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Schrodinger trace invariants
for homogeneous perturbations
of the harmonic oscillator

Moritz Doll and Steve Zelditch?

Abstract. Let H = Ho + P denote the harmonic oscillator on R perturbed by an
isotropic pseudodifferential operator P of order 1 and let U(¢) = exp(—itH). We prove a
Gutzwiller-Duistermaat-Guillemin type trace formula for Tr U(¢). The singularities occur
at times ¢ € 277 and the coeflicients involve the dynamics of the Hamilton flow of the
symbol o'(P) on the space CPP ~! of harmonic oscillator orbits of energy 1. This is a novel
kind of sub-principal symbol effect on the trace. We generalize the averaging technique of
Weinstein and Guillemin to this order of perturbation, and then present two completely
different calculations of Tr U(¢). The first proof directly constructs a parametrix of U(¢) in
the isotropic calculus, following earlier work of Doll-Gannot—Wunsch. The second proof
conjugates the trace to the Bargmann—Fock setting, the order 1 of the perturbation coincides
with the ‘central limit scaling’ studied by Zelditch—Zhou for Toeplitz operators.
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1. Introduction

In a recent article [3], a two-term Weyl law with remainder was proved for special
types of perturbations H = Hy + P of the homogeneous isotropic harmonic
oscillator

Ho = (1/2)(=A + |x]?)

with symbol p, = (1/2)(]x|? + |£|?). The perturbation P is a classical isotropic
pseudodifferential operator of order 1, P = Op“(p) € Gcl1 with (classical)
isotropic symbol

P~P1+P0+P—1+'~€FC11.

The salient feature of the perturbation is that its order is at a threshold or crit-
ical level, so that the perturbation has a strong contribution to the Weyl law.
The purpose of this note is to go further in the spectral analysis, by consid-
ering the Duistermaat—Guillemin—Gutzwiller trace formula for the propagator
U(t) = e "*H_ It was shown in [3] that the distribution trace Tr U(¢) has sin-
gularities at the same points ¢ € 27 as for the unperturbed propagator. We give
a new proof of this result and, more importantly, determine the singularity coeffi-
cients at non-zero singular times ¢ = 2xk. It turns out that the coefficients involve
the Hamiltonian mechanics of p on the space CP?~! of Hamilton orbits of Hy.
After generalizing the averaging technique of Weinstein [10] and Guillemin [5],
we prove the result in two ways: (i) using special parametrices for the isotropic
propagators U(t) on L?(R?) developed in [3], and (ii) by using an eigespace
decomposition for Hy and conjugating the traces of U(¢) on eigenspaces to the
Bargmann—Fock representation and then to holomorphic sections of line bundles
over the space CIP~! of Hamilton orbits of Hy. It turns out that the eigenspace
traces of U(¢) involve the central limit scaling of Toeplitz propagators studied in
[11, 12]. We then use the trace asymptotics of [12] to obtain a second proof.
The two approaches are in some sense dual, the first leading to Fourier integral
representations, and the second to Fourier series representations, of Tr U(¢). The
second approach shows (see Corollary 1.4) that Tr U(¢) trace is a sum of distri-

, 1

butions on R of the form e*¢/P1% ¢, (x) where D = %%, a € Rande,(¢) is a
_ 1

periodic classical homogeneous distribution of order r. The operator e!4!|P1* is a

pseudo-differential operator on R with symbol e’ oVl i the class SO R each
2

derivative decreases the order by % The proofs actually show that the unusual
contribution of P to the wave trace occurs whenever one perturbs an operator Hy
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with periodic bicharacteristic flow and maximally high multiplicities by an oper-
ator of ‘one-half lower order’. See Section 1.3.1

To state the results, we introduce some notation. Let Hy denote the Hamiltonian
vector field of pr = (1/2)(|x|*>+|£|?), whose flow (x(2), £(t)) = exp(tHo)(x0. £0)
satisfies

x(t) = cos(t)xo + sin(¢)&y,

£(t) = cos(r)o — sin(7)xo.

We define

27
K1) = 5 [ Flexp(tro)(x. £ dr. n
0

For f € C®($2¢~1), where $2¢~! = {p, = 1}, we use the same notation2 X f .
The map X induces a map

X: €®°(R2?) — e®(CP¢™),

where CP¢~! = {p, = 1}/ ~ and z; ~ z, if and only if there exists a @ € R such
that z; = e'?z,. Note, that we can write X as

2w
Xf(z) = % [ F(e'92)db
0

using the natural identification C¢ = R2¢.

In both approaches we critically use an averaging method originally due to
Weinstein [10] to simplify the perturbation (cf. Lemma 3.1). If p; = o!(P),
then the principal symbol of the averaged perturbation can be identified with
Xp1: CP?~! — R. Assume that Xp; is a Morse function on CIP~!. The set of
stationary points is given by I, = {z; ;"=1 = {z € CP:dXpi(z) = 0}.
Furthermore, we set d; = |det DdXpi(z;)] # 0 and o; the signature of the
Hessian, sgn Ddipl(zj).

1.1. Statement of results in the homogeneous isotropic calculus. It was shown
in [3, Theorem 1.2] that under the assumption that X p1 is a Morse function on
CP¢~1, the singularity at 27k is of order O(A(¢—1/2),

1 The order convention in this article is that H( has order 2 and P has order 1. But it is also
natural to define the order of Hy to be 1 and that of P to be % and this order relation generalizes
to many other settings.

