable, then it must be an ellipse. Rational

integrabillity means that for every integer q ≥ 3, there is a convex caustic of

rotation number 1
q consisting of periodic orbits with q reflections. In fact, our

proof is based in part on this result. To be able to use it, we need to prove

that the hypothesis is valid. We first need an important definition.

Definition 1.2. Let n ∈ N and ε > 0. Let D be the unit disk and N0 be

its outward unit normal. A simply connected planar domain Ω with smooth

boundary will be called “ε-nearly circular in Cn” if its boundary can be written

as ∂Ω = ∂D + f(θ)N0, with ‖f‖Cn(∂D) = On(ε). Here On(ε) means that

‖f‖Cn(∂D) is bounded by Anε for some An that depends only on n. If we only

use “nearly circular,” it means that ε is sufficiently small.

The main advance in this article is contained in the following:

Theorem 1.3. If Ω is a bounded smooth plane domain that is isospectral

to a nearly circular ellipse of eccentricity ε, then Ω is ε-nearly circular in Cn

for every n∈N (in particular, it must be strictly convex ) and Ω is rationally

integrable.

The near circularity of Ω is proved in Proposition 2.1. The proof uses heat

trace invariants to show that if a smooth domain Ω is isospectral to an ellipse

E with small eccentricity ε, then Ω must be sufficiently close to E in the Cn

norm for all n. In particular, Ω must itself be almost circular.

After this initial step, the proof of rational integrability is based on a

study of the wave trace

(1) wΩ(t) := Tr cos t
√

∆Ω.

It is well known that wΩ(t) is a tempered distribution on R and that the positive

singularities of wΩ can only occur for t ∈ L(Ω), the length spectrum (i.e.,

the closure of the set of lengths of closed billiard trajectories). Of particular

importance here are the closed trajectories of type Γ(1, q), i.e., with winding

number 1 and with q bounces (reflections) off the boundary ∂Ω. We denote the

set of lengths of such closed trajectories by L1,q(Ω). For each q, the contribution

to wΩ(t) of closed trajectories Γ(1, q) is denoted by σ̂1,q. In [MM82, Prop. 6.11],

Marvizi-Melrose constructed microlocal parametrices, also denoted by σ̂1,q,



ONE CAN HEAR THE SHAPE OF ELLIPSES OF SMALL ECCENTRICITY 1085

for the microlocal contribution of trajectories in Γ(1, q) and proved that the

parametrix was valid for q ≥ q0(Ω). By “valid” is meant that the wave trace

is a sum of contributions from Lagrangian submanifolds Λq corresponding to

q-bounce orbits and σ̂1,q is the contribution from those with winding number

p = 1 (see [MM82, §6]).

To apply the results of [ADK16], [KS18] it is essential to have analogous

results for q ≥ 3 bounces. One of the key results of this article is Theorem 5.3,

which shows that the Marvizi-Melrose parametrices are in fact valid for closed

billiard trajectories in Γ(1, q) with q ≥ 2 for nearly circular domains in C8.

Theorem 5.3 is applied in two independent ways to prove Theorem 1.3.

The first way is to combine it with a theorem of Soga [Sog81] for oscillatory

integrals with degenerate phase functions to prove

Theorem 1.4. Let Ω be a nearly circular domain in C8. Then, for all

q ≥ 2, one has

L1,q(Ω) ⊂ SingSuppwΩ(t).

In other words, for such domains, the wave trace is singular at the length of

every (1, q) periodic orbit.

Let us present the application of Theorem 1.4 to Theorem 1.3. We let

` = |∂Ω| denote the circumference. It is well known to be a spectral invariant.

It is proved that, for a nearly circular ellipse, the singular support of wΩ(t) con-

tained in (0, `) is a discrete set whose gap sequence is monotonically decreasing.

We refer to Lemma 4.1 for the definition and statement. On the other hand,

if Ω is a nearly circular domain that is not rationally integrable, then the gap

sequence of the singular support must fluctuate. By Theorem 1.4 the lengths

in (0, `) with q ≥ 2 are spectral invariants. If Ω is isospectral to an ellipse

of small eccentricity, then by Theorem 1.4 its gap sequence is monotonically

decreasing and therefore it is rationally integrable.

We then apply the results of [ADK16] to show that Ω must be an ellipse.

This step needs Ω to be nearly circular in Cn with n = 39, which is provided

to us, in fact for any n, by Theorem 1.3. To conclude the proof, we use the

easy result that if two ellipses are isospectral, then they must be isometric.

1.1. Second approach. The second application of Theorem 5.3 uses the

following:

Proposition 1.5. If Ω is a nearly circular domain in C8, then for q ≥ 2,

σ̂Ω
1,q(t) is a spectral invariant. Hence, if Ω is isospectral to an ellipse Eε of

small eccentricity ε, then for all q ≥ 2, we have σ̂Ω
1,q(t) = σ̂Eε1,q(t).

The statement is not obvious, because neither the winding number nor the

bounce number are known to be spectral invariants. Moreover, if the length

spectrum L(Ω) of Ω is multiple, i.e., if there exists more than one connected
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component in the set of closed billiard trajectories of some length L, then the

contributions from the two components may cancel. Theorem 1.4 shows that

complete cancellation cannot occur, but Proposition 1.5 asserts more.

Granted Proposition 1.5 the proof of Theorem 1.3 is rather simple: it is

shown that the phase function of σ̂1,q(t) has exactly one critical value. But

that forces it to be constant, and from that one sees that Ω must be rationally

integrable.

1.2. Application to spectral rigidity of Z2-symmetric nearly circular do-

mains. In [dKW17] it is proved that the class S8
δ of axially symmetric planar

domains that are δ-nearly circular in C8, δ sufficiently small, are length spec-

trally rigid within this class. Length spectral rigidity means that if Ωt ∈ S8
δ ,

0 ≤ t ≤ 1, is a C1 family along which the length spectrum is preserved, then

Ωt must be trivial; that is, it consists of isometries of Ω0. In fact the result

of [dKW17] only uses the lengths of (1, q)-type periodic orbits. Now equipped

with our Theorem 1.4, Lemma 4.4, and Corollary 4.8, we obtain the following

result on the Laplace spectral rigidity of the class S8
δ :

Theorem 1.6. There exists δ > 0 universal such that the following state-

ment holds. Let {Ωt}t∈[0,1] be a ∆ isospectral deformation of domains in the

class S8
δ of Z2-axially symmetric smooth domains that are δ-close in C8 to the

unit disk. Then Ωt must be a trivial deformation.

1.3. Prospects for more general ellipses. It is natural to try to extend the

results to more general ellipses or even more general convex domains. However,

there exist many obstructions to any generalization of the proofs in this article

for higher eccentricities.

An important step is the proof of Theorem 5.3, which shows that the

parametrix for the q-bounce wave trace (66) of [MM82, Prop. 6.11] is valid for

q ≥ 3 for a nearly circular domain. The proof of Theorem 5.3 is quite general

but uses the “projectibility” of a certain portion of the q-bounce Lagrangian,

namely the portion close to the diagonal consisting of orbits of winding num-

ber approximately one. It is possible that this portion of the Lagrangian is

projectible for more general ellipses.

To explain the problem, we recall that the broken geodesic (billiard) flow

induces a billiard map β̃ : B∗∂Ω → B∗∂Ω, where B∗∂Ω is the unit “ball-

bundle,” which of course is an annulus in dimension 2. See Section 3.1 for

background. In the case of a convex domain, β̃ is a twist map of the annulus.

This means that a “vertical” B∗x∂Ω is mapped by β̃ to a horizontal curve

β̃(B∗x∂Ω). Such a curve is of course a Lagrangian submanifold and may be

parametrized by the differential of a function on the base ∂Ω. However, q

bounce periodic orbits are period q orbits of β̃ and β̃q fails to be a twist

map. In fact the image β̃q(B∗x∂Ω) folds over the base q times. The essence
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of Theorem 5.3 is to show that the piece of β̃q(B∗x∂Ω) corresponding to the

image of small angles ϕ ∈ B∗x∂Ω, i.e., to billiard geodesic loops of winding

number 1, projects to ∂Ω without singularities near x. Hence this piece may

be parametrized by the differential of a function on ∂Ω, namely, the q-bounce

loop-length function for billiard loops at x making q bounces.

Note that the result of [KS18] extends [ADK16] to arbitrary ellipses. How-

ever, the other steps of our arguments need closeness to a disk, so the proofs

in this article do not extend without serious modifications to ellipses of arbi-

trary eccentricity. We also mention the works of Huang-Kaloshin-Sorrentino

[HKS18] and a recent work of Koval [Kov21] that concern rational integrablity

near the boundary of a nearly circular domain. In these results, it is only

assumed that there exist caustics of rotations numbers p
q where p

q ≤
1
q0

for a

given (possibly large) q0. There is hope that these methods can be extended

to domains that are near ellipses of arbitrary eccentricity.

1.4. Comparison to works of Marvizi-Melrose and Amiran. In [MM82],

Marvizi-Melrose used the parametrices to prove that there exists a two-para-

meter family of strictly convex domains that are spectrally determined among

domains satisfying a certain non-coincidence condition. The domains are spec-

ified as solutions of extremal problems involving the so-called Marvizi-Melrose

invariants. (See [Sib99], [Sib04] for the relation of these invariants to the

marked length spectrum.) They even show that the curvature functions of the

extremal domains are given by elliptic integrals. But they do not conclude

that the domains are ellipses.

In [Ami93], [Ami96], Amiran does state the conclusions for the ellipse,

but there appear to be serious gaps in the proof. The present article over-

laps [Ami93], [Ami96] only in the proof of the non-coincidence condition. In

[Ami96] (see Corollary 7), the author shows that the strong non-coincidence

condition holds for an ellipse whose minor axis length exceeds 1
4 length(∂E).

The proof does not appear to be complete and we give our own proof in the

case of a nearly circular domain.

We briefly describe the approach of [Ami93], [Ami96]. In [Ami93], Amiran

defines “caustics invariants” L, J1, G and states (Theorem 9) that the extremals

of G among domains with fixed L, J1 are ellipses. The non-coincidence condi-

tion (Theorem 10 of [Ami93]) is used to show that sufficiently many caustics

invariants are ∆-spectral invariants. The idea of the proof is to show that only

curvature functions of ellipses solve the Euler-Lagrange equations for G, a non-

linear second order equation for the radius of curvature of the domain. We do

not understand the proof given in [Ami93], [Ami96] that curvature functions

of ellipses solve the equation, or that they are the only solutions. If indeed

such ellipses are the only solutions of the extremal problem, then they would
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be spectrally determined among domains whose curvature functions are near

that of the ellipse (Corollary 7).

1.5. Previous positive results. To our knowledge, the results of this paper

give the first “universal inverse spectral result” for any class of domains other

than the circle. The result says that ellipses in a specific family (“almost

circular”) are determined by their spectra among all smooth domains without

any further assumptions. In fact, there do not even exist prior “local spectral

determination” results, which would say that an ellipse (or any other domain)

is determined by its spectrum among domains that lie in a sufficiently small Ck

neighborhood of the ellipse. The only prior positive result specific to the inverse

Laplace spectral problem for ellipses is [HZ12] (see also [PT16] for ellipsoids),

which says that ellipses are infinitesimally spectrally rigid among C∞ domains

with the same left-right and up-down symmetries. The progress in that article

is to allow competing domains to be C∞ and not real-analytic. To be precise,

the rigidity result proved that any Dirichlet/Neumann isospectral deformation

had to be “flat,” i.e., all of its variational derivatives vanish. These results

were generalized to all Robin boundary conditions in [Vig21].

The most general prior positive inverse results were that of [Zel09], where

it is proved that a generic real analytic plane domain with one up-down sym-

metry is determined by its Dirichlet (or Neumann) spectrum among other such

domains, and that of [dKW17], where a generic nearly circular domain with one

reflection symmetry is shown to be Laplace spectrally rigid in the same class

of domains. In [dKW17], the genericity was needed in drawing a conclusion

on the Laplace spectral rigidity from the length spectral rigidity. The results

of the present article, by comparison, do not make any symmetry assumptions

and allow the competing domains to be general C∞ domains. There also exists

a sequence of results of Popov-Topalov [PT03], [PT12], [PT16] using the KAM

structure of convex smooth plane domains to deduce spectral rigidity results

for Liouville billiards (including ellipses) with two commuting reflection sym-

metries, and for analytic domains that are sufficiently close to an ellipse and

possess the two reflection symmetries of the ellipse.

Prior inverse results for other classes of plane domains are surveyed in

[Zel04], [DH13], [Zel14], with an emphasis on positive results. Negative results,

such as the construction of isospectral polygonal domains of [GWW92], are

surveyed in [Gor00].

1.6. Organization of the paper. In Section 2, we show that any smooth

domain isospectral to a nearly circular domain must be nearly circular as well.

The main tool in proving this result is heat trace invariants. Section 3 is

dedicated to the existence of geodesics loops for nearly circular domains. The

lengths of these loops (we call them loop functions) play a key role in our later
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analysis of the wave trace via the Marvizi-Melrose parametrix. We also find a

useful variational formula for the loop functions. Section 4 entirely involves the

length spectrum of nearly circular domains. The important gap structure of

the length spectrum is proved in this section. The Marvizi-Melrose parametrix

is proved in Section 5 for nearly circular domains for all q ≥ 2. We provide an

independent proof of this theorem using Green’s second identity. In Section 6,

we show that the part of the length spectrum that is less than the perimeter

is contained in the singular support of the wave trace hence, in fact, we obtain

an equality in Poisson relation in the interval (0, `). In Section 7, we prove

our main result by showing that if a domain is isospectral to a nearly circular

ellipse then it must be rationally integrable hence must be an ellipse by a

result of Avila-De Simoi-Kaloshin. At the end of Section 7 we also provide an

alternative proof of the rational integrability.

2. Isospectrality with a nearly circular ellipse

implies closeness to the ellipse

Let Eε be an ellipse of eccentricity ε. After a rescaling and a rigid motion,

we can assume that Eε is given by

Eε =

ß
(x, y) ∈ R2; x2 +

y2

1− ε2
≤ 1

™
.

Then assume Ω is a smooth domain with

(2) Spec(Ω) = Spec(Eε).

Here, Spec means the spectrum of the euclidean Laplacian with respect to

Dirichlet (or Neumman) boundary condition. We know from the heat trace

invariants that Ω must be simply-connected with the same perimeter as Eε,

which we shall call `ε, and use s for the arclength parameter. We will also use

κ(Ω)(s) and κ(Eε)(s)

for the curvature functions of ∂Ω and ∂Eε respectively. Note that κ(Ω) and

κ(Eε) belong to the same space C∞[0, `ε]. We now have the following lemma:

Proposition 2.1. Suppose Ω and Eε are isospectral. Then for all integers

n ≥ 0, we have

‖κ(Ω)− 1‖Cn[0,`ε] = On(ε).

In particular, for sufficiently small ε, Ω is strictly convex. Here, On(ε) means

that the involved constant depends only on n.

