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One can hear the shape of ellipses
of small eccentricity

By HAMID HEZARI and STEVE ZELDITCH

Abstract

We show that if the eccentricity of an ellipse is sufficiently small, then
up to isometries it is spectrally unique among all smooth domains. We
do not assume any symmetry, convexity, or closeness to the ellipse, on the
class of domains.

In the course of the proof we also show that for nearly circular domains,
the lengths of periodic orbits that are shorter than the perimeter of the
domain must belong to the singular support of the wave trace. As a result
we also obtain a Laplace spectral rigidity result for the class of axially sym-
metric nearly circular domains using a similar result of De Simoi, Kaloshin,
and Wei concerning the length spectrum of such domains.

1. Introduction

From the point of view of classical mechanics, elliptical billiards are very
special because their billiard maps are completely integrable. In fact the
Birkhoff conjecture asserts that ellipses are the only completely integrable
strictly convex billiard tables. It is natural to expect this uniqueness prop-
erty of ellipses to hold from the quantum mechanical point of view and ask, for
example, whether the Laplace eigenvalues of ellipses with respect to Dirichlet
or Neumann boundary conditions determine them uniquely. The only planar
domains that are known to date to be determined by their spectrum among
all smooth domains' are disks D C R2. In this article we show that nearly
circular ellipses are spectrally determined among all smooth domains.
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'In fact disks are spectrally unique among all Lipschitz domains by the isoperimetric
inequality, because area and perimeter are spectral invariants of a Lipschitz domain by the
heat trace asymptotic of Brown [Bro93].

1083


http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2022.196.3.4

1084 HEZARI and ZELDITCH

THEOREM 1.1. There exists eg > 0 such that any ellipse with eccentricity
less than ey is uniquely determined by its Dirichlet (or Neumman) Laplace
spectrum, among all smooth domains.

Henceforth, we use the term “nearly circular ellipse” as short for “eccen-
tricity less than e¢.” This inverse spectral result should be compared with
the recent dynamical inverse results of Avila-De Simoi-Kaloshin [ADK16] and
Kaloshin-Sorrentino [KS18]. They prove a “local” version of the Birkhoff con-
jecture: if a strictly convex (finitely smooth) planar domain is sufficiently close

)

to an ellipse and is rationally integrable, then it must be an ellipse. Rational
integrabillity means that for every integer ¢ > 3, there is a convex caustic of
rotation number é consisting of periodic orbits with g reflections. In fact, our
proof is based in part on this result. To be able to use it, we need to prove
that the hypothesis is valid. We first need an important definition.

Definition 1.2. Let n € N and € > 0. Let D be the unit disk and Ny be
its outward unit normal. A simply connected planar domain € with smooth
boundary will be called “e-nearly circular in C™” if its boundary can be written
as 0Q = dD + f(0)No, with | fllcn@op) = On(e). Here O,(e) means that
| fllcn(apy is bounded by Aye for some A,, that depends only on n. If we only
use “nearly circular,” it means that ¢ is sufficiently small.

The main advance in this article is contained in the following:

THEOREM 1.3. If 2 is a bounded smooth plane domain that is isospectral
to a nearly circular ellipse of eccentricity €, then ) is e-nearly circular in C™
for every n €N (in particular, it must be strictly convex) and  is rationally
integrable.

The near circularity of {2 is proved in Proposition 2.1. The proof uses heat
trace invariants to show that if a smooth domain 2 is isospectral to an ellipse
FE with small eccentricity e, then 2 must be sufficiently close to E in the C™
norm for all n. In particular, 2 must itself be almost circular.

After this initial step, the proof of rational integrability is based on a
study of the wave trace

(1) wa(t) := Trcosty/Aq.

It is well known that wq(t) is a tempered distribution on R and that the positive
singularities of wq can only occur for ¢t € L(Q2), the length spectrum (i.e.,
the closure of the set of lengths of closed billiard trajectories). Of particular
importance here are the closed trajectories of type I'(1,¢q), i.e., with winding
number 1 and with ¢ bounces (reflections) off the boundary 9. We denote the
set of lengths of such closed trajectories by £ 4(€2). For each ¢, the contribution
to wq(t) of closed trajectories I'(1, ¢) is denoted by 61 4. In [MMS82, Prop. 6.11],
Marvizi-Melrose constructed microlocal parametrices, also denoted by o1 g4,
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for the microlocal contribution of trajectories in I'(1,¢) and proved that the
parametrix was valid for ¢ > ¢o(€2). By “valid” is meant that the wave trace
is a sum of contributions from Lagrangian submanifolds A, corresponding to
g-bounce orbits and 71 4 is the contribution from those with winding number
p =1 (see [MM82, §6]).

To apply the results of [ADK16], [KS18] it is essential to have analogous
results for ¢ > 3 bounces. One of the key results of this article is Theorem 5.3,
which shows that the Marvizi-Melrose parametrices are in fact valid for closed
billiard trajectories in I'(1, ¢) with ¢ > 2 for nearly circular domains in C%.

Theorem 5.3 is applied in two independent ways to prove Theorem 1.3.
The first way is to combine it with a theorem of Soga [Sog81] for oscillatory
integrals with degenerate phase functions to prove

THEOREM 1.4. Let Q be a nearly circular domain in C®. Then, for all
q > 2, one has
L1,4(Q) C SingSupp wa(t).
In other words, for such domains, the wave trace is singular at the length of
every (1,q) periodic orbit.

Let us present the application of Theorem 1.4 to Theorem 1.3. We let
¢ =109 denote the circumference. It is well known to be a spectral invariant.
It is proved that, for a nearly circular ellipse, the singular support of wq(t) con-
tained in (0, ¢) is a discrete set whose gap sequence is monotonically decreasing.
We refer to Lemma 4.1 for the definition and statement. On the other hand,
if € is a nearly circular domain that is not rationally integrable, then the gap
sequence of the singular support must fluctuate. By Theorem 1.4 the lengths
in (0,¢) with ¢ > 2 are spectral invariants. If Q is isospectral to an ellipse
of small eccentricity, then by Theorem 1.4 its gap sequence is monotonically
decreasing and therefore it is rationally integrable.

We then apply the results of [ADK16] to show that {2 must be an ellipse.
This step needs €2 to be nearly circular in C™ with n = 39, which is provided
to us, in fact for any n, by Theorem 1.3. To conclude the proof, we use the
easy result that if two ellipses are isospectral, then they must be isometric.

1.1. Second approach. The second application of Theorem 5.3 uses the
following:

PROPOSITION 1.5. IfQ is a nearly circular domain in C®, then for ¢ > 2,

&%q(t) s a spectral invariant. Hence, if § is isospectral to an ellipse E. of
small eccentricity e, then for all ¢ > 2, we have 6%(1(75) = &fg(t}.

The statement is not obvious, because neither the winding number nor the
bounce number are known to be spectral invariants. Moreover, if the length
spectrum L£(€) of Q is multiple, i.e., if there exists more than one connected
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component in the set of closed billiard trajectories of some length L, then the
contributions from the two components may cancel. Theorem 1.4 shows that
complete cancellation cannot occur, but Proposition 1.5 asserts more.

Granted Proposition 1.5 the proof of Theorem 1.3 is rather simple: it is
shown that the phase function of &y 4(f) has exactly one critical value. But
that forces it to be constant, and from that one sees that {2 must be rationally
integrable.

1.2. Application to spectral rigidity of Zo-symmetric nearly circular do-
mains. In [AKW17] it is proved that the class S§ of axially symmetric planar
domains that are é-nearly circular in C®, § sufficiently small, are length spec-
trally rigid within this class. Length spectral rigidity means that if Q; € S?,
0 <t<1,isaC! family along which the length spectrum is preserved, then
Q¢ must be trivial; that is, it consists of isometries of €g. In fact the result
of [dKW17] only uses the lengths of (1, ¢)-type periodic orbits. Now equipped
with our Theorem 1.4, Lemma 4.4, and Corollary 4.8, we obtain the following
result on the Laplace spectral rigidity of the class Sg:

THEOREM 1.6. There exists § > 0 universal such that the following state-
ment holds. Let {Q}e0,1) be a A isospectral deformation of domains in the
class S§ of Zo-azxially symmetric smooth domains that are §-close in C® to the
unit disk. Then €y must be a trivial deformation.

1.3. Prospects for more general ellipses. It is natural to try to extend the
results to more general ellipses or even more general convex domains. However,
there exist many obstructions to any generalization of the proofs in this article
for higher eccentricities.

An important step is the proof of Theorem 5.3, which shows that the
parametrix for the g-bounce wave trace (66) of [MMS82, Prop. 6.11] is valid for
q > 3 for a nearly circular domain. The proof of Theorem 5.3 is quite general
but uses the “projectibility” of a certain portion of the g-bounce Lagrangian,
namely the portion close to the diagonal consisting of orbits of winding num-
ber approximately one. It is possible that this portion of the Lagrangian is
projectible for more general ellipses.

To explain the problem, we recall that the broken geodesic (billiard) flow
induces a billiard map B : B*0Q — B*9Q, where B*9S is the unit “ball-
bundle,” which of course is an annulus in dimension 2. See Section 3.1 for
background. In the case of a convex domain, B is a twist map of the annulus.
This means that a “vertical” B}0f) is mapped by B to a horizontal curve
B (B:0SY). Such a curve is of course a Lagrangian submanifold and may be
parametrized by the differential of a function on the base 9. However, ¢
bounce periodic orbits are period ¢ orbits of B and Bq fails to be a twist
map. In fact the image 39(B*9N) folds over the base ¢ times. The essence
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of Theorem 5.3 is to show that the piece of 37(B*0€) corresponding to the
image of small angles ¢ € B;0(), i.e., to billiard geodesic loops of winding
number 1, projects to 0§2 without singularities near . Hence this piece may
be parametrized by the differential of a function on 92, namely, the g-bounce
loop-length function for billiard loops at x making ¢ bounces.

Note that the result of [KS18] extends [ADK16] to arbitrary ellipses. How-
ever, the other steps of our arguments need closeness to a disk, so the proofs
in this article do not extend without serious modifications to ellipses of arbi-
trary eccentricity. We also mention the works of Huang-Kaloshin-Sorrentino
[HKS18] and a recent work of Koval [Kov21] that concern rational integrablity
near the boundary of a nearly circular domain. In these results, it is only
assumed that there exist caustics of rotations numbers g where g < q% for a
given (possibly large) qo. There is hope that these methods can be extended
to domains that are near ellipses of arbitrary eccentricity.

1.4. Comparison to works of Marvizi-Melrose and Amiran. In [MMS82],
Marvizi-Melrose used the parametrices to prove that there exists a two-para-
meter family of strictly convex domains that are spectrally determined among
domains satisfying a certain non-coincidence condition. The domains are spec-
ified as solutions of extremal problems involving the so-called Marvizi-Melrose
invariants. (See [Sib99], [Sib04] for the relation of these invariants to the
marked length spectrum.) They even show that the curvature functions of the
extremal domains are given by elliptic integrals. But they do not conclude
that the domains are ellipses.

In [Ami93|, [Ami96], Amiran does state the conclusions for the ellipse,
but there appear to be serious gaps in the proof. The present article over-
laps [Ami93], [Ami96] only in the proof of the non-coincidence condition. In
[Ami96] (see Corollary 7), the author shows that the strong non-coincidence
condition holds for an ellipse whose minor axis length exceeds %length(aE).
The proof does not appear to be complete and we give our own proof in the
case of a nearly circular domain.

We briefly describe the approach of [Ami93], [Ami96]. In [Ami93], Amiran
defines “caustics invariants” L, J;, G and states (Theorem 9) that the extremals
of G among domains with fixed L, J; are ellipses. The non-coincidence condi-
tion (Theorem 10 of [Ami93]) is used to show that sufficiently many caustics
invariants are A-spectral invariants. The idea of the proof is to show that only
curvature functions of ellipses solve the Euler-Lagrange equations for GG, a non-
linear second order equation for the radius of curvature of the domain. We do
not understand the proof given in [Ami93], [Ami96] that curvature functions
of ellipses solve the equation, or that they are the only solutions. If indeed
such ellipses are the only solutions of the extremal problem, then they would
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be spectrally determined among domains whose curvature functions are near
that of the ellipse (Corollary 7).

1.5. Previous positive results. To our knowledge, the results of this paper
give the first “universal inverse spectral result” for any class of domains other
than the circle. The result says that ellipses in a specific family (“almost
circular”) are determined by their spectra among all smooth domains without
any further assumptions. In fact, there do not even exist prior “local spectral
determination” results, which would say that an ellipse (or any other domain)
is determined by its spectrum among domains that lie in a sufficiently small C*
neighborhood of the ellipse. The only prior positive result specific to the inverse
Laplace spectral problem for ellipses is [HZ12] (see also [PT16] for ellipsoids),
which says that ellipses are infinitesimally spectrally rigid among C'*° domains
with the same left-right and up-down symmetries. The progress in that article
is to allow competing domains to be C'*° and not real-analytic. To be precise,
the rigidity result proved that any Dirichlet/Neumann isospectral deformation
had to be “flat,” i.e., all of its variational derivatives vanish. These results
were generalized to all Robin boundary conditions in [Vig21].