2 Note that the definition differs from the one in [3] by a factor of 2.
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The content of the main theorem is to calculate the principal term of the
distribution at t = 2rk.

Theorem 1.1. Let H be as above and w(t) = Tre™"'H jts Schrodinger trace. For
k € Z\ {0} and € € (0, ) choose xi € C°((2nk —€,2mk + €)) with yx(t) =1
on 2nk —e€/2,2nk + €/2). Then,

n 00
Tk - wyA) ~ A@TD227KIA N7 =2nikA R G) N 12y,
j=1 1=0

and -
Vkjo = (ﬂk)_(d_l)dj_l/zeni(_aj /4+dk)e—2nikXp0(Zj)‘
1.2. Statement of results in the Bargmann—Fock setting. We give a different
proof of Theorem 1.1 in which we first expand Tr U(¢) into traces on eigenspaces
of Hy and then conjugate by the Bargmann transform to obtain traces of semi-
classical Toeplitz operators in the Bargmann—Fock setting. The advantage of
the conjugation is that the spectral projections for Hy conjugate to the simpler
Bergman kernel projections for holomorphic sections of the standard ample line
bundles over projective space. In that setting, Theorem 1.1 can be reduced to the
trace asymptotics calculated in [12] for semi-classial Toeplitz operators acting on
holomorphic sections of line bundles over Kidhler manifolds.
Let L2(RY) = @3-, Hn be the decomposition of L2(R?) into eigenspaces
of Hy, and let
My: L2(RY) — Hy )

be the orthogonal projection, i.e. the spectral projections for Hy. By the averaging
Lemma 3.2, Hy + P is unitarily equivalent to Hy + B + R where [B, Hy] = 0 and
R:8'(R?) — 8$(RY). We can assume that that R = 0 (cf. Corollary 3.3). Using
the known spectrum of H,, we have the following:

Lemma 1.2. The trace Tre'*? is given by

o0
Tre!t(Ho+P) — Ty pit(Ho+B) — Z Tre''B|q¢, QTN+,
N=0
It therefore suffices to determine the asymptotics as N — oo of
Tre''B|gc, = TrTye BTy 3)

for each ¢ and in particular for ¢t = 2nk for some k € Z. Using the trace
asymptotics of [12], we prove (in the notation of Theorem 1.1):
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Theorem 1.3. Let N > 0, m = d — 1 and t = 27k. Then, Tr I ye''B admits
a complete asymptotic expansion as N — oo in powers of (t~/N) with leading

term,
Trye'® = (23) (t\/_)_mzd—l/z

'eit\/wpl(Zj)eln'aj/4(eltXp0(Zj) + 0(|t|3N_1/2)).

To prove Theorem 1.3 we relate the unitary group Iye’’BIly to semi-
classical Toeplitz Fourier integral operators. Since B has order 1, it does not
generate a semi-classical Toeplitz Fourier integral operator. Rather,

VN(I) = HNeitWBHN

is a semi-classical Toeplitz Fourier integral operator. We then employ the trick
that

. t
HNeltBHN = VN<—
)

to express I1ye'BT1y as a time-scaled Toeplitz Fourier integral unitary group.
Under conjugation by the Bargmann transform, Vx(¢) is carried to a Toeplitz
Fourier integral operator Uy (¢) in the complex domain. Therefore, combining
with Lemma 1.2 gives,

o
. t ; d
Trelt(Ho-‘rP) — E TrUN(—) e”(N+7).
N=0 N

The time-scaled Toeplitz Fourier integral operators U, N( \/—) are studied in [11,
12] for unrelated reasons, and the pointwise and integrated asymptotics of those
articles gives Theorem 1.3.

We then substitute the asympotics of Theorem 1.3 into Lemma 1.2. When
B =0, Tre '™ js a sum of Hardy distributions of the form,3

o0
. 1
N ()= 3 NEWED (v e 7). “
e 2
N=0
with r = d — 1. When B # 0 and op descends to a Morse function on cPé,

the order is % and the fact ¢it VEH ) changes the singularity type to a sum of

distributions of the type

[e.¢]
endr(t,a) = Z NTeltW+VNat+9) (4 e R,
N=1

3 By a Hardy distribution is meant one with only positive frequencies
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These are non-standard and apparently novel types of homogeneous Lagrangian
distributions (the authors have not found them in prior articles). We obtain an
interesting description of Tre~"*# and its singularities in terms of these distribu-
tions,

Corollary 1.4. The leading order singularity in t of Tre!*Ho+B) qr ¢ = 27k is
the same as the leading order singularity of the finite sum,

ein’aj /4 _
WeN,d,(d—l)ﬂ(ta Xp1).
Jj=1 %

This explict expansion of the trace in terms of non-standard Lagrangian distri-
butions does not seem to follow easily from the calculation in the Schroedinger
representation.

We further observe that ¢//¢VIPl ¢ ¥9 0(]R), i.e. is a pseudo-differential op-
2>

erator on R of order zero, with symbol ¢i'avIEl Each derivative decreases the
order of the symbol of by % It follows that although ey 4(¢,a. (d — 1)/2) is not
a homogeneous distribution, it has the same properties as a homogeneous distri-
bution. For instance, since ¢/?4vIPl jg pseudo-local, ey 4 (¢, a) has singularities at
the same points t € 2n7Z as ey 4(t,0), as first proved in [3].

To relate the expansions of Theorem 1.1 and Theorem 1.3, it is proved in
Section 6 that the asymptotics A — oo in Theorem 1.1 and the asymptotics
N — oo in Theorem 1.3 agree to leading order.

1.3. Related problems. The trace asymptotics for the propagator e **H of the
perturbation H = Hy + P has many analogues in settings where one has a first
order elliptic pseudo-differential operator Hy with periodic bicharacteristic flow
and maximally high multiplicities and P is a %—order below that of Hy. Without
trying to state the most general result, we note that it is valid for Hy = +v—A
on 5", the standard sphere, and P is a pseudo-differential operator of order %
Indeed, as in the proof of Theorem 3, it suffices to work out the semi-classical trace
asymptotics in the eigenspaces, which only uses that Uy (¢) is a semi-classical
unitary Fourier integral operator. The main results pertain to the special effect of
perturbation of the special order % and hold for such perturbations on all rank one
symmetric spaces. The results can also be adapted to general Zoll manifolds if
v/—A is replaced by an operator N which indexes the ‘bands’ in the sense of [6].
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2. Isotropic calculus and quantization

The class of isotropic symbols of order m € R, F’”(Rd ), consists of the smooth
functions a € €*°(R24) such that

10208 a(x. )| Sap ((x.£)" TPV forall e, p e N7,

We will mainly be interested in the subclass of classical symbols a € T} (RY),
which admit an asymptotic expansion in homogeneous terms of order m — j. To
any isotropic symbol a € I'™(R¢) we associate an isotropic pseudodifferential
operator A € G™(R%) by the Weyl-quantization,

A =0p®(a) = @m) / SN (x + y)/2.£)dE.

The integral is defined as an oscillatory integral and we further note that any
bounded linear operator 4:$(R¢) — §'(R?) has a Weyl-symbol a € §'(R??),
which satisfies Op”(a) = A. This follows directly from the Fourier inversion
formula and the Schwartz kernel theorem. We also use that the class of resid-
ual isotropic operators, G~°(R%) = (\mer G™ (R9) is the space of (globally)
smoothing operators A: 8'(R?) — 8(R?). For the main properties of the isotropic
calculus, we refer to [3] (see also Helffer [7] and Shubin [9]).

For later reference, we recall the formula for composing isotropic pseudodif-
ferential operators.

Proposition 2.1. Lera € ;' b € T? two isotropic symbols. Then
Op”(a) Op” (b) = Op“ (o),
where

c(x,§) = (a#b)(x, &) = e Pa(x, £)b(y, )|

y=xn=£"

The exponential is defined as an Fourier multiplier and the operator A(D) is
given by A(D) = ({Dg, Dy) —(Dx, Dy))/2. Moreover, there exists an asymptotic
expansion

+k
(a#b)(x. §) ~ Y ;—,A(D)"a(x, LI | R—
7
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3. Averaging

In this section we prove that there exists a B € Gcll(le) and R € G™°(R%) such
that

H=>~Hy+B+R, [HyB]=0

and calculate its symbol. We will follow the arguments of [10, 5].
For the proof of Theorem 1.1, the following lemma suffices.

Lemma 3.1. Let H = Hyo + P with P € Gcll(Rd). For any N € NN there exists
a unique B_y € Gcll(le) modulo GC_IN (R4) and an unitary operator U_y such
that

[Ho, B_y] € G5 (RY),
U__J{;HU_N = Hy+ B_jy.

Furthermore, for N > 1 the Weyl quantized symbol of B_n has an asymptotic
expansion

b =Xp+ T ' (RY)
where p is the Weyl-quantized symbol of P.
Proof. First, we define for F € Gé‘l the operator

ad(F): G —> G2
by
ad(F)A = [F, A].
If kK < 2 we obtain, using the Taylor expansion of the exponential, that
e8P g = A —i[F, Al + G270

We define the pseudodifferential operator F; by

1 2w t
F, = —//eiSHOPe_iSHO ds dt.
2
0 0

It has the property that

[F1, Ho] = P — By,
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where

Therefore, we calculate
eIV = Hy + By + [Fi, Bi] + G3.

Now, we inductively lower the order of the remainder term. Set Ry = [Fi, B1] €
Ggl then define Fy and By as above, but with P replaced by Ry. Then we find that

e AF)mdF) i = Hy + By + By + G,
thus concluding
e—iad(F_N) “‘e_iad(Fl)H — HO 4 Bl RS BN 4 GC—IN—I

with [Hy, By + --- + By] = 0. The operator U_y is given by e’f-~ ...¢'F1_This
follows from the fact that

—i ad(F;
Ade—iFj =e ta ( j)s

where Ady A = UAU 1.
Finally, we show that By € G '(R?). The Weyl-quantized symbol of B is
given by

by =Xp = Xp1 + Xpo + Fc_ll.

Observe that

2w
1
Bo=- / Us(—1)[F1, B1]Uo (1) d
T
0

2
_ %/[Uo(—z)Fon(z), By]d1
0

2n

= [%/Uo(—t)Fon(l)dl,Bl}.

0
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Here, we have used that B; commutates with U(¢). By Fubini, we calculate the
principal symbol of the left entry in the commutator,

2w 2w ¢t 2wt

1
S p1oexp((s +t")Ho) ds dt di’ = L Xp1dsdt
(2n)? b 2
T /g
00 0 0 0

=m-Xp1.

The second equality follows from the fact that Xp; is constant along the Hamil-
tonian flow and that f02” fyds dt = 27% Now, the principal symbol of
Uo(—t)F1Uy(t) and B; are the same up to a constant, therefore its commutator
has zero principal symbol. |

Now, we have to make sure that we can use asymptotic summation.

Lemma 3.2. Let H € GCZl R?) as above. There exists a unitary pseudodifferential
operator U € Ggl (R%) and a self-adjoint B € Gcll(Rd) such that

[Ho, B] =0,
U*HU = Hy+ B+ G™°,

Proof. Let U € GY(R?) and B € G} (R¥) such that
U-Uy e G*TVRY,
B — B_; € GF(RY),

for all k € IN. Here, U_; and B_j are as constructed in the proof of the previous
lemma. Consider the bounded self-adjoint operator F = UU* — 1. Since Uy
is unitary for all k, it follows that F € G~°° and hence compact. Thus, we
may assume that its L2-norm is bounded by C € (0, 1), by modifying it on a
finite-dimensional subspace. We let K = Y22 ¢; F J, where ¢; are the Taylor
coefficients of the expansion of (1 + ¢)~'/2 at the origin. The operator K is
well defined since the series converges for |¢| < 1 and smoothing. Putting
U = (1+K)U, we see that

UU* = I+K)OU*(I+K)
= (I+K)>(I+F)
=1.

We can apply the averaging to B again so that B commutes with HyandU*HU =
Hy + B + G~ as claimed. O
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It follows from Duhamel’s formula (see Proposition A.1 of the Appendix) that
one has,

Corollary 3.3. With the same notation as in Lemma 3.2,

Tre "H = Tre""Ho+B)  1od C®(R).

4. Fourier integral operators

In what follows, we will encounter operators of the form 4 = Op% (e'%a),
where ¢ is homogeneous of degree one outside a compact set in R>?. These
operators are clearly not isotropic pseudodifferential operators, because they are
not pseudolocal. Since spatial derivatives of isotropic symbols gain decay in both
x and &, we can still compose A with and any isotropic pseudodifferential operator
and explicitly calculate the asymptotic expansion.

Proposition 4.1. Let p € T, a € TS, and ¢ € T Then
p#ei¢a = ¢'%c,
where
Cm = Pmdo,
Cm—1 = Pmd—1 + pm—1a0 + (1/2){ pm. ¢1}ao,

Cm—2 = Pmd—2 + Pm—1a—1 + Pm—2a0
+ (1/2) {pm—1, P1}ao + {pm. dp1}a—1 + {Pm. Po}ao — i{pm.ao})

+ (1/4)(2 8ijkpma$j¢la$k¢l - 8Ej$kpmaxj¢laxk¢l)a0-
J.k

Proof. The asymptotic expansion follows from the composition theorem, Propo-
sition 2.1, and ordering the terms by homogeneity. O

Moreover, we need a composition result for quadratic phase functions:

Proposition 4.2. Let A € R4*? be symmetric and a,b € S(R?). There is an
integral representation

(e ) atth)(2)

= g2 /e‘2i(Q“”w)a(z + w)b(z + wa + (1/2)JA(w; + 2))dwy dw,,

]R4d
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A2 —J
e=(%" )
Proof. By Zworski [14, Theorem 4.11] we have the integral representation

(e a#tb)(2)

where

= g2 /e_zi"(wl"”Z)ei(A(er“")’er“")a(z + w1)b(z + wy) dw; dw,.
R4d

Define the phase function

O (wy, wa, z) = =20 (w1, w2) + (A(z + w1), z + wy)

(5 ) ez

Changing coordinates
w; = Wiy,
Wy = Wy — (1/2)JA(U)1 + Z)

yields

O(wy, wa, z) = P(Wy, W, 2) = —2<(AJ/2 _OJ) (g;) (g;)> + (Az, z).

Hence, we have
("4 2a##b)(z)

= g2 /ei&s(wl’w”a(z + w1)b(z + wa + (1/2)JA(wy + z))dw; dw,
R4d
— n_Zdei(AZ’Z) e—zi(Qw,w)a(z + wl)
R4d b(z +wy + (1/2)JA(w1 + 2))dw; dws. O

We also have to calculate how quadratic exponentals act on oscillating func-
tions:

Proposition 4.3. Let ¢ € I'Cll(le ) homogeneous of degree 1 outside a compact
set, a € T/'(RY), and b € T2(RY). For any symmetric matrix A € R?*¢ we
have

(ei(A"')a#ewb)(Z) — ei(AZ,Z)eitb(Z)d’

where @ € T/ "2 (RY).
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Proof. Using an approximation argument, we can show that the previous calcula-
tion also holds for isotropic symbols and the evaluation of the oscillatory integral
is essentially the same as in the proof of Lemma 4.2 in [3]. |

4.1. Parametrix for U(z). We use Lemma 3.1 to simplify the computations. The
trace is invariant under conjugation by unitary operators, therefore we may assume
that for N > 0,

H = Hy + B,
[Ho. B] € GV (RY).

For our purposes it will suffice to have N = 1. By Lemma 3.1, the Weyl-quantized
symbol b of B is given by

b =Xp + T (RY).

Since the symbol p is assumed to be classical, we have an asymptotic expansion

b~ b1
Jj=0

and by = Xo'!(P).

In this section, we construct a parametrix for U(t) = e "'H where H =
Hy + B. As before, we first consider the reduced propagator F(t) = Uy(—t)U(2),
where Uy (1) = e~"*Ho is the propagator of the harmonic oscillator.

The reduced propagator F(¢) satisfies

{(iat — B(t)F(t) =0, )

F0)=1.

Here, B(t) = Uy(—t)BUy(t) = Op® (b(t)), where
b(t) = b o exp(tHy).

Note that the first terms in the asymptotic expansion are b; and by, repectively,
because due to the averaging b is invariant under the flow exp(#Hp) modulo I‘JN .
Our ansatz is

F(t) = 0p” ("' Da(r)),

where ¢; is homogeneous of degree 1 and a € €*(R;, I'3). Applying id — B(t)
to F(t) yields a Weyl-quantized operator with full “symbol”

—e'%a(1)0;p1 + ie'®d;a — b(t)#e' P a.
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Thus, F(t) solves (5) if
—e'a(t)d; 1 + ie'®d,a — b(t)#e'® a = 0.

Ordering the the terms by homogeneity, we obtain by Proposition 4.1 for the
leading order:

8;(]51 + bl == O,
which is our usual eikonal equation. Next order gives the first transport equation:
id:a0 = (bo — (1/2){b1. ¢1(1)})ao.

The higher transport equations for a_j contain as usual inhomogeneous terms
depending on the derivatives of a_;, j < k.
Hence, the parametrix is given on an interval 27k —€,2nk + €) by

F(t) = Op” (' Da(r)),
where

¢1(Z,X, 7’) = _tbl(x7 71),

ao(t, x,n) = e~Hbolem),

Proposition 4.4. There is an oscillatory integral operator U e C°(2rk — e,
2k + €), L(8',8")) such that U(t) is a parametrix for U(t), that is

Ut) — U(t) € C®((2k —€,2mk + €), £(8', 8))
and
U(t) = Op” (' We'®1 Va(r)),
where

$2(t,x,n) = =2tan(t/2) p2(x, n),
¢1(t7x7 7]) = _tbl(x7 71),

and a € €®°((2rk — €, 2k + €), TY(R??)) with

o%(a@2rk)) = (=1)%* exp(—2mikby).
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Proof. Tt is well known (cf. Hormander [8, p. 427]) that the propagator of the
harmonic oscillator can be written as a Weyl-quantized operator. Namely, we have
fort & m + 2nZ that

U () = cos(t/2)"¢ Op¥ (e'%2®),

where ¢, (¢, x, n) = —2tan(¢/2) p2(x, ). A suitable parametrix is therefore given
by

Ut) = Ug(t)F(1).

By Proposition 4.3, U(t) can be represented as a Weyl-quantized operator with
symbol

ei(¢2(t)+¢1 (t))&(t),

where a € C*°((2nk —€,2nk + €), Fé’l). Thus, it remains to show that a(2zwk) =
(=1)?*ag(2mk) + 7!, but this obviously true, since Uy(27k) = (-1)4*1. O

cl
4.2. Proof of Theorem 1.1. We consider an oscillatory integral of the form
I\ = /ei(tk+1//2(t,x,n)+1//1(t,x,n))X([)a([’ x,n)dtdx dn.

We follow the proof of [3, Proposition 5.1], but keeping track of the leading order
of the amplitude. We assume that

o 1€ CC(R),
e V; is homogeneous of degree j outside a compact neighborhood of 0,

a € C*°(R, Fé’l R%)), and ¥, are smooth on the support of a,

there exists unique #o € supp y and ro > 0 such that

Ya(to, 70,0) =0,
02 (to, 10, 0) = —1

forall § € §24-1,

e Y, is normalized in the sense that |0, 9,12 (0, ro, 0)| = ro.
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The extension of [3, Proposition 5.1] is the following:

Proposition 4.5. Under the assumptions above and assuming that Y1 (to, ro, ®)
is Morse—Bott with 2d — 2 non-degenerate directions, the integral 1(1) has an
asymptotic expansion

n o0
M) = 2d=1)/2 ,itod Zeml/zwl(to,ro,ej) Z)L_l/zyj,la
j=1 =0

where

(2m)? 2d-1) mic;/a [ 0
0 = e o e [ o @)oo, 0))de.
) ) ]

Here, o is the signature of Dgdeyr1(to.10,0;) and the integral is over the 1-
dimensional manifold on which v, is constant.

Proof. It already follows from the proof of [3, Proposition 5.1] that we have
the claimed asymptotic expansion and we only have to calculate the leading
coeflicient. As in [3], we have that

I\ = / JA,A7V2 6)de,

g2
where
J(A,p.0) = Ad/e"”w”ﬂ)X(z)a(z,Al/zr, 0)r>?~dt dr,
W, (t,r,0)=v2(t,1,0) + uy(t,r.0) +t.

By assumption, the determinant of D, ;d, ;{2 (¢, ro, 8) has absolute value r
and the signature is zero, hence, by the stationary phase formula, we obtain for
any M > 1,

JOA, 1, 0) = Ad=1eiAto+nyn Goro® g (312 4 9) 4 0(A4—1-M)
with
ay (W2 2717.0) = 2mrg V0  @(t0)) (ro. 0) + 0TI,

This leads to the asymptotic formula

1) =A471eiMo0 . g p2(@=D) / A 2V10.70.0) (59 (4 (10)) (1o, 0) + O(A™V/2))d6.
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By assumption, ¥ (9, ro, 8) is Morse—Bott, so we may apply the stationary phase
formula again and obtain

n
1)) = A(d—l)/Zeikt() Zeill/zwl (t(),r(),ej)(yjo + 0()&_1/2)) O
Jj=1
Now, we are able to prove the main theorem.
Proof of Theorem 1.1. By [2, Proposition 13], we can calculate the trace of a
Weyl-quantized operator by integration along the diagonal. Thus, the inverse
Fourier transform of the Schrodinger trace is given by
F L xOTeU®)
=51y TeU@) + O(A™)

t—A

= (27x)~¢@+D / e @O DFTO GO (1) (1, x, E)dt dx dE + O(A™),

where ¢», ¢1, and a are given by Proposition 4.4. The phase function ¢, has an
expansion ¢ (t — 2wk, r,0) = —(1/2)r?t + O(¢?) and therefore we may apply
Proposition 4.5 with

(L) = (27)~@+D / e D2ExD+ 1 XA (1) (1, x, £)dt dx dE.

The stationary point of ¢, is at tp = 2wk and rg = V2. On the stationary point,
we have that ¢, (fo, ro, -) = —2mkb;(+/2,-). By Proposition 4.5, we see that there
is an asymptotic expansion

n o0
L) = 2 (@=1)/2,2mikA Ze—zmkﬂﬂbl(ﬁ,zj) Z)L_l/z]/k,j,l-
j=1 =0

The determinant and signature of the Hessian of the phase function ¢, at a critical
point z; are given by (27k)?¢~2d; and —o;, respectively, where

d; = |det(Ddby ()| # 0,

o; =sgn(Ddbi(z;)).
Since 0%(a(2mk)) = (—1)%ke=27ikbo is invariant under the flow, we have for the
leading order term at one critical point z; that

(27)*

ko = 2m)~@+D
! Qrk)d—1|d;|'/?

pd=1g=mioj/4 / o°(a2rk)) (V2. z;)d6

_ : 1
= (k) =@ 2emmios /4. o / o (a2rk))(V2,z;)d6

= (j-[k)—(d—l)dj—l/Zeni(—Gj/4+dk)e—27rikb0(zj)‘ 0
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5. Conjugation to the Bargmann—Fock model

In this section, we prove Theorem 1.3 as outlined in Section 1.2. The proof is
based on results of [11, 12] and involves Toeplitz Fourier integral operators acting
on holomorphic sections of the standard line bundles O(N) — CP?~! over the
projective space. Since it is our second proof of the main result, we do not provide
detailed background on Toeplitz Fourier integral operators and refer to [11, 12]
for further background and references. Our goal to describe the conjugation to the
holomorphic setting and to connect the asymptotics of Theorem 1.3 to those of
[11,12].

In this section, we assume that the perturbation B commutes with Hy. As in
Lemma 3.2, by iterated averaging we may assume that H = Hy + B + R where
R is smoothing and [Hy, B] = 0. By Corollary 3.3 and Proposition A.1, the
smoothing operator does not change singularities or asymptotics of the trace; it is
omitted for simplicity of exposition.

As in (2), we denote by Hy the eigenspace of H, with the eigenvalue N +
d/2 and by Iy the orthogonal projection onto H . The perturbation P and
the unitarily equivalent B are isotropic pseudo-differential operators of order 1.
When we conjugate to the Bargmann—Fock setting, orders in Toeplitz calculus are
traditionally defined by powers of N. Thus, Hy is considered to have order 1 and
P, B are considered to have order % To keep track of the orders, it is convenient
to scale B to have order 0, i.e. we define zeroth order isotropic pseudo-differential
operator

B:=H;'"?B

with Weyl-quantized symbolE =p, Y24p. Then [B, Ho] = 0, and
TrelBly, = TreitHg/zﬁlg{N _ Treit«/ﬁﬁb{]v'

As mentioned in the introduction, e’! VNB |3¢, is not a standard type of Fourier
integral operator, which would be the exponential of a first order operator, and
that is why we view it as U (j_ﬁ) (in the notation of Section 1.2).

5.1. Conjugation to Bargmann-Fock space. Consider the weight function
®(z) = |z|?/2. The L2-space of weighted entire functions,

Hg(C%) = L?(C4,e722®)/ 1424 ) A Hol(C?)

is called the Bargmann—Fock space. Here, d?>?z denotes the Lebesgue measure
on C4.
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There exists a standard unitary intertwining operator, the Bargmann trans-
form#, from L?(R%) to the Bargmann—Fock space,

B: L2 (RY) — He(CY),
defined by
Bu(z; h) = 274/ *(h)=34/* / ePEN My (y)dy
]Rd
with phase function

o(z,x) = i(%(z2 + x2) = V2x - z).

It is a Fourier integral operator with positive complex phase. The phase function
and the weight are related by

®(z) = sup (—Ime(z, x)).
yeR4

We denote by TTBF the orthogonal projection L?(C?, e 2%d24z) — He(C?). Its
Schwartz kernel is known as the Bargmann—Fock Bergman kernel.

Remark 5.1. The operator B can be written as B f(z; h) = (Bl/(gh)f)(ﬁz),
where B, is defined as in Zhu [13, Section 6.2].

Remark 5.2. In what follows, we will always take 7 = 1.

Define the linear complex canonical transformation
Kg: c? — %,

(x.6) %(x—is,s—ix),

which satisfies «, (x, —0x¢(z, x)) = (z,0;¢(z,x)) forall x,z € C?. The canoni-
cal transformation maps R2“ bijectively onto the totally real IR Lagrangian sub-
space

Ao = {(z,-2i3,D(2)):z € C?} = {(z, —iz):z € C¥} c C*4.

41t is a special case of the FBI transform.
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For a proof, we refer to [14, Theorem 13.5]. The inverse of «: R24 — Agis
given by

K;12A¢—>R2d,

(z,0) —> %(z +is,0+iz).

The Bargmann transform is a quantization of «,, in the sense that
B*a" (z, D;)B = (kya)” (x, Dx), a €T'(Ag)

(cf. Zworski [14, Theorem 13.9] in the semiclassical setting).

It is a classical fact (cf. Zhu [13] or Zworski [14, Theorem 4.5]) that Hy —d /2
is conjugated to the degree operator N := (z, d,) on Bargmann—Fock space. Note
that (k) p2)(2.) = (z.i¢), where pa(x.§) = (1/2)(Ix|* + |§[*). This gives a
short proof that B*(Ho — d/2)B = N, since Op” ({z,i¢)) = N+ d/2.

The eigenspace iH%,F of eigenvalue N is spanned by the monomials z% with
|| = N. Comparing the spectral decompositions of Hy and the degree operator
gives

Lemma 5.3. The operator H%,F = BINB* is the orthogonal projection onto
HEF.
N

Under conjugation by B, Hy B transforms as BHyBIIyB* = NBBB*. It
follows that

~ d ~
By Ho BTy B* = (N + E)H%FBBia*HIBVF. 6)

5.2. Toeplitz operators. The next step is to determine TTBFBBB*ITEF. We
now review the Bargmann conjugation of Weyl pseudo-differential operators to
Toeplitz operators, following [6, 1, 14]. Our presentation differs from these refer-
ences in two ways: (i) we are dealing with isotropic pseudo-differential operators,
which are considered in [6] but not in the other two references; (ii) we are inter-
ested in semi-classical asymptotics in N rather than in homogeneous operators.
Hence, we need to reformulate results of the references in terms of semi-classical
symbol expansions. The basic relation is that if a;(z, Z) is homogeneous in (z, Z)
of order j, then the semi-classical Toeplitz operator ITya; [y is of order N//2
(cf. Lemma 5.5 below).

We also recall that there exist two notions of complete symbol for a Toeplitz op-
erator: (i) its contravariant symbol ¢, and (ii) its covariant symbol ITBF g TTBF (2, 2),
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i.e. the value of the Schwartz kernel on the (anti-)diagonal. The transform from the
contravariant symbol to the covariant symbol is known as the Berezin transform.

The Bargmann transform conjugates isotropic Weyl pseudo-differential oper-
ators Op® (a) to Toeplitz operators ITBFgTIBF with isotropic symbols. The com-
plete contravariant symbol of an isotropic Toeplitz operator T1BF¢TIBF of order 0
is an isotropic symbol on C¢ ~ T*R¢ of the form,

qg~qo+qg-1+qg—2+---,

where g_; is homogeneous of degree — .

By a well-known result of Berezin (see [1] for a recent proof), the relation
between the complete Weyl symbol a of Op* (a) to the contravariant symbol ¢ is
given by

a(x, —2i 0, ®(x)) = (exp (%(ax,-c@)—lax : a,—c)q)(x), xecd. (@)

The operator (3,53 ®) !9y - 05 is a constant coeflicient second order differential
operator on C" whose symbol is a negative definite quadratic form; so this is a
forward heat flow acting on ¢g. The Berezin transform is the inverse heat flow. In
our case (cf. [1, 6, 14]), we have that (1/4)(d,z®) 19,0z = (1/8)A (the standard
Euclidean Laplacian on R??) and therefore

g=e%q0k,. (8)

A general C* isotropic symbol of order 0 does not lie in the domain of e~¥h,
However, the expression (8) makes sense as an isotropic symbol since A lowers
the order of an isotropic symbol by two orders. That is, we invert the transform (7)
in the topology of symbols and view e~%% agan operator taking complete (formal)
isotropic Weyl symbols to complete (formal) isotropic contravariant symbols. If
we Taylor expand ¢~%2 to order M , and a is isotropic of order m, then

: o (-
e 88 = Z Rl (A*q) mod T 2M
k=0 ’

Summing up, we have the following:

Lemma 5.4. Let A = OpY(a) be a zeroth order isotropic pseudo-differential
operator on R¢. Then BAB* is a Toeplitz operator TIBF g TIBF on He(C4), where
the symbol q has an asymptotic expansion

) ( l)k

§ — k

qu 8kk' (A Cl)OK(p
=0

in the sense of isotropic symbols.
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If we assume that a € T3 and a ~ Y i a_, then g € T with expansion
q ~ >y q—k> where

qdo = dp Ky,
gd—1 =d4d—-1 %Ky,
q—2 = (a— — (1/8)Aag) o kyp.

In particular, we have that
N = I°F(|z> — d)TIPF,

since the symbol of N restricted to Ag is a(z) = |z|*> — d/2 and the Berezin
transform of a is ¢(z) = |z|*> — d.
Returning to the symbol b € T with {b, p,} = 0 and asymptotic expansion

~ e ~
b~y b,
Jj=0

where b; = p;"/*Xp; 1 for j = 0,—1. We now compress ITBFAITBF with kF
and exponentiate. The order of a homogeneous isotropic symbol coincides with
its eigenvalue under the degree operator N. This is an immediate consequence of
Euler’s homogeneity theorem. If we write z = (x + i§), then

| . .
Nb = 5 (xds + £05)b + %(sax — xd¢)b

1 ~ ~
E(xax + £0¢)b + E{pz,b}.

Since b was assumed to Poisson-commute with P2, the second term vanishes and
we obtain that Nb; = (j/2)b;j. We may write

T8Fh, TIBF = IRF (N + d) 72|z T b; I
= (N + d)//*118F|z| =/ b; IBF.

Note that |z|~/ B]‘ is bounded with norm independent of N. This agrees with the
statement at the beginning of this section that isotropic orders get multiplied by %
when we conjugate to the Bargmann—Fock model and use homogeneity in Hy >~ N
to define orders. It follows that the polyhomogeneous expansion of an isotropic
symbol coincides with its expansion in powers of (N 4 d)~'/2 when compressed
by TIRF. We thus have:
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Lemma 5.5. The operator H?VF BBB! H?VF is a semi-classical Toeplitz operator
whose complete contravariant expansion has the form

q=booky+N2b_y ok, + N~V (b_y — (1/8)Aby) 0k, + O(N3/?).

In particular, we have that Tly BTy is conjugated to H?VF q H?VF under the
Bargmann transform.

5.3. Trace asymptotics. Our aim is to determine the large N asymptotics of
Trye YV By, ©)

We observe that (9) is the trace of the rescaled propagator Uy (j—ﬁ), where

Un(t) = Tixe™ By, (10)

It follows from Lemma 5.5 that Uy (f) = B*exp(itNIIR ¢TIBF)B is a semi-
classical isotropic Fourier integral operator. Clearly,

Tryei'® = Tr UN( (11)

)
N
The main value of the Bargmann—Fock conjugation is that the propagator

of the harmonic oscillator and the projection I1y become much simpler on the
Bargmann—Fock side. The trace Tr Uy (\/Lﬁ) may be further simplified by noting

that H is the same as the space H?(CP¢~', O(N)) of holomorphic sections of
the Nth power of the natural line bundle O(1) — CP?~!. The identification is to
lift holomorphic sections, s — §, of O(N) to homogeneous functions on €% \ {0}.
It follows that

o0 o0
H2(C?, e17Pg2d ;) ~ P 1y ~ P HOCP o). (12)
N=0 N=0

We refer to [4] for background. Tracing through the identifications, we see that
Hy ~ H°(CP?~', O(N)). This identification explains why the trace formula is
an integral over the space of Hamilton orbits of Hy.

We use the last identification to determine the asymtotics of the trace of
Uy (\/Lﬁ) in the model H(CP?~!, O(N)). The advantage of conjugating to this
model is that the calculations have mostly been done in this setting in [11, 12]
(in fact, on any Kihler manifold M). It would be equivalent to work directly with
the Fourier components IT5F BITBF.
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We let
P L2(CP9!, O(N)) — HO(CP4™!, O(N))

denote the orthogonal projection. Since b is invariant under the natural $' action
on C4 defining 4\ {0} — cpet, 00(15) descends to a multiplication operator
on L2(CP?~! O(N)).

We briefly recall the setting of [11, 12]. Consider a polarized K&hler man-
ifold M with positive Hermitian line bundle L (cf. [12] for definitions) and let
H°(M, L") denote the space of holomorphic sections of the N-th power of the
line bundle L and TT% is the orthogonal projection L2(M, LV) — H°(M, LV).
For any function H: M — R we define

Hy =¥ HO¥:H'M, LY) — HO(M, L")
the corresponding semiclassical Toeplitz operator 5 and
Un(t) = expitNHy (13)

its propagator, which is a semiclassical Fourier integral operator. In [11, 12] it is
shown that for any z € M, the following pointwise asymptotics hold:

Proposition 5.6 ([11, Proposition 5.3]). Let (M,®) be a Kdihler manifold of
complex dimension m and H: M — R a Morse function. If z € M, then for
any t € R,

N\m . A2
Un(t/¥N,z,z) = (E) PIVNH() ,—12 1L (1 + O(tPN"Y2),

where the constant in the error term is uniform as t varies over compact subset
of R.

Remark 5.7. Itis emphasized that the asymptotics are valid at critical points of H.

The asymptotics of the trace follow from Proposition 5.6 and the method of
stationary phase.

5In [11] the authors in fact define the quantization of H by fAIN =TIy (% Vu + H)Iy,
where H is the Hamilton vector field of H.
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Theorem 5.8 (cf. [12, Theorem 1.7]). Let (M, w) be a Kéihler manifold of complex
dimensionm