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Schrödinger trace invariants

for homogeneous perturbations

of the harmonic oscillator

Moritz Doll and Steve Zelditch1

Abstract. Let H D H0 C P denote the harmonic oscillator on Rd perturbed by an

isotropic pseudodifferential operator P of order 1 and let U.t/ D exp.�i tH/. We prove a

Gutzwiller-Duistermaat-Guillemin type trace formula for TrU.t/: The singularities occur

at times t 2 2�Z and the coefficients involve the dynamics of the Hamilton flow of the

symbol �.P / on the spaceCPd�1 of harmonic oscillator orbits of energy 1. This is a novel

kind of sub-principal symbol effect on the trace. We generalize the averaging technique of

Weinstein and Guillemin to this order of perturbation, and then present two completely

different calculations of TrU.t/. The first proof directly constructs a parametrix of U.t/ in

the isotropic calculus, following earlier work of Doll–Gannot–Wunsch. The second proof

conjugates the trace to the Bargmann–Fock setting, the order 1 of the perturbation coincides

with the ‘central limit scaling’ studied by Zelditch–Zhou for Toeplitz operators.

Mathematics Subject Classification (2010). 35Q40, 35S05.

Keywords. Harmonic oscillator, trace formula, isotropic calculus, threshold sub-principal

perturbation.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1304

2 Isotropic calculus and quantization . . . . . . . . . . . . . . . . . . . 1309

3 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310

4 Fourier integral operators . . . . . . . . . . . . . . . . . . . . . . . . . 1313

5 Conjugation to the Bargmann–Fock model . . . . . . . . . . . . . . . 1320

6 Equivalence of the expansions . . . . . . . . . . . . . . . . . . . . . . 1327

A Duhamel’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1330

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331

1 Steve Zelditch gratefully acknowledge the support of NSF grant DMS-1810747.



1304 M. Doll and S. Zelditch

1. Introduction

In a recent article [3], a two-term Weyl law with remainder was proved for special

types of perturbations H D H0 C P of the homogeneous isotropic harmonic

oscillator

H0 D .1=2/.��C jxj2/

with symbol p2 D .1=2/.jxj2 C j�j2/. The perturbation P is a classical isotropic

pseudodifferential operator of order 1, P D Opw.p/ 2 G1cl with (classical)

isotropic symbol

p � p1 C p0 C p�1 C � � � 2 �1cl:

The salient feature of the perturbation is that its order is at a threshold or crit-

ical level, so that the perturbation has a strong contribution to the Weyl law.

The purpose of this note is to go further in the spectral analysis, by consid-

ering the Duistermaat–Guillemin–Gutzwiller trace formula for the propagator

U.t/ D e�itH . It was shown in [3] that the distribution trace TrU.t/ has sin-

gularities at the same points t 2 2�Z as for the unperturbed propagator. We give

a new proof of this result and, more importantly, determine the singularity coeffi-

cients at non-zero singular times t D 2�k. It turns out that the coefficients involve

the Hamiltonian mechanics of p on the space CP
d�1 of Hamilton orbits of H0.

After generalizing the averaging technique of Weinstein [10] and Guillemin [5],

we prove the result in two ways: (i) using special parametrices for the isotropic

propagators U.t/ on L2.Rd / developed in [3], and (ii) by using an eigespace

decomposition for H0 and conjugating the traces of U.t/ on eigenspaces to the

Bargmann–Fock representation and then to holomorphic sections of line bundles

over the space CP
d�1 of Hamilton orbits of H0. It turns out that the eigenspace

traces of U.t/ involve the central limit scaling of Toeplitz propagators studied in

[11, 12]. We then use the trace asymptotics of [12] to obtain a second proof.

The two approaches are in some sense dual, the first leading to Fourier integral

representations, and the second to Fourier series representations, of TrU.t/. The

second approach shows (see Corollary 1.4) that TrU.t/ trace is a sum of distri-

butions on R of the form eitajDj
1
2 er .x/ where D D 1

i
d
dt

, a 2 R and er.t / is a

periodic classical homogeneous distribution of order r . The operator eiat jDj
1
2 is a

pseudo-differential operator on R with symbol eita
p

j�j in the class S01
2
;0

, i.e. each

derivative decreases the order by 1
2
. The proofs actually show that the unusual

contribution of P to the wave trace occurs whenever one perturbs an operatorH0
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with periodic bicharacteristic flow and maximally high multiplicities by an oper-

ator of ‘one-half lower order’. See Section 1.3.1

To state the results, we introduce some notation. LetH0 denote the Hamiltonian

vector field of p2 D .1=2/.jxj2Cj�j2/, whose flow .x.t/; �.t // D exp.tH0/.x0; �0/

satisfies

x.t/ D cos.t /x0 C sin.t /�0;

�.t / D cos.t /�0 � sin.t /x0:

We define

Xf .x; �/ D 1

2�

2�
Z

0

f .exp.tH0/.x; �// dt: (1)

For f 2 C1.S2d�1/, where S2d�1 D ¹p2 D 1º, we use the same notation2 Xf .

The map X induces a map

zXWC1.R2d / �! C
1.CPd�1/;

where CP
d�1 D ¹p2 D 1º= � and z1 � z2 if and only if there exists a � 2 R such

that z1 D ei�z2. Note, that we can write zX as

zXf .z/ D 1

2�

2�
Z

0

f .ei�z/d�

using the natural identification Cd D R2d .

In both approaches we critically use an averaging method originally due to

Weinstein [10] to simplify the perturbation (cf. Lemma 3.1). If p1 D �1.P /,

then the principal symbol of the averaged perturbation can be identified with
zXp1WCPd�1 ! R. Assume that zXp1 is a Morse function on CP

d�1. The set of

stationary points is given by …2� D ¹zj ºnjD1 D ¹z 2 CP
d�1W d zXp1.z/ D 0º.

Furthermore, we set dj D jdetDdzXp1.zj /j 6D 0 and �j the signature of the

Hessian, sgnDdzXp1.zj /.

1.1. Statement of results in the homogeneous isotropic calculus. It was shown

in [3, Theorem 1.2] that under the assumption that zXp1 is a Morse function on

CP
d�1, the singularity at 2�k is of order O.�.d�1/=2/.

1 The order convention in this article is thatH0 has order 2 and P has order 1. But it is also

natural to define the order ofH0 to be 1 and that of P to be 1
2

and this order relation generalizes

to many other settings.

2 Note that the definition differs from the one in [3] by a factor of 2�.
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The content of the main theorem is to calculate the principal term of the

distribution at t D 2�k.