The most general prior positive inverse results were that of [Zel09], where
it is proved that a generic real analytic plane domain with one up-down sym-
metry is determined by its Dirichlet (or Neumann) spectrum among other such
domains, and that of [{KW17], where a generic nearly circular domain with one
reflection symmetry is shown to be Laplace spectrally rigid in the same class
of domains. In [dKW17], the genericity was needed in drawing a conclusion
on the Laplace spectral rigidity from the length spectral rigidity. The results
of the present article, by comparison, do not make any symmetry assumptions
and allow the competing domains to be general C>° domains. There also exists
a sequence of results of Popov-Topalov [PT03], [PT12], [PT16] using the KAM
structure of convex smooth plane domains to deduce spectral rigidity results
for Liouville billiards (including ellipses) with two commuting reflection sym-
metries, and for analytic domains that are sufficiently close to an ellipse and
possess the two reflection symmetries of the ellipse.

Prior inverse results for other classes of plane domains are surveyed in
[Zel04], [DH13], [Zell4], with an emphasis on positive results. Negative results,
such as the construction of isospectral polygonal domains of [GWWO92], are
surveyed in [Gor00].

1.6. Organization of the paper. In Section 2, we show that any smooth
domain isospectral to a nearly circular domain must be nearly circular as well.
The main tool in proving this result is heat trace invariants. Section 3 is
dedicated to the existence of geodesics loops for nearly circular domains. The
lengths of these loops (we call them loop functions) play a key role in our later
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analysis of the wave trace via the Marvizi-Melrose parametrix. We also find a
useful variational formula for the loop functions. Section 4 entirely involves the
length spectrum of nearly circular domains. The important gap structure of
the length spectrum is proved in this section. The Marvizi-Melrose parametrix
is proved in Section 5 for nearly circular domains for all ¢ > 2. We provide an
independent proof of this theorem using Green’s second identity. In Section 6,
we show that the part of the length spectrum that is less than the perimeter
is contained in the singular support of the wave trace hence, in fact, we obtain
an equality in Poisson relation in the interval (0,¢). In Section 7, we prove
our main result by showing that if a domain is isospectral to a nearly circular
ellipse then it must be rationally integrable hence must be an ellipse by a
result of Avila-De Simoi-Kaloshin. At the end of Section 7 we also provide an
alternative proof of the rational integrability.

2. Isospectrality with a nearly circular ellipse
implies closeness to the ellipse

Let E. be an ellipse of eccentricity €. After a rescaling and a rigid motion,
we can assume that F. is given by

2
E. = {(:):,y)GRQ; x2+%§1}.

Then assume () is a smooth domain with
(2) Spec(Q2) = Spec(E:).

Here, Spec means the spectrum of the euclidean Laplacian with respect to
Dirichlet (or Neumman) boundary condition. We know from the heat trace
invariants that 2 must be simply-connected with the same perimeter as F.,
which we shall call /., and use s for the arclength parameter. We will also use

k(Q)(s) and k(E:)(s)

for the curvature functions of 02 and OE; respectively. Note that () and
k(E:) belong to the same space C*[0,¢;]. We now have the following lemma:

PROPOSITION 2.1. Suppose Q and E. are isospectral. Then for all integers
n > 0, we have

[5(€2) = L[cnjo,e.) = Onle).
In particular, for sufficiently small €, Q is strictly convex. Here, O, () means
that the involved constant depends only on n.

As a corollary we will obtain

COROLLARY 2.2. Suppose () and E. are isospectral. Then one can apply a
rigid motion to Q after which its boundary can be written as 02 = 0Eg+ f Ny,
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with || fllcn@opy = Onl(e) for alln > 0. Here Ny is the outward unit normal of
the unit disk D = Eqy. In terms of Definition 1.2, it means that Q) is e-nearly
circular in C™.

Proof of Proposition 2.1. Let Aq be the positive Laplacian with Dirichlet
(or Neumann) boundary condition on 2. We recall the well-known heat trace
asymptotic

(3) Te(e ™29) ~ 1703 ant™ + bt™ 2, ¢ 0%,
n>0

In [Mel84], the following structural property is proved for the heat invariants b,

4 4
(4)  bpg1= cn/ Ky ds+ > da/ KRS k0mNds,  n> 1,

where £ is the length of the boundary, x,, denotes fgn’f, a = (ag,...,0pn_1)

is a multi-index in Z", ¢, # 0 and d, are universal constants. We also have
Z?;é(l +j)a; = 2n+ 2, which in particular implies that the sum is finite and
the number of terms is bounded by a constant dependent only on n. For us it
is also important to know that

74
(5) by = 01/ K2 ds, c1 #0,
0

¢ l
(6) by = 02/ K3 ds + 6'2/ ktds, ¢y #0.
0 0

Melrose used the trace invariants b,, to prove a pre-compactness for the class
of isospectral domains to a given domain D. More precisely he showed that
for each smooth domain €y, and each n > 0, there is A,, such that for all
isospectral to €2, we have

(7) Ix()|en < Ap.

Suppose now that €2 is isospectral to E.. We would like to show that for all
n >0,

(8) [15(2) — w(EE)[lon = Onfe).

Since k(Ey) = 1, we have k(E;) = 1+ O(¢) and k,(E;) = Oy(e) for n > 1.
Thus it is sufficient by the Sobolev embedding theorem to show that

le
(9) /0 1K(Q) — w(E.)ds = O(),

(10) /OZEHEL(Q) ds = O(5), n>1.
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To see (9), we first use the invariant b in (5) and the fact £, = 274+ O(e) to get

Le le
/ nz(Q)dS—/ W2(E.) ds = 27 + O(e).
0 0

This and the facts foeg k(Q)ds = 27 and k(E;) =1+ O(e) imply that

Le le
/ 15(Q) — k(B2 ds = / W2(Q) + K2(E.) — 26(Q)K(E.) ds = O(e).
0 0

To prove (10), we use (4) and argue by induction on n > 1. In the first step,
we note that by the expression (6) for the invariant be, we have

t _ t Clz( e 4 )
/(]/fl(Q)dS—/O () ds + 2 /O/Q(Eg) Q) ds ) .

However, we can bound the last expression by O(¢) using (7), Cauchy-Schwartz
inequality, and (9) as follows:

/

Le c
/0 (@) ds < O() + 2 [n(E.) - w()]
X HH3(EE) + 82(B2)k(Q) + K(E)K%(Q) + H3(Q)||L2 = O(e).

Let us now assume foe‘g k2, (Q)ds = O(e) for 1 <m < n— 1. By (4), we have

m

Y Le
/ K2(Q) = / W2 (E.)
0 0
1 te a Qn—1 « Qn—1
+cn§:da/0 KOO(EL) - k" (Be) — K20(Q) -+ k"1 (D).

To conclude the induction, we need to show that the right-hand side of the
above identity is O, (g). Obviously, by the induction hypothesis, and since for
all n > 1, ||kn(E:)|lco = On(e), all terms involving at least one derivative of
the curvature are of size O, (). (Note that we still need the a priori bounds
(7).) So it remains to estimate the part of the sum involving no derivatives,
which is a sum of terms (up to multiplication by a constant) in the form:

e
/ K (E.) — K°(Q) ds.
0

Again, as in the first step, we factor x(E.) — x(€2) in the integrand, apply
Cauchy-Schwartz, and use the a priori bounds (7) to obtain the desired bound
Op(e) for ||k(Q) — k(E;)||cn. Note that this implies the proposition because
[£(Ez) = 1lon = On(e). O

Proof of Corollary 2.2. We first apply a rigid motion to 9 so that it
becomes tangent to D at (1,0) and stays on the left side of the line z = 1.
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We identify the point of tangency (1,0) with s = 0. Then the parametrization
Y is uniquely determined by its curvature by the expression

(11)
79(5)2(1_/05 Sin</os ()" ds”) " /Os cos</08

Now let 6 € [0,27] be the arc-length parametrization of the boundary of the
unit disk D. We write

/ /

k() (s") ds”) ds') .

Ya(s(0)) = (r(0) cos b, r(0)sin ).

We want to show that r(0) = 1+ f(0) with f(8) = On(e) in C™ as this is
exactly what the corollary requires. Here, s() is given by

0 [}
(12)  s(6) = /0 Jr2W0) 1 ((9))2 9 = /0 A+ F0)2 + (F/(9)2 do.

We note that
f(0) = lva(s@)] - 1.

Since by Proposition 2.1 we have x(2)(s) = 1 + ho(s) with ho(s) = O(e) in
C"0, 4], by (11) we get

(13) f(0) = /14 ha(s(0)) — 1 = ha(s(0)),

with hi(s) = O(e) and ha(s) = O(e) in C™[0,¢:]. We emphasize that since
s(f) depends on f(#), we cannot immediately conclude from this equation
that f(8) = O(e) in C™. We proceed with induction. It is clear from (13) that
| fllco = O(e). For f’, we have

F10) = /(L + £(0))2 + (£(6)) hy(5(6))-
Solving this for (f’)? we get

(hy(s(9)))?
1 — (hy(s(0)))’
which is obviously O(e) because hy = O(e) in C™ for all n. Now assume
| fllcn-1 = O(e) for some n > 2. Differentiating (13) n times,

F(0)1'(9)
VL+F(0))% + (£(0))?

where the remainder term R, depends on f ), k < n—1, and hék), k < n.
From the induction hypothesis and the form of R,,, one can easily see that
R, = O(¢). Solving the above equation for f( and using ||f||c1 = O(e) and
hY, = O(e), we conclude the induction and the corollary follows. O

(f'(0))* = (1 + £(0))?

F() = hy(s(0)) + Rn(0),
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3. The loop function and its first variation

This section focuses on the iterations of the billiard map of a nearly circular
domain. Let us first introduce the billiard map and its periodic orbits.

3.1. Billiard map and (p,q)-periodic orbits. Consider a C'* strictly con-
vex billiard table €2 with perimeter ¢. We parametrize its boundary in the
counter-clockwise direction by its arc-length s. We define the phase space by

o ward9§2, i.e., the inward vectors in the unit cotangent bundle of 0€2. We

identify the phase space with
II=R/MZ x [0, 7],

and we use (s,p) for a point in II. Here, ¢ represents the angle that the
inward unit vector at s makes with the positive unit tangent vector at s, i.e.,
the tangent vectors in the counter-clockwise direction. The billiard map is a
smooth twist map on the closed annulus II. We write it as

{B:Hﬁﬂ,
/6(5790) = (51(8790)’@1(5790)) .

It is natural and convenient to lift 8 to I = R x [0,7]. We shall use (z,¢)
for points in II. We fix the lift and call it 3 by requiring that B(z,0) = (z,0).
Then by the continuity of the lift we have f(x,7) = (z + ¢, 7). We shall write

ﬁ(l’, 30) = (l’l({l}, 90)7 901($a 90))
The billiard map satisfies the monotone twist property, meaning
a(p:vl > 0.

The map B also preserves the orientation and the boundaries of I1. Moreover,
ﬁ preserves the natural symplectic form sin ¢ dz A dp on the phase space 0. A
diffeomorphism S of the annulus II whose lift B satisfies the above properties is
called a twist map. We refer the readers to [MF94] for more on the properties
of twist maps and Aubry-Mather theory.

Note that we can write

(14) B(w,0) = (x+ F(z,9),G(z, ),

where F' and G are smooth, f-periodic in the x variable, and F(z,0) =
G(x,0) = 0. We shall use fy for the billiard map of the unit disk D. One
can easily see that

Bo(x, ) = (x+ 20, ).
A point (s,¢) € II is called a (p, q) periodic point of g if B89(s,p) = (s, ) and
the orbit {7 (s, ) }o<j<q—1 winds p times around 95 in the positive direction.
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This means that for any lift (z, ) of (s, ¢), we have
B, 0) = (x + pl,p).

The ratio % is called the rotation number of (s, ). Since the rotation number

of the time reversal of a periodic orbit of rotation number g is given by L,
we always assume that 1 < p < 4. On the unit disk Ep, the (p,q) periodic

points form an invariant circle given by {(s,¢)|¢ = 7p/q}.

3.2. Expansions of the billiard map. For small angles ¢, the billiard map
B(x, @) of a smooth strictly convex domain has a useful expansion (via Taylor’s
theorem) in the form

N-1

Bz, ) x+zag 2)¢ + F(,0)e™, Y Bij(@)? + Gn(x, )"
j=1

By Proposition 14.2 of [Laz93], the remainder terms Fy and G are bounded
by 2N |[£][cn-1, where k(z) is the curvature at  and Ky is the minimum
curvargalre. The coefficients «;(z) and §;(x) can be calculated in terms of x
and its derivatives; see, for example, [Laz93] for the expressions of aq,..., a4
and By, ..., 4. In fact in certain coordinates, called Lazutkin coordinates, the

billiard map can be written in a simpler form. More precisely, if we denote
x
£= Cl/ R da!, = Cor™ ¥ (x) sin(p/2),
0

where C7 = 1/ fg 2/3 "Ydx' and Cy = 4Ci, then in these coordinates the
billiard map takes the form

&m) = | E+n+ Y aj©nn+d B |,
Jj=3 Jj=4
where the coefficient functions are 1-periodic and smooth. The infinite sums
are understood as asymptotic expansions as n — 0 and not as convergent
power series. The remarkable fact is the vanishing of the n? term in the first
component and of the n? and 1> terms in the second component. In fact as
Lemma 14.6 of [Laz93] shows, one can go further inductively and find for each
N > 3, new coordinates (u,v) in which the billiard map is written as

(15) (,v) = [ uto+ D ajwe’,o+ D bij(w)?

j>N J>N+1

Moreover, the construction of this map reveals that the two coordinates (£, n)
and (u,v) are related by

(16) &n) = (u+ v? A(u,v),v + v3B(u, v)) .