As a corollary we will obtain

Corollary 2.2. Suppose Ω and Eε are isospectral. Then one can apply a

rigid motion to Ω after which its boundary can be written as ∂Ω = ∂E0 + fN0,
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with ‖f‖Cn(∂D) = On(ε) for all n ≥ 0. Here N0 is the outward unit normal of

the unit disk D = E0. In terms of Definition 1.2, it means that Ω is ε-nearly

circular in Cn.

Proof of Proposition 2.1. Let ∆Ω be the positive Laplacian with Dirichlet

(or Neumann) boundary condition on Ω. We recall the well-known heat trace

asymptotic

(3) Tr(e−t∆Ω) ∼ t−1
∑
n≥0

ant
n + bnt

n+ 1
2 , t→ 0+.

In [Mel84], the following structural property is proved for the heat invariants bn:

(4) bn+1 = cn

∫ `

0

κ2
n ds+

∑
α≥0

dα

∫ `

0

κα0κα1
1 · · ·κ

αn−1

n−1 ds, n ≥ 1,

where ` is the length of the boundary, κm denotes dmκ
dsm , α = (α0, . . . , αn−1)

is a multi-index in Zn, cn 6= 0 and dα are universal constants. We also have∑k−1
j=0(1 + j)αj = 2n+ 2, which in particular implies that the sum is finite and

the number of terms is bounded by a constant dependent only on n. For us it

is also important to know that

b1 = c1

∫ `

0

κ2 ds, c1 6= 0,(5)

b2 = c2

∫ `

0

κ2
1 ds+ c′2

∫ `

0

κ4 ds, c2 6= 0.(6)

Melrose used the trace invariants bn to prove a pre-compactness for the class

of isospectral domains to a given domain D. More precisely he showed that

for each smooth domain Ω0, and each n ≥ 0, there is An such that for all Ω

isospectral to Ω0, we have

(7) ||κ(Ω)||Cn ≤ An.

Suppose now that Ω is isospectral to Eε. We would like to show that for all

n ≥ 0,

(8) ||κ(Ω)− κ(Eε)||Cn = On(ε).

Since κ(E0) = 1, we have κ(Eε) = 1+O(ε) and κn(Eε) = On(ε) for n ≥ 1.

Thus it is sufficient by the Sobolev embedding theorem to show that∫ `ε

0

|κ(Ω)− κ(Eε)|2ds = O(ε),(9) ∫ `ε

0

κ2
n(Ω) ds = On(ε), n ≥ 1.(10)
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To see (9), we first use the invariant b1 in (5) and the fact `ε = 2π+O(ε) to get∫ `ε

0

κ2(Ω) ds =

∫ `ε

0

κ2(Eε) ds = 2π +O(ε).

This and the facts
∫ `ε

0 κ(Ω)ds = 2π and κ(Eε) = 1 +O(ε) imply that∫ `ε

0

|κ(Ω)− κ(Eε)|2 ds =

∫ `ε

0

κ2(Ω) + κ2(Eε)− 2κ(Ω)κ(Eε) ds = O(ε).

To prove (10), we use (4) and argue by induction on n ≥ 1. In the first step,

we note that by the expression (6) for the invariant b2, we have∫ `ε

0

κ2
1(Ω) ds =

∫ `ε

0

κ2
1(Eε) ds+

c′2
c2

Ç∫ `ε

0

κ4(Eε)− κ4(Ω) ds

å
.

However, we can bound the last expression by O(ε) using (7), Cauchy-Schwartz

inequality, and (9) as follows:∫ `ε

0

κ2
1(Ω) ds ≤ O(ε) +

c′2
c2
‖κ(Eε)− κ(Ω)‖L2

×
∥∥κ3(Eε) + κ2(Eε)κ(Ω) + κ(Eε)κ

2(Ω) + κ3(Ω)
∥∥
L2 = O(ε).

Let us now assume
∫ `ε

0 κ2
m(Ω) ds = O(ε) for 1 ≤ m ≤ n− 1. By (4), we have∫ `ε

0

κ2
n(Ω) =

∫ `ε

0

κ2
n(Eε)

+
1

cn

∑
α≥0

dα

∫ `ε

0

κα0(Eε) · · ·καn−1

n−1 (Eε)− κα0(Ω) · · ·καn−1

n−1 (Ω).

To conclude the induction, we need to show that the right-hand side of the

above identity is On(ε). Obviously, by the induction hypothesis, and since for

all n ≥ 1, ‖κn(Eε)‖C0 = On(ε), all terms involving at least one derivative of

the curvature are of size On(ε). (Note that we still need the a priori bounds

(7).) So it remains to estimate the part of the sum involving no derivatives,

which is a sum of terms (up to multiplication by a constant) in the form:∫ `ε

0

κα0(Eε)− κα0(Ω) ds.

Again, as in the first step, we factor κ(Eε) − κ(Ω) in the integrand, apply

Cauchy-Schwartz, and use the a priori bounds (7) to obtain the desired bound

On(ε) for ‖κ(Ω) − κ(Eε)‖Cn . Note that this implies the proposition because

‖κ(Eε)− 1‖Cn = On(ε). �

Proof of Corollary 2.2. We first apply a rigid motion to ∂Ω so that it

becomes tangent to ∂D at (1, 0) and stays on the left side of the line x = 1.
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We identify the point of tangency (1, 0) with s = 0. Then the parametrization

γΩ is uniquely determined by its curvature by the expression

(11)

γΩ(s)=

Ç
1−
∫ s

0

sin

Ç∫ s′

0

κ(Ω)(s′′) ds′′
å
ds′ ,

∫ s

0

cos

Ç∫ s′

0

κ(Ω)(s′′) ds′′
å
ds′
å
.

Now let θ ∈ [0, 2π] be the arc-length parametrization of the boundary of the

unit disk D. We write

γΩ(s(θ)) = (r(θ) cos θ, r(θ) sin θ).

We want to show that r(θ) = 1 + f(θ) with f(θ) = On(ε) in Cn as this is

exactly what the corollary requires. Here, s(θ) is given by

(12) s(θ) =

∫ θ

0

»
r2(ϑ) + (r′(ϑ))2 dϑ =

∫ θ

0

»
(1 + f(ϑ))2 + (f ′(ϑ))2 dϑ.

We note that

f(θ) = ‖γΩ(s(θ)‖ − 1.

Since by Proposition 2.1 we have κ(Ω)(s) = 1 + h0(s) with h0(s) = O(ε) in

Cn[0, `ε], by (11) we get

(13) f(θ) =
»

1 + h1(s(θ))− 1 = h2(s(θ)),

with h1(s) = O(ε) and h2(s) = O(ε) in Cn[0, `ε]. We emphasize that since

s(θ) depends on f(θ), we cannot immediately conclude from this equation

that f(θ) = O(ε) in Cn. We proceed with induction. It is clear from (13) that

‖f‖C0 = O(ε). For f ′, we have

f ′(θ) =
»

(1 + f(θ))2 + (f ′(θ))2 h′2(s(θ)).

Solving this for (f ′)2 we get

(f ′(θ))2 = (1 + f(θ))2 (h′2(s(θ)))2

1− (h′2(s(θ)))2
,

which is obviously O(ε) because h2 = O(ε) in Cn for all n. Now assume

‖f‖Cn−1 = O(ε) for some n ≥ 2. Differentiating (13) n times,

f (n)(θ) =
f (n)(θ)f ′(θ)√

(1 + f(θ))2 + (f ′(θ))2
h′2(s(θ)) +Rn(θ),

where the remainder term Rn depends on f (k), k ≤ n − 1, and h
(k)
2 , k ≤ n.

From the induction hypothesis and the form of Rn, one can easily see that

Rn = O(ε). Solving the above equation for f (n) and using ‖f‖C1 = O(ε) and

h′2 = O(ε), we conclude the induction and the corollary follows. �
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3. The loop function and its first variation

This section focuses on the iterations of the billiard map of a nearly circular

domain. Let us first introduce the billiard map and its periodic orbits.

3.1. Billiard map and (p, q)-periodic orbits. Consider a C∞ strictly con-

vex billiard table Ω with perimeter `. We parametrize its boundary in the

counter-clockwise direction by its arc-length s. We define the phase space by

S∗inward∂Ω, i.e., the inward vectors in the unit cotangent bundle of ∂Ω. We

identify the phase space with

Π = R/`Z× [0, π],

and we use (s, ϕ) for a point in Π. Here, ϕ represents the angle that the

inward unit vector at s makes with the positive unit tangent vector at s, i.e.,

the tangent vectors in the counter-clockwise direction. The billiard map is a

smooth twist map on the closed annulus Π. We write it as{
β : Π→ Π,

β(s, ϕ) = (s1(s, ϕ), ϕ1(s, ϕ)) .

It is natural and convenient to lift β to Π̂ = R × [0, π]. We shall use (x, ϕ)

for points in Π̂. We fix the lift and call it β̂ by requiring that β̂(x, 0) = (x, 0).

Then by the continuity of the lift we have β̂(x, π) = (x+ `, π). We shall write

β̂(x, ϕ) = (x1(x, ϕ), ϕ1(x, ϕ)).

The billiard map satisfies the monotone twist property, meaning

∂ϕx1 > 0.

The map β̂ also preserves the orientation and the boundaries of Π̂. Moreover,

β̂ preserves the natural symplectic form sinϕdx∧ dϕ on the phase space Π̂. A

diffeomorphism β of the annulus Π whose lift β̂ satisfies the above properties is

called a twist map. We refer the readers to [MF94] for more on the properties

of twist maps and Aubry-Mather theory.

Note that we can write

(14) β̂(x, ϕ) = (x+ F (x, ϕ), G(x, ϕ)),

where F and G are smooth, `-periodic in the x variable, and F (x, 0) =

G(x, 0) = 0. We shall use β̂0 for the billiard map of the unit disk D. One

can easily see that

β̂0(x, ϕ) = (x+ 2ϕ,ϕ).

A point (s, ϕ) ∈ Π is called a (p, q) periodic point of β if βq(s, ϕ) = (s, ϕ) and

the orbit {βj(s, ϕ)}0≤j≤q−1 winds p times around ∂Ω in the positive direction.
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This means that for any lift (x, ϕ) of (s, ϕ), we have

β̂q(x, ϕ) = (x+ p`, ϕ).

The ratio p
q is called the rotation number of (s, ϕ). Since the rotation number

of the time reversal of a periodic orbit of rotation number p
q is given by q−p

p ,

we always assume that 1 ≤ p ≤ q
2 . On the unit disk E0, the (p, q) periodic

points form an invariant circle given by {(s, ϕ)|ϕ = πp/q}.

3.2. Expansions of the billiard map. For small angles ϕ, the billiard map

β̂(x, ϕ) of a smooth strictly convex domain has a useful expansion (via Taylor’s

theorem) in the form

β̂(x, ϕ) =

Ñ
x+

N−1∑
j=1

αj(x)ϕj + FN (x, ϕ)ϕN ,
N−1∑
j=1

βj(x)ϕj +GN (x, ϕ)ϕN

é
.

By Proposition 14.2 of [Laz93], the remainder terms FN and GN are bounded

by ON (1)
κmin

‖ 1
κ‖CN−1 , where κ(x) is the curvature at x and κmin is the minimum

curvature. The coefficients αj(x) and βj(x) can be calculated in terms of κ

and its derivatives; see, for example, [Laz93] for the expressions of α1, . . . , α4

and β1, . . . , β4. In fact in certain coordinates, called Lazutkin coordinates, the

billiard map can be written in a simpler form. More precisely, if we denote

ξ = C1

∫ x

0

κ2/3(x′)dx′, η = C2κ
−1/3(x) sin(ϕ/2),

where C1 = 1/
∫ `

0 κ
2/3(x′)dx′ and C2 = 4C1, then in these coordinates the

billiard map takes the form

(ξ, η)→

Ñ
ξ + η +

∑
j≥3

α̃j(ξ)η
j , η +

∑
j≥4

β̃j(ξ)η
j

é
,

where the coefficient functions are 1-periodic and smooth. The infinite sums

are understood as asymptotic expansions as η → 0 and not as convergent

power series. The remarkable fact is the vanishing of the η2 term in the first

component and of the η2 and η3 terms in the second component. In fact as

Lemma 14.6 of [Laz93] shows, one can go further inductively and find for each

N ≥ 3, new coordinates (u, v) in which the billiard map is written as

(15) (u, v)→

Ñ
u+ v +

∑
j≥N

aj(u)vj , v +
∑

j≥N+1

bj(u)vj

é
.

Moreover, the construction of this map reveals that the two coordinates (ξ, η)

and (u, v) are related by

(16) (ξ, η) =
(
u+ v2A(u, v), v + v3B(u, v)

)
.
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Lazutkin coordinates can be very useful in proving existence of invariant curves

as shown by Lazutkin but also in studying periodic orbits as done in [dKW17].

3.3. Nearly circular deformations. Suppose Ω is nearly circular in C1.

Recall that by Definition 1.2 this means that Ω is smooth and simply connected,

and can be written as ∂Ω = ∂D + fN0, where f is a smooth function on ∂D

sufficiently small in C1 and N0 is the outward unit normal field to ∂D. This

also means that ∂Ω is a polar curve given by r(θ) = 1 + f(θ), θ ∈ [0, 2π]. In

fact we will need to consider the linear deformation {Ωτ}0≤τ≤1 defined by

(17) ∂Ωτ = ∂D + τfN0,

or equivalently in polar coordinates, by

∂Ωτ : r(τ, θ) = 1 + τf(θ), θ ∈ [0, 2π].

Hence by this notation, Ω0 = E0 = D and Ω1 = Ω. We denote the arc-length

parametrization of ∂Ωτ by γ(τ, s). The polar and arc-length parametrizations

are related by

(18) γ(τ, s(τ, θ)) =
(
r(τ, θ) cos θ, r(τ, θ) sin θ

)
,

where

(19)

s(τ, θ) =

∫ θ

0

»
(∂θr)

2 (τ, ϑ) + r2(τ, ϑ) dϑ =

∫ θ

0

»
τ2f ′2(ϑ) + (1 + τf(ϑ))2 dϑ.

Remark 3.1. Throughout the paper we identify s = 0 with θ = 0.

3.4. First variations of the deformation. The first normal variation of

∂Ωτ at τ is defined by

(20) n(τ, s) = ∂τγ(τ, s) •N(τ, s),

where N(τ, s) is the outward unit normal at γ(τ, s). We also define the first

tangential variation of ∂Ωτ by

(21) t(τ, s) = ∂τγ(τ, s) • T (τ, s),

with T (τ, s) being the unit tangent in the positive direction.

The next lemma bounds n(τ, s) and t(τ, s) in terms of the function f(θ).

Lemma 3.2. Suppose ‖f‖C1 ≤ 1. Then

n(τ, s(τ, θ)) = O(‖f‖C1) and t(τ, s(τ, θ)) = O(‖f‖C1).
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Proof. We differentiate (18) and obtain

∂τ (γ(τ, s(τ, θ))) = (f(θ) cos θ, f(θ) sin θ),

(22)

∂θ(γ(τ, s(τ, θ))) = (τf ′(θ) cos θ−(1+τf(θ)) sin θ, τf ′(θ) sin θ+(1+τf(θ)) cos θ).

(23)

In particular, from (23) we find that the unit outward normal is given by

N(τ, s(τ, θ))

=
(τf ′(θ) sin θ + (1 + τf(θ)) cos θ, −τf ′(θ) cos θ + (1 + τf(θ)) sin θ)√

τ2f ′2(θ) + (1 + τf(θ))2
.

On the other hand,

(∂τγ)(τ, s(τ, θ)) = ∂τ (γ(τ, s(τ, θ)))− ∂τs(τ, θ)(∂sγ)(τ, s(τ, θ)),

which using ∂sγ •N = 0 and ∂sγ • T = 1, implies that

n(τ, s(τ, θ))) = ∂τ (γ(τ, s(τ, θ))) •N,

t(τ, s(τ, θ))) = ∂τ (γ(τ, s(τ, θ))) • T − ∂τs(τ, θ).

Thus by (22) and (23), we get

n(τ, s(τ, θ)) =
f(θ)(1 + τf(θ))√

τ2f ′2(θ) + (1 + τf(θ))2
,

t(τ, s(τ, θ)) =
τf ′(θ)f(θ)√

τ2f ′2(θ) + (1 + τf(θ))2
− ∂τs(τ, θ).

The lemma then follows easily from ∂τs(τ, θ) = O(‖f‖C1). �

3.5. Loop function and its first variation. Our primary purpose in this

section is to study the (1, q) periodic orbits of Ωτ , hence in particular Ω = Ω1,

in terms of the ones of D. The main ingredients will be the loop functions and

their linearizations in τ . We start by the following theorem that introduces

what we will call the loop angle.

Theorem 3.3. Let ∂Ω = ∂D+fN0 be nearly circular in C6. There exists

ε0 > 0 sufficiently small such that if ‖f‖C6 ≤ ε0, then for each τ ∈ [0, 1], s on

∂Ωτ , and q ≥ 2, there exists a unique angle ϕq(τ, s) ∈ (0, π) such that the orbit

starting at (s, ϕq(τ, s)) and making q reflections, winds around the boundary

once in the counterclockwise direction, and returns to s (not necessarily in the

same direction ). Moreover, ϕq(τ, s) is smooth. We shall call ϕq(τ, s) the q-loop

angle of Ωτ .

Remark 3.4. In [RR06] and [PRR13], a similar statement is proved, how-

ever since the proof is based on the implicit function theorem at τ = 0, the

above theorem is obtained only for τ small, and for ϕ near π/q, which is the
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q-loop angle of the disk Ω0. The size of the neighborhoods of τ = 0 and

ϕ = π/q are not estimated in these references. To do this, one probably needs

a quantitative implicit function theorem. (See, for example, the online notes

of Liverani [Liv].) In this paper, we take a different route and estimate the

q-iterations of the billiard map more directly.

In fact, for technical reasons, we will need a stronger result as follows.

Below, `τ is the perimeter of Ωτ .

Theorem 3.5. Let ∂Ω = ∂D + fN0 be nearly circular in C6. There

exists ε0 > 0 sufficiently small such that if ‖f‖C6 ≤ ε0, then for each τ ∈
[0, 1], s and s′ on ∂Ωτ with |s − s′| < `τ

100 , and q ≥ 2, there exists a unique

angle αq(τ, s, s
′) ∈ (0, π), such that the orbit starting at (s, αq(τ, s, s

′)) and

making q reflections winds around the boundary approximately once in the

counterclockwise direction and ends at s. The function αq(τ, s, s
′) is smooth in

(τ, s, s′).

Here, by “winding around the boundary approximately once in the coun-

terclockwise direction,” we precisely mean that if x and x′ are lifts of s an s′

with |x−x′| < `τ/100, then β̂qτ (x, αq(τ, x, x
′)) = x′+`τ , where β̂τ is the natural

lift of the billiard map of Ωτ .

We will give the proof in Section 3.6. In the next few pages we draw some

important consequences of these theorems.

Note that by our notations, on the diagonal s = s′ we have αq(τ, s, s) =

ϕq(τ, s). We shall call the angle ϕq(τ, s) the q-loop angle at s. We will use

ϕq(s) for the loop angle of Ω = Ω1 instead of ϕq(1, s). Obviously the loop

angle satisfies

β̂q(s, ϕq(τ, s)) = (s, ϕ̃q(τ, s))

for some angle ϕ̃q(τ, s). The following lemma is then immediate.

Lemma 3.6. The point (s, ϕ) is a q-periodic point of ∂Ω if and only if

ϕq(s) = ϕ̃q(s) = ϕ.

We now define the main ingredients of this article, namely, the q-length

function and its first variation. For the rest of the paper we assume that ‖f‖C6

is small enough so that Theorems 3.3 and 3.5 hold.

Definition 3.7 (Length and loop functions). Let Ω be C6 sufficiently close

to the unit disk E0, and let q ≥ 2. The q-length function Ψq(s, s
′), defined on

|s − s′| < `τ/100, is the length of the unique q times reflected geodesic form

s to s′ defined in Theorem 3.5. The q-loop function Lq(s) is the length of

the unique q-loop at s defined by Theorem 3.3, i.e., Lq(s) = Ψq(s, s). More
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precisely, if γ(s) is the arc-length parametrization of Ω, then

(24) Ψq(s, s
′) =

q−1∑
j=0

‖γ(sj+1)− γ(sj)‖, sj = Proj1β
j(s, αq(s, s

′)),

where Proj1 is the projection map onto the base component. Similarly,

(25) Lq(s) =

q−1∑
j=0

‖γ(sj+1)− γ(sj)‖, sj = Proj1β
j(s, ϕq(s)).

Note that since αq(s, s
′) is smooth, Ψq(s, s

′) and Lq(s) are also smooth. Corre-

spondingly, we denote the q-loop functions of the deformation Ωτ by Lq(τ, s).

The following lemma, although simple, gives a very useful characterization

of q-periodic orbits in terms of the q-loop function.

Lemma 3.8. We have

{(s, q) ∈ Π; (s, ϕ) is q-periodic} = {(s, ϕq(s)); L′q(s) = 0}.

In other words, q-periodic orbits correspond to the critical points of Lq .

Proof. Consider the loop {(sj , ϑj)}0≤j≤q (not necessarily a periodic orbit)

generated by (s, ϕq(s)), meaning

(sj , ϑj) = βj(s, ϕq(s)).

By this notation, (s0, ϑ0) = (s, ϕq(s)) and (sq, ϑq) = (s, ϕ̃q(s)). Differentiating

Lq we get

L′q(s) =

q−1∑
j=0

Å
dsj+1

ds

dγ

ds
(sj+1)− dsj

ds

dγ

ds
(sj)

ã
•
γ(sj+1)− γ(sj)

‖γ(sj+1)− γ(sj)‖

=

q−1∑
j=0

cosϑj+1
dsj+1

ds
− cosϑj

dsj
ds

= cosϑq
dsq
ds
− cosϑ0

ds0

ds
= cosϑq − cosϑ0.

This shows that s is a critical point of Lq if and only if ϑ0 = ϑq, which by our

notation means ϕq(s) = ϕ̃q(s). �

Next we define the first variation of Lq.

Definition 3.9. Let Ωτ be a deformation of the unit disk as in Theorem 3.3

so that the loop angles and loop functions are defined. For each q ≥ 2, the

first variation of the q-loop function is denoted by Mq(τ, s) = ∂τLq(τ, s).

More explicitly, we have
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Lemma 3.10. Let n(τ, s) and t(τ, s) be the first normal and tangential

variations of ∂Ωτ defined by (20) and (21), and let {(sj(τ, s), ϑj(τ, s))}qj=0 be

the q-loop generated by (s, ϕq(τ, s)), i.e., (sj(τ, s), ϑj(τ, s)) = βjτ (s, ϕq(τ, s)),

where βτ is the billiard map of Ωτ . Then

Mq(τ, s) = n(τ, s)
(

sin ϕ̃q(τ, s) + sinϕq(τ, s)
)

+ t(τ, s)
(

cos ϕ̃q(τ, s)− cosϕq(τ, s)
)

+ 2

q−1∑
j=1

n(τ, sj(τ, s)) sinϑj(s, τ).

In particular, when (s, ϕq(τ, s)) corresponds to a q-periodic orbit, i.e., ϕq(τ, s)

= ϕ̃q(τ, s), we get

Mq(τ, s) = 2

q−1∑
j=0

n(τ, sj(τ, s)) sinϑj(s, τ).

Proof. For simplicity, we use sj and ϑj for sj(τ, s) and ϑj(τ, s). We then

write

Lq(τ, s) =

q−1∑
j=0

‖γ(τ, sj+1)− γ(τ, sj)‖.

Taking the variation we get

∂τLq(τ, s) =

q−1∑
j=0

(∂τsj+1∂sγ(τ, sj+1)− ∂τsj∂sγ(τ, sj)) •
γ(τ, sj+1)− γ(τ, sj)

‖γ(τ, sj+1)− γ(τ, sj)‖

+

q−1∑
j=0

(∂τγ(τ, sj+1)− ∂τγ(τ, sj)) •
γ(τ, sj+1)− γ(τ, sj)

‖γ(τ, sj+1)− γ(τ, sj)‖
.

Let us denote the two sums by Σ1 and Σ2, respectively. For Σ1, a similar

computation as in the proof of Lemma 3.8 shows that

Σ1 =

q−1∑
j=0

cosϑj+1∂τsj+1 − cosϑj∂τsj = cosϑq∂τsq − cosϑ0∂τs0.

However, because sq(τ, s) = s0(τ, s) = s, we get Σ1 = 0. For Σ2, we rearrange

the sum into

Σ2 =

q−1∑
j=1

Å
γ(τ, sj)− γ(τ, sj−1)

‖γ(τ, sj)− γ(τ, sj−1)‖
− γ(τ, sj+1)− γ(τ, sj)

‖γ(τ, sj+1)− γ(τ, sj)‖

ã
• ∂τγ(τ, sj)

+

Å
γ(τ, sq)− γ(τ, sq−1)

‖γ(τ, sq)− γ(τ, sq−1)‖
− γ(τ, s1)− γ(τ, s0)

‖γ(τ, s1)− γ(τ, s0)‖

ã
• ∂τγ(τ, s0).
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Now let N(τ, s) and T (τ, s) be the unit outward normal and unit positive
tangent of ∂Ωτ at s, respectively. Then

Σ2 =

q−1∑
j=1

∂τγ(τ, sj) •
(
N(τ, sj) sinϑj+T (τ, s) cosϑj+N(τ, sj) sinϑj − T (τ, s) cosϑj

)
+∂τγ(τ, s0) •

(
N(τ, s0) sinϑq+T (τ, s0) cosϑq+N(τ, s0) sinϑ0 − T (τ, s0) cosϑ0

)
,

and the lemma follows by noting that ϑ0 = ϕq(s) and ϑq = ϕ̃q(s). �

The following estimate on Mq will be useful.

Lemma 3.11. For sufficiently small ‖f‖C2 , we have Mq(τ, s) = O(‖f‖C1).

Proof. By Lemmas 3.10 and 3.2, we get

Mq(τ, s) =

Ñ
1 +

q−1∑
j=1

ϑj(s, τ)

é
O(‖f‖C1).

By (28), for sufficiently small ‖f‖C2 , we get
∑q−1

j=1 ϑj(s, τ)≤ 1
2 lτ maxκτ ≤3π.

�

3.6. Proof of Theorem 3.3. Let Ωτ , 0 ≤ τ ≤ 1, be as in the previous

section, meaning

∂Ωτ = ∂E0 + τf(θ)N0,

where E0 is the unit disk and f(θ) is a smooth function. We will always use

the notation `τ = length(∂Ωτ ). Instead of the billiard maps βτ , it is more

convenient to use the natural lifts β̂τ because they are all defined on the same

space Π̂ = R× [0, π]. To prove Theorem 3.3, we need to study the q-iterates β̂qτ ,

but before doing this we need the following important perturbative lemma for

β̂τ . We recall that β̂0(x, ϕ) = (x+ 2ϕ,ϕ).

Lemma 3.12. Let ||f ||C6 ≤ 1, and let ||f ||C2 be sufficiently small. Then

β̂τ (x, ϕ) can be written as

β̂τ (x, ϕ) = (x+ 2ϕ+ Pτ (x, ϕ), ϕ+Qτ (x, ϕ)),

where Pτ and Qτ are analytic families of `τ periodic functions in x and

i, j, k = 0, 1 : ∂iτ∂
j
x∂

k
ϕPτ (x, ϕ) = ϕ1−kO(||f ||C6),

i, j, k = 0, 1 : ∂iτ∂
j
x∂

k
ϕQτ (x, ϕ) = ϕ2−kO(||f ||C6),

uniformly for x ∈ R, ϕ ∈ [0, π2 ] and τ ∈ [0, 1]. When ϕ ∈ [π2 , π], we need to

replace ϕ with π − ϕ in the above estimates.

Remark 3.13. We do not claim that C6 is the optimal choice here. In fact,

probably C4 is sufficient, however since C6 is more than good enough for our

main theorem, we do not attempt to optimize this lemma.
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Proof. By symmetry, it is enough to prove the lemma for ϕ ∈ [0, π2 ], hence

we assume this throughout the proof. Let β̂ be the lift of the billiard map of

a strictly convex domain Ω, with β̂(x, 0) = (x, 0). Also, let κ be the curvature

function of ∂Ω. By Proposition 14.1 of [Laz93], we know that if we define

(x1, ϕ1) = β̂(x, ϕ),

then ∫ x1

x

sin

Ç
ϕ−

∫ x′

x

κ(x′′)dx′′
å
dx′ = 0,(26)

ϕ1 =

∫ x1

x

κ(x′)dx′ − ϕ.(27)

Moreover,

2

κmax
ϕ ≤ x1 − x ≤

2

κmin
ϕ,(28)

1

2κmax/κmin − 1
ϕ ≤ ϕ1 ≤ (2κmax/κmin − 1)ϕ.(29)

Now consider the the deformation ∂Ωτ , τ ∈ [0, 1]. By our notation,

(x1, ϕ1) = β̂τ (x, ϕ) = (x+ 2ϕ+ Pτ (x, ϕ), ϕ+Qτ (x, ϕ)).

Since

(30) κτ = 1 +O(||f ||C2),

by (28) we obtain

(31) Pτ (x, θ) = x1 − x− 2ϕ = ϕO(||f ||C2).

Next, as in [Laz93], we study Pτ (sometimes we write P ) as an implicit function

defined, using (26), by

(32) I(τ, x, ϕ, P ) =

∫ 1

0

sin

Ç
ϕ−

∫ x+t(2ϕ+P )

x

κτ (x′′)dx′′
å
dt = 0.

Let us compute |∂P I| and estimate it from below. We have

−∂P I =

∫ 1

0

cos

Ç
ϕ−

∫ x+t(2ϕ+P )

x

κτ (x′′)dx′′
å
κτ
(
x+ t(2ϕ+ P )

)
t dt.

By (30) and (31), we get

−∂P I =

∫ 1

0

cos

Ç
ϕ−

∫ x+2tϕ

x

dx′′
å
tdt+O(||f ||C2)

=

∫ 1

0

cos(ϕ(1− 2t)) t dt+O(||f ||C2)

=
sinϕ

ϕ
+O(||f ||C2).
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Since for ϕ ∈ [0, π2 ] we have sinϕ
ϕ ≥ 2

π , we obtain that for ||f ||C2 sufficiently

small, uniformly for 0 ≤ τ ≤ 1, 0 ≤ ϕ ≤ π
2 , and x ∈ R, we have

(33) |∂P I| ≥
1

π
.

Consequently, by the implicit function theorem there is a unique Pτ (x, ϕ) sat-

isfying (32) and it is differentiable in τ , x and ϕ. Moreover,

(34)


∂τPτ = − ∂τ I

∂P I
,

∂xPτ = − ∂xI
∂P I

,

∂ϕPτ = − ∂ϕI
∂P I

.

On the other hand, since P0(x, ϕ) = 0, we have Pτ (x, ϕ) = τP̃τ (x, ϕ). But

since Pτ (x, 0) = 0, we have P̃τ (x, 0) = 0, and so

Pτ (x, ϕ) = τϕRτ (x, ϕ).

In fact

Rτ (x, ϕ) =

∫ 1

0

∫ 1

0

(∂τ∂ϕP )(uτ, x, vϕ)dudv.

Here, to ease the notation for the integrand, we have set P (τ, x, ϕ) := Pτ (x, ϕ).

Similarly, for Qτ we know that Q0(x, ϕ) = 0, so Qτ (x, ϕ) = τQ̃τ (x, ϕ). It

is known by the asymptotic expansion of the billiard map near ϕ = 0 (see, for

example, page 145 of [Laz93]), that

Qτ (x, 0) = ∂ϕQτ (x, 0) = 0,

so we must have

Qτ (x, ϕ) = τϕ2Sτ (x, ϕ).

By the integral remainder formula of the Taylor’s theorem, we have

Sτ (x, ϕ) =
1

2

∫ 1

0

∫ 1

0

(1− v)(∂τ∂
2
ϕQ)(uτ, x, vϕ)dudv.

Again, here for convenience we have denoted Q(τ, x, ϕ) := Qτ (x, ϕ). Thus, to

prove the lemma it suffices to prove the estimates

(35) ∂kϕ∂
j
x∂

i
τP = O(||f ||C6), i = 1, 2; j = 0, 1; k = 1, 2, 3

and

(36) ∂kϕ∂
j
x∂

i
τQ = O(||f ||C6), i = 1, 2; j = 0, 1; k = 2, 3.

We first show the estimates for P . An important observation is that for n ≤ 4,

∂nx∂τκτ (x) = O(||f ||Cn+2).

One then immediately sees by (32) that

∂iτI = O(||f ||C2), i = 1, 2.
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Furthermore, by taking derivatives with respect to x, ϕ, and P , we get

∂mP ∂
k
ϕ∂

j
x∂

i
τI = O(||f ||C6), i = 1, 2; j + k +m ≤ 5.

The estimates (35) can be concluded by differentiating the first equation of

(34), then using the lower bound (33), and the above estimates for the deriva-

tives of I.

The estimates for Q follow from the ones for P , and the relation

Q(τ, x, ϕ) =

∫ x+2ϕ+P (τ,x,ϕ)

x

κτ (x′)dx′ − 2ϕ,

which is obtained from (27). �

Equipped with Lemma 3.12, we are in position to start the proof of Theo-

rems 3.3 and 3.5. Let β̂τ be the lift of the billiard map of ∂Ωτ = ∂E0 + τfN0,

and let Proj1 be the projection onto the x component of Π = R × [0, π]. Our

strategy is to show that

xq(τ, x, ϕ) := Proj1β̂
q
τ (x, ϕ)

is strictly increasing as a function of ϕ on the interval [0, C/q]. More precisely,

Theorem 3.14. For any C > 0, there exists ε0 such that for all pertur-

bations ∂Ωτ = ∂D + τfN0 of the unit disk D with ‖f‖C6 ≤ ε0, for all q ≥ 2,

0 ≤ τ ≤ 1, x ∈ R, and ϕ ≤ C/q, we have

∂τxq(τ, x, ϕ) = qϕC2e2CO(‖f‖C6),

∂ϕxq(τ, x, ϕ) = 2q + qC2e2CO(‖f‖C6),

and

xq(τ, x, ϕ) = x+ 2qϕ+ qϕC2e2CO(‖f‖C6).

Note that the last statement follows by integrating the the second state-

ment and the fact xq(τ, x, 0) = x. Before proving this theorem, we need to

state and prove a lemma and its corollary.

Lemma 3.15. Let C > 0 and δ > 0. Suppose ϕ ≤ C/q. Then for ‖f‖C6

sufficiently small in terms of C and δ, we have that for all x ∈ R and τ ∈
[0, 1], all angles of reflections of the orbit {β̂jτ (x, ϕ)}qj=0 are bounded above by

C(1 + δ)/q. Moreover, if ϕ ≥ C/q, then all angles of reflections are bounded

from below by C
(1+δ)q .

Proof. Let ϕj be the j-th angle of reflection. We shall prove by induction

that for all 0 ≤ j ≤ q, we have

(37) ϕj ≤
C

q

Å
1 +

A

q

ãj
,
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where A > 0 is chosen such that eA = 1 + δ. Once proved, this estimate would

imply the lemma immediately because

C

q

Å
1 +

A

q

ãq
≤ C

q
eA ≤ C(1 + δ)

q
.

The estimate (37) is obviously true for j = 0 by assumption of the lemma.

Assume it is true for some j ≥ 0. Then using Lemma 3.12, we have

ϕj+1 = ϕj (1 + ϕjO(‖f‖C6)) .

Therefore, the proof is concluded if we choose ‖f‖C6 small enough (in terms

of C and δ) so that

ϕjO(‖f‖C6) ≤ C(1 + δ)

q
O(‖f‖C6) ≤ A

q
.

The second statement follows from the first. �

As a corollary we have

Corollary 3.16. For ‖f‖C6 sufficiently small, all angles of reflections

of a q-reflected path in Ωτ from x to x′ with |x − x′| ≤ `τ
100 are less than 3π

2q .

In particular, all angles of reflections of q- loops of winding number one are

bounded by 3π
2q .

Proof. By definition of a q-reflected path from x to x′, we have xq(τ, x, α) =

x′ + `τ . Let δ ≥ 1
100 , to be determined later. Since `τ = 2π +O(‖f‖C2), if we

define

xj(τ, x, ϕ) = Proj1β̂
j
τ (x, ϕ)

for small enough ‖f‖C2 in terms of δ, there must exist 0 ≤ j∗ ≤ q − 1 such

that

xj∗+1 − xj∗ ≤
x′ − x+ `τ

q
≤ 2(1 + δ)2π

q
.

By (28), for sufficiently small ‖f‖C6 (in terms of δ), we get ϕj∗ ≤ (1+δ)3π
q . We

then start with the point (xj∗ , ϕj∗) in the phase space and apply the billiard

map βτ , q−j∗ times, and we apply its inverse β−1
τ , j∗ times. Using Lemma 3.15

we obtain ϕj ≤ (1+δ)4π
q , which is less than 3π

2q , for example, for δ = 1
10 . �

Proof of Theorem 3.14. To obtain estimates on the ϕ and τ derivatives of

xq(τ, x, ϕ) we take its difference with the corresponding function for the unit

disk and differentiate with respect to ϕ and τ and denote it by A(x, ϕ), i.e.,

Aq(τ, x, ϕ) = ∂τ∂ϕ
Ä
Proj1β̂

q
τ (x, ϕ)− Proj1β̂

q
0(x, ϕ)

ä
.

Recall that β̂τ is the billiard map of Ωτ and β̂0 is the billiard map of the unit

disk D = E0. Since

β̂q0(x, ϕ) = (x+ 2qϕ, ϕ),
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we have

∂τ∂ϕProj1β̂
q
0(x, ϕ) = ∂τ (2q) = 0,

so in fact

Aq(τ, x, ϕ) = ∂τ∂ϕProj1β̂
q
τ (x, ϕ).

We claim that that for all τ ∈ [0, 1], x ∈ R, and ϕ ∈ [0, Cq ],

Aq(τ, x, ϕ) = C2e2CqO(‖f‖C6).

To prove this, we write

∂τ∂ϕProj1β̂
q
τ (x, ϕ) = ∂ϕProj1

q−1∑
j=0

β̂jτ ◦ (∂τ β̂τ ) ◦ β̂q−j−1
τ (x, ϕ)

=

ñ
1

0

ôT q−1∑
j=0

Dβ̂jτ ◦ (D∂τ β̂τ ) ◦Dβ̂q−j−1
τ (x, ϕ)

ñ
0

1

ô
.

(38)

By Lemma 3.15, all angles of iterations are bounded by 2C/q. By Lemma 3.12,

we have uniformly for all τ ∈ [0, 1], ϕ ∈ [0, 2C
q ], and x ∈ R,

Dβ̂τ (x, ϕ) =

ñ
1 + C

q O(‖f‖C6) 2 +O(‖f‖C6)
C2

q2 O(‖f‖C6) 1 + C
q O(‖f‖C6)

ô
and

(39) D∂τ β̂τ (x, ϕ) =

ñ C
q O(‖f‖C6) O(‖f‖C6)
C2

q2 O(‖f‖C6) C
q O(‖f‖C6)

ô
.

We shall need to estimate the powers of the matrix Dβ̂τ . Breaking it into the

diagonal and the off-diagonal part, and factoring the diagonal part, we see that

(40) |Dβ̂jτ | ≤
Å

1 +
C

q
O(‖f‖C6)

ãj Ç
I +

ñ
0 4 +O(‖f‖C6)

C2

q2 O(‖f‖C6) 0

ôåj
.

Let us denote

B =

ñ
0 4 +O(‖f‖C6)

C2

q2 O(‖f‖C6) 0

ô
.

We note that

B2 =

[
C2

q2 O(‖f‖C6) 0

0 C2

q2 O(‖f‖C6)

]
.

By the binomial expansion,

(I +B)j =

j∑
m=0

Ç
j

m

å
Bm =

[j/2]∑
k=0

Ç
j

2k

å
B2k +

[(j−1)/2]∑
k=0

Ç
j

2k + 1

å
B2k+1.
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Thus,

(I +B)j ≤
[j/2]∑
k=0

Ç
j

2k

å
C2k

q2k
O(‖f‖kC6)I +

[(j−1)/2]∑
k=0

Ç
j

2k + 1

å
C2k

q2k
O(‖f‖kC6)B.

We choose ‖f‖C6 small enough so that all O(‖f‖kC6) terms are bounded by

one. To estimate the second sum we note that for any a > 0,

[(j−1)/2]∑
k=0

Ç
j

2k + 1

å
a2k =

(1 + a)j − (1− a)j

2a
≤ j(1 + a)j−1.

Hence,

(I +B)j ≤

 Ä
1 + C

q

äj
10j
Ä
1 + C

q

äj−1

C
q

Ä
1 + C

q

äj Ä
1 + C

q

äj  .
Plugging this into (40), we get

|Dβ̂jτ | ≤
Å

1 +
C

q

ã2j
ñ

1 10j
C
q 1

ô
.

Inserting this estimate into (38) and using (39), we arrive at

|∂τ∂ϕProj1β̂
q
τ (x, ϕ)| ≤

Å
1 +

C

q

ã2q q−1∑
j=0

ñ
1

0

ôT ñ
1 10j
C
q 1

ô
×
ñ C

q 1
C2

q2
C
q

ô ñ
1 10(q − j − 1)
C
q 1

ô ñ
0

1

ô
O(‖f‖C6)

≤ C2e2CqO(‖f‖C6).

The theorem follows by integrating this with respect to ϕ and τ separately,

and the facts xq(τ, x, 0) = x and xq(0, x, ϕ) = x+ 2q. �

For future reference we record that our estimates also show the following

bounds for the ϕ derivative of ϑq(τ, x, ϕ) = Proj2β̂
q
τ (x, ϕ), where Proj2 is the

projection onto the second component.

Lemma 3.17. We have ∂ϕϑq(τ, x, ϕ) = 1 + C2e2CO(‖f‖C6).

3.6.1. Concluding the proof of Theorems 3.3 and 3.5. Theorem 3.14 shows

that xq(τ, x, ϕ) is monotonically increasing in ϕ on [0, 3π/2q] and

xq(τ, x, ϕ) = x+ 2qϕ+ qϕO(‖f‖C6).

Since xq(τ, x, 0) = 0, and because for sufficiently small ‖f‖C6 ,

xq(τ, x, 3π/2q) = x+ 3π +O(‖f‖C6) > x′ + `τ ,

by the intermediate value theorem there must be a unique ϕ = αq(τ, x, x
′) ≤

3π/2q such that
xq(τ, x, αq(τ, x, x

′)) = x′ + `τ .
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By the implicit function theorem, αq(τ, x, x
′) is smooth in (τ, x, x′). This

together with Corollary 3.16 conclude the proof of Theorem 3.5, thus also

Theorem 3.3.

4. Length spectrum

Let Ω be a smooth strictly convex domain. For 1 ≤ p ≤ q
2 , we denote

Lp,q(Ω) to be the set of lengths of periodic orbits of type (p, q), i.e., periodic

orbits that make q reflections and wind around the boundary of Ω, p times, in

the counterclockwise direction. The length spectrum of Ω is

L(Ω) = closure
⋃

1≤p≤q/2

Lp,q(Ω).

We also denote Tp,q and tp,q to be the sup and inf of Lp,q(Ω), respectively.

Marvizi-Melrose [MM82] proved that for a fixed p, as q →∞, one has

(41) Tp,q − tp,q = O(q−k),

and moreover, there are constants ck,p(Ω) such that

(42) Tp,q ∼ p `+
∞∑
k=1

ck,p(Ω)q−2k,

where ` is the perimeter of Ω. Note that this in particular shows that natural

integer multiples of ` belong to the length spectrum as they are limit points of

closed geodesics.

The Mather function ß(ω) is a strictly convex function on [0, 1
2 ] (see, for

example, [MF94], [Sib04]) whose values at the rational numbers are given by

(43) ß(p/q) = −1

q
Tp,q.

The following lemma will be useful for us. From now on we shall use Tq = T1,q

and tq = t1,q.

Lemma 4.1. The sequence {Tq}q≥2 is strictly increasing to `, and its gap

sequence

{Tq+1 − Tq}q≥2

is strictly decreasing.

Proof. Since ß is strictly convex, the slopes must strictly increase on its

graph, hence

ß
Ä

1
q+1

ä
− ß
Ä

1
q+2

ä
1
q+1 −

1
q+2

<
ß
Ä

1
q

ä
− ß
Ä

1
q+1

ä
1
q −

1
q+1

.

The lemma follows quickly by (43). �

Remark 4.2. One can try to prove this using the asymptotic (42), however

this method would only prove the lemma for large q.
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For our purposes we will need the following rough, but quantitative, ver-

sion of estimates (41) and (42):

Lemma 4.3. Let ∂Ωτ = ∂E0 + τfN0 be a nearly circular deformation

in C6. Assume that ‖f‖C8 ≤ 1 and that ‖f‖C2 is sufficiently small so that

κτ = 1 +O(‖f‖C2) ≥ 1
2 . Then uniformly for τ ∈ [0, 1], we have

Tq − tq = q−3O(‖f‖C6) +O(q−4),(44)

Tq = `τ −
1

4

Ç∫ `τ

0

κ2/3
τ (s) ds

å3

q−2 + q−3O(‖f‖C6) +O(q−4).(45)

Here, the constants in all O remainders are universal.

Proof. We provide a proof using “Lazutkin coordinate” and the Euler-

Maclaurin formula. Note that this is a quantitative version of a result in

[MM82] that was not obtained in this reference.

It is sufficient to prove this lemma for τ = 1. We shall use Ω for Ω1, κ for

κ1, and ` for `1. We first recall the Lazutkin coordinate that is a diffeomor-

phism from R/`Z to R/Z defined by

(46) ξ =

∫ s
0 κ

2/3(s′)ds′∫ `
0 κ

2/3(s′)ds′
.

Here we have used ξ instead of x, the later being the standard notation for

the Lazutkin coordinate, to avoid confusion with our x used for the lift of s

to R. The periodic orbits of type (1, q) in Ω have a rather nice description in

the Lazutkin coordinate. To present this feature, let {(sj , ϕj)}q−1
j=0 be any such

periodic orbit, and let {ξj}q−1
j=0 correspond to {sj}q−1

j=0 in Lazutkin coordinate.

From Appendix A of [dKW17], one can show that there exists a 1-periodic

smooth function α defined only in terms of κ, with ‖α‖Cm = O(‖(1/κ)′‖Cm+1),

such that

(47) ξj = ξ0 +
j

q
+
α (ξ0 + j/q)

q2
+
O(‖(1/κ)′‖C3)

q4
, 1 ≤ j ≤ q − 1.

We note that by our lower bound assumption κ ≥ 1
2 , we can replace the term

O(‖(1/κ)′‖C3) in the remainder by O(‖κ′‖C3) = O(‖f‖C6). We shall use (47)

to find an asymptotic for the length T of the orbit {sj}q−1
j=0. Let s(ξ) be the

inverse function of ξ = ξ(s) defined by (46), and let γ̃(ξ) = γ(s(ξ)). We write

T =

q−1∑
j=0

‖γ(sj+1)− γ(sj)‖ =

q−1∑
j=0

‖γ̃(ξj+1)− γ̃(ξj)‖.
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Inserting (47) and using the mean value theorem,

T =

q−1∑
j=0

∥∥∥∥γ̃ Åξ0 +
j + 1

q
+
α (ξ0 + (j + 1)/q)

q2

ã
−γ̃
Å
ξ0 +

j

q
+
α (ξ0 + j/q)

q2

ã∥∥∥∥+
O(‖f‖C6)

q3
.

For the sum, we shall use the Euler-Maclaurin formula, which asserts that if

g(ξ) ∈ C∞[0, 1] and g(k)(0) = g(k)(1) for all k ≥ 0, then for all m ≥ 1,

1

q

q−1∑
j=0

g(j/q) =

∫ 1

0

g(ξ)dξ +Rm(g),

with

|Rm(g)| ≤ 2ζ(m)

(2πq)m

∫ 1

0

|g(m)(ξ)|dξ.

In our situation, we have

g(ξ) =

∥∥∥∥γ̃ Åξ0 + ξ +
1

q
+
α(ξ0 + ξ + 1/q)

q2

ã
− γ̃
Å
ξ0 + ξ +

α(ξ0 + ξ)

q2

ã∥∥∥∥ ,
which is a smooth 1-periodic function on [0, 1]. Thus if we choose m = 4, we

obtain

T = q

∫ 1

0

∥∥∥∥γ̃ Åξ +
1

q
+
α(ξ + 1/q)

q2

ã
− γ̃
Å
ξ +

α(ξ)

q2

ã∥∥∥∥ dξ
+
O(1 + ‖f‖C8)

q4
+
O(‖f‖C6)

q3
.

Taylor expanding the integrand we arrive at

T = a0 +
a1

q
+
a2

q2
+
a3

q3
+
O(‖f‖C6)

q3
+
O(1 + ‖f‖C8)

q4
.

It is clear that a0 =
∫ 1

0 ‖γ̃
′(ξ)‖dξ = `. That a1 = 0 and a2 = −1

4

Ä∫
κ2/3
ä3

follows from [MM82]. Since by (42) only even powers of q−1 appear in the

expansion, we must have a3 = O(‖f‖C6), so

T = `+
a2

q2
+
O(‖f‖C6)

q3
+
O(1 + ‖f‖C8)

q4
.

4.1. A proof independent of [dKW17]. The proof of (47) in [dKW17] is

given under the assumption of axial symmetry. However, this assumption is

not essential, even for the proof in [dKW17]. For the sake of independence, we

present another proof of Lemma 4.3, at the mild cost of replacing ‖f‖C6 with

‖f‖C7 , and ‖f‖C8 with ‖f‖C9 in the lemma.

For the proof of Lemma 4.3, we only need a weaker statement than (47),

which states that there exist 1-periodic smooth functions α1 and α2 defined
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only in terms of κ, with ‖α1‖Cm =O(‖(1/κ)′‖Cm+1), ‖α2‖Cm =O(‖(1/κ)′‖Cm+2)

such that

(48)

ξj = ξ0 +
j

q
+
α1 (ξ0 + j/q)

q2
+
α2 (ξ0 + j/q)

q3
+
O(‖(1/κ)′‖C3)

q4
, 1 ≤ j ≤ q−1.

We emphasize that the results of [dKW17] imply that α2 ≡ 0, but we do not

need this stronger statement. Assuming (48), the proof of Lemma 4.3 follows

line-by-line as before, but at the end we would obtain

T = `+
a2

q2
+
O(‖f‖C7)

q3
+
O(1 + ‖f‖C9)

q4
.

So if throughout we assume near circularity in C9, the rest of the proof goes

through without modification.

To prove (48), we shall use Lazutkin coordinates of order 5 as defined in

(15). Let (u, v) be such coordinates. Then the billiard map is of the form

(49) β(u, v) =
(
u+ v + v5a(u, v), v + v6b(u, v)

)
for smooth functions a and b that are bounded by O(‖(1/κ)′‖C3). These

bounds follow from similar bounds for the derivatives of the billiard map in

(s, ϕ) coordinates, and also from the construction of the coordinates (u, v) from

(s, ϕ), which are provided in [Laz93, Prop. 14.2, Lemma 14.6].

Let (u0, v0) correspond to a (1, q) periodic orbit, meaning β̂q(u0, v0) =

(u0 + 1, v0). By (49) and finite induction, we obtain

u0 + qv0 + qO(|v0|5‖(1/κ)′‖C3) = u0 + 1.

This implies that

v0 +O(|v0|5‖(1/κ)′‖C3) =
1

q
,

which in turn gives v0 = 1
q +

O(‖(1/κ)′‖C3 )

q5 .

Now for each 1 ≤ j ≤ q, let (uj , vj) = β̂j(u0, v0). Then by finite induction

on j, we can show that

uj = u0 +
j

q
+
O(‖(1/κ)′‖C3)

q4
, vj =

1

q
+
O(‖(1/κ)′‖C3)

q4
.

In the final step, we recall from (16) that (ξ, η) and (u, v) are related by

(ξ, η) =
(
u+ v2A(u, v), v + v3B(u, v)

)
,

where A and B are smooth and

‖A‖Cm = O(‖(1/κ)′‖Cm+1), ‖B‖Cm = O(‖(1/κ)′‖Cm+2).

If we write

A(u, v) = A0(u) +A1(u)v +O(‖(1/κ)′‖C3)|v|2,
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then

ξj = uj+v
2
jA(uj , vj) = u0+

j

q
+
A0 (u0 + j/q)

q2
+
A1 (u0 + j/q)

q3
+
O(‖(1/κ)′‖C3)

q4
.

Writing u0 in terms of ξ0 and η0, we obtain (48). �

We now focus on the part of the length spectrum that is less than the

length of the boundary. While this does not inclusively correspond to (1, q)

periodic orbits (consider a very thin ellipse for example), as we show it does

for nearly circular domains.

Lemma 4.4. Let Υ be a (p, q) periodic orbit with p ≥ 2 of a nearly circular

deformation Ωτ of D in C6. Then for ‖f‖C6 sufficiently small, the length of

Υ is bounded below by `τ , uniformly for τ ∈ [0, 1]. Hence, in particular,

(50) L(Ωτ ) ∩ (0, `τ ) =
⋃
q≥2

L1,q(Ωτ ).

Proof of Lemma 4.4. Proposition 5 of [Ami96] would imply this lemma

easily, however the proof of [Ami96] is not correct. Hence we give an indepen-

dent proof by means of variations.

To clarify the idea, we first verify Lemma 4.4 in the case of the unit disc D.

It is well known that every link of a billiard trajectories of D (not necessarily a

periodic trajectory) intersects the boundary with the same angle of incidence

say ϕ. One can then easily verify that length of each link is 2 sinϕ, thus if the

trajectory makes q bounces, its length must be 2q sinϕ. The angle for a (p, q)

periodic orbit on a circle is given by ϕ = p
qπ. Therefore, the length of a (p, q)

orbit on the circle is 2q sin p
qπ. Since sin x ≥ 2

πx on the interval [0, π/2], we get

2q sin p
qπ ≥ 4p > 2π for p ≥ 2.

Now let ∂Ωτ = ∂D + τfN0 be a nearly circular deformation of the unit

circle ∂D with f sufficiently small in C6. We wish to approximate the lengths

of (p, q) periodic orbits of ∂Ωτ by the ones of the disk ∂D using a variational

method. Let (x0, ϕ0) be an initial point in the phase space of ∂Ωτ of a (p, q)

periodic orbit of βτ with p ≥ 2. We keep in mind that q ≥ 4 because p
q ≤

1
2 .

Since we can choose ϕ0 ∈ [0, π/2] (otherwise consider π−ϕ0), there is a unique

k0 ∈ {0, 1, 2, . . . , q} such that

(k0 − 1
2)π

2q
≤ ϕ0 ≤

(k0 + 1
2)π

2q
.

We first claim that k0 ≥ 4. To prove this let (xj(τ), ϕj(τ)) = β̂jτ (x0, ϕ0) with

0 ≤ j ≤ q. Since (x0, ϕ0) is a (p, q) periodic orbit, we have xq(τ) − x0 = p`τ .

Suppose k0 ≤ 3. Then by Lemma 3.15, for a given δ > 0, we get ϕj(τ) ≤
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7π(1+δ)
4q for sufficiently small f in C6. In particular,

q−1∑
j=0

ϕj(τ) ≤ 7π(1 + δ)

4
.

On the other hand, by (28) this sum must be larger than or equal to

1− δ
2

(xq(τ)− x0) =
p`τ (1− δ)

2
≥ 2π(1− δ)2,

which leads to a contradiction for δ small.

From now on we assume k0 ≥ 4. We consider the (partial) orbit

{(xj(τ), ϕj(τ))}q0j=0

in Ωτ , where we define

q0 :=

® î
4q
k0

ó
+ 1 if k0 ≥ 5,

q if k0 = 4.

One can easily verify, using q ≥ k0 ≥ 4, that q0 never exceeds q. As a

result, a lower bound for the length of this partial orbit provides a lower bound

on the length of the desired full orbit {(xj(τ), ϕj(τ))}qj=0. So let us set

b(τ) =

q0−1∑
j=0

‖γ(τ, xj+1(τ))− γ(τ, xj(τ))‖.

Obviously for the case of the unit disk D, i.e., τ = 0, we have b(0) = 2q0 sinϕ0.

By the mean value theorem, for all τ ∈ [0, 1],

(51) |b(τ)− 2q0 sinϕ0| ≤ sup
τ∈[0,1]

|∂τ b(τ)|.

We compute the variation of b(τ) in the same manner as in the proof of

Lemma 3.10. We first write

∂τ bτ =

q0−1∑
j=0

(∂τxj+1∂sγ(τ, xj+1)− ∂τxj∂sγ(τ, xj)) •
γ(τ, xj+1)− γ(τ, xj)

‖γ(τ, xj+1)− γ(τ, xj)‖

+

q0−1∑
j=0

(∂τγ(τ, xj+1)− ∂τγ(τ, xj)) •
γ(τ, xj+1)− γ(τ, xj)

‖γ(τ, xj+1)− γ(τ, xj)‖
.

Denote the two sums by Σ1 and Σ2, respectively. For Σ1, a similar com-

putation as in the proof of Lemma 3.8 shows that

Σ1 =

q0−1∑
j=0

cosϕj+1(τ)∂τxj+1(τ)− cosϕj(τ)∂τxj(τ) = cosϕq0(τ)∂τxq0(τ).
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For Σ2, following the proof of Lemma 3.10, we obtain

Σ2 = ∂τγ(τ, x0) •
(
N(τ, x0) sinϕ0 − T (τ, x0) cosϕ0

)
+ ∂τγ(τ, xq) •

(
N(τ, xq) sinϕq + T (τ, xq) cosϕq

)
+ 2

q0−1∑
j=1

∂τγ(τ, xj) •N(τ, xj) sinϕj

= n(τ, x0) sinϕ0 − t(τ, x0) cosϕ0 + n(τ, xq0(τ)) sinϕq0(τ)

+ t(τ, xq0(τ)) cosϕq0(τ)

+ 2

q0−1∑
j=1

n(τ, xj(τ)) sinϕj(τ).

Let us estimate |Σ1| and |Σ2|. Since

ϕ0 ≤
(k0 + 1

2)π

2q
≤ 4π

q0 − 1
,

by Theorem 3.14 we have

|Σ1| ≤ |∂τxq0(τ)| ≤ C1q0ϕ0‖f‖C6 ≤ 8πC1‖f‖C6 ,

where C1 is universal constant.

To estimate |Σ2| we first observe that by Lemma 3.2, each n(τ, x) and

t(τ, x) is of size O(‖f‖C1). On the other hand, by (28) and Theorem 3.14, for

‖f‖C6 small enough, we get

q0−1∑
j=1

| sinϕj(τ)| ≤
q0−1∑
j=1

ϕj(τ) ≤ 1 + δ

2
(xq0(τ)− x0) ≤ 2(1 + δ) q0ϕ0 ≤ 32π.

Revisiting inequality (51), we have just proved that

b(τ) = 2q0 sinϕ0 +O(‖f‖C6).

Since ϕ0 ≥
(k0− 1

2
)π

2q , we get

b(τ) ≥ 4q0

π
ϕ0 +O(‖f‖C6) ≥ 8− 4

k0
+O(‖f‖C6) ≥ 7 +O(‖f‖C6),

which is strictly larger than `τ = 2π+O(‖f‖C1) for ‖f‖C6 sufficiently small. �

In the next section we study the (1, q) length spectrum in terms of the

q-loop function and its first variation.
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4.2. Length spectrum and loop functions. Let Ωτ be as in the previous

sections. It is then obvious from the definition of the q-loop function Lq(τ, s)

that

(52) L1,q(Ωτ ) = critical values of Lq(τ, s).

Thus, in particular,

Tq(τ) = maxLq(τ, s), tq(τ) = minLq(τ, s).

The following lemma will be very useful for small values of q:

Lemma 4.5. For all q ≥ 2, uniformly in τ ∈ [0, 1] we have

Lq(s) = 2q sin(π/q) +O(‖f‖C6).

In particular,

Tq(τ)− tq(τ) = O(‖f‖C6).

Proof. By the mean value theorem and the definition (3.9) of Mq, we have

|Lq(τ, s)− Lq(0, s)| ≤ sup
τ∈[0,1]

|∂τLq(τ, s)| = sup
τ∈[0,1]

|Mq(τ, s)|.

However, for the unit disk, the loop function is constant. In fact Lq(0, s) =

2q sin(π/q). Also,

Tq(τ)− tq(τ) = maxLq(τ, s)−minLq(τ, s) ≤ 2 sup
τ∈[0,1]

|Mq(τ, s)|.

The lemma follows quickly from Lemma 3.11. �

Let us now state a key structural result for the q-length spectrum.

Lemma 4.6. Let ∂Ωτ = ∂D + τfN0 be an ε-nearly circular deformation

in C6, i.e., ‖f‖C6 = O(ε). In addition, assume that ‖f‖C8 ≤ 1. Then for ε

sufficiently small, the q-length spectra L1,q(Ωτ ) are disjoint for distinct values

of q ≥ 2. Moreover, there exists q0 uniform in τ and f such that

(a) For q ≥ q0,

tq+1(τ)− Tq(τ) = minL1,q+1(Ωτ )−maxL1,q(Ωτ ) ≥ 1

10(q + 1)3
,(53)

Tq(τ)− tq(τ) = maxL1,q(Ωτ )−minL1,q(Ωτ ) ≤ 1

100(q + 1)3
.(54)

(b) For 2 ≤ q ≤ q0, for sufficiently small ‖f‖C2 that is uniform in τ , we have

(55) tq+1(τ)− Tq(τ) = minL1,q+1(Ωτ )−maxL1,q(Ωτ ) ≥ η0

10
,

(56) Tq(τ)− tq(τ) = maxL1,q(Ωτ )−minL1,q(Ωτ ) ≤ η0

100
,
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where

(57) η0 = 2(q0 + 1) sin(π/(q0 + 1))− 2q0 sin(π/q0).

Remark 4.7. We note that the estimate (54) is rather rough. In fact

one has estimates of the form O(q−N ), but this would force us to use more

derivatives of f , which will be unnecessary for our purposes.

Proof. It is obvious from Lemma 4.3 that we can find a universal q0 (hence,

in particular, uniform in τ) so that estimates (53) and (54) hold true. In fact

we choose ‖f‖C6 small enough and q0 large enough so that the remainder terms

in Lemma 4.3 satisfy

(58) q−3O(‖f‖C6) +O(q−4) <
1

100
(q + 1)−3.

Estimate (56) follows from Lemma 4.5 by choosing ‖f‖C2 small enough in

terms of the universal constant η0. It only remains to prove (55). For this, we

note that using Lemma 4.5, we have

tq+1(τ)− Tq(τ) = 2(q + 1) sin(π/(q + 1))− 2q sin(π/q) +O(‖f‖C2).

On the other hand, by Lemma 4.1 and the definition (57) of η0, for all 2≤q≤q0,

we have

2(q + 1) sin(π/(q + 1))− 2q sin(π/q) ≥ η0. �

Let us state a very interesting corollary of this lemma. It shows that for

nearly circular domains, the number of bounces q can be heard from the length

spectrum.

Corollary 4.8. Let Ω1 and Ω2 be two nearly circular domains in C6

satisfying the conditions of Theorem 4.6. Suppose

(59) L(Ω1) ∩ (0, 2π + 1/10) = L(Ω2) ∩ (0, 2π + 1/10).

Then `(∂Ω1) = `(∂Ω2) and for all q ≥ 2,

L1,q(Ω1) = L1,q(Ω2).

We comment that instead of 2π+ 1/10, one can use 2π+ δ for any δ > 0,

but the smallness of f in C6 would depend on δ.

Proof. As we saw in the proof of Lemma 4.4, the length of every periodic

orbit of type (p ≥ 2, q) must be larger than 7+O(‖f‖C6). Let ∂Ω1 = ∂D+f1N0

and ∂Ω2 = ∂D + f2N0. We choose f1 and f2 small enough so that

2π + 1/10 < 7 +O(‖f1‖C6) ≤ inf ∪p≥2Lp,q(Ω1),

2π + 1/10 < 7 +O(‖f2‖C6) ≤ inf ∪p≥2Lp,q(Ω2).
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In addition, we also choose them small enough such that

`(∂Ω1) = 2π +O(‖f1‖C1) < 2π + 1/10,

`(∂Ω2) = 2π +O(‖f2‖C1) < 2π + 1/10.

Then under these conditions, if we take supremum of (59), we obtain `(∂Ω1) =

`(∂Ω2). Now by Lemma 4.4, we get⋃
q≥2

L1,q(Ω1) =
⋃
q≥2

L1,q(Ω2).

Let us denote this common union by U . Let q0 and η0 be as in Lemma 4.6.

Recall that they are identical for Ω1 and Ω2. We first show by finite induction

that for each q ≤ q0, one has L1,q(Ω1) = L1,q(Ω2). Clearly t2(Ω1) = t2(Ω2)

because this is the infimum of the union U . We then move in U starting at t2
and record all gaps. By Lemma 4.6, the first gap that is larger than or equal

η0/10 must take place at T2(Ω1) and T2(Ω2), hence these two quantities must

agree. We then take the infimum of U ∩ (T2, `) to obtain t3(Ω1) = t3(Ω2). By

continuing this procedure we get that for all 2 ≤ q ≤ q0,

(60) tq(Ω1) = tq(Ω2) and Tq(Ω1) = Tq(Ω2).

The argument for q ≥ q0 is very similar. We shall use induction. Obviously

(60) holds for q = q0. Suppose now that (60) holds for some q̃ > q0. Then

by taking inf of U ∩ (Tq̃, `) we obtain tq̃+1(Ω1) = tq̃+1(Ω2). By Lemma 4.6

again, starting at tq̃+1 the first gap of size at least (1/10)(q̃ + 2)−3 happens

at Tq̃+1(Ω1) = Tq̃+1(Ω2). Thus (60) holds for all q ≥ 2 and the corollary

follows. �

4.3. Length spectrum of a nearly circular ellipse. Let Eε be an ellipse of

eccentricity ε. We choose ε small enough so that no periodic orbits of type (p, q)

with p ≥ 2 contribute to the part of the length spectrum that is less than `ε,

the perimeter of Eε. This is possible by Lemma 4.4. Thus we will only focus

on the q-spectrum, i.e., L1,q. Since the ellipse is completely integrable, for

each q ≥ 3, all (1, q) periodic orbits have the same length. Therefore for all

q ≥ 3, we have Tq = tq, or in other words the q-loop functions of the ellipse

collapse to a constant. In the case q = 2, it is known that the only (1, 2)

periodic orbits are the bouncing ball orbits on the major and minor axes,

whose lengths correspond to T2 and t2, respectively. Note that T2 6= t2 if the

ellipse is not a disk. In summary,

(61) L(Eε)∩(0, `ε) =
{
t2(ε) ≤ T2(ε) < T3(ε) < · · · < Tq(ε) < Tq+1(ε) < · · ·

}
,

and the gaps sequence {Tq+1(ε)−Tq(ε)}∞q=2 is strictly decreasing by Lemma 4.1.
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5. Wave trace and Marvizi-Melrose parametrices

5.1. Background on wave trace. Suppose Ω is a smooth planar domain.

Let

wΩ(t) = Tr cos(t
√

∆Ω)

be the wave trace of ∆Ω, the positive Laplacian associated to Ω with Dirichlet

(or Neumman) boundary condition. Let also SingSuppwΩ(t) denote the singu-

lar support of wΩ(t). By a result of Andersson-Merlose [AM77] (in the convex

case) and Petkov-Stoyanov [PS92] (for general smooth domains), we have the

so-called Poisson relation

(62) SingSuppwΩ(t) ⊂ −L(Ω) ∪ {0} ∪ L(Ω).

The wave trace is the distribution integral,

wΩ(t) =

∫
Ω

E(t, x, x)dx,

where E(t, x, y) is the Schwartz kernel of cos t
√

∆Ω with the prescribed Dirich-

let or Neumann boundary conditions. By distribution integral it is meant that

the integral wΩ(ρ) :=
∫
RwΩ(t)ρ(t)dt is a temperate distribution. By Poisson

relation, wΩ(t) is a C∞ function on the complement of the length spectrum.

The nature of its singularities at the lengths depends on the structure of the

periodic billiard trajectories of Ω. Only convex smooth plane domains, and

only lengths of periodic trajectories in (0, |∂Ω|) are relevant to this article, so

we restrict our attention to them.

In general, the singularities of wΩ(t) at t ∈ L(Ω) can be extremely compli-

cated since the set of lengths and the set of periodic orbits themselves can be

extremely complicated. The simplest periodic orbits are the non-degenerate

ones, i.e., isolated non-degenerate critical points of the length function on the

configuration space (∂Ω)q of q points minus the “diagonals” where two points

are equal. The major and minor axes of the ellipse are of this type. The next

simplest are “clean fixed point sets,” i.e., a smooth curve of periodic orbits of

length L satisfying the cleanliness condition (see [GM79b]), such as the pe-

riodic orbits of an ellipse (except the major and minor axes). Equivalently,

clean is in the Bott-Morse sense that for each q, the fixed point set of βq is a

submanifold of B∗∂Ω, and the tangent space to the fixed point set is the fixed

point set of (dβ)q. In general, the set of periodic orbits of length L may be as

complicated as the critical point set of a smooth function.

As discussed in [MM82, (6.8)], there exists a Lagrangian (i.e., oscillatory

integral) parametrix E′ε(t, x, y) for the wave kernel E(t, x, y) away from the

boundary and modulo a C∞ error; wΩ(t) may be expressed as the trace of

this parametrix away from the boundary plus an additional boundary region

term. We will not use this expression directly. We refer to [MM82, (6.8)]
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for background. An alternative oscillatory integral formula based on layer

potentials and boundary integral operators was introduced by Balian-Bloch

and exploited in [Zel09] (to which we refer for background and references).

In the case of non-degenerate transversally reflecting periodic billiard tra-

jectories, or clean curves of periodic billiard trajectories, of length L, there

exists a microlocal parametrix due to Chazarain that one can use to calculate

the singularities of wΩ(t) near t = L. In [GM79b], Guillemin-Melrose review

this parametrix construction and use it to derive a singularity expansion for

wΩ(t) in these cases; see [GM79b, Ths. 1 and 2]. The non-degeneracy (or clean-

liness) assumptions make it possible to apply stationary phase (on a manifold

with boundary) to the integral
∫
R ρ̂(t)eitλwΩ(t)dt; see [GM79b, Lemma 5.2].

In the generic case where all periodic orbits of length < L(∂Ω) are non-

degenerate transversal periodic reflecting rays, the length spectrum is discrete

in [0, L(∂Ω)) and accumulates only at L(∂Ω). The wave trace admits a decom-

position, on R≥0, into terms with singular support at a single length L ∈ L(Ω):

(63) wΩ(t) = σ̂(t) = e0(t) +
∑

L∈L(Ω) eL(t), SingSupp eL = {L}.

The term e0(t) is singular only at t = 0 and admits the asymptotic expansion,

e0(t)=Cn|Ω|Re{(t+i0)−n+1}+Cn−1|∂Ω|Re{(t+i0)−n−
1
2 }+lower order terms,

in terms of homogeneous Lagrangian singularities decreasing in singularity by

unit steps. When the billiard flow of Ω has clean fixed point sets,

(64) eL(t) =
∑

γ:Lγ=L

eγ(t),

where the last sum is over components of the closed billiard trajectories of

length L or equivalently over components of the fixed points of iterates of

the billiard map. In this case, the terms eγ(t) admit singularity expansions

depending on the dimension dγ of the component of the fixed point set. They

have the form

(65) eγ(t) = Re{aγ,1(t− L+ i0+)−nγ}+ lower order terms,

where the exponent nγ (the “excess”) equals 1 + dγ/2. Since dimB∗∂Ω = 2,

the cleanliness means that either the fixed point set consists of isolated non-

degenerate fixed points or else of smooth curves of transversally non-degenerate

fixed points.

Much of the difficulty of inverse spectral theory is caused by multiplicities

in the length spectrum. In the non-degenerate or clean case, the Poisson

formula (63) then expresses a singularity at t = L as the sum of contributions

from all closed orbits of length L. Since the coefficients are signed, the terms

in this sum may cancel.
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We do not use the Poisson formula (63), because cleanliness is not even a

generic condition, and does not hold for the fixed point set of βq for general al-

most circular domains. Instead, we follow the idea of Marvizi-Melrose [MM82]

to break up wΩ(t) into a sum of q-bounce contributions, and then to express

the q-bounce contribution as an oscillatory integral whose phase is, roughly

speaking, the q-bounce loop length function for loops of winding number one.

In the nearly circular case, we can prove that the Melrose-Marvizi type para-

metrices are valid for all bounce numbers q ≥ 3. Since the closed trajectories

do not necessarily form clean sets, it is not generally possible to apply station-

ary phase to these oscillatory integral. But we can use them effectively in the

inverse problem.

5.2. Marvizi-Melrose Parametrices for nearly circular domains. Let Ω be

a nearly circular domain in C6; that is, ∂Ω = ∂E0 + f(θ)N0 for some smooth

function f(θ) on the unit circle ∂E0 with ‖f‖C6 sufficiently small.

By Lemmas 4.6 and 4.4, for τ = 1, the intervals [tq, Tq] are disjoint from

each other for q ≥ 2, and they are also disjoint from [tp,q, Tp,q] for all p > 1

and q ≥ 2. Hence we can choose a cutoff function χ̂q(t) ∈ C∞0 (R) that equals

one on the interval [tq, Tq], whose support does not contain any lengths in Lp,m
with (p,m) 6= (1, q). Then as in [MM82], we denote

(66) σ̂1,q(t) = χ̂q(t)wΩ(t).

The distribution σ̂1,q(t) is the localization of the wave trace to the interval

[tq, Tq]; it satisfies

SingSuppσ̂1,q(t) ⊂ [tq, Tq]

and

σ̂1,q(t) = wΩ(t) near [tq, Tq].

Thus instead of studying the wave trace, we study the localized wave trace

σ̂1,q(t).

Marvizi-Melrose [MM82] proved that (in fact for any smooth strictly con-

vex domain)

Theorem 5.1 (Proposition 6.11 of [MM82]). For q ≥ q0(Ω) sufficiently

large, one has a parametrix of the form

(67) σ̂1,q(t) =

∫ ∞
0

∫
∂Ω

Re
Ä
eiπrq/4eiξ(t−Lq(s))ξ

1
2a(q, t, s, ξ)

ä
dsdξ +Rq(t),

where Rq(t) is a smooth function, Lq(s) is the q-loop function, rq is a Maslov

index that depends on q and the boundary condition,2 and a(q, t, s, ξ) is a

2The indices rq for Dirichlet and Neumman boundary conditions differ from each other

by 4q.
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smooth classical symbol in ξ, and periodic in s, of the form

a(q, t, s, ξ) ∼
∞∑
j=0

aj(q, t, s)ξ
−j , (ξ → +∞),

whose principal symbol a0(q, t, s) = a0(q, s) is independent of t and is a positive

function on ∂Ω.

Remark 5.2. In [MM82], the factor ξ
1
2 is missing from the integrand of (67).

In [Pop94], there is instead a factor ξ. None of these are correct. The correct

factor in the principal term must be ξ
1
2 , as one can easily inspect by the

wave trace asymptotic of Guillemin-Melrose [GM79a] of simple non-degenerate

periodic orbits. An independent proof of this parametrix, given by Vig [Vig19],

also confirms the factor ξ
1
2 .

We prove that the Marvizi-Melrose parametrix (67) is valid for all q ≥ 2

for nearly circular domains.

Theorem 5.3. Suppose Ω is nearly circular in C8, meaning that ∂Ω =

∂E0 + fN0 with ‖f‖C8 sufficiently small. Then the parametrix (67) for the

wave trace wΩ(t) is valid for all q ≥ 2.

Proof. As in [MM82], the first step in the proof is the reduction of the wave

trace to a boundary integral for which we provide a simple proof independent

of [MM82]. We shall use a Rellich-type identity (essentially Green’s second

identity). Let X be a suitable vector field defined in a neighborhood of Ω.

Let ϕj be an L2-normalized eigenfunction of ∆ = −∂2
x − ∂2

y , with Dirichlet

boundary condition on Ω, associated to the eigenvalue λ2
j . First, by Green’s

second identity, we have

〈ϕj , [∆, X]ϕj〉L2(Ω) =

∫
Ω

(∆− λ2
j )ϕj Xϕj − ϕjX(∆− λ2

j )ϕj

+

∫
∂Ω

∂nϕj Xϕj − ϕj ∂n(Xϕj).

(68)

But since (∆− λ2
j )ϕj = 0 and ϕj |∂Ω = 0, we get

〈ϕj , [∆, X]ϕj〉L2(Ω) =

∫
∂Ω

∂nϕj Xϕj .

Now if we choose the vector field X = x∂x + y∂y, we get [∆, X] = 2∆, which

implies that

(69) 2λ2
j =

∫
∂Ω

(X · n)|∂nϕj |2.

Here, the function (X.n)(s) is the dot product of the position vector X(s) on

the boundary with the outer unit normal n(s) to ∂Ω at s. Using this equation,
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the second time derivative of the trace of E(t) = cos(t
√

∆Ω) can be written as

(cf. (1))

(70) ∂2
twΩ(t) = −1

2

∫
∂Ω

(X · n)∂nx∂nyE(t, x, y)|x=y,

where E(t, x, y) is the distributional kernel of E(t) and ∂nx , ∂ny are outer nor-

mal derivatives in the variables x, y, respectively. Equation (70) is our reduc-

tion to the boundary. We now need to find a parametrix for the distribution

∂nx∂nyE(t, x, y)|x=y and plug it into (70). This distribution was studied thor-

oughly in [HZ12]. Away from the tangential directions to ∂Ω, it is a Lagrangian

distribution whose wavefront relation satisfies

WF′(∂nx∂nyE(t, x, y)) ⊂
⋃
q≥0

Γ∂q,±,

where

(71)

Γ∂q,± =

(t,±τ, x, ξ, y, η) ∈ T ∗(R× ∂Ω× ∂Ω)

∣∣∣∣∣∣∣
τ > 0, |ξ| < τ, |η| < τ,

β̃q
Ä
x, ξτ

ä
=
Ä
y, yη

ä
,

t = t
Ä
q, x, ξτ

ä  .

Here, β̃ is the billiard map as a map on the ball bundle B∗Ω = {(x, ξ) ∈ T ∗∂Ω :

|ξ| ≤ 1} instead of Π = ∂Ω× [0, π]. Note that β̃ : B∗Ω→ B∗Ω and β : Π→ Π

are related by

β̃(x, ξ) = β(x, arccos(ξ)).

Furthermore, in (71), t(q, x, ξ/τ ) is defined as follows. Let ξ′ ∈ T ∗x Ω̄ be the

unique inward unit vector whose orthogonal projection onto the cotangent

space of the boundary T ∗x∂Ω is ξ/τ . Then t(q, x, ξ/τ ) is the time that it

takes to travel from (x, ξ′) and make precisely q reflections along the billiard

trajectory and of course end at (y, η′).

Since for nearly circular domains SingSuppσ̂1,q(t) ⊂ [tq, Tq], we restrict our

attention to a (time) neighborhood of [tq, Tq]. We recall that we are only inter-

ested in a parametrix near the diagonal. These two conditions force the billiard

trajectories from x to y to wind around the boundary almost once. By our The-

orem 3.5, for each q ≥ 2, there is a unique such trajectory whose length we de-

noted by Ψq(x, y) (see Definition 3.7). In particular, for (t,±τ, x, ξ, y, η) ∈ Γ∂j,±
and t ∈ [tq, Tq], we have t(q, x, ξ/τ ) = Ψq(x, y). In fact an easy computation

(see, for example, [Vig21], [Vig19]) shows that Ψq(x, y) generates β̃q, in the

sense that,

β̃q(x,−∂xΨq) = (y, ∂yΨq).

Now let us define the phase functions

Φ±,q := ±τ(t−Ψq(x, y)).
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The critical point set of Φ± with respect to τ is given by

C(Φ±,q) = {(t,±τ, x, y)| t = Ψq(x, y)}.

Hence the image of C(Φ±,q) under the canonical embedding

ι(t, τ, x, y) = (t, ∂tΦ±,q, x, ∂xΦ±,q, y,−∂yΦ±,q)
= (t,±τ, x,∓τ∂xΨq, y,±τ∂yΨq)

is precisely Γ∂q,± defined by (71). In other words, Φ±,q parametrizes Γ∂q,±. By

[HZ12, Prop 4], the principal symbol of ∂nx∂nyE(t, x, y) on Γ∂q,±, as a half-

density, is of the form

(72) eiπmq/4g(q, x, ξ, τ )|dx ∧ dξ ∧ dτ |1/2,

where mq is a Maslov index and g is a certain positive symbol. Now by [Hör85,

IV, Prop 25.1.5], and because ∂nx∂nyE(t, x, y) is a real-valued Lagrangian dis-

tribution, there exists a classical symbol b(q, t, x, y, τ ) such that for t ∈ [tq, Tq]

and (x, y) near the diagonal of the boundary,

∂nx∂nyE(t, x, y) = Re

∫ ∞
0

eiπmq/4eiτ(t−Ψq(x,y))b(q, t, x, y, τ )dτ + (smooth).

By expanding b into a power series of t− ψq, and performing integration

by parts, we can in fact eliminate the t variable from the amplitude b. The

principal term b0 of b can be calculated in terms of g in (72). Since g > 0, we

have b0 > 0. Plugging this parametrix into (70) and noticing that Ψq(x, x) =

Lq(x), we obtain a parametrix for ∂2
twΩ(t) in the form

∂2
twΩ(t)|[tq ,Tq ] =

∫ ∞
0

∫
∂Ω

Re
Ä
eiπrq/4eiτ(t−Lq(s))τ

1
2 b̃(q, s, τ)

ä
dsdτ + (smooth),

where rq = mq + 4 and

τ
1
2 b̃(q, s, τ) =

1

2
b(q, s, s, τ )(X · n)(s).

Because b0 > 0 and because X.n > 0 for a strictly convex domain (if the origin

is chosen to be inside Ω), the principal term b̃0 must be positive as well. Now

let

w̃Ω(t) :=

∫ ∞
0

∫
∂Ω

Re
Ä
eiπrq/4eiτ(t−Lq(s))τ

1
2a(q, s, τ)

ä
dsdτ,

with amplitude a(q, s, τ) := −τ−2b̃(q, s, τ). It is then clear that ∂2
t (wΩ(t) −

w̃Ω(t)) is smooth on [tq, Tq], thus wΩ(t) = w̃Ω(t) + (smooth), and the result

follows. �

Remark 5.4. The article [Vig19] calculates the principal term a0 explicitly.

Also, it is possible to use the layer potential formulae of [Zel09] for the semi-

classical resolvent kernel to prove Theorem 5.3. Since this proof is much longer

and more complicated than the proof above, we do not present it here.
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5.3. σ̂1,q as a spectral invariant : Proof of Proposition 1.5. In this section

we state the following more formally:

Proposition 5.5. If Ω is a nearly circular domain in C8, then the dis-

tribution σ̂1,q(t) is a spectral invariant of Ω.

The key ingredient in the proof is Corollary 4.8. The wave trace on the

open interval (0, |∂Ω|) = (0, `) has the following q-bounce decomposition, in-

troduced in [MM82]:

(73) σ̂(t)|(0,`) =
∑
q≥2

σ̂1,q(t).

By Corollary 4.8, L1,q ∩L1,q′ = ∅ if q 6= q′ and L1,q ∩Lp,q′ = ∅ if p ≥ 2. Hence,

given a singularity L of the wave trace in the interval (0, `), we know exactly

to which interval [tq, Tq] it belongs to, in other words the number of bounces q

of L can be heard. Thus σ̂1,q is a spectral invariant, proving Proposition 1.5.

Remark 5.6. Proposition 5.5 does not rule out that there might exist two

distinct (1, q) orbits of Ω of the same length. It also does not imply that the

set of lengths in L1,q is finite, nor that the corresponding fixed point sets are

clean, nor in the clean case that the individual terms eγ(t) in (64) are spectral

invariants. If Ω is isospectral to E, it says that σ̂Ω
1,q(t) = σ̂E1,q(t). It is not

a priori clear that the fixed point sets of the billiard map of Ω must be clean,

nor that L(Ω) = L(E), since cancellations may occur in the sums.

6. Length spectrum and wave trace: Proof of Theorem 1.4

For inverse spectral problems, it is important to know which lengths are in

the singular support of the wave trace. The following proposition was proved in

[MM82] for any smooth strictly convex domain (satisfying a non-coincidence

condition) but only for q sufficiently large. For nearly circular domains, we

improve their result by showing that it holds for all q ≥ 2.

Proposition 6.1. If Ω is nearly circular in C8, then for all q ≥ 2, we

have

{tq(Ω), Tq(Ω)} ⊂ SingSuppwΩ(t).

In fact, we prove the stronger Theorem 1.4.

Remark 6.2. For a smooth strictly convex domain Ω that is not necessarily

nearly circular, if we add the assumption that

(74) |∂Ω| is not a limit point from below of the set
⋃

p≥2,q≥2

Lp,q(Ω),

then there exists q0(Ω) sufficiently large such that

(75) ∀q ≥ q0(Ω), L1,q ⊂ SingSuppwΩ(t).
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Although formally speaking [MM82] only proves the inclusion {tq, Tq} ⊂
SingSuppwΩ(t), essentially the same argument follows to show (75). As shown

in [MM82], condition (74) holds for a generic class of smooth strictly convex

domains, hence the inclusion (75) holds generically.

Proof. We argue by contradiction. Fix q ≥ 2. To prove Theorem 1.4,

assume t0 belongs to L1,q(Ω) but not to the singular support of wΩ(t). Then,

there is an open interval J1 near t0 such that ˆσ1,q(t) is smooth in J1. We then

choose any non-negative cutoff function ρq(t) supported in J1, which is positive

exactly on a proper open subinterval J2 of J1 containing t0. In particular,

ρq(t0) > 0. In addition we assume that the boundary points of supp ρq(t) = J̄2

are not critical values of Lq(s). This can be done because by Sard’s theorem

the set of critical values of Lq(s) has measure zero. By our assumption on t0,

the inverse Fourier transform of ρq(t) ˆσ1,q(t) must be rapidly decaying. We will

see that this leads us to a contradiction via the following theorem of Soga:

Theorem 6.3 (Soga [Sog81]). Consider an oscillatory integral

I(λ) =

∫
R
eiλϕ(x)a(x)dx, λ ≥ 1,

where ϕ(x) and a(x) are smooth and a(x) is compactly supported. Furthermore,

assume that a(x) ≥ 0 for all x, and a(x) > 0 for at least one degenerate critical

point of ϕ(x). Then I(λ) 6= O(λ−∞). In fact, λmI(λ) is not in L2(1,+∞) for

some m < 1
2 .

To exploit this result, let us compute the inverse Fourier transform of

ρq(t)σ̂1,q(t) using the parametrix (67) as follows:

Iq(λ) =

∫
R
ρq(t)σ̂1,q(t)e

iλt dt+O(λ−∞)

=
λ3/2

2

∫
R

∫ ∞
0

∫
∂Ω

eiλ(t+ξ(t−Lq(s))+
iπrq

4 a(q, t, s, λξ) ξ
1
2 ρq(t)dsdξdt

+
λ3/2

2

∫
R

∫ ∞
0

∫
∂Ω

eiλ(t−ξ(t−Lq(s))−
iπrq

4 ā(q, t, s, λξ) ξ
1
2 ρq(t)dsdξdt

+O(λ−∞).

We perform the stationary phase lemma in the dξdt integral. We have two

phase functions, namely,

Φ1(t, s, ξ) = t+ ξ(t− Lq(s)), Φ2(t, s, ξ) = t− ξ(t− Lq(s)).

Since the critical point of Φ1 is given by ξ = −1 and t = Lq(s), the first

integral must be rapidly decaying as ξ = −1 is not in the domain of the

integral. The critical points of Φ2 are given by ξ = 1 and t = Lq(s), therefore
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by the stationary phase lemma we get

Iq(λ) = πλ1/2e
−iπrq

4

∫
∂Ω

eiλLq(s)a0(q, s)ρq(Lq(s))ds+O(λ−1/2).

We know by Lemma 3.8 that the critical points of Lq(s) correspond to the

(1, q) periodic orbits of β. Let s0 be a critical point of Lq(s) with Lq(s0)= t0.

If s0 is degenerate, then by Theorem 6.3 we get a contradiction because λm−1 ∈
L2(1,∞) for m < 1

2 . Now suppose s0 is non-degenerate. The only remaining

case is when all the periodic orbits whose lengths are in the support of ρ(t)

are also non-degenerate and are finite. This is because if any such critical

point is degenerate, we get a contradiction by the same argument as above.

Also, if there are infinitely many such non-degenerate critical points, they must

accumulate at a degenerate critical point. This accumulation point cannot be

in the interior of the support of ρq(t) or we would get a contradiction again, so

it must be on its boundary. But we chose ρq(t) so that the boundary points of

its support are not critical values of Lq(s). Finally suppose the set of critical

points of Lq(s), whose corresponding critical values are in supp ρq(t), is finite

and consists of non-degenerate orbits. (Hence each must be a local max or a

local min.) We shrink the support of ρq(t) so it contains only the critical value

t0. We shall use {s0, . . . , sr} for the set of critical points of Lq(s) with critical

value t0. By the stationary phase lemma, we get

Iq(λ) =
√

2π3/2e−
iπrq

4
+iλt0ρq(t0)

r∑
j=0

ei
π
4

sign(L′′q (sj))
a0(q, sj)»
|L′′q (sj)|

+O(λ−1/2).

Since sign(L′′q (sj))=1 or −1, and a0(q, s)>0, the sum cannot cancel to zero.

�

Before we present the proof of the main theorem, we state a key corollary

of Theorem 1.4.

Corollary 6.4. For nearly circular domains in C8, one has

SingSuppwΩ(t) ∩ (0, |∂Ω|) =
⋃
q≥2

L1,q(Ω),(76)

SingSuppwΩ(t) ∩ (5, |∂Ω|) =
⋃
q≥3

L1,q(Ω).(77)

Proof. The first statement follows from (62), Theorem 1.4, and Lemma 4.4.

To show the second statement, we note that by Lemma 4.5, we have

Lq(s) = 2q sin(π/q) +O(‖f‖C2).

Therefore,

T2(Ω) = 4 +O(‖f‖C2), t3(Ω) = 3
√

3 +O(‖f‖C2).
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Clearly if we choose O(‖f‖C2) sufficiently small, we have T2(Ω) < 5 < t3(Ω).

Then, (77) follows from this and (76). �

7. Proof of the main theorem

Suppose Ω is a smooth domain, whose ∆ spectrum with respect to Dirich-

let (or Neumann) boundary condition is identical with the one of an ellipse Eε
of eccentricity ε < ε0. By Lemma 2.1 and Corollary 2.2, there is a rigid motion

after which Ω is Cn for every n ∈ N. Let us denote the wave traces of Ω and

Eε by wΩ(t) and wEε(t), respectively. Since Ω and Eε are isospectral, we must

in particular have

Sing Supp wΩ(t) ∩ (0, `ε) = Sing Supp wEε(t) ∩ (0, `ε).

Here `ε is the length of Eε that equals the length of Ω by the known fact

that the perimeter of a domain is a spectral invariant. By Corollary 6.4, for ε

sufficiently small, we must have⋃
q≥3

L1,q(Ω) =
⋃
q≥3

L1,q(Eε).

As we saw in (61), for an ellipse Eε, we have⋃
q≥3

L1,q(Eε) = {T3(ε) < T4(ε) < · · · < Tq(ε) < Tq+1(ε) < · · · },

which is a monotonically increasing sequence converging to `ε whose gaps se-

quence Tq+1(ε) − Tq(ε) is monotonically decreasing. Thus
⋃
q≥3 L1,q(Ω) must

be a sequence with the same properties. We claim that this implies that for all

q ≥ 3, we have Tq(Ω) = tq(Ω). Assume not. So for some q ≥ 3, tq(Ω) 6= Tq(Ω);

i.e., the q-loop function Lq(s) is not a constant. Then by Lemma 4.6, if q ≥ q0,

we have

Tq(Ω)− tq(Ω) ≤ 1

100(q + 1)3
<

1

10(q + 1)3
≤ tq+1(Ω)− Tq(Ω),

and if q < q0, we have

Tq(Ω)− tq(Ω) ≤ η0

100
<
η0

10
≤ tq+1(Ω)− Tq(Ω).

Either way, we get

0 < Tq(Ω)− tq(Ω) < tq+1(Ω)− Tq(Ω).

This shows that the sequence of gaps of
⋃
q≥3 L1,q(Ω) fluctuates and is not

decreasing, thus a contradiction. Therefore, for all q ≥ 3, we must have that

Lq(s) is a constant function of s, or equivalently that there is a smooth convex

caustic Γq of rotation number 1/q consisting of (1, q) periodic orbits. In fact

the caustic Γq in the phase space Π of Ω is given by

Γq = {(s, ϕq(s))},
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where ϕq(s) is the q-loop angle defined by Theorem 3.3. In the language of

[ADK16], this precisely means that Ω is rationally integrable. The following

dynamical theorem of [ADK16] is the final major step in our argument.

Theorem 7.1 (Avila, De Simoi, and Kaloshin). Let Ω be a C39 smooth

domain that is rationally integrable and is C39 sufficiently close to the unit

disk. Then Ω is an ellipse.

Hence if we choose n = 39, we obtain that Ω must be an ellipse. By

Proposition 6.1, we know that for sufficiently small ε, the lengths t2 and T2 are

spectral invariants. For an ellipse, these correspond to the bouncing ball orbits

on the minor and major axes, respectively, thus Ω and Eε must be isometric.

This concludes the proof of our main theorem.

7.1. Second proof of the Theorem 1.3. Assume that Ω is nearly circular in

C8 and that it is isospectral to an ellipse Eε of small eccentricity. We recall

from Proposition 5.5 that

σ̂Ω
1,q(t) = σ̂Eε1,q(t).

We remember from (66) that σ̂1,q(t) = χ̂q(t)w(t), where χ̂q(t) is a cutoff sup-

ported near [tq, Tq] and equals one there. Taking Fourier transform of this

equation and inserting the Marvizi-Melrose parametrix, we get∫ `ε

0

eiλLq(s)a(q, s, λ)ds =

∫ `ε

0

eiλL
Eε
q (s)aEε(q, s, λ)ds+O(λ−∞)

for λ > 0, where Lq(s) and LEεq (s) are the q-length functions of Ω and Eε,

respectively, and a(q, s, λ) and aEε(q, s, λ) are the corresponding complete am-

plitudes of the trace parametrix (67). They are classical symbols of order zero,

i.e., polyhomogeneous functions of λ with orders descending by unit steps. We

denote their symbol expansions as λ→∞ as follows:

(78)

{
a(q, s, λ) ∼

∑∞
j=0 aj(q, s)λ

−j ,

aEε(q, s, λ) ∼
∑∞

j=0 a
Eε
j (q, s)λ−j .

The asymptotics are the standard ones for symbols, i.e., a −
∑

j≤N aj ∈
S−(N−1). We comment that when λ < 0 we need to replace a(q, s, λ) and

aEε(q, s, λ) with their complex conjugates. Note that LEεq (s) is the constant

tq(ε) = Tq(ε). Moving the constant phase factor to the left side gives

Lemma 7.2. The integral

b1,q(λ) :=

∫ `ε

0

eiλ(Lq(s)−Tq(ε))a(q, s, λ)ds =
∞∑
j=0

∫ `ε

0

aEεj (q, s)ds λ−j +O(λ−∞)

is a poly-homogeneous symbol of order zero; i.e., it belongs to S0 := S0
1,0(R).
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Corollary 7.3. The Fourier transform

(79) b̂1,q(t) =

∫
R

∫
S1

e−iλteiλ(Lq(s)−Tq(ε))a(q, s, λ)dsdλ

of b1,q is a co-normal distribution in the class I1/4(R, {0}), with principal

symbol
∫
aEε0 (q, s)ds times |dξ|

1
2 on T ∗0 R. In particular, its principal symbol

is strictly positive and b̂1,q(t) is singular at, and only at, t = {0}.

Let us recall the definitions: In the notation of [Hör07, §18.2] (see pp. 100–

101), u ∈ I1/4(R, {0}) is a co-normal distribution co-normal to {0} if (xDx)ku

belongs to the same Sobolev space as u (see [Hör07, Def. 18.2.6]). By [Hör07,

Th. 18.2.8], u ∈ I1/4(R, {0}) if and only if

u(x) =

∫
R
eiτxa(τ)dτ,

where a ∈ S0. Such co-normal distributions are sums of homogeneous distri-

butions of the form xs+, (x± i0)s that are singular only at x = 0. Moreover, a

co-normal distribution to {0} has a “symbol,” namely, a half density a0(ξ)|dξ|
1
2

on T ∗0 R, where a0(ξ) is the leading order term of the symbol expansion of a(ξ).

With these definitions in hand, we give the simple proof of Corollary 7.3.

Proof. Corollary 7.3 follows from Lemma 7.2 and the definition of the class

I1/4(R, {0}). The fact that a0 > 0 follows from [MM82, Prop. 6.11]. �

From Lemma 7.2 and Corollary 7.3, we deduce the fundamental fact al-

lowing us to give a second proof of the main theorem.

Lemma 7.4. The loop function Lq(s) has exactly one critical value. Hence,

Lq(s) ≡ LEεq .

Proof. Suppose that Lq is non-constant. Then it has distinct maxima

and minima, and at least one of these must differ from Tq. We denote the

corresponding critical value by t1 6= 0. With no loss of generality, we assume

that t1 is the minimum value. Let ψ(t) ∈ C∞0 (R) be a bump function equal

to 1 in a neighborhood of t1 and equal to zero in a neighborhood of 0. Then

b̂1,q(t) = (1− ψ(t))b̂1,q(t) + ψ(t)b̂1,q(t). By Corollary 7.3 we have ψ(t)b̂1,q(t) ∈
C∞0 (R). We will see that this would lead to a contradiction. We first take

inverse Fourier transform and obtain

F∗t→τ
Ä
ψ(t)b̂1,q(t)

ä
= (ψ̌ ∗ b1,q)(τ)

=

∫
R
ψ̌(λ)b1,q(τ − λ)dλ

=

∫ `ε

0

eiτ(Lq(s)−Tq(ε))
Å∫

R
ψ̌(λ)e−iλ(Lq(s)−Tq(ε))a(q, s, τ − λ)dλ

ã
ds
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is rapidly decaying in τ .

We now claim that Aq(s, τ) :=
∫
R ψ̌(λ)e−iλ(Lq(s)−Tq(ε))a(q, s, τ − λ)dλ is

an element of S0(T ∗S1). Indeed, using the symbol expansion (78) one has, as

τ →∞,

Aq(s, τ) ∼
∞∑
j=0

ãj(q, s)

∫
R
ψ̌(λ)e−iλ(Lq(s)−Tq(ε))〈τ − λ〉−jdλ,

with 〈x〉 := (1 + x2)
1
2 , and for new amplitudes ãj that depend linearly on

{ak}k≤j . Then we write this as

Aq(s, τ) ∼
∞∑
j=0

ãj(q, s)τ
−j
∫
R
ψ̌(λ)e−iλ(Lq(s)−Tq(ε))σ−j(τ, λ)dλ,

where σ(λ, τ) := (|τ |−2 + |λτ −1|2)1/2. Note that 〈τ−λ〉−1 = |τ |−1σ(λ, τ)−1 and

that σ(λ, τ)−1 → 1 uniformly on compact sets in λ as τ →∞, and indeed there

is an asymptotic expansion in τ . Since ψ̌ ∈ S(R), the asymptotic expansion is

integrable in dλ and some arrangement gives a symbol expansion for Aq(s, τ).

In conclusion, ∫ `ε

0

eiτ(Lq(s)−Tq(ε))Aq(s, τ)ds = O(τ−N ) ∀N > 0.

However, the phase has a critical point, so that the conclusion contradicts

[Sog86, Th. 2]. This concludes the second proof of Theorem 1.3. For the sake

of completeness, we state [Sog86, Th. 2] in the relevant dimension one.

Theorem 7.5. Let I(τ) :=
∫
R e

iτϕ(x)ρ(x, τ)dx, where ρ(x, τ) ∼ ρ0(x) +

ρ1(x)(iτ)−1 + · · · as τ → ∞. Assume that ρ0 ≥ 0 with ρ0(x) > 0 on the

minimum set of ϕ(x). Then for some m ∈ R depending only on the dimension,

τmI(τ) /∈ L2(R+). �

In the final section we provide a general result that makes our article

independent of [Sog81].

7.2. A refined lemma. In this part we present the following more general

theorem. which is of independent interest. It shows that many assumptions

that we previously used can be relaxed.

Lemma 7.6. Let ϕ(s) and a(s, λ) be two smooth functions on S1 = R/Z
with a(s, λ) satisfying

a(s, λ) = a0(s) +O(λ−1/2−ε), a0(s) smooth and positive

for some ε > 0. Assume that for |λ| ≥ λ0 > 0 we have

I(λ) =

∫
S1

e−iλϕ(s)a(s, λ)ds = c0 +O(λ−
1
2
−ε)
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for a constant c0. Then ϕ(s) ≡ 0 on S1.

Proof. We follow the proof of [Sog81] closely. First let us discard the

remainder term in a(s, λ) and call the resulting integral J(λ), i.e.,

J(λ) =

∫
S1

e−iλϕ(s)a0(s)ds.

Obviously we have J(λ) = c0 +O(λ−1/2−ε). Now, let ψ(t) be a cutoff function

in R that equals one on an open set containing the range of ϕ. Let H(t) be

the Heaviside function at zero, and define

g0(t) = ψ(t)

∫
R
H(t− ϕ(s))a0(s)ds = ψ(t)

∫
ϕ(s)≤t

a0(s)ds,

g1(t) = ψ′(t)

∫
R
H(t− ϕ(s))a0(s)ds = ψ′(t)

∫
ϕ(s)≤t

a0(s)ds.

The function g0 is in Hm for every m < 1/2, and because it is a compactly

supported distribution, its Fourier transform “g0(λ) is an analytic function.

Also since
∫
RH(t− ϕ(s))a(s)ds is smooth at the regular values t of ϕ(s), and

since ψ′(t) vanishes on the range of ϕ(s), g1(t) is smooth, and hence “g1(λ) is

rapidly decaying. We note that by a simple integration by parts, I(λ) can be

written as

J(λ) = iλ

∫
R
e−iλtg0(t)dt−

∫
R
e−iλtg1(t)dt

= iλ“g0(λ)− “g1(λ).

Thus, by our assumption on I(λ) (so the same for J(λ)), we obtain“g0(λ) = − iJ(λ)

λ
+O(λ−∞) = − ic0

λ
+O(λ−3/2−ε), |λ| ≥ λ0.

By taking inverse Fourier transform and using the Sobolev Embedding Theo-

rem, we get

(80) g0(t) = c0H(t) + f(t),

where H(t) is the Heaviside function at t = 0 (co-normal distribution) with

a jump discontinuity at t = 0, and f(t) is continuous at every t and in fact

belongs to the Hölder class C0,α for every 0 < α < 1/2 + ε. However, we will

show that every critical value t0 of ϕ(s) is a “big singularity” of g0(t). By this

we mean that g0(t) is not Hölder continuous C0,α at t0 for any α > 1/2. This

together with the decomposition (80) would imply that the only critical value

of ϕ(s) is 0. Since ϕ is a function on S1, it must be zero everywhere.

So assume t0 = ϕ(s0) is a critical value of ϕ and s0 is a critical point in

its inverse image. For each h > 0, we denote

Ah = {s ∈ S1; −h < ϕ(s)− t0 ≤ h}.
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We recall that ψ(t) = 1 in an open set containing the image of ϕ, so we can

choose h small enough so that ψ(t0 − h) = ψ(t0 + h) = 1. By the definition

of g0, we have

|g0(t0 + h)− g0(t0 − h)| =
∫
Ah

a0(s)ds.

However, since s0 is a critical point of ϕ, we have |ϕ(s) − t0| ≤ c|s − s0|2 for

some c > 0, and thus we have the inclusion

{s ∈ S1; c|s− s0|2 < h} ⊂ Ah.

We then write

|g0(t0 + h)− g0(t0 − h)| ≥
∫
c|s−s0|2<h

a0(s)ds ≥
»
h/c min a0(s),

which by letting h→ 0, implies that g0 is not Hölder continuous C0,α at t0 for

α > 1/2. �
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