Theorem 1.1. LetH be as above and w.t/ D Tr e�itH its Schrödinger trace. For

k 2 Z n ¹0º and � 2 .0; �/ choose �k 2 C1
c ..2�k � �; 2�k C �// with �k.t / D 1

on .2�k � �=2; 2�k C �=2/. Then,

F
�1¹�k � wº.�/ � �.d�1/=2e2�ki�

n
X

jD1
e�2�ik�1=2zXp1.zj /

1
X

lD0
��l=2
k;j;l

and


k;j;0 D .�k/�.d�1/d�1=2
j e�i.��j =4Cdk/e�2�ikzXp0.zj /:

1.2. Statement of results in the Bargmann–Fock setting. We give a different

proof of Theorem 1.1 in which we first expand TrU.t/ into traces on eigenspaces

of H0 and then conjugate by the Bargmann transform to obtain traces of semi-

classical Toeplitz operators in the Bargmann–Fock setting. The advantage of

the conjugation is that the spectral projections for H0 conjugate to the simpler

Bergman kernel projections for holomorphic sections of the standard ample line

bundles over projective space. In that setting, Theorem 1.1 can be reduced to the

trace asymptotics calculated in [12] for semi-classial Toeplitz operators acting on

holomorphic sections of line bundles over Kähler manifolds.

Let L2.Rd / D
L1
ND0HN be the decomposition of L2.Rd / into eigenspaces

of H0, and let

…N WL2.Rd / �! HN (2)

be the orthogonal projection, i.e. the spectral projections forH0. By the averaging

Lemma 3.2,H0CP is unitarily equivalent toH0CBCR where ŒB;H0� D 0 and

RW S0.Rd / ! S.Rd /. We can assume that that R D 0 (cf. Corollary 3.3). Using

the known spectrum of H0, we have the following:

Lemma 1.2. The trace Tr eitH is given by

Tr eit.H0CP/ D Tr eit.H0CB/ D
1

X

ND0
Tr eitB jHN

eit.NC d
2
/:

It therefore suffices to determine the asymptotics as N ! 1 of

Tr eitB jHN
D Tr…N e

itB…N (3)

for each t and in particular for t D 2�k for some k 2 Z. Using the trace

asymptotics of [12], we prove (in the notation of Theorem 1.1):



Schrödinger trace invariants 1307

Theorem 1.3. Let N > 0, m D d � 1 and t D 2�k. Then, Tr…N e
itB admits

a complete asymptotic expansion as N ! 1 in powers of .t
p
N/ with leading

term,

Tr…N e
itB D

� N

2�

�m� t
p
N

4�

��m n
X

jD1
d

�1=2
j

� eit
p
NzXp1.zj /ei��j =4.eit

zXp0.zj / CO.jt j3N�1=2//:

To prove Theorem 1.3 we relate the unitary group …N e
itB…N to semi-

classical Toeplitz Fourier integral operators. Since B has order 1, it does not

generate a semi-classical Toeplitz Fourier integral operator. Rather,

VN .t / D …N e
it

p
NB…N

is a semi-classical Toeplitz Fourier integral operator. We then employ the trick

that

…N e
itB…N D VN

� tp
N

�

to express …N e
itB…N as a time-scaled Toeplitz Fourier integral unitary group.

Under conjugation by the Bargmann transform, VN .t / is carried to a Toeplitz

Fourier integral operator UN .t / in the complex domain. Therefore, combining

with Lemma 1.2 gives,

Tr eit.H0CP/ D
1

X

ND0
TrUN

� tp
N

�

eit.NC d
2
/:

The time-scaled Toeplitz Fourier integral operators UN
�

tp
N

�

are studied in [11,

12] for unrelated reasons, and the pointwise and integrated asymptotics of those

articles gives Theorem 1.3.

We then substitute the asympotics of Theorem 1.3 into Lemma 1.2. When

B D 0, Tr e�itH is a sum of Hardy distributions of the form,3

�N;d;r.t / WD
1

X

ND0
N reit.NC d

2
/

�

r 2 1

2
Z

�

; (4)

with r D d � 1. When B 6D 0 and �B descends to a Morse function on CP
d�1,

the order is d�1
2

and the fact eit
p
kH.zc/ changes the singularity type to a sum of

distributions of the type

eN;d;r.t; a/ D
1

X

ND1
N reit.NC

p
NaC d

2 / .a 2 R/:

3 By a Hardy distribution is meant one with only positive frequencies
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These are non-standard and apparently novel types of homogeneous Lagrangian

distributions (the authors have not found them in prior articles). We obtain an

interesting description of Tr e�itH and its singularities in terms of these distribu-

tions,

Corollary 1.4. The leading order singularity in t of Tr eit.H0CB/ at t D 2�k is

the same as the leading order singularity of the finite sum,

n
X

jD1

ei��j =4

d
1=2
j

eN;d;.d�1/=2.t;zXp1/:

This explict expansion of the trace in terms of non-standard Lagrangian distri-

butions does not seem to follow easily from the calculation in the Schroedinger

representation.

We further observe that eita
p

jDj 2 ‰01
2
;0
.R/, i.e. is a pseudo-differential op-

erator on R of order zero, with symbol eita
p

j�j. Each derivative decreases the

order of the symbol of by 1
2
. It follows that although eN;d .t; a; .d � 1/=2/ is not

a homogeneous distribution, it has the same properties as a homogeneous distri-

bution. For instance, since eita
p

jDj is pseudo-local, eN;d .t; a/ has singularities at

the same points t 2 2�Z as eN;d .t; 0/, as first proved in [3].

To relate the expansions of Theorem 1.1 and Theorem 1.3, it is proved in

Section 6 that the asymptotics � ! 1 in Theorem 1.1 and the asymptotics

N ! 1 in Theorem 1.3 agree to leading order.

1.3. Related problems. The trace asymptotics for the propagator e�itH of the

perturbation H D H0 C P has many analogues in settings where one has a first

order elliptic pseudo-differential operator H0 with periodic bicharacteristic flow

and maximally high multiplicities and P is a 1
2
-order below that of H0. Without

trying to state the most general result, we note that it is valid for H0 D
p

��
on Sn, the standard sphere, and P is a pseudo-differential operator of order 1

2
.

Indeed, as in the proof of Theorem 3, it suffices to work out the semi-classical trace

asymptotics in the eigenspaces, which only uses that UN .t / is a semi-classical

unitary Fourier integral operator. The main results pertain to the special effect of

perturbation of the special order 1
2

and hold for such perturbations on all rank one

symmetric spaces. The results can also be adapted to general Zoll manifolds ifp
�� is replaced by an operator N which indexes the ‘bands’ in the sense of [6].
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2. Isotropic calculus and quantization

The class of isotropic symbols of order m 2 R, �m.Rd /, consists of the smooth

functions a 2 C1.R2d / such that

j@˛x@
ˇ

�
a.x; �/j .˛;ˇ h.x; �/im�.j˛jCjˇ j/; for all ˛; ˇ 2 N

d :

We will mainly be interested in the subclass of classical symbols a 2 �mcl .R
d /,

which admit an asymptotic expansion in homogeneous terms of order m � j . To

any isotropic symbol a 2 �m.Rd / we associate an isotropic pseudodifferential

operator A 2 Gm.Rd / by the Weyl-quantization,

A D Opw.a/ D .2�/�d
Z

ei.x�y/�a..x C y/=2; �/d�:

The integral is defined as an oscillatory integral and we further note that any

bounded linear operator AW S.Rd/ ! S0.Rd / has a Weyl-symbol a 2 S0.R2d /,
which satisfies Opw.a/ D A. This follows directly from the Fourier inversion

formula and the Schwartz kernel theorem. We also use that the class of resid-

ual isotropic operators, G�1.Rd / D
T

m2RG
m.Rd / is the space of (globally)

smoothing operators AW S0.Rd / ! S.Rd /. For the main properties of the isotropic

calculus, we refer to [3] (see also Helffer [7] and Shubin [9]).

For later reference, we recall the formula for composing isotropic pseudodif-

ferential operators.

Proposition 2.1. Let a 2 �m1

cl ; b 2 �m2

cl two isotropic symbols. Then

Opw.a/Opw.b/ D Opw.c/;

where

c.x; �/ D .a#b/.x; �/ D eiA.D/a.x; �/b.y; �/
ˇ

ˇ

yDx;�D� :

The exponential is defined as an Fourier multiplier and the operator A.D/ is

given by A.D/ D .hD� ; Dyi � hDx; D�i/=2. Moreover, there exists an asymptotic

expansion

.a#b/.x; �/ �
X

k

ik

kŠ
A.D/ka.x; �/b.y; �/

ˇ

ˇ

yDx;�D� :
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3. Averaging

In this section we prove that there exists a B 2 G1cl.R
d / and R 2 G�1.Rd / such

that

H Š H0 C B C R; ŒH0; B� D 0

and calculate its symbol. We will follow the arguments of [10, 5].

For the proof of Theorem 1.1, the following lemma suffices.

Lemma 3.1. Let H D H0 C P with P 2 G1cl.R
d /. For any N 2 N there exists

a unique B�N 2 G1cl.R
d / modulo G�N

cl .Rd / and an unitary operator U�N such

that

ŒH0; B�N � 2 G�N
cl .Rd /;

U�1
�NHU�N D H0 C B�N :

Furthermore, for N > 1 the Weyl quantized symbol of B�N has an asymptotic

expansion

b D Xp C ��1
cl .R

d /

where p is the Weyl-quantized symbol of P .

Proof. First, we define for F 2 Gkcl the operator

ad.F /WGmcl �! GmCk�2
cl

by

ad.F /A D ŒF; A�:

If k < 2 we obtain, using the Taylor expansion of the exponential, that

e�i ad.F /A D A � i ŒF; A�CG
m�2.2�k/
cl :

We define the pseudodifferential operator F1 by

F1 D 1

2�

2�
Z

0

t
Z

0

eisH0Pe�isH0 ds dt:

It has the property that

ŒF1; H0� D P � B1;
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where

B1 D 1

2�

2�
Z

0

eitH0Pe�itH0 dt:

Therefore, we calculate

e�i ad.F1/H D H0 C B1 C ŒF1; B1�CG�1
cl :

Now, we inductively lower the order of the remainder term. Set R0 D ŒF1; B1� 2
G0cl then define F0 and B0 as above, but with P replaced by R0. Then we find that

e�i ad.F0/e�i ad.F1/H D H0 C B1 C B0 C G�1
cl ;

thus concluding

e�i ad.F�N / � � � e�i ad.F1/H D H0 C B1 C � � � C BN C G�N�1
cl

with ŒH0; B1 C � � � CBN � D 0. The operator U�N is given by eiF�N � � � eiF1 . This

follows from the fact that

Ad
e

�iFj D e�i ad.Fj /;

where AdU A D UAU�1.

Finally, we show that B0 2 G�1
cl .R

d /. The Weyl-quantized symbol of B1 is

given by

b1 D Xp D Xp1 C Xp0 C ��1
cl :

Observe that

B0 D 1

2�

2�
Z

0

U0.�t /ŒF1; B1�U0.t / dt

D 1

2�

2�
Z

0

ŒU0.�t /F1U0.t /; B1� dt

D
�

1

2�

2�
Z

0

U0.�t /F1U0.t / dt; B1
�

:
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Here, we have used that B1 commutates with U.t/. By Fubini, we calculate the

principal symbol of the left entry in the commutator,

1

.2�/2

2�
Z

0

2�
Z

0

t
Z

0

p1 ı exp..s C t 0/H0/ ds dt dt
0 D 1

2�

2�
Z

0

t
Z

0

Xp1 ds dt

D � � Xp1:

The second equality follows from the fact that Xp1 is constant along the Hamil-

tonian flow and that
R 2�

0

R t

0
ds dt D 2�2. Now, the principal symbol of

U0.�t /F1U0.t / and B1 are the same up to a constant, therefore its commutator

has zero principal symbol. �

Now, we have to make sure that we can use asymptotic summation.

Lemma 3.2. LetH 2 G2cl.R
d / as above. There exists a unitary pseudodifferential

operator U 2 G0cl.R
d / and a self-adjoint B 2 G1cl.R

d / such that

ŒH0; B� D 0;

U �HU D H0 C B CG�1:

Proof. Let zU 2 G0cl.R
d / and B 2 G1cl.R

d / such that

zU � U�k 2 G�.kC1/
cl .Rd /;

B � B�k 2 G�k
cl .R

d /;

for all k 2 N. Here, U�k and B�k are as constructed in the proof of the previous

lemma. Consider the bounded self-adjoint operator F D zU zU � � I. Since Uk
is unitary for all k, it follows that F 2 G�1 and hence compact. Thus, we

may assume that its L2-norm is bounded by C 2 .0; 1/, by modifying it on a

finite-dimensional subspace. We let K D
P1
jD1 cjF

j , where cj are the Taylor

coefficients of the expansion of .1 C t /�1=2 at the origin. The operator K is

well defined since the series converges for jt j < 1 and smoothing. Putting

U D .I CK/ zU , we see that

UU � D .I CK/ zU zU �.I CK/
D .I CK/2.I CF /
D I :

We can apply the averaging toB again so thatB commutes withH0 andU �HU D
H0 C B C G�1 as claimed. �
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It follows from Duhamel’s formula (see Proposition A.1 of the Appendix) that

one has,

Corollary 3.3. With the same notation as in Lemma 3.2,

Tr e�itH D Tr e�it.H0CB/ mod C
1.R/:

4. Fourier integral operators

In what follows, we will encounter operators of the form A D Opw.ei�a/,

where � is homogeneous of degree one outside a compact set in R2d . These

operators are clearly not isotropic pseudodifferential operators, because they are

not pseudolocal. Since spatial derivatives of isotropic symbols gain decay in both

x and �, we can still composeAwith and any isotropic pseudodifferential operator

and explicitly calculate the asymptotic expansion.

Proposition 4.1. Let p 2 �mcl , a 2 �0cl, and � 2 �1cl. Then

p#ei�a D ei�c;

where

cm D pma0;

cm�1 D pma�1 C pm�1a0 C .1=2/¹pm; �1ºa0;
cm�2 D pma�2 C pm�1a�1 C pm�2a0

C .1=2/ .¹pm�1; �1ºa0 C ¹pm; �1ºa�1 C ¹pm; �0ºa0 � i¹pm; a0º/

C .1=4/
�

X

j;k

@xjxk
pm@�j�1@�k

�1 � @�j �k
pm@xj

�1@xk
�1

�

a0:

Proof. The asymptotic expansion follows from the composition theorem, Propo-

sition 2.1, and ordering the terms by homogeneity. �

Moreover, we need a composition result for quadratic phase functions:

Proposition 4.2. Let A 2 Rd�d be symmetric and a; b 2 S.Rd /. There is an

integral representation

.eihA�;�ia#b/.z/

D ��2d
Z

R4d

e�2ihQw;wia.z C w1/b.z C w2 C .1=2/JA.w1 C z//dw1 dw2;
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where

Q D
�

A=2 �J
J 0

�

:

Proof. By Zworski [14, Theorem 4.11] we have the integral representation

.eihA�;�ia#b/.z/

D ��2d
Z

R4d

e�2i�.w1;w2/eihA.zCw1/;zCw1ia.z C w1/b.z C w2/ dw1 dw2:

Define the phase function

ˆ.w1; w2; z/ D �2�.w1; w2/C hA.z C w1/; z C w1i

D �2
��

0 �J
J 0

��

w1

w2

�

;

�

w1

w2

��

C hA.z C w1/; z C w1i:

Changing coordinates

Qw1 D w1;

Qw2 D w2 � .1=2/JA.w1 C z/

yields

ˆ.w1; w2; z/ D ẑ . Qw1; Qw2; z/ WD �2
��

A=2 �J
J 0

�� Qw1
Qw2

�

;

� Qw1
Qw2

��

C hAz; zi:

Hence, we have

.eihA�;�i=2a#b/.z/

D ��2d
Z

R4d

ei
ẑ .w1;w2/a.z C w1/b.z C w2 C .1=2/JA.w1 C z//dw1 dw2

D ��2d eihAz;zi
Z

R4d

e�2ihQw;wia.z C w1/

b.z C w2 C .1=2/JA.w1 C z//dw1 dw2: �

We also have to calculate how quadratic exponentals act on oscillating func-

tions:

Proposition 4.3. Let � 2 �1cl.R
d / homogeneous of degree 1 outside a compact

set, a 2 �
m1

cl .R
d /, and b 2 �

m2

cl .R
d /. For any symmetric matrix A 2 Rd�d we

have

.eihA�;�ia#ei�b/.z/ D eihAz;ziei�.z/ Qa;

where Qa 2 �m1Cm2

cl .Rd /.
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Proof. Using an approximation argument, we can show that the previous calcula-

tion also holds for isotropic symbols and the evaluation of the oscillatory integral

is essentially the same as in the proof of Lemma 4.2 in [3]. �

4.1. Parametrix for U.t/. We use Lemma 3.1 to simplify the computations. The

trace is invariant under conjugation by unitary operators, therefore we may assume

that for N � 0,

H D H0 C B;

ŒH0; B� 2 G�N
cl .Rd /:

For our purposes it will suffice to haveN D 1. By Lemma 3.1, the Weyl-quantized

symbol b of B is given by

b D Xp C ��1
cl .R

d /:

Since the symbol p is assumed to be classical, we have an asymptotic expansion

b �
1

X

jD0
b1�j

and b1 D X�1.P /.

In this section, we construct a parametrix for U.t/ D e�itH , where H D
H0CB . As before, we first consider the reduced propagator F.t/ D U0.�t /U.t/,
where U0.t / D e�itH0 is the propagator of the harmonic oscillator.

The reduced propagator F.t/ satisfies
´

.i@t � B.t//F.t/ D 0;

F.0/ D I :
(5)

Here, B.t/ D U0.�t /BU0.t / D Opw.b.t//, where

b.t/ D b ı exp.tH0/:

Note that the first terms in the asymptotic expansion are b1 and b0, repectively,

because due to the averaging b is invariant under the flow exp.tH0/modulo ��N
cl .

Our ansatz is

zF.t/ D Opw.ei�1.t/a.t//;

where �1 is homogeneous of degree 1 and a 2 C1.Rt ; �0cl/. Applying i@ � B.t/

to zF.t/ yields a Weyl-quantized operator with full “symbol”

�ei�a.t/@t�1 C iei�@ta � b.t/#ei�1a:
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Thus, zF.t/ solves (5) if

�ei�a.t/@t�1 C iei�@ta � b.t/#ei�1a D 0:

Ordering the the terms by homogeneity, we obtain by Proposition 4.1 for the

leading order:

@t�1 C b1 D 0;

which is our usual eikonal equation. Next order gives the first transport equation:

i@ta0 D .b0 � .1=2/¹b1; �1.t /º/a0:

The higher transport equations for a�k contain as usual inhomogeneous terms

depending on the derivatives of a�j , j < k.

Hence, the parametrix is given on an interval .2�k � �; 2�k C �/ by

zF.t/ D Opw.ei�1.t/a.t//;

where

�1.t; x; �/ D �tb1.x; �/;
a0.t; x; �/ D e�itb0.x;�/:

Proposition 4.4. There is an oscillatory integral operator zU 2 C1..2�k � �;

2�k C �/;L.S0; S0// such that zU.t/ is a parametrix for U.t/, that is

zU.t/ � U.t/ 2 C
1..2�k � �; 2�k C �/;L.S0; S//

and

zU.t/ D Opw.ei�2.t/ei�1.t/a.t//;

where

�2.t; x; �/ D �2 tan.t=2/p2.x; �/;

�1.t; x; �/ D �tb1.x; �/;

and a 2 C1..2�k � �; 2�k C �/; �0cl.R
2d // with

�0.a.2�k// D .�1/dk exp.�2�ikb0/:
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Proof. It is well known (cf. Hörmander [8, p. 427]) that the propagator of the

harmonic oscillator can be written as a Weyl-quantized operator. Namely, we have

for t 62 � C 2�Z that

U0.t / D cos.t=2/�d Opw.ei�2.t//;

where �2.t; x; �/ D �2 tan.t=2/p2.x; �/. A suitable parametrix is therefore given

by

zU.t/ D U0.t / zF.t/:

By Proposition 4.3, zU.t/ can be represented as a Weyl-quantized operator with

symbol

ei.�2.t/C�1.t// Qa.t/;

where Qa 2 C1..2�k � �; 2�k C �/; �0cl/. Thus, it remains to show that Qa.2�k/ D
.�1/dka0.2�k/C ��1

cl , but this obviously true, since U0.2�k/ D .�1/dk I. �

4.2. Proof of Theorem 1.1. We consider an oscillatory integral of the form

I.�/ D
Z

ei.t�C 2.t;x;�/C 1.t;x;�//�.t/a.t; x; �/ dt dx d�:

We follow the proof of [3, Proposition 5.1], but keeping track of the leading order

of the amplitude. We assume that

� � 2 C1
c .R/,

�  j is homogeneous of degree j outside a compact neighborhood of 0,

� a 2 C1.R; �0cl.R
d //, and  j are smooth on the support of a,

� there exists unique t0 2 supp� and r0 > 0 such that

 2.t0; r0; �/ D 0;

@t 2.t0; r0; �/ D �1

for all � 2 S2d�1,

�  2 is normalized in the sense that j@r@t 2.t0; r0; �/j D r0.
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The extension of [3, Proposition 5.1] is the following:

Proposition 4.5. Under the assumptions above and assuming that  1.t0; r0; �/
is Morse–Bott with 2d � 2 non-degenerate directions, the integral I.�/ has an

asymptotic expansion

I.�/ D �.d�1/=2eit0�
n

X

jD1
ei�

1=2 1.t0;r0;�j /

1
X

lD0
��l=2
j;l ;

where


j;0 D .2�/d

jdetD�d� 1.t0; r0; �j /j1=2
r
2.d�1/
0 e�i�j =4

Z

�0.a.t0//.r0; �j /d�:

Here, �j is the signature of D�d� 1.t0; r0; �j / and the integral is over the 1-

dimensional manifold on which  1 is constant.

Proof. It already follows from the proof of [3, Proposition 5.1] that we have

the claimed asymptotic expansion and we only have to calculate the leading

coefficient. As in [3], we have that

I.�/ D
Z

S2d�1

J.�; ��1=2; �/d�;

where

J.�; �; �/ D �d
Z

ei�‰�.t;r;�/�.t/a.t; �1=2r; �/r2d�1dt dr;

‰�.t; r; �/ D  2.t; r; �/C � 1.t; r; �/C t:

By assumption, the determinant of Dr;tdr;t 2.t0; r0; �/ has absolute value r0

and the signature is zero, hence, by the stationary phase formula, we obtain for

any M � 1,

J.�; �; �/ D �d�1ei�.t0C� 1.t0;r0;�//aM .�
1=2; �; �/CO.�d�1�M /

with

aM .�
1=2; ��1=2; �/ D 2�r

2.d�1/
0 �0.a.t0//.r0; �/CO.��1=2/:

This leads to the asymptotic formula

I.�/D�d�1ei�t0 � 2�r2.d�1/
0

Z

ei�
1=2 1.t0;r0;�/.�0.a.t0//.r0; �/CO.��1=2//d�:
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By assumption,  1.t0; r0; �/ is Morse–Bott, so we may apply the stationary phase

formula again and obtain

I.�/ D �.d�1/=2ei�t0
n

X

jD1
ei�

1=2 1.t0;r0;�j /.
j;0 CO.��1=2//: �

Now, we are able to prove the main theorem.

Proof of Theorem 1.1. By [2, Proposition 13], we can calculate the trace of a

Weyl-quantized operator by integration along the diagonal. Thus, the inverse

Fourier transform of the Schrödinger trace is given by

F
�1
t!� �.t/TrU.t/

D F
�1
t!� �.t/Tr zU.t/CO.��1/

D .2�/�.dC1/
Z

ei.�2.t;x;�/C�1.t;x;�/Ct�/�.t/a.t; x; �/dt dx d� CO.��1/;

where �2; �1, and a are given by Proposition 4.4. The phase function �2 has an

expansion �.t � 2�k; r; �/ D �.1=2/r2t C O.t3/ and therefore we may apply

Proposition 4.5 with

Ik.�/ D .2�/�.dC1/
Z

ei.�2.t;x;�/C�1.t;x;�/Ct�/�.t/a.t; x; �/dt dx d�:

The stationary point of �2 is at t0 D 2�k and r0 D
p
2. On the stationary point,

we have that �1.t0; r0; �/ D �2�kb1.
p
2; �/. By Proposition 4.5, we see that there

is an asymptotic expansion

Ik.�/ D �.d�1/=2e2�ik�
n

X

jD1
e�2�ik�1=2b1.

p
2;zj /

1
X

lD0
��l=2
k;j;l :

The determinant and signature of the Hessian of the phase function �1 at a critical

point zj are given by .2�k/2d�2dj and ��j , respectively, where

dj D jdet.Ddb1.zj //j ¤ 0;

�j D sgn.Ddb1.zj //:

Since �0.a.2�k// D .�1/dke�2�ikb0 is invariant under the flow, we have for the

leading order term at one critical point zj that


k;j;0 D .2�/�.dC1/ .2�/d

.2�k/d�1jdj j1=2
2d�1e��i�j =4

Z

�0.a.2�k//.
p
2; zj /d�

D .�k/�.d�1/d�1=2
j e��i�j =4 � 1

2�

Z

�0.a.2�k//.
p
2; zj /d�

D .�k/�.d�1/d�1=2
j e�i.��j =4Cdk/e�2�ikb0.zj /: �
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5. Conjugation to the Bargmann–Fock model

In this section, we prove Theorem 1.3 as outlined in Section 1.2. The proof is

based on results of [11, 12] and involves Toeplitz Fourier integral operators acting

on holomorphic sections of the standard line bundles O.N / ! CP
d�1 over the

projective space. Since it is our second proof of the main result, we do not provide

detailed background on Toeplitz Fourier integral operators and refer to [11, 12]

for further background and references. Our goal to describe the conjugation to the

holomorphic setting and to connect the asymptotics of Theorem 1.3 to those of

[11, 12].

In this section, we assume that the perturbation B commutes with H0. As in

Lemma 3.2, by iterated averaging we may assume that H D H0 C B C R where

R is smoothing and ŒH0; B� D 0. By Corollary 3.3 and Proposition A.1, the

smoothing operator does not change singularities or asymptotics of the trace; it is

omitted for simplicity of exposition.

As in (2), we denote by HN the eigenspace of H0 with the eigenvalue N C
d=2 and by …N the orthogonal projection onto HN . The perturbation P and

the unitarily equivalent B are isotropic pseudo-differential operators of order 1.

When we conjugate to the Bargmann–Fock setting, orders in Toeplitz calculus are

traditionally defined by powers of N . Thus, H0 is considered to have order 1 and

P;B are considered to have order 1
2
. To keep track of the orders, it is convenient

to scaleB to have order 0, i.e. we define zeroth order isotropic pseudo-differential

operator

zB WD H
�1=2
0 B

with Weyl-quantized symbol Qb D p
�1=2
2 #b: Then Œ zB;H0� D 0, and

Tr eitB jHN
D Tr eitH

1=2
0

zB jHN
D Tr eit

p
N zB jHN

:

As mentioned in the introduction, eit
p
N zB jHN

is not a standard type of Fourier

integral operator, which would be the exponential of a first order operator, and

that is why we view it as U. tp
N
/ (in the notation of Section 1.2).

5.1. Conjugation to Bargmann–Fock space. Consider the weight function

ˆ.z/ D jzj2=2. The L2-space of weighted entire functions,

Hˆ.C
d / WD L2.Cd ; e�2ˆ.z/=hd2dz/ \ Hol.Cd /

is called the Bargmann–Fock space. Here, d2d z denotes the Lebesgue measure

on Cd .
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There exists a standard unitary intertwining operator, the Bargmann trans-

form4, from L2.Rd / to the Bargmann–Fock space,

BWL2.Rd / �! Hˆ.C
d /;

defined by

Bu.zI h/ D 2�d=4.�h/�3d=4
Z

Rd

ei'.z;y/=hu.y/dy

with phase function

'.z; x/ D i
�1

2
.z2 C x2/ �

p
2x � z

�

:

It is a Fourier integral operator with positive complex phase. The phase function

and the weight are related by

ˆ.z/ D sup
y2Rd

.� Im'.z; x//:

We denote by …BF the orthogonal projection L2.Cd ; e�2ˆd2dz/ ! Hˆ.C
d /. Its

Schwartz kernel is known as the Bargmann–Fock Bergman kernel.

Remark 5.1. The operator B can be written as Bf .zI h/ D .B1=.2h/f /.
p
2z/,

where B˛ is defined as in Zhu [13, Section 6.2].

Remark 5.2. In what follows, we will always take h D 1.

Define the linear complex canonical transformation

�' WC2d �! C
2d ;

.x; �/ 7�! 1p
2
.x � i�; � � ix/;

which satisfies �'.x;�@x'.z; x// D .z; @z'.z; x// for all x; z 2 Cd . The canoni-

cal transformation maps R2d bijectively onto the totally real IR Lagrangian sub-

space

ƒˆ WD ¹.z;�2i@zˆ.z//W z 2 C
d º D ¹.z;�i Nz/W z 2 C

d º � C
2d :

4 It is a special case of the FBI transform.
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For a proof, we refer to [14, Theorem 13.5]. The inverse of �' WR2d ! ƒˆ is

given by

��1
' Wƒˆ �! R

2d ;

.z; �/ 7�! 1p
2
.z C i�; � C iz/:

The Bargmann transform is a quantization of �' in the sense that

B
�aw.z;Dz/B D .��

'a/
w.x;Dx/; a 2 �.ƒˆ/

(cf. Zworski [14, Theorem 13.9] in the semiclassical setting).

It is a classical fact (cf. Zhu [13] or Zworski [14, Theorem 4.5]) thatH0�d=2
is conjugated to the degree operator N WD hz; @zi on Bargmann–Fock space. Note

that .��
'p2/.z; �/ D hz; i�i, where p2.x; �/ D .1=2/.jxj2 C j�j2/. This gives a

short proof that B�.H0 � d=2/B D N, since Opw.hz; i�i/ D N C d=2.

The eigenspace HBF
N of eigenvalue N is spanned by the monomials z˛ with

j˛j D N . Comparing the spectral decompositions of H0 and the degree operator

gives

Lemma 5.3. The operator …BF
N

WD B…NB
� is the orthogonal projection onto

HBF
N .

Under conjugation by B, H0 zB transforms as BH0 zB…NB
� D NB zBB�. It

follows that

B…NH0 zB…NB
� D

�

N C d

2

�

…BF
N B zBB�…BF

N : (6)

5.2. Toeplitz operators. The next step is to determine …BF
N B zBB�…BF

N . We

now review the Bargmann conjugation of Weyl pseudo-differential operators to

Toeplitz operators, following [6, 1, 14]. Our presentation differs from these refer-

ences in two ways: (i) we are dealing with isotropic pseudo-differential operators,

which are considered in [6] but not in the other two references; (ii) we are inter-

ested in semi-classical asymptotics in N rather than in homogeneous operators.

Hence, we need to reformulate results of the references in terms of semi-classical

symbol expansions. The basic relation is that if aj .z; Nz/ is homogeneous in .z; Nz/
of order j , then the semi-classical Toeplitz operator …Naj…N is of order N j=2

(cf. Lemma 5.5 below).

We also recall that there exist two notions of complete symbol for a Toeplitz op-

erator: (i) its contravariant symbol q, and (ii) its covariant symbol…BFq…BF.z; z/,
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i.e. the value of the Schwartz kernel on the (anti-)diagonal. The transform from the

contravariant symbol to the covariant symbol is known as the Berezin transform.

The Bargmann transform conjugates isotropic Weyl pseudo-differential oper-

ators Opw.a/ to Toeplitz operators …BFq…BF with isotropic symbols. The com-

plete contravariant symbol of an isotropic Toeplitz operator…BFq…BF of order 0

is an isotropic symbol on Cd ' T �Rd of the form,

q � q0 C q�1 C q�2 C � � � ;

where q�j is homogeneous of degree �j .

By a well-known result of Berezin (see [1] for a recent proof ), the relation

between the complete Weyl symbol a of Opw.a/ to the contravariant symbol q is

given by

a.x;�2i@xˆ.x// D
�

exp
�1

4
.@x Nxˆ/�1@x � @ Nx

�

q
�

.x/; x 2 C
d : (7)

The operator .@x Nxˆ/�1@x � @ Nx is a constant coefficient second order differential

operator on Cn whose symbol is a negative definite quadratic form; so this is a

forward heat flow acting on q. The Berezin transform is the inverse heat flow. In

our case (cf. [1, 6, 14]), we have that .1=4/.@x Nxˆ/�1@x �@ Nx D .1=8/� (the standard

Euclidean Laplacian on R2d ) and therefore

q D e� 1
8
�a ı �' : (8)

A general C1 isotropic symbol of order 0 does not lie in the domain of e� 1
8
�.

However, the expression (8) makes sense as an isotropic symbol since � lowers

the order of an isotropic symbol by two orders. That is, we invert the transform (7)

in the topology of symbols and view e� 1
8
� as an operator taking complete (formal)

isotropic Weyl symbols to complete (formal) isotropic contravariant symbols. If

we Taylor expand e� 1
8
� to order M , and a is isotropic of order m, then

e� 1
8
�a D

M
X

kD0

.�1/k
8kkŠ

.�ka/ mod �m�2M :

Summing up, we have the following:

Lemma 5.4. Let A D Opw.a/ be a zeroth order isotropic pseudo-differential

operator on Rd . Then BAB� is a Toeplitz operator…BFq…BF onHˆ.C
d /, where

the symbol q has an asymptotic expansion

q �
1

X

kD0

.�1/k
8kkŠ

.�ka/ ı �'

in the sense of isotropic symbols.
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If we assume that a 2 �0cl and a �
P

k a�k , then q 2 �0cl with expansion

q �
P

k q�k, where

q0 D a0 ı �' ;
q�1 D a�1 ı �' ;
q�2 D .a�2 � .1=8/�a0/ ı �' :

In particular, we have that

N D …BF.jzj2 � d/…BF;

since the symbol of N restricted to ƒˆ is a.z/ D jzj2 � d=2 and the Berezin

transform of a is q.z/ D jzj2 � d .

Returning to the symbol Qb 2 �0cl with ¹ Qb; p2º D 0 and asymptotic expansion

Qb �
1

X

jD0

Qb�j ;

where Qbj D p
�1=2
2 XpjC1 for j D 0;�1. We now compress …BF Qb…BF with …BF

N

and exponentiate. The order of a homogeneous isotropic symbol coincides with

its eigenvalue under the degree operator N. This is an immediate consequence of

Euler’s homogeneity theorem. If we write z D .x C i�/, then

N Qb D 1

2
.x@x C �@�/ Qb C i

2
.�@x � x@�/ Qb

D 1

2
.x@x C �@�/ Qb C i

2
¹p2; Qbº:

Since Qb was assumed to Poisson-commute with p2, the second term vanishes and

we obtain that N Qbj D .j=2/ Qbj . We may write

…BF
N

Qbj…BF
N D …BF

N .N C d/j=2jzj�j Qbj…BF
N

D .N C d/j=2…BF
N jzj�j Qbj…BF

N :

Note that jzj�j Qbj is bounded with norm independent of N . This agrees with the

statement at the beginning of this section that isotropic orders get multiplied by 1
2

when we conjugate to the Bargmann–Fock model and use homogeneity inH0 ' N

to define orders. It follows that the polyhomogeneous expansion of an isotropic

symbol coincides with its expansion in powers of .N C d/�1=2 when compressed

by …BF
N . We thus have:
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Lemma 5.5. The operator…BF
N B zBB�1…BF

N is a semi-classical Toeplitz operator

whose complete contravariant expansion has the form

q D Qb0 ı �' CN�1=2 Qb�1 ı �' CN�1. Qb�2 � .1=8/� Qb0/ ı �' CO.N�3=2/:

In particular, we have that …N
zB…N is conjugated to …BF

N q…
BF
N under the

Bargmann transform.

5.3. Trace asymptotics. Our aim is to determine the large N asymptotics of

Tr…N e
it

p
N zB…N : (9)

We observe that (9) is the trace of the rescaled propagator UN
�

tp
N

�

, where

UN .t / WD …N e
itN zB…N : (10)

It follows from Lemma 5.5 that UN .t / D B� exp.i tN…BF
N q…

BF
N /B is a semi-

classical isotropic Fourier integral operator. Clearly,

Tr…N e
itB D TrUN

� tp
N

�

: (11)

The main value of the Bargmann–Fock conjugation is that the propagator

of the harmonic oscillator and the projection …N become much simpler on the

Bargmann–Fock side. The trace TrUN
�

tp
N

�

may be further simplified by noting

that HN is the same as the space H 0.CPd�1;O.N // of holomorphic sections of

the N th power of the natural line bundle O.1/ ! CP
d�1. The identification is to

lift holomorphic sections, s ! Os, of O.N / to homogeneous functions on Cd n ¹0º.
It follows that

H 2.Cd ; e�jzj2d2d z/ '
1

M

ND0
H

BF
N '

1
M

ND0
H 0.CPd�1;O.N //: (12)

We refer to [4] for background. Tracing through the identifications, we see that

HN ' H 0.CPd�1;O.N //. This identification explains why the trace formula is

an integral over the space of Hamilton orbits of H0.

We use the last identification to determine the asymtotics of the trace of

UN
�

tp
N

�

in the model H 0.CPd�1;O.N //. The advantage of conjugating to this

model is that the calculations have mostly been done in this setting in [11, 12]

(in fact, on any Kähler manifold M ). It would be equivalent to work directly with

the Fourier components…BF
N

zB…BF
N .
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We let

…CP
d�1

N WL2.CPd�1;O.N // �! H 0.CPd�1;O.N //

denote the orthogonal projection. Since Qb is invariant under the natural S1 action

on Cd defining Cd n ¹0º ! CP
d�1, �0. Qb/ descends to a multiplication operator

on L2.CPd�1;O.N //.

We briefly recall the setting of [11, 12]. Consider a polarized Kähler man-

ifold M with positive Hermitian line bundle L (cf. [12] for definitions) and let

H 0.M;LN / denote the space of holomorphic sections of the N -th power of the

line bundle L and …M
N is the orthogonal projection L2.M;LN / ! H 0.M;LN /.

For any function H WM ! R we define

yHN D …M
N H …M

N WH 0.M;LN / �! H 0.M;LN /

the corresponding semiclassical Toeplitz operator 5 and

UN .t / D exp i tN yHN (13)

its propagator, which is a semiclassical Fourier integral operator. In [11, 12] it is

shown that for any z 2 M , the following pointwise asymptotics hold:

Proposition 5.6 ([11, Proposition 5.3]). Let .M; !/ be a Kähler manifold of

complex dimension m and H WM ! R a Morse function. If z 2 M , then for

any � 2 R,

UN .t=
p
N; z; z/ D

� N

2�

�m

eit
p
NH.z/e�t2 kdH.z/k2

4 .1CO.jt j3N�1=2//;

where the constant in the error term is uniform as t varies over compact subset

of R.

Remark 5.7. It is emphasized that the asymptotics are valid at critical points ofH .

The asymptotics of the trace follow from Proposition 5.6 and the method of

stationary phase.

5 In [11] the authors in fact define the quantization of H by yHN WD …N .
i

N
rH CH/…N ,

where H is the Hamilton vector field ofH .
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Theorem 5.8 (cf. [12, Theorem 1.7]). Let .M; !/ be a Kähler manifold of complex

dimensionm. If t ¤ 0, the trace of the scaled propagatorUN .t=
p
N/ D ei

p
Nt yHN

admits the following aymptotic expansion

Z

z2M

UN .t=
p
N; z; z/d volM .z/

D Nm
� t

p
N

4�

��m X

zc2crit.H/

eit
p
NH.zc/e.i�=4/ sgn.DdH.zc//

p

j det.DdH.zc///j
.1CO.jt j3N�1=2//:

Remark 5.9. We note that the Gaussian factor equals 1 at the critical points.

We see that the operator UN .t=
p
N/ is given by

UN .t=
p
N/ D exp.i t…BF

N .
p
N Qb0 C Qb�1/…BF

N /CO.1=
p
N/:

IfzXp0 D 0, then we may directly apply Theorem 5.8 withM D CP
d�1,L D O.1/,

and H D Qb0jCPd�1 D zXp1 to obtain Theorem 1.3. A complete asymptotic

expansion with remainder could be obtained by the same method if one wished to

have lower order terms.

Corollary 5.10. IfzXp1 D Qb0jCPd�1 is a Morse function onCP
d�1, the asymptotics

of (11) are given by Theorem 5.8 with m D d � 1.

If zXp0 6D 0, then the contribution of Qb�1jCPd�1 D zXp0 may be absorbed into

the amplitude and repeating the stationary phase calculation as in [11], we obtain

Theorem 1.3.

6. Equivalence of the expansions

In this section we show that the large � expansion of Theorem 1.1 agrees with the

large N expansion of Theorem 1.3 to leading order.

Consider the Fourier series

wr .t; a/ WD
1

X

ND1
N�re�i.NCd=2/te�iat

p
N :
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We introduce a cutoff O�.t/ supported near t D 2�k0 with O�.2�k0/ D 1 and

calculate asymptotics as � ! 1 of

F
�1
t!�¹ O�.t/wr.t; a/º.�/ D .2�/�1

Z

R

O�.t/eit�wr.t; a/dt

D .2�/�1
1

X

ND1
N�r

Z

R

O�.t/eit�e�it.NCd=2/e�iat
p
Ndt:

(14)

We claim that the large � asymptotics of the integral (14) coincides with the large

N asymptotics of the Fourier coefficients.

Proposition 6.1. Let wr and � be as above. Then

F
�1
t!�¹ O�.t/wr.t; a/º.�/ D ��rei�k0de2�ik0a�

1=2 CO.��r�1=2/:

Proof. Let fr 2 C1.R/ such that fr.�/ D ��r for � > 1=2 and fr.�/ D 0 for

� � 0. By applying the Poisson summation formula to the function

� 7�! fr.�/F
�1
t!�¹eit.�Cd=2/eiat j�j1=2º.�/;

we have that

I.�/ WDF
�1
t!�¹ O�.t/wr.t; a/º.�/

D.2�/�1
X

k2Z

Z

R

1
Z

0

O�.t/eit�e2�ik�fr .�/e�iat j�j1=2

e�it.�Cd=2/d� dt:

Changing variables � 7! �� for � > 0 yields

I.�/D.2�/�1�1�r X

k2Z

Z

R

1
Z

0

O�.t/ei�.�t�CtC2�k�/fr .�/e
�iat�1=2j�j1=2

e�itd=2d� dt

CO.��1/:

We set

a�.t; �/ D .2�/�1 O�.t/fr.�/e�iat�1=2j�j1=2

e�itd=2

and

�k.t; �/ D .1� �/t C 2�k�
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and note that derivatives in � decrease the order in � by 1=2 while increasing it in

� by 1=2. This suffices, since integration by parts decreases the orders by 1. We

have

I.�/ D �1�r X

k2Z

Z

R

1
Z

0

ei��k.t;�/a�.t; �/d� dt CO.��1/:

We may decompose the integral as follows:

Ft!�¹ O�.t/w2�k0
r .t; a/º.�/ D �1�r .I1.�/C I2.�/C I3.�/CO.��1//;

where

I1.�/ D
Z

R

1
Z

0

 .�/ei��k0
.t;�/a�.t; �/d�dt;

I2.�/ D
Z

R

1
Z

0

.1 �  .�//ei��k0
.t;�/a�.t; �/d�dt;

I3.�/ D
X

k 6Dk0

Z

R

1
Z

0

 .�/ei��k.t;�/a�.t; �/d�dt;

I4.�/ D
X

k 6Dk0

Z

R

1
Z

0

.1�  .�//ei��k.t;�/a�.t; �/d�dt:

First, we consider the integral I2.�/. We have that @t�k.t; �/ D 1 � � 6D 0 on

supp . Thus, by integration by parts we obtain arbitrary decay in both � and �,

which yields that the integral converges and is O.��1/.
The I3.�/ integral posses no problem, since by integration by parts For I3.�/,

we use that @��k D 2�k� t 6D 0 for k 6D k0 on the support of O�. Hence, we obtain

arbtrary decay in k to make the series converge, this gives also rapid decay in �,

showing that we have indeed I3.�/ D O.��1/.
The last integral, I4.�/, can be treated by a combination of the previous

arguments to make the integral and series converge with arbitrary decay in �.

Hence, we have that

Ft!�¹ O�.t/w2�k0
r .t; a/º.�/ D �1�rI1.�/CO.��1/

D �1�r
Z

ei��k0
.t;�/ .�/a�.t; �/d� dt CO.��1/:
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The phase function �k0
is stationary on t D 2�k0 and � D 1 and its Hessian is

given by

Dd�k0
jd�k0

D0 D
�

0 1

1 0

�

:

The method of stationary phase yields

I1.�/ D ��1e2�ik0e�2�ik0a�
1=2

ei�k0d CO.��3=2/: �

A. Duhamel’s formula

We recall the Duhamel principle for general isotropic evolution equations. Let

H 2 G2.Rd / elliptic andR 2 G�1.Rd / such thatH andH CR are self-adjoint.

Consider the propagators U.t/ D e�itH and V.t/ D e�it.HCR/.

Proposition A.1. The difference U.t/ � V.t/ is a smoothing operator.

Proof. The difference of the propagators, F.t/ D U.t/�V.t/ solves the equation

´

i@tF.t/ D .H CR/F.t/CR.t/;

F.0/ D 0;
(15)

where R.t/ D RU.t/. By the Duhamel principle,

F.t/ D
t

Z

0

V.t � s/R.s/ds:

Since V.t/ and U.t/ are unitary, we obtain that for any N 2 N,

kHN
0 F.t/kL2 D













t
Z

0

HN
0 V.t � s/R.s/ds













L2

�
t

Z

0

kRHN
0 kL2ds

� sup
s2Œ0;t�

kRHN
0 kL2

< 1:

This shows that F.t/ is bounded in every isotropic Sobolev space (cf. [3] for the

definition) and this implies that F.t/ 2 G�1.Rd /. �
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