ONE CAN HEAR THE SHAPE OF ELLIPSES OF SMALL ECCENTRICITY 1095
Lazutkin coordinates can be very useful in proving existence of invariant curves
as shown by Lazutkin but also in studying periodic orbits as done in [dKW17].

3.3. Nearly circular deformations. Suppose € is nearly circular in C*.
Recall that by Definition 1.2 this means that {2 is smooth and simply connected,
and can be written as 02 = 0D + fNy, where f is a smooth function on 0D
sufficiently small in C' and Ny is the outward unit normal field to dD. This
also means that 0 is a polar curve given by r(8) = 1+ f(0), 6 € [0,27]. In
fact we will need to consider the linear deformation {€2;}o<,<;1 defined by

(17) 0Q; = 0D + 7f Ny,
or equivalently in polar coordinates, by
0 : r(r,0) =1+7f(0), 6€]|0,2n].

Hence by this notation, g = Eg = D and Q1 = 2. We denote the arc-length
parametrization of 92, by (7, s). The polar and arc-length parametrizations
are related by

(18) v(7, s(7,0)) = (r(7,0) cos b, r(r,0) sin ),

where

(19)
0 0

s(r.0) = / V(@) (7, 0) + r2(r, ) do = / TR0 + (Lt £ (9))2 do.
0 0

Remark 3.1. Throughout the paper we identify s = 0 with 8 = 0.

3.4. First variations of the deformation. The first normal variation of

09, at 7 is defined by
(20) n(r,s) = 0:y(7,s) - N(7,5),

where N(7,s) is the outward unit normal at y(7,s). We also define the first
tangential variation of €, by

(21) t(r,s) = 0:y(1,s)+T(1,5),

with T'(7, s) being the unit tangent in the positive direction.
The next lemma bounds n(r, s) and ¢(7, s) in terms of the function f(6).

LEMMA 3.2. Suppose || f|lc1 < 1. Then

n(r,s(1,0)) = Ol fllcr)  and — t(7,8(7,0)) = Ol fllc1)-
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Proof. We differentiate (18) and obtain

(22)

Or(y(7,5(7,0))) = (f(0) cos O, f(0)sin0),

(23)

O (y(1,8(7,0))) = (7£'(0) cos 0— (1+7f(0))sin @, 7f'(0) sin O+ (1+7£(0)) cos §).

In particular, from (23) we find that the unit outward normal is given by

N(1,s(r,0))

(tf'(0)sinf + (1+7f(0 ))0089 —7f'(0)cos@ + (1 + 7f(6))sinh)
VPO + (15 7 10) |

On the other hand,
(0:7)(7,5(7,0)) = 0-(y(7, 5(7,0))) — Ors(7,0)(97)(7, 5(7,0)),
which using 057+ N =0 and 9s7v+T = 1, implies that
n(r,s(7,0))) = 0-(v(7,s(7,0))) - N,
t(r,s(7,0))) = 0-(v(7,5(7,0))) « T — O-5(7, 0).
Thus by (22) and (23), we get

fO)A+7f(9))
n(r,s(1,0)) = )
(7o) VTE0) + (L4 7/(0))2
Tf’( )f(0)
T,8(7,0 — 0,8(7,0).
Hr(r0) = gt D ey = 0r(0)
The lemma then follows easily from 0:s(7,0) = O(||f|lc1)- O

3.5. Loop function and its first variation. Our primary purpose in this
section is to study the (1, q) periodic orbits of Q,, hence in particular = Q,
in terms of the ones of D. The main ingredients will be the loop functions and
their linearizations in 7. We start by the following theorem that introduces
what we will call the loop angle.

THEOREM 3.3. Let 0Q = 0D+ fNy be nearly circular in C%. There exists
g0 > 0 sufficiently small such that if || f||ce < €0, then for each T € [0,1], s on
0Q;, and q > 2, there exists a unique angle @4(7,s) € (0,m) such that the orbit
starting at (s, pq(T,5)) and making q reflections, winds around the boundary
once in the counterclockwise direction, and returns to s (not necessarily in the
same direction). Moreover, pq(T,s) is smooth. We shall call pq4(T, s) the g-loop
angle of €.

Remark 3.4. In [RR06] and [PRR13], a similar statement is proved, how-
ever since the proof is based on the implicit function theorem at 7 = 0, the
above theorem is obtained only for 7 small, and for ¢ near 7/q, which is the
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g-loop angle of the disk €y. The size of the neighborhoods of 7 = 0 and
¢ = m/q are not estimated in these references. To do this, one probably needs
a quantitative implicit function theorem. (See, for example, the online notes
of Liverani [Liv].) In this paper, we take a different route and estimate the
g-iterations of the billiard map more directly.

In fact, for technical reasons, we will need a stronger result as follows.
Below, £, is the perimeter of ).

THEOREM 3.5. Let 0Q = 0D + fNy be nearly circular in C°. There
exists g > 0 sufficiently small such that if ||f||ce < €0, then for each T €
[0,1], s and ' on OQ, with |s — §'| < 1%0’ and q > 2, there ezists a unique
angle ay(7,s,s") € (0,m), such that the orbit starting at (s,cq(T,s,s’)) and
making q reflections winds around the boundary approrimately once in the
counterclockwise direction and ends at s. The function ay(7,s,s") is smooth in
(1,8,8).

Here, by “winding around the boundary approximately once in the coun-
terclockwise direction,” we precisely mean that if x and 2’ are lifts of s an s’
with [z —a'| < £,/100, then 32(x, oy (7, z,2')) = &’ +£,, where S, is the natural
lift of the billiard map of 2.

We will give the proof in Section 3.6. In the next few pages we draw some
important consequences of these theorems.

Note that by our notations, on the diagonal s = s’ we have ag(7,s,s) =
q(7,8). We shall call the angle ¢4(7,s) the g-loop angle at s. We will use
@q(s) for the loop angle of 2 = Q instead of ¢,4(1,s). Obviously the loop
angle satisfies

Bq(‘g? qu(’n 8)) - (87 @q(Tu S))
for some angle @4(7,s). The following lemma is then immediate.

LEMMA 3.6. The point (s,¢) is a g-periodic point of O if and only if

©q(8) = Pq(s) = .

We now define the main ingredients of this article, namely, the ¢-length
function and its first variation. For the rest of the paper we assume that || f|| s
is small enough so that Theorems 3.3 and 3.5 hold.

Definition 3.7 (Length and loop functions). Let Q be C sufficiently close
to the unit disk Ep, and let ¢ > 2. The g-length function ¥,(s, s’), defined on
|s — s'| < £,/100, is the length of the unique ¢ times reflected geodesic form
s to s’ defined in Theorem 3.5. The g¢-loop function L,(s) is the length of
the unique ¢-loop at s defined by Theorem 3.3, i.e., Ly(s) = ¥,4(s,s). More
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precisely, if v(s) is the arc-length parametrization of 2, then

—_

g—
(24)  Wyls,s) =) (i) =v(s5)ll, 55 = Proju (s, aq(s, s')),

(25) Ly(s) = Z Iv(sj41) =7(sp)ll, 5 = Proji# (s, q(s))-

Note that since a,(s, ') is smooth, U, (s, s") and Ly(s) are also smooth. Corre-
spondingly, we denote the g-loop functions of the deformation Q. by L,(7, s).

The following lemma, although simple, gives a very useful characterization
of g-periodic orbits in terms of the g-loop function.

LEMMA 3.8. We have
{(s,q) €1L; (s, ) is g-periodic} = {(s, ¢q(s)); Lg(s) = 0}.
In other words, g-periodic orbits correspond to the critical points of L.

Proof. Consider the loop {(sj,?;)}o<j<q (not necessarily a periodic orbit)
generated by (s, ¢q4(s)), meaning

(s5,05) = B (s,04(5))-

By this notation, (sg,%0) = (s, ¢q(s)) and (sq,¥q) = (s, Pq(s)). Differentiating
Lq we get

qzl <d8]+1 dy ds; d’y( )> v(sj+1) — v(s5)

2\ @) T 3w ) ) =)l
q—1
ds;i1 ds;
= cosVjp1—2 —cosﬂjd—sj
7=0
d dso
= cos d—i — cos Yy dss

= cos g — cos Vp.

This shows that s is a critical point of L, if and only if 9 = 9,4, which by our
notation means ¢4(s) = @q4(s). O

Next we define the first variation of L,.

Definition 3.9. Let £, be a deformation of the unit disk as in Theorem 3.3
so that the loop angles and loop functions are defined. For each g > 2, the
first variation of the ¢g-loop function is denoted by M, (7, s) = 0-Lg(7, s).

More explicitly, we have
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LEMMA 3.10. Let n(r,s) and t(7,s) be the first normal and tangential
variations of 02 defined by (20) and (21), and let {(s;(7,s),V;(,s)) ?:0 be

the q—lOOp genemted by (Svsoq(T’ 5))7 i'e-v (Sj(7—7 S)’ﬂj(Ta S)) = Bi(svgpq(’r’ S))?
where B, is the billiard map of Q)-. Then
My(1,s) =n(r,s) ( sin @4 (7, 8) + sin g (7, s))

+t(7, s) ( €08 @q(T, 8) — cos @4 (T, s))
qg—1

+2 Z n(t,s;(7,s))sinv;(s, 7).

=1

J
In particular, when (s, pq(T,s)) corresponds to a g-periodic orbit, i.e., pq4(T, s)
= Pq(T,8), we get

[y

My(1,s) =2 n(r,s;(7,s))sind;(s, 7).
J

Q

I
o

Proof. For simplicity, we use s; and 9; for s;(7,s) and ¥;(7,s). We then

write
-1

Ly(r,8) = ) V(7 8541) = (7, 85)]-

2

.
Il
o

Taking the variation we get

q—1
V(7 5j4+1) — (T, 55)
O Ly(7.5) = 3" (D s31057 (72 5741) — s 8,05y 5,)) -
o790 = 2 OB (r0300) =) o
q—1

TS _ 7.5:)) - 7(775j+1)_'7(7—a Sj)
+]Z%(87"7( ) j+1) 67"7( ) j)) ”’Y(T,SjJrl)_'Y(Ta Sj)H‘

Let us denote the two sums by 31 and >3, respectively. For ¥, a similar
computation as in the proof of Lemma 3.8 shows that
q—1
X1 = Z €08 Vj41078j41 — cos¥;0r5; = cos¥q0r54 — cos UgOrSo.
§=0
However, because s4(7,s) = so(7,s) = s, we get 31 = 0. For X, we rearrange
the sum into

q—1
_ v(7,85) = ¥(7,85-1) B Y(7,8541) — (7, 55) . .
2 <||’Y(T’ sj) — (7, sj-1)]| lv(7,8541) — (T, SJ)”> 9ry(. 55)

,Y(T7 SQ) _ ,Y(T’ Sq—l) _ ’Y(T, Sl) - ’7(7—’ SO) . T,S
<”7(T’ sq) — Y1y sq=)|l - [lv(7ys1) — (7, 50)H> 0ry(T, 50).




1100 HEZARI and ZELDITCH

Now let N(7,s) and T'(1,s) be the unit outward normal and unit positive
tangent of 0€); at s, respectively. Then
qg—1
Yo=Y 0:v(7, ;) (N(7,85) sind; +T(7,5) cos ¥+ N (7, s;) sind; — T(7, s) cos V)
1

J
+0:7(7,50) * (N (7, 50) sin g +T(7, s0) cos ¢+ N (7, 50) sin g — T'(7, s9) cos ¥ ,

and the lemma follows by noting that ¥y = ¢,(s) and ¥y = @4(s). O
The following estimate on M, will be useful.

LEMMA 3.11. For sufficiently small || f||c,, we have My(T,s) = O(|| fl|c1)-
Proof. By Lemmas 3.10 and 3.2, we get

qg—1
My(r,s) = | 1+ 9;(5,7) | O fllen)-
j=1

By (28), for sufficiently small || f||¢c,, we get Z?;i 0;(s,7) < 3l max k. < 3m.
(]

3.6. Proof of Theorem 3.3. Let Q,, 0 < 7 < 1, be as in the previous

section, meaning
0 = 0Ey + 7f(0)No,

where Ej is the unit disk and f(6) is a smooth function. We will always use
the notation ¢; = length(d);). Instead of the billiard maps S, it is more
convenient to use the natural lifts BT because they are all defined on the same
space II=Rx [0, 7]. To prove Theorem 3.3, we need to study the g-iterates B?,
but before doing this we need the following important perturbative lemma for
B;. We recall that So(z, ) = (z + 2¢, @).

LEMMA 3.12. Let ||f||ce < 1, and let ||f||c2 be sufficiently small. Then
Br(x,p) can be written as
Br(z,0) = (x+ 20 + Pr(z,0), ¢ + Qr(2,0)),
where P and Q, are analytic families of ¢, periodic functions in x and

B4, k=0,1: 0L005P(2,¢0) =" *O(|| fl|cs),

ij k=011 9.0195Q-(x,0) = > FO(|fllco),
uniformly for x € R, ¢ € [0,5] and 7 € [0,1]. When ¢ € [, 7], we need to
replace p with m — ¢ in the above estimates.

Remark 3.13. We do not claim that C% is the optimal choice here. In fact,
probably C* is sufficient, however since C% is more than good enough for our
main theorem, we do not attempt to optimize this lemma.
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Proof. By symmetry, it is enough to prove the lemma for ¢ € [0, 7], hence
we assume this throughout the proof. Let B be the lift of the billiard map of
a strictly convex domain (), with B(aj, 0) = (x,0). Also, let k be the curvature
function of 092. By Proposition 14.1 of [Laz93|, we know that if we define

(1, 1) = B(z, ),

then
1 z’
(26) / sin (go - / /ﬁ(x”)dx”) dr' =0,
x xT
1
(27) Y1 = / k(z")dz' — .
x
Moreover,
(28) p<m —x< ©,
Kmax Kmin
(29) 2 S ©1 S (2"£max//ﬁ3min - ]-) @Y.

2"5max/’imin -1
Now consider the the deformation 92, 7 € [0,1]. By our notation,

(z1,91) = Br(@,9) = (z + 20+ Pr(z,0), ¢ + Q- (z,9)).

Since

(30) rr =1+ O(|fllc2),

by (28) we obtain

(31) Pr(2,0) = 21 — 2 = 20 = ¢O([[ fllc2)-

Next, as in [Laz93], we study P; (sometimes we write P) as an implicit function
defined, using (26), by

1 z+t(2¢+P)
(32) I(r,z,¢,P) = / sin <<p — / RT(I',/)CZJ}//> dt = 0.
0 x

Let us compute |0pI| and estimate it from below. We have

1 a+t(2¢0+P)
—opl = / cos (cp - / nT(x/’)dx//) kir(z+t(2¢ + P)) tdt.
0 T

By (30) and (31), we get

1 T+2tp
—0pl = / cos <<p - / dl‘”) tdt + O([| fllc=2)
0 x

_ /0 cos(ip(1 — 2t)) tdt + O(||f|c=)

sin

= (@) 2).
o> (I fllc2)
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Since for ¢ € [0, 5] we have SmT“’ > 2 we obtain that for ||f||cz sufficiently

small, uniformly for 0 <7 <1,0 < ¢ < 7, and z € R, we have
1

(33) |opI| > —.
T

Consequently, by the implicit function theorem there is a unique P;(x,¢) sat-
isfying (32) and it is differentiable in 7, x and . Moreover,

0. P, = — 21

opl>

(34) Op Pr = _3;257
Op1

0P, = Yk

On the other hand, since Py(z, ) = 0, we have Pr(z,p) = TP (z,0). But
since P-(x,0) = 0, we have P;(z,0) =0,

Pr(z,¢) = ToR: (2, 0).
In fact

11
R-(z,p) = / / (0-0,P)(ut, x,vp)dudv.
0o Jo

Here, to ease the notation for the integrand, we have set P(7,x, ¢) := Pr(z, ¢).

Similarly, for @, we know that Qo(z, ) =0, so Q- (z,¢) = 7Q-(x,p). It
is known by the asymptotic expansion of the billiard map near ¢ = 0 (see, for
example, page 145 of [Laz93]), that

QT(xv 0) = agoQT(fEa 0) =0,
so we must have
Qr(z,0) = T¢*Sr (2, ).

By the integral remainder formula of the Taylor’s theorem, we have

Sr(x, ) = ;/01 /01(1 - U)(arazQ)(UT,x,vw)dudv.

Again, here for convenience we have denoted Q(7,x,¢) := Q,(x,¢). Thus, to
prove the lemma it suffices to prove the estimates

(35) kWILP = O(||fllcs), i=1,2j=0,1;k=1,23
and
(36) 0ka10iQ = O(|fllcs), i=1,2;=0,1;k=2,3.

We first show the estimates for P. An important observation is that for n < 4,
s () = O llonss)-

One then immediately sees by (32) that
o1 = O(|flle2), i =1,2.
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Furthermore, by taking derivatives with respect to x, ¢, and P, we get
Op OO = O(||fllcs), i=1,24+k+m<5.

The estimates (35) can be concluded by differentiating the first equation of
(34), then using the lower bound (33), and the above estimates for the deriva-
tives of I.
The estimates for () follow from the ones for P, and the relation
z+2p+P(7,7,9)

Q(t,z,¢) = / fir (2')dz" — 2,

x

which is obtained from (27). O

Equipped with Lemma 3.12, we are in position to start the proof of Theo-
rems 3.3 and 3.5. Let BT be the lift of the billiard map of 02, = 0Ey + 7f Ng,
and let Proj; be the projection onto the x component of II = R x [0, 7]. Our
strategy is to show that

zq(T, 2, p) = Proj Bi(z, ¢)
is strictly increasing as a function of ¢ on the interval [0, C/q]. More precisely,

THEOREM 3.14. For any C > 0, there exists €9 such that for all pertur-
bations 02, = 0D + T f Ny of the unit disk D with || f||cs < eo, for all ¢ > 2,
0<7<1,2z€R, and ¢ < C/q, we have

Orag(1, 7, 0) = qpC** O(|| fll o),
Opy(T,2,0) = 2q + qC**O(|| f|| ),
and
2q(T, 2, 0) =z + 290 + gpC?*CO(| || co)-

Note that the last statement follows by integrating the the second state-
ment and the fact z4(7,2,0) = . Before proving this theorem, we need to
state and prove a lemma and its corollary.

LEMMA 3.15. Let C > 0 and § > 0. Suppose p < C/q. Then for ||| cs
sufficiently small in terms of C and 9§, we have that for all x € R and 7 €
[0,1], all angles of reflections of the orbit {Bﬁ(ﬂ:,(p)}?zo are bounded above by
C(149)/q. Moreover, if ¢ > C/q, then all angles of reflections are bounded

c

from below by T+

Proof. Let ¢; be the j-th angle of reflection. We shall prove by induction
that for all 0 < 5 < ¢, we have

C( A>j
37 i< —|1+—
(37) Pj q q
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where A > 0 is chosen such that e = 1+ . Once proved, this estimate would
imply the lemma immediately because
AN 1446
C (1, 4)' < Cr COLD)
q q q q
The estimate (37) is obviously true for j = 0 by assumption of the lemma.
Assume it is true for some j > 0. Then using Lemma 3.12, we have
pi+1 = ¢; (1+ ;0 fllce)) -
Therefore, the proof is concluded if we choose || f||cs small enough (in terms
of C' and ¢) so that

@i Ol fllcs) < (I flles) <

The second statement follows from the first. O

C(1+9),

IS

As a corollary we have

COROLLARY 3.16. For || f|ce sufficiently small, all angles of reflections

of a g-reflected path in Q, from x to x’ with |x — 2/| < % are less than g—g.
In particular, all angles of reflections of q- loops of winding number one are

bounded by g—g.

Proof. By definition of a g-reflected path from z to 2/, we have z4(7, z, ) =
2’/ + £;. Let § > 115, to be determined later. Since ¢; = 21 + O(|| f||¢c2), if we
define
Tj (T7 z, 90) = PI‘OjL@;,].(.T, ()0)
for small enough || f||c2 in terms of J, there must exist 0 < 5% < ¢ — 1 such
that

-z 4l - 2(1 4 6)%x

q q
By (28), for sufficiently small || f||ce (in terms of §), we get = < %_ We
then start with the point (z;+,;+) in the phase space and apply the billiard

Tjx41 — Tj* >

map f3-, g—j* times, and we apply its inverse -1, j* times. Using Lemma 3.15

4
we obtain ¢; < W, which is less than ?Q’—Z, for example, for § = 1—10. O

Proof of Theorem 3.14. To obtain estimates on the ¢ and 7 derivatives of
zq(T, x, p) we take its difference with the corresponding function for the unit
disk and differentiate with respect to ¢ and 7 and denote it by A(z, ¢), i.e.,

Ag(7,2,0) = 0:0, (Proj, 8(x, ) — Proj B (z. ) .
Recall that BT is the billiard map of €2, and Bo is the billiard map of the unit
disk D = Ey. Since
Bi(z, ) = (z + 2q9,¢),
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we have
0-9,Proj, B (x, ¢) = 9,(2q) = 0,
so in fact
Ay(r..0) = 0,0, Projy H(z, o).
We claim that that for all 7 € [0,1], x € R, and ¢ € [0, %],
Ay(r,m,0) = C?e“qO(| fl| co)-

To prove this, we write

q—1
87880Pr0j1187q(x790 0 PrOJl Z . o TBT Bg_j_l(aj7¢)
(38) -
H ZDﬁ” (DO-f;) 0 DB (x, ) m

By Lemma 3.15, all angles of iterations are bounded by 2C'/¢q. By Lemma 3.12,
we have uniformly for all T € [0,1], ¢ € [0, %], and r € R,

. [1+C0(flles) 2+ O(Iflles)
DBT(a:,tp)—[ C2o(|flles) 1+%O(Hfﬂcc)
and
. [ Cofles)  O(Iflles)
(39) Daﬁf”’”‘[“@(ﬂﬂb@ CO(lfllcs)

We shall need to estimate the powers of the matrix Df;. Breaking it into the
diagonal and the off-diagonal part, and factoring the diagonal part, we see that

N c j 0 4+ 0(Ifllee) 1Y
(40) |DBI| < <1+qO(HfHC6)> <I+ [ G O(|fllcs) 0 D '
Let us denote
b [ 0 4+ O(|| flles) |
=O(lfllcs) 0 ]
We note that -
g | GOl 0
0 Zo(lfles) |

By the binomial expansion,

J . [5/2] (G—1)/2] .
_ 2k 2k;+1
(I + B) _Z( ) Z<2k>3 + Z (2k+1) .
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Thus,
[7/2] 2%k ((5-1)/2] , 2%
C j C
(I+B) < Z <2k) O(IfllE) T+ (% N 1) O(IlflIg) B.
k=0

We choose || f||ce small enough so that all O(||f||%s) terms are bounded by
one. To estimate the second sum we note that for any a > 0,

Z J o2k — (I1+a) —(1-a) < i(1l+a)
P 2k+1 2a

Hence,

| 1+C)
£(14%)
Plugging this into (40), we get

. C\¥[ 1 105
o3 < (1+9) [C H.
q

Inserting this estimate into (38) and using (39), we arrive at

. 2 1 0771 10
0,Proiyfie o) < (14 M [ J]
q

<
/~
—_

7=0
c o
[c é] [é v ”] m Ol les)

< C?q0(| fllcs)-

The theorem follows by integrating this with respect to ¢ and 7 separately,
and the facts z4(7,2,0) = z and z4(0,z, p) = z + 2q. O

For future reference we record that our estimates also show the following
bounds for the ¢ derivative of ¥,(7,z, p) = Proj,51(x, ¢), where Proj, is the
projection onto the second component.

LEMMA 3.17. We have 0,94(T,z, ) = 1+ C?e2CO(|| f||cs).
3.6.1. Concluding the proof of Theorems 3.3 and 3.5. Theorem 3.14 shows

that x4(7, z, ¢) is monotonically increasing in ¢ on [0, 37/2¢] and
q(7, 4, 9) = = + 299 + qpO(| fllce)-
Since z4(7,z,0) = 0, and because for sufficiently small || f||ce,
zy(1,2,3m/2q) = v + 31 + O(|| fllcs) > 2’ + €7,

by the intermediate value theorem there must be a unique ¢ = oy(7,z,2’) <

37/2q such that
zo(T,x, a4(T,2,2")) = 2’ + 4.
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By the implicit function theorem, aq(7,z,2’) is smooth in (7,z,2"). This
together with Corollary 3.16 conclude the proof of Theorem 3.5, thus also
Theorem 3.3.

4. Length spectrum

Let © be a smooth strictly convex domain. For 1 < p < we denote

q
Ly.4(82) to be the set of lengths of periodic orbits of type (p,q), 2i.e., periodic
orbits that make ¢ reflections and wind around the boundary of €2, p times, in
the counterclockwise direction. The length spectrum of €2 is
L(£2) = closure U Lyq(82).
1<p<q/2

We also denote T, and ), to be the sup and inf of £, ,(Q2), respectively.
Marvizi-Melrose [MM82] proved that for a fixed p, as ¢ — oo, one has

(41) Tpq = lpg = O(g "),

and moreover, there are constants cy ,(€2) such that
o0

(42) Ty~ pl+ > crp(Q)a %,
k=1

where / is the perimeter of ). Note that this in particular shows that natural
integer multiples of ¢ belong to the length spectrum as they are limit points of
closed geodesics.

The Mather function B(w) is a strictly convex function on [0, 3] (see, for
example, [MF94], [Sib04]) whose values at the rational numbers are given by

(43) B(p/q) = _;Tpﬂz-

The following lemma will be useful for us. From now on we shall use T;, = T1 4
and t4 = t14.

LEMMA 4.1. The sequence {Ty}q>2 is strictly increasing to £, and its gap
sequence

{TqH - Tq}q22
1s strictly decreasing.

Proof. Since B is strictly convex, the slopes must strictly increase on its

graph, hence
8(z1) —8(z2) _8() -8(z)

i 1 ) 1 :
G+l g+2 q gt
The lemma follows quickly by (43). O

Remark 4.2. One can try to prove this using the asymptotic (42), however
this method would only prove the lemma for large q.
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For our purposes we will need the following rough, but quantitative, ver-
sion of estimates (41) and (42):

LEMMA 4.3. Let 00y = OEy + 7fNg be a nearly circular deformation
in C%. Assume that ||f|lcs < 1 and that ||f||c2 is sufficiently small so that
ke =1+ O(|fllcz) > 5. Then uniformly for T € [0,1], we have

(44) Ty =ty =gq0(|fllce) +Ola™),

1{ (" ’
@) L=t ([TRPe®) ol + 06
0

Here, the constants in all O remainders are universal.

Proof. We provide a proof using “Lazutkin coordinate” and the Euler-
Maclaurin formula. Note that this is a quantitative version of a result in
[MMS82] that was not obtained in this reference.

It is sufficient to prove this lemma for 7 = 1. We shall use {2 for €, k for
k1, and £ for ¢;. We first recall the Lazutkin coordinate that is a diffeomor-
phism from R/¢Z to R/Z defined by

5 12/3(4Nds'
(46) ¢ = %,@4
Jo K¥/3(s")ds'

Here we have used ¢ instead of x, the later being the standard notation for
the Lazutkin coordinate, to avoid confusion with our x used for the lift of s
to R. The periodic orbits of type (1,¢q) in © have a rather nice description in
the Lazutkin coordinate. To present this feature, let {(s;, goj)}g;(l) be any such
periodic orbit, and let {¢; }?;é correspond to {s; }?;(1) in Lazutkin coordinate.
From Appendix A of [dKW17], one can show that there exists a 1-periodic
smooth function « defined only in terms of x, with ||a|cm = O(|[(1/£) ||cm+1),
such that

a(&+j/9) , OU1/E) )

q? gt

(47) 5j=go+g+

We note that by our lower bound assumption x > %, we can replace the term
O(||(1/k)||c3) in the remainder by O(||x'[|c3) = O(||f]lcs). We shall use (47)
to find an asymptotic for the length T' of the orbit {sj}‘;;(l). Let s(£) be the
inverse function of £ = £(s) defined by (46), and let 5(§) = v(s(§)). We write

q—1 q—1
T =Y Iv(s1) = ()l = Y I13E+1) = AEI-
j=0 Jj=0
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Inserting (47) and using the mean value theorem,

q—1 . .
- +1 +U+1
T 7<£O+J At (12 )/q)>
= q q
- ' +
5 (to+ 4 2@ | O )
q q q
For the sum, we shall use the Euler Maclaurin formula, which asserts that if
g(€) € C*°[0,1] and g™ (0 ( ) = g (1) for all k£ > 0, then for all m > 1,
-1 1
9/0) = | 9(de + Rnlo)
=0 0
with )
| Rin(9) g™ (€)lde.
In our situation, we have
+&+1 a(&o +
9(6) = (£o+£+ oo qf /q)> (£o+§+(&;2 f)) ,
which is a smooth 1-periodic function on [0,1]. Thus if we choose m = 4, we
obtain
1
+1/q . «
T:q/ <§+ +(§2/)>—7<§+(§)>Hd§
0 q q
O+ fllcs) , O(lfllcs)
4 + 3 :
q q
Taylor expanding the integrand we arrive at
o1+
Py @ 2y @ OUflles) | 00+ Iflle)
q q q q q

3
It is clear that ag = fo 17/ ()||d¢ = €. That a3 = 0 and ay = %(f /<;2/3)

-1

follows from [MMS82]. Since by (42) only even powers of ¢~ appear in the

expansion, we must have ag = O(|| f||¢s), so

rory @y Ollen) | O0+1fllce)
q q q
4.1. A proof independent of [{KW17]. The proof of (47) in [dKW17] is
given under the assumption of axial symmetry. However, this assumption is
not essential, even for the proof in [dKW17]. For the sake of independence, we
present another proof of Lemma 4.3, at the mild cost of replacing || f||cs with
I fllc7, and || f]|cs with || f]|ce in the lemma.

For the proof of Lemma 4.3, we only need a weaker statement than (47),

which states that there exist 1-periodic smooth functions a; and as defined
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only in terms of x, with ||aq[|em =O(||(1/k) ||cm+1), |az|lcm =O(|(1/K)||gm+2)
such that

S | | ,
{j::&r%é_kﬂl(&gj]/Q)+_@2(&g:J/Q)+KDU(1éj)”CSX

We emphasize that the results of [{KW17] imply that ay = 0, but we do not
need this stronger statement. Assuming (48), the proof of Lemma 4.3 follows
line-by-line as before, but at the end we would obtain
@] o1+
roee sy Qo) | 00 Vi)

So if throughout we assume near circularity in C*, the rest of the proof goes

1<j<q-1

through without modification.

To prove (48), we shall use Lazutkin coordinates of order 5 as defined in
(15). Let (u,v) be such coordinates. Then the billiard map is of the form
(49) B(u,v) = (u+v+v°a(u,v),v + v%(u,v))
for smooth functions a and b that are bounded by O(||(1/k)||cz). These
bounds follow from similar bounds for the derivatives of the billiard map in
(s, ) coordinates, and also from the construction of the coordinates (u, v) from
(s,¢), which are provided in [Laz93, Prop. 14.2, Lemma 14.6].

Let (ug,vg) correspond to a (1,q) periodic orbit, meaning [B9(ug,vy) =
(up + 1,v9). By (49) and finite induction, we obtain

uo + quo + ¢O(Jwo*[[(1/8) | os) = uo + 1.
This implies that
1
vo + O(|vo[(1/K) lles) = 7

which in turn gives vy = % + W.

Now for each 1 < j < g, let (u;,v;) = 39 (ug,v0). Then by finite induction
on j, we can show that

O(|(1/K)|lcs) v = L OUIA/R)llcs)
¢t ’ T yg ¢t ’

In the final step, we recall from (16) that (£,7) and (u,v) are related by
&mn) = (u +v?A(u,v),v + v3B(u, v)) ,
where A and B are smooth and
[Allem = O(I(L/£) llgm+1), [Bllem = O(I(1/8) | gm+e).

If we write

Uj:U0+l+
q

A(u,v) = Ao(u) + Ar(u)v + O(||(1/K) | cs) o],
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then
A +J A +7 O(|(1/r)
€)=y 02 A ) — o A0 00 +310) Ao+ 3/) | QU )
q q q q
Writing ug in terms of & and 7y, we obtain (48). O

We now focus on the part of the length spectrum that is less than the
length of the boundary. While this does not inclusively correspond to (1,q)
periodic orbits (consider a very thin ellipse for example), as we show it does
for nearly circular domains.

LEMMA 4.4. Let Y be a (p,q) periodic orbit with p > 2 of a nearly circular
deformation Q. of D in CS. Then for ||f||cs sufficiently small, the length of
T is bounded below by £;, uniformly for T € [0,1]. Hence, in particular,

(50) L) N(0,6:) = | L14().

q>2

Proof of Lemma 4.4. Proposition 5 of [Ami96] would imply this lemma
easily, however the proof of [Ami96] is not correct. Hence we give an indepen-
dent proof by means of variations.

To clarify the idea, we first verify Lemma 4.4 in the case of the unit disc D.
It is well known that every link of a billiard trajectories of D (not necessarily a
periodic trajectory) intersects the boundary with the same angle of incidence
say . One can then easily verify that length of each link is 2sin ¢, thus if the
trajectory makes ¢ bounces, its length must be 2¢sin ¢. The angle for a (p, q)
periodic orbit on a circle is given by ¢ = gw. Therefore, the length of a (p, q)
orbit on the circle is 2¢ sin gﬂ'. Since sinz > 2z on the interval [0, 7/2], we get
2qsin§7r > 4p > 2w for p > 2.

Now let 92, = D + 7f Ny be a nearly circular deformation of the unit
circle 9D with f sufficiently small in C%. We wish to approximate the lengths
of (p,q) periodic orbits of 02, by the ones of the disk dD using a variational
method. Let (xg, o) be an initial point in the phase space of 992, of a (p,q)
periodic orbit of 5, with p > 2. We keep in mind that ¢ > 4 because % < %
Since we can choose ¢y € [0, 7/2] (otherwise consider m—¢yp), there is a unique
ko € {0,1,2,...,q} such that

(ko — $)m - (ko + 3)m
2q - 2

We first claim that kg > 4. To prove this let (x;(7), ¢;(7)) = B (0, o) with
0 < j < gq. Since (xg,¢0) is a (p, q) periodic orbit, we have z4(7) — xo = pl-.
Suppose kg < 3. Then by Lemma 3.15, for a given § > 0, we get ¢;(7) <
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%{;ﬂs) for sufficiently small f in CS. In particular,

(1490
) < 0D
On the other hand, by (28) this sum must be larger than or equal to

1-90 _ pl(1-9)
B (z¢(T) — w0) = 9

which leads to a contradiction for ¢ small.
From now on we assume ko > 4. We consider the (partial) orbit

{(;(7), 05(1)}ilq

> 27(1 — 0)?,

in Q,, where we define
4 .
. [;73] +1 if ko> 5,
if ko =4.

One can easily verify, using ¢ > ko > 4, that ¢o never exceeds q. As a
result, a lower bound for the length of this partial orbit provides a lower bound
on the length of the desired full orbit {(z;(7), p;(7)) ;1-:0. So let us set

qo—1

b(r) = Z V(7 21 (7)) = (7, 25 (7))

Obviously for the case of the unit disk D, i.e., 7 = 0, we have b(0) = 2qo sin @y.
By the mean value theorem, for all 7 € [0, 1],

(51) |b(T) — 2qosing| < sup [9-b(7)|.
T7€[0,1]

We compute the variation of b(7) in the same manner as in the proof of
Lemma 3.10. We first write

go—1
7(7-7 wj-i—l) - 7(7-7 ‘Tj)
O:b, = 0rxi+10sY(T, 5 — 0, x;0sy(T,24)) *
2 (Orpadia(nasn) = draidotra)) Py o
-1
+%Z (01 (r.w541) = Br(r,,)) - AL 02
2 1t T ) Al

Denote the two sums by 1 and Yo, respectively. For Y1, a similar com-
putation as in the proof of Lemma 3.8 shows that

qo—1
D= c0os9j1(7)0rw41(7) — €08 @ (T)0rw5(T) = €08 gy (T)Dr gy (7).
§=0
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For Yo, following the proof of Lemma 3.10, we obtain

Y9 = 0-y(7, w0) + (N (7, 20) sin g — T(7, z0) cos o)
+ 0:v(7, q) + (N (7, 24) sin g + T(7, 24) cos ¢q)

go—1

+2 Z O:y(T,25) « N(T,2;) sin@;
j=1

= n(7,x0) sin g — t(7, 20) cos o + n(T, 24, (7)) sin g, (1)
+ (T, Lqo (7)) cos Pqo (7)

go—1

+2 Z n(r,x;(7))sinp; (7).
j=1

Let us estimate || and |X3]. Since

(k0+%)7T< 47
2¢ T q-1

v <

by Theorem 3.14 we have

21| < 10724, (7)] < Craowol| fllcs < 87Chl| fllcs,

where (' is universal constant.

To estimate |Xa| we first observe that by Lemma 3.2, each n(r,z) and
t(7, x) is of size O(||f||c1)- On the other hand, by (28) and Theorem 3.14, for
| fllce small enough, we get

qo—1 qo—1 146
D Ising; (1)) < Y () < 5 (2qo(7) = 20) < 2(1+9) qowo < 327.
Jj=1 Jj=1

Revisiting inequality (51), we have just proved that

b(1) = 2qosin o + O(|| fllcs)-

. ko—12
Since g > ( 02q2)7r, we get

4 4
b(r) > %wo +O(Ifllcs) = 8 — Wt O(|fllcs) = 7+ O(| fllcs),

which is strictly larger than ¢, = 27+O(|| f||c1) for || f||ce sufficiently small. [

In the next section we study the (1,¢) length spectrum in terms of the
g-loop function and its first variation.
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4.2. Length spectrum and loop functions. Let 0. be as in the previous
sections. It is then obvious from the definition of the g-loop function L4(7, s)
that

(52) L1,4(2;) = critical values of Ly(7, s).
Thus, in particular,

Ty(7) = max Ly(T,s), te(7) =minLy(7,s).
The following lemma will be very useful for small values of ¢:

LEMMA 4.5. For all ¢ > 2, uniformly in 7 € [0,1] we have

Lq(s) = 2gsin(m/q) + O([| fllcs)-
In particular,
Ty(7) = tq(1) = O([| fllcs)-
Proof. By the mean value theorem and the definition (3.9) of My, we have

|Lq(7,8) = Lg(0,8)] < sup |0;Lg(7,5)| = sup |Mg(,s)|.
7€[0,1] T€[0,1]
However, for the unit disk, the loop function is constant. In fact Ly(0,s) =
2gsin(m/q). Also,
Ty(1) — ty(7) = max Ly(7,s) — min Ly(7,5) <2 sup |My(r,s)]|.
T€[0,1]

The lemma follows quickly from Lemma 3.11. (]
Let us now state a key structural result for the ¢-length spectrum.

LEMMA 4.6. Let 090 = 0D + 7f Ny be an e-nearly circular deformation
in C% i.e., ||fllce = O(e). In addition, assume that ||f||cs < 1. Then for e
sufficiently small, the g-length spectra L1 4(§2;) are disjoint for distinct values
of ¢ > 2. Moreover, there exists gy uniform in T and f such that

(a) For q > qo,

) 1
(53) tg+1(7) — T4(7) = min L4 441(Q;) — max £ 4(Q,) > 710((] TR
1
~ 100(q + 1)3°

(b) For 2 < q < qq, for sufficiently small || f||c2 that is uniform in 7, we have

(54) Ty(1) — te(7) = max L1 4(Q-) — min Ly 4(Q)

(55) tg+1(7) — Ty(7) = min £y 441(Q2;) — max Ly 4(2) > 117—8,

(56) Ty(1) — te(1) = max L4 4(Qr) —min Ly 4(2;) < 17)00’
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where

(57) no = 2(qo + 1) sin(7/(qo + 1)) — 2qo sin(7/qo).

Remark 4.7. We note that the estimate (54) is rather rough. In fact
one has estimates of the form O(q~"), but this would force us to use more
derivatives of f, which will be unnecessary for our purposes.

Proof. 1t is obvious from Lemma 4.3 that we can find a universal gy (hence,
in particular, uniform in 7) so that estimates (53) and (54) hold true. In fact
we choose || f||ce small enough and gg large enough so that the remainder terms
in Lemma 4.3 satisfy

(5%) O lles) + O ™) < 7o a+ 1)

Estimate (56) follows from Lemma 4.5 by choosing || f||c2 small enough in
terms of the universal constant 79. It only remains to prove (55). For this, we
note that using Lemma 4.5, we have

tgr1 () = Ty(r) = 2(q + D sin(r/(g + 1)) — 2gsin(r/q) + O(|| f c2)-

On the other hand, by Lemma 4.1 and the definition (57) of g, for all 2<¢<qq,
we have

2(q + 1)sin(m/(q + 1)) — 2gsin(7/q) > no. O

Let us state a very interesting corollary of this lemma. It shows that for
nearly circular domains, the number of bounces g can be heard from the length
spectrum.

COROLLARY 4.8. Let 1 and Qg be two nearly circular domains in C°
satisfying the conditions of Theorem 4.6. Suppose

(59) L(21) N (0,27 4+ 1/10) = L(22) N (0,27 + 1/10).
Then £(021) = £(0902) and for all ¢ > 2,
L1,4(21) = L1,4(Q2).

We comment that instead of 27 + 1/10, one can use 27 + ¢ for any § > 0,
but the smallness of f in C® would depend on 4.

Proof. As we saw in the proof of Lemma 4.4, the length of every periodic
orbit of type (p > 2, ¢) must be larger than 7+O(|| f||cs). Let 021 = 0D+ f1. Ny
and 099 = 9D + foNy. We choose f; and fo small enough so that

27 +1/10 <7+ O([| f1llce) < inf Up>2Lp o(S11),
2r + 1/10 <7+ O(”fQHCvG) < infUp22£p7q(Qg).
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In addition, we also choose them small enough such that

0O) = 27+ O(| fu]len) < 27 + 1/10,
5(892) =27 + O(Hfg”cq) <27+ 1/10.

Then under these conditions, if we take supremum of (59), we obtain £(9§;) =
£(09Q2). Now by Lemma 4.4, we get

U Lra(@) = [ £14(2).

q>2 q>2

Let us denote this common union by U. Let gy and 79 be as in Lemma 4.6.
Recall that they are identical for 2, and 5. We first show by finite induction
that for each ¢ < go, one has L£14(1) = L£1,4(Q2). Clearly t2(Q1) = t2(22)
because this is the infimum of the union U. We then move in U starting at to
and record all gaps. By Lemma 4.6, the first gap that is larger than or equal
70/10 must take place at To(€21) and T»(Q2), hence these two quantities must
agree. We then take the infimum of U N (75, ¢) to obtain t3(€;) = t3(22). By
continuing this procedure we get that for all 2 < g < qq,

(60) tq(Q1) = 14(Q2) and  Ty() = Ty(Q).

The argument for g > ¢ is very similar. We shall use induction. Obviously
(60) holds for ¢ = go. Suppose now that (60) holds for some ¢ > qo. Then
by taking inf of U N (13,¢) we obtain t541(1) = t5+1(Q2). By Lemma 4.6
again, starting at t;;; the first gap of size at least (1/10)(G + 2)~3 happens
at Tg41(21) = T541(Q2). Thus (60) holds for all ¢ > 2 and the corollary
follows. [l

4.3. Length spectrum of a nearly circular ellipse. Let E. be an ellipse of
eccentricity e. We choose e small enough so that no periodic orbits of type (p, q)
with p > 2 contribute to the part of the length spectrum that is less than /.,
the perimeter of .. This is possible by Lemma 4.4. Thus we will only focus
on the g-spectrum, i.e., £y4. Since the ellipse is completely integrable, for
each ¢ > 3, all (1,q) periodic orbits have the same length. Therefore for all
q > 3, we have T, = t4, or in other words the g-loop functions of the ellipse
collapse to a constant. In the case ¢ = 2, it is known that the only (1,2)
periodic orbits are the bouncing ball orbits on the major and minor axes,
whose lengths correspond to T and to, respectively. Note that T # to if the
ellipse is not a disk. In summary,

(61) L(E)N(0,62) = {ts(2) < To(e) < Ts(e) < -++ < Ty(e) < Tyra(e) < --- },

o0

and the gaps sequence {T711(¢) —Ty(€) } 02 is strictly decreasing by Lemma 4.1.
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5. Wave trace and Marvizi-Melrose parametrices

5.1. Background on wave trace. Suppose {2 is a smooth planar domain.
Let

wq(t) = Trcos(t\/Agq)

be the wave trace of Agq, the positive Laplacian associated to £ with Dirichlet
(or Neumman) boundary condition. Let also SingSupp wgq(t) denote the singu-
lar support of wq(t). By a result of Andersson-Merlose [AM77] (in the convex
case) and Petkov-Stoyanov [PS92] (for general smooth domains), we have the
so-called Poisson relation

(62) SingSupp wq(t) € —L(2) U {0} U L().

The wave trace is the distribution integral,
wq(t) = / E(t,xz,x)dx,
Q

where E(t,x,y) is the Schwartz kernel of cos t\/Aq with the prescribed Dirich-
let or Neumann boundary conditions. By distribution integral it is meant that
the integral wq(p) := [ wa(t)p(t)dt is a temperate distribution. By Poisson
relation, wq(t) is a C'*° function on the complement of the length spectrum.
The nature of its singularities at the lengths depends on the structure of the
periodic billiard trajectories of €2. Only convex smooth plane domains, and
only lengths of periodic trajectories in (0, |0€2|) are relevant to this article, so
we restrict our attention to them.

In general, the singularities of wq(t) at t € £(£2) can be extremely compli-
cated since the set of lengths and the set of periodic orbits themselves can be
extremely complicated. The simplest periodic orbits are the non-degenerate
ones, i.e., isolated non-degenerate critical points of the length function on the
configuration space (0€2)? of ¢ points minus the “diagonals” where two points
are equal. The major and minor axes of the ellipse are of this type. The next
simplest are “clean fixed point sets,” i.e., a smooth curve of periodic orbits of
length L satisfying the cleanliness condition (see [GMT79b]), such as the pe-
riodic orbits of an ellipse (except the major and minor axes). Equivalently,
clean is in the Bott-Morse sense that for each ¢, the fixed point set of 57 is a
submanifold of B*0f2, and the tangent space to the fixed point set is the fixed
point set of (df)?. In general, the set of periodic orbits of length L may be as
complicated as the critical point set of a smooth function.

As discussed in [MM82, (6.8)], there exists a Lagrangian (i.e., oscillatory
integral) parametrix E!(t,z,y) for the wave kernel E(t,z,y) away from the
boundary and modulo a C* error; wq(t) may be expressed as the trace of
this parametrix away from the boundary plus an additional boundary region
term. We will not use this expression directly. We refer to [MMS82, (6.8)]
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for background. An alternative oscillatory integral formula based on layer
potentials and boundary integral operators was introduced by Balian-Bloch
and exploited in [Zel09] (to which we refer for background and references).

In the case of non-degenerate transversally reflecting periodic billiard tra-
jectories, or clean curves of periodic billiard trajectories, of length L, there
exists a microlocal parametrix due to Chazarain that one can use to calculate
the singularities of wq(t) near t = L. In [GM79b], Guillemin-Melrose review
this parametrix construction and use it to derive a singularity expansion for
wq(t) in these cases; see [GM79b, Ths. 1 and 2]. The non-degeneracy (or clean-
liness) assumptions make it possible to apply stationary phase (on a manifold
with boundary) to the integral [ p(t)e" wq(t)dt; see [GMT79b, Lemma 5.2].

In the generic case where all periodic orbits of length < L(0f2) are non-
degenerate transversal periodic reflecting rays, the length spectrum is discrete
in [0, L(09)) and accumulates only at L(9€2). The wave trace admits a decom-
position, on RZ%, into terms with singular support at a single length L € £(Q):

(63) wq(t) =6(t) = eo(t) + X rer()er(t), SingSupper = {L}.
The term eq(t) is singular only at ¢ = 0 and admits the asymptotic expansion,
eo(t) =Cr|Q Re{(t+i0) "1} +C,_1]09| Re{(t—i—i())_"_% }+lower order terms,

in terms of homogeneous Lagrangian singularities decreasing in singularity by
unit steps. When the billiard flow of 2 has clean fized point sets,

(64) er(t)= Y elt),

v:Ly=L

where the last sum is over components of the closed billiard trajectories of
length L or equivalently over components of the fixed points of iterates of
the billiard map. In this case, the terms e, (¢) admit singularity expansions
depending on the dimension d., of the component of the fixed point set. They
have the form

(65) e4(t) = Re{a,1(t — L +i0%)~™} + lower order terms,

where the exponent n., (the “excess”) equals 1 + d,/2. Since dim B*0Q = 2,
the cleanliness means that either the fixed point set consists of isolated non-
degenerate fixed points or else of smooth curves of transversally non-degenerate
fixed points.

Much of the difficulty of inverse spectral theory is caused by multiplicities
in the length spectrum. In the non-degenerate or clean case, the Poisson
formula (63) then expresses a singularity at ¢ = L as the sum of contributions
from all closed orbits of length L. Since the coefficients are signed, the terms
in this sum may cancel.
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We do not use the Poisson formula (63), because cleanliness is not even a
generic condition, and does not hold for the fixed point set of 87 for general al-
most circular domains. Instead, we follow the idea of Marvizi-Melrose [MM8&2]
to break up wq(t) into a sum of ¢g-bounce contributions, and then to express
the g-bounce contribution as an oscillatory integral whose phase is, roughly
speaking, the g-bounce loop length function for loops of winding number one.
In the nearly circular case, we can prove that the Melrose-Marvizi type para-
metrices are valid for all bounce numbers ¢ > 3. Since the closed trajectories
do not necessarily form clean sets, it is not generally possible to apply station-
ary phase to these oscillatory integral. But we can use them effectively in the
inverse problem.

5.2. Marvizi-Melrose Parametrices for nearly circular domains. Let € be
a nearly circular domain in C%; that is, 9Q = 0Fy + f(8) Ny for some smooth
function f(#) on the unit circle 0Ey with || f||ce sufficiently small.

By Lemmas 4.6 and 4.4, for 7 = 1, the intervals [t,, T;] are disjoint from
each other for ¢ > 2, and they are also disjoint from [t 4, T} 4] for all p > 1
and ¢ > 2. Hence we can choose a cutoff function x,4(t) € Cg°(R) that equals
one on the interval [ty, T,], whose support does not contain any lengths in £y, ,,
with (p,m) # (1,q). Then as in [MM82], we denote

(66) G1,4(t) = Xq(t)wal(t).
The distribution &7 4(t) is the localization of the wave trace to the interval
[tq, Tg]; it satisfies
SingSuppa 4(t) C [tg, Tq)
and
01,4(t) = wa(t) near [t,,T,].
Thus instead of studying the wave trace, we study the localized wave trace

617’1 (t)'
Marvizi-Melrose [MM82] proved that (in fact for any smooth strictly con-
vex domain)

THEOREM 5.1 (Proposition 6.11 of [MM82]). For q > qo(f2) sufficiently
large, one has a parametriz of the form

(67) &l,q(t) = / / Re (@iﬂ-rq/4€i£(tiLq(s))€%a(Qa t? S, 5)) deg + Rq(t)a
0 o0

where Ry(t) is a smooth function, Ly(s) is the g-loop function, rq is a Maslov
index that depends on q and the boundary condition,® and a(q,t,s,&) is a

2The indices r, for Dirichlet and Neumman boundary conditions differ from each other
by 4gq.
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smooth classical symbol in &, and periodic in s, of the form
a(g.t,5,€) ~ Y aj(q.t, )67, (£ — +00),
j=0

whose principal symbol ap(q,t,s) = ao(q, s) is independent of t and is a positive
function on 0S2.

Remark 5.2. In [MM82], the factor 5% is missing from the integrand of (67).
In [Pop94], there is instead a factor £. None of these are correct. The correct
factor in the principal term must be fé, as one can easily inspect by the
wave trace asymptotic of Guillemin-Melrose [GM79a] of simple non-degenerate
periodic orbits. An independent proof of this parametrix, given by Vig [Vig19],
also confirms the factor £ 2.

We prove that the Marvizi-Melrose parametrix (67) is valid for all ¢ > 2
for nearly circular domains.

THEOREM 5.3. Suppose Q is nearly circular in C®, meaning that 0Q =
OEy + fNg with || f|lcs sufficiently small. Then the parametriz (67) for the
wave trace wq(t) is valid for all g > 2.

Proof. Asin [MMS82], the first step in the proof is the reduction of the wave
trace to a boundary integral for which we provide a simple proof independent
of [MM82]. We shall use a Rellich-type identity (essentially Green’s second
identity). Let X be a suitable vector field defined in a neighborhood of .
Let ¢; be an L?-normalized eigenfunction of A = —§2 — 85, with Dirichlet
boundary condition on 2, associated to the eigenvalue )\?. First, by Green’s
second identity, we have

(05, 1A, X)) 12(0) = / (A =X Xoj — 0, X (A = A)g;
(68) “
+ /BQ Ontp; X5 — 05 0 (X ;).

But since (A — )\?)gaj =0 and ¢j|pn = 0, we get

(@5, [A, X]@j) r2(0) = /em Onpj Xpj.

Now if we choose the vector field X = x0, + y0d,, we get [A, X] = 2A, which
implies that

(69 2 = [ (X w)onpsl
o

Here, the function (X.n)(s) is the dot product of the position vector X (s) on
the boundary with the outer unit normal n(s) to 92 at s. Using this equation,
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the second time derivative of the trace of E(t) = cos(tv/Agq) can be written as

(et (1)
(10) Oun(t) = —3 | (X-1)0,.0,, B2,

where E(t,z,y) is the distributional kernel of E(t) and 0,,, 0y, are outer nor-
mal derivatives in the variables z,y, respectively. Equation (70) is our reduc-
tion to the boundary. We now need to find a parametrix for the distribution
OnyOn, E(t,2,y)|c=y and plug it into (70). This distribution was studied thor-
oughly in [HZ12]. Away from the tangential directions to 052, it is a Lagrangian
distribution whose wavefront relation satisfies

q=>0

where
(71)
>0, €l <7, In|<T,
12, = (t4m2,6,y,m) € TR x 00 x 0Q) | 57 (2,£) = (s, 1),
t=1 (q, xz, %)

Here, j is the billiard map as a map on the ball bundle B*Q2 = {(z,8) e T*ON :
|€] < 1} instead of IT = 92 x [0, w]. Note that §: B*Q — B*Q and §: II — 11
are related by

B, €) = p(x, arccos(€)).

Furthermore, in (71), t(q,z,&/7) is defined as follows. Let & € TFQ be the
unique inward unit vector whose orthogonal projection onto the cotangent
space of the boundary T;0€ is £/7. Then t(q,z,£/7) is the time that it
takes to travel from (x,¢’) and make precisely g reflections along the billiard
trajectory and of course end at (y, 7).

Since for nearly circular domains SingSuppé 4(t) C [t4, Ty, we restrict our
attention to a (time) neighborhood of [t,, T,]. We recall that we are only inter-
ested in a parametrix near the diagonal. These two conditions force the billiard
trajectories from z to y to wind around the boundary almost once. By our The-
orem 3.5, for each ¢ > 2, there is a unique such trajectory whose length we de-
noted by ¥, (z,y) (see Definition 3.7). In particular, for (t,+7,z,&,y,n) € F?,i
and t € [ty,T,], we have t(q,z,¢/7) = V4(x,y). In fact an easy computation
(see, for example, [Vig21], [Vigl9]) shows that ¥, (x,y) generates 59, in the
sense that,

Bq(x, =0, V) = (3/7ay\pq)-

Now let us define the phase functions

Do g = £7(t — Yy(z,9)).
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The critical point set of @1 with respect to 7 is given by
C((I)ﬂ:,q) = {(ta :l:Ta x7y)‘ t= ‘I/q(m7y)}
Hence the image of C(®4+ 4) under the canonical embedding
L(t, T, T, y) = <t7 6t(I):I:,tp €, 8$(I):t,Q7 Y, _ayq):l:,q)
= (t,x7,2, F10, Vg, y, £70,¥,)

is precisely an,i defined by (71). In other words, ®4 , parametrizes Fg’i. By
[HZ12, Prop 4], the principal symbol of 9,,0,,E(t,z,y) on ng, as a half-
density, is of the form

(72) e™Maltg(q, x, &, 7)|dx A dE A dr|V2,

where m is a Maslov index and g is a certain positive symbol. Now by [Hor85,
IV, Prop 25.1.5], and because 0,,, On, E(t,x,y) is a real-valued Lagrangian dis-
tribution, there exists a classical symbol b(q,t,z,y, ) such that for t € [t;, T(]
and (z,y) near the diagonal of the boundary,

OnyOn, E(t,2,y) = Re/O e ma/ 4TV @YD (g ¢ 2y, 7)dT + (smooth).

By expanding b into a power series of ¢ — 1)4, and performing integration
by parts, we can in fact eliminate the ¢ variable from the amplitude b. The
principal term by of b can be calculated in terms of g in (72). Since g > 0, we
have by > 0. Plugging this parametrix into (70) and noticing that ¥, (z,z) =
Ly(x), we obtain a parametrix for 92wq(t) in the form

m ~
Fwat)ly, 1, = / / Re (ei/1 - La) - (g, 5, 7)) dsdr + (smooth),
0 Jon
where 7y = my + 4 and

~ 1
r2b(g,5,7) = 5b(q. 5,5, 7)(X - n)(s).
Because by > 0 and because X.n > 0 for a strictly convex domain (if the origin

is chosen to be inside €2), the principal term bo must be positive as well. Now

let
e o]
wo(t) == / / Re (6”"‘1/46”(157%(3))7%a(q, S,T)) dsdr,
0 [2/9]
with amplitude a(q,s,7) = —7*25((1,3,7). It is then clear that 02(wq(t) —
wq(t)) is smooth on [tg, Tp], thus wq(t) = wa(t) + (smooth), and the result
follows. (]

Remark 5.4. The article [Vigl9] calculates the principal term ag explicitly.
Also, it is possible to use the layer potential formulae of [Zel09] for the semi-
classical resolvent kernel to prove Theorem 5.3. Since this proof is much longer
and more complicated than the proof above, we do not present it here.
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5.3. 01,4 as a spectral invariant: Proof of Proposition 1.5. In this section
we state the following more formally:

PROPOSITION 5.5. If Q is a nearly circular domain in C®, then the dis-
tribution 61 4(t) is a spectral invariant of Q.

The key ingredient in the proof is Corollary 4.8. The wave trace on the
open interval (0,]09|) = (0,¢) has the following g-bounce decomposition, in-
troduced in [MM82]:

(73) (D)0 = 3 F14(0).

q=>2
By Corollary 4.8, L1 ,NLy g =0if ¢ # ¢ and L1 4N L, o = 0 if p > 2. Hence,
given a singularity L of the wave trace in the interval (0, /), we know exactly
to which interval [ty, T,] it belongs to, in other words the number of bounces ¢
of L can be heard. Thus 614 is a spectral invariant, proving Proposition 1.5.

Remark 5.6. Proposition 5.5 does not rule out that there might exist two
distinct (1, q) orbits of Q of the same length. It also does not imply that the
set of lengths in £y 4 is finite, nor that the corresponding fixed point sets are
clean, nor in the clean case that the individual terms e (¢) in (64) are spectral
invariants. If € is isospectral to E, it says that &ﬁq(t) = &fq(t). It is not
a priori clear that the fixed point sets of the billiard map of {2 must be clean,
nor that £(£2) = L(F), since cancellations may occur in the sums.

6. Length spectrum and wave trace: Proof of Theorem 1.4

For inverse spectral problems, it is important to know which lengths are in
the singular support of the wave trace. The following proposition was proved in
[MMS82] for any smooth strictly convex domain (satisfying a non-coincidence
condition) but only for ¢ sufficiently large. For nearly circular domains, we
improve their result by showing that it holds for all ¢ > 2.

PROPOSITION 6.1. If Q is nearly circular in C®, then for all ¢ > 2, we
have

{t(9), T,(Q)} C SingSuppwo({).
In fact, we prove the stronger Theorem 1.4.

Remark 6.2. For a smooth strictly convex domain €2 that is not necessarily
nearly circular, if we add the assumption that

(74) |0€2| is not a limit point from below of the set U Lyq(),
p=2,422

then there exists go(€2) sufficiently large such that
(75) Vg > qo(92), L1,4 C SingSupp wq(t).
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Although formally speaking [MMS82] only proves the inclusion {tq,T,} C
SingSupp wq(t), essentially the same argument follows to show (75). As shown
in [MMS82], condition (74) holds for a generic class of smooth strictly convex
domains, hence the inclusion (75) holds generically.

Proof. We argue by contradiction. Fix ¢ > 2. To prove Theorem 1.4,
assume tg belongs to £14(€2) but not to the singular support of wq(t). Then,
there is an open interval J; near ty such that Uiq(t) is smooth in J;. We then
choose any non-negative cutoff function py(t) supported in Ji, which is positive
exactly on a proper open subinterval Js of J; containing tg. In particular,
pq(to) > 0. In addition we assume that the boundary points of supp p,(t) = Jo
are not critical values of Ly(s). This can be done because by Sard’s theorem
the set of critical values of L4(s) has measure zero. By our assumption on ¢,
the inverse Fourier transform of p,(t)o1 4(t) must be rapidly decaying. We will
see that this leads us to a contradiction via the following theorem of Soga:

THEOREM 6.3 (Soga [Sog81]). Consider an oscillatory integral
I(\) = / M@ (z)dz, A >1,
R

where p(x) and a(x) are smooth and a(x) is compactly supported. Furthermore,
assume that a(x) > 0 for all z, and a(x) > 0 for at least one degenerate critical
point of p(z). Then I(\) # O(A=%°). In fact, \™I()\) is not in L*(1,+oc0) for

some m < %

To exploit this result, let us compute the inverse Fourier transform of
pq(t)d1,4(t) using the parametrix (67) as follows:

I,(A) = / pa(t)61,4(t)e™ dt + O(A™)
3/2
A // / pIAFE(t— Ly(s))+74 a(q t, s, Ag)g pq(t)dsdédt
aQ

)\3/2
// / NE=60-La) =T g (g, 1,5, \E) €3 py (1) dsdédt
oN
+(9 A7)

We perform the stationary phase lemma in the dédt integral. We have two
phase functions, namely,

q)l(ta 875) =1+ f(t - Lq(s))7 q)2(t7 875) =1- ‘£<t - Lq(s))

Since the critical point of ®; is given by & = —1 and t = Lgy(s), the first
integral must be rapidly decaying as & = —1 is not in the domain of the
integral. The critical points of ®5 are given by { = 1 and t = L,(s), therefore
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by the stationary phase lemma we get

| PmOag(a. )y L(s))ds + O 1),
o0

We know by Lemma 3.8 that the critical points of L,(s) correspond to the
(1, q) periodic orbits of 5. Let sy be a critical point of L,(s) with Lg(so)=to.
If 50 is degenerate, then by Theorem 6.3 we get a contradiction because A™ ! €
L?(1,00) for m < % Now suppose sg is non-degenerate. The only remaining

7/7T7‘q

I,(\) = mAl2e

case is when all the periodic orbits whose lengths are in the support of p(t)
are also non-degenerate and are finite. This is because if any such critical
point is degenerate, we get a contradiction by the same argument as above.
Also, if there are infinitely many such non-degenerate critical points, they must
accumulate at a degenerate critical point. This accumulation point cannot be
in the interior of the support of p,(t) or we would get a contradiction again, so
it must be on its boundary. But we chose p,(t) so that the boundary points of
its support are not critical values of L,(s). Finally suppose the set of critical
points of L,(s), whose corresponding critical values are in supp p4(t), is finite
and consists of non-degenerate orbits. (Hence each must be a local max or a
local min.) We shrink the support of p4(t) so it contains only the critical value
to. We shall use {so,...,s,} for the set of critical points of L4(s) with critical
value tg. By the stationary phase lemma, we get

I,(\) = Var#/2e STt i, Zez4s1gn<L 7(s5) GTEC{;(SJ)” + OO,
5j

Since sign(Lg(s;))=1 or —1, and ao(q, s)>0, the sum cannot cancel to zero.
U

Before we present the proof of the main theorem, we state a key corollary
of Theorem 1.4.

COROLLARY 6.4. For nearly circular domains in C®, one has

(76) SingSupp wa(t) N (0,109]) = | £14(2
q>2

(77) SingSupp wa(t) N (5, [092]) = | L1.4(2
q>3

Proof. The first statement follows from (62), Theorem 1.4, and Lemma 4.4.
To show the second statement, we note that by Lemma 4.5, we have

Lq(s) = 2qsin(r/q) + O(|| fllc2)-
Therefore,

To(Q) =4+ O0([fllc2)s  t3(Q) = 3V3+ O(|| fllc2)-
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Clearly if we choose O(||f||¢2) sufficiently small, we have T5(£2) < 5 < t3(£2).
Then, (77) follows from this and (76). O

7. Proof of the main theorem

Suppose €2 is a smooth domain, whose A spectrum with respect to Dirich-
let (or Neumann) boundary condition is identical with the one of an ellipse E.
of eccentricity € < 9. By Lemma 2.1 and Corollary 2.2, there is a rigid motion
after which € is C™ for every n € N. Let us denote the wave traces of ) and
E. by wq(t) and wg,_(t), respectively. Since 2 and E are isospectral, we must
in particular have

Sing Supp wa(t) N (0, £z) = Sing Supp wg, (t) N (0, L).

Here /. is the length of E. that equals the length of Q by the known fact
that the perimeter of a domain is a spectral invariant. By Corollary 6.4, for
sufficiently small, we must have

U £14(2) = | L14(Ee).

q>3 q>3

As we saw in (61), for an ellipse E., we have

U £14(E2) = {T3(6) < Ta(e) < - < Ty(e) < Tya() < -},

q=3
which is a monotonically increasing sequence converging to £. whose gaps se-
quence Tyy1(g) — Ty () is monotonically decreasing. Thus | J,>3 £1,4(£2) must
be a sequence with the same properties. We claim that this implies that for all
q > 3, we have T, () = t,(€2). Assume not. So for some g > 3, () # T,(Q);
i.e., the g-loop function L4(s) is not a constant. Then by Lemma 4.6, if ¢ > qo,
we have

Ty() — t4(9) ! <ty (Q) — Ty(9),

< <
~ 100(g+1)3 " 10(g+1)3 —

and if ¢ < qo, we have
"o o
T,(Q) —t,(Q) < — < — < Q) —T,(Q).
SO — () < 1 < < (2) - Ty(@)
Either way, we get

0 < Ty(€2) —t4(2) < tg11(€2) — Ty().
This shows that the sequence of gaps of | J,>3 L1,4(2) fluctuates and is not
decreasing, thus a contradiction. Therefore, for all ¢ > 3, we must have that
L,(s) is a constant function of s, or equivalently that there is a smooth convex

caustic I'y of rotation number 1/¢ consisting of (1, ¢) periodic orbits. In fact
the caustic I'y in the phase space II of ) is given by

Ty = {(s,4(5))},
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where ¢,4(s) is the g-loop angle defined by Theorem 3.3. In the language of
[ADK16], this precisely means that €2 is rationally integrable. The following
dynamical theorem of [ADK16] is the final major step in our argument.

THEOREM 7.1 (Avila, De Simoi, and Kaloshin). Let Q be a C3° smooth
domain that is rationally integrable and is C3° sufficiently close to the unit
disk. Then Q is an ellipse.

Hence if we choose n = 39, we obtain that 2 must be an ellipse. By
Proposition 6.1, we know that for sufficiently small e, the lengths to and T5 are
spectral invariants. For an ellipse, these correspond to the bouncing ball orbits
on the minor and major axes, respectively, thus 2 and E. must be isometric.
This concludes the proof of our main theorem.

7.1. Second proof of the Theorem 1.3. Assume that € is nearly circular in
C?® and that it is isospectral to an ellipse E. of small eccentricity. We recall
from Proposition 5.5 that
61,(t) = 61 (1).
We remember from (66) that 61 4(t) = X4(t)w(t), where x,4(t) is a cutoff sup-
ported near [ty,T;] and equals one there. Taking Fourier transform of this
equation and inserting the Marvizi-Melrose parametrix, we get

ZE . ZE . 5
/ eZ)‘Lq(s)a(q,s,)\)ds :/ LT (S)aEs(qysa/\)dS +OA)
0 0

for A > 0, where Ly(s) and Lqu(s) are the g-length functions of Q and E.,
respectively, and a(q, s, A) and a®(q, s, \) are the corresponding complete am-
plitudes of the trace parametrix (67). They are classical symbols of order zero,
i.e., polyhomogeneous functions of A with orders descending by unit steps. We
denote their symbol expansions as A — oo as follows:

{ a(q,s,A) ~ 3320 a;(q,8)A 7,
aEE (CL S, )‘) ~ Z]Oi(] ajEE (Q7 S))‘_j'

The asymptotics are the standard ones for symbols, ie., a — ) ;cya; €

(78)

S—(N=1) We comment that when A < 0 we need to replace a(q,s,\) and
a® (g, s,\) with their complex conjugates. Note that Lfe(s) is the constant
tq(e) = T,(e). Moving the constant phase factor to the left side gives

LEMMA 7.2. The integral
ZE . i KE .
biq(N) == / eMLa()=Ta(€)) g (g, 5, N)ds = Z/ a]EE(q, s)ds X7+ O(A%)
0 - 0
7=0

is a poly-homogeneous symbol of order zero: i.e., it belongs to SO := S%O(R).
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COROLLARY 7.3. The Fourier transform
(79) 317q(t):// e~ MeMLal8)=Ta(@) g (g, s, N)dsd\
R JST

of big is a co-normal distribution in the class T'/*(R,{0}), with principal
symbol faoe(q, s)ds times |df\% on TgR. In particular, its principal symbol
is strictly positive and by 4(t) is singular at, and only at, t = {0}.

Let us recall the definitions: In the notation of [Hor07, §18.2] (see pp. 100
101), u € I'4(R,{0}) is a co-normal distribution co-normal to {0} if (2D,)*u
belongs to the same Sobolev space as u (see [Hor07, Def. 18.2.6]). By [Hor07,
Th. 18.2.8], u € I'/4(R,{0}) if and only if

u(m):/Reima(T)dT,

where a € S°. Such co-normal distributions are sums of homogeneous distri-
butions of the form x% , (x 4 i0)® that are singular only at = = 0. Moreover, a
co-normal distribution to {0} has a “symbol,” namely, a half density ag(§)|d¢ ]%
on T§R, where ag(§) is the leading order term of the symbol expansion of a(§).
With these definitions in hand, we give the simple proof of Corollary 7.3.

Proof. Corollary 7.3 follows from Lemma 7.2 and the definition of the class
I'4(R, {0}). The fact that ag > 0 follows from [MMS82, Prop. 6.11]. O

From Lemma 7.2 and Corollary 7.3, we deduce the fundamental fact al-
lowing us to give a second proof of the main theorem.

LEMMA 7.4. The loop function Lq(s) has exactly one critical value. Hence,
Ly(s) = LEP-.
q q

Proof. Suppose that L, is non-constant. Then it has distinct maxima
and minima, and at least one of these must differ from 7,. We denote the
corresponding critical value by ¢ # 0. With no loss of generality, we assume
that ¢; is the minimum value. Let ¢(t) € C§°(R) be a bump function equal
to 1 in a neighborhood of ¢; and equal to zero in a neighborhood of 0. Then
b1g(t) = (1 — ()b 4(t) + (1)1 4(t). By Corollary 7.3 we have 9(t)by 4(t) €
C3°(R). We will see that this would lead to a contradiction. We first take
inverse Fourier transform and obtain

Fir (b)) = (& by ) (7)
= /RzL(A)bl,q(T — A)d\

14
_ / T (La(9)=T4 (<) ( / D) NEO-Tu @ g(g 5. 7 — A)dA> ds
0 R
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is rapidly decaying in 7.
We now claim that Ag( = Jx P(N)e~ ML) =TaE)g(q, 5,7 — N)dA is
an element of SY(T*S%). Indeed using the symbol expansion (78) one has, as

T — 00,
o0
(5,7) ~ 3 s(a s /¢ e=IMLa()=To(O) (7 _ \y=igix,
=0
with (z) = (1 + xZ)%, and for new amplitudes @; that depend linearly on

{ar}r<;. Then we write this as
Ag(s,m) ~ D (g 8)m7 /]R PN M EITI Do (7, ),
=0

where o(\, 7) := (|72 +|2 — 1|?)%/2. Note that (r—\)~! = |7| "o (A, 7) 7! and
that o(\, 7)~! — 1 uniformly on compact sets in A as 7 — 0o, and indeed there
is an asymptotic expansion in 7. Since ¥ € S (R), the asymptotic expansion is
integrable in d\ and some arrangement gives a symbol expansion for A,(s, 7).
In conclusion,

b
/ emLa()-Ta@) A (s, 7)ds = O(rN) VN > 0.
0

However, the phase has a critical point, so that the conclusion contradicts
[Sog86, Th. 2]. This concludes the second proof of Theorem 1.3. For the sake
of completeness, we state [Sog86, Th. 2] in the relevant dimension one.

THEOREM 7.5. Let I(7) := [, @) p(x, T)dx, where p(z,7) ~ po(z) +
p1(x)(iT)™t + -+ as T — oo. Assume that pg > 0 with po(z) > 0 on the
minimum set of p(xz). Then for some m € R depending only on the dimension,

mI(r) ¢ L2(Ry). a

In the final section we provide a general result that makes our article
independent of [Sog81].

7.2. A refined lemma. In this part we present the following more general
theorem. which is of independent interest. It shows that many assumptions
that we previously used can be relaxed.

LEMMA 7.6. Let p(s) and a(s,\) be two smooth functions on S' = R/Z
with a(s, \) satisfying

a(s,\) = ao(s) + ONY279), ag(s) smooth and positive

for some € > 0. Assume that for |A\| > Ao > 0 we have

I(\) = / e~ Mg (s, N)ds = co + O(A"27°)
Sl
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for a constant co. Then ¢(s) =0 on St

Proof. We follow the proof of [Sog81] closely. First let us discard the
remainder term in a(s,\) and call the resulting integral J(\), i.e.,

J(\) = / e M) g (s)ds.
Sl

Obviously we have J(\) = ¢o + O(A~/27¢). Now, let 1(t) be a cutoff function
in R that equals one on an open set containing the range of ¢. Let H(t) be
the Heaviside function at zero, and define

golt) = ¥(t) /R H(t = pls)an(s)ds = v(0) [ ol

<t

() = 0') [ = paals)ds = 0') [ ans)ds.

p(s)<t
The function gg is in H™ for every m < 1/2, and because it is a compactly
supported distribution, its Fourier transform gg()\) is an analytic function.
Also since [ H(t — ¢(s))a(s)ds is smooth at the regular values t of ¢(s), and
since 1’ (t) vanishes on the range of ¢(s), g1(t) is smooth, and hence g () is
rapidly decaying. We note that by a simple integration by parts, I(\) can be
written as

J(A) = i)\/ e Ao (t)dt — / e Mgy (t)dt
R R
= iAgo(A) = g1(A)-
Thus, by our assumption on I(A) (so the same for J(\)), we obtain
_ ZJ(/\) _iCo

Bo(N) ==+ O0F) = =2+ 02T, A= o,

By taking inverse Fourier transform and using the Sobolev Embedding Theo-

rem, we get

(80) go(t) = coH(t) + (1),

where H(t) is the Heaviside function at ¢ = 0 (co-normal distribution) with
a jump discontinuity at ¢ = 0, and f(t) is continuous at every ¢ and in fact
belongs to the Holder class C%¢ for every 0 < a < 1/2 + ¢. However, we will
show that every critical value ty of ¢(s) is a “big singularity” of go(¢). By this
we mean that go(¢) is not Hélder continuous C%* at tq for any a > 1/2. This
together with the decomposition (80) would imply that the only critical value
of ©(s) is 0. Since ¢ is a function on S*, it must be zero everywhere.

So assume tg = @(sg) is a critical value of ¢ and s¢ is a critical point in
its inverse image. For each h > 0, we denote

Ap={se S —h < p(s) —ty < h}.
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We recall that ¥(¢) = 1 in an open set containing the image of ¢, so we can
choose h small enough so that ¢ (to — h) = (to + h) = 1. By the definition
of gg, we have

l90(to + h) — go(to — h)| = / a(s)ds.
Ap
However, since sq is a critical point of ¢, we have |p(s) — to| < c|s — so|? for
some ¢ > 0, and thus we have the inclusion

{s € 8% c|s —s0|* < h} C Ap.

We then write

lg0(to + 1) — golto — h)| > / ao(s)ds > /e min ag(s),

cls—sol2<h

which by letting h — 0, implies that go is not Holder continuous C%* at ¢, for
a>1/2. O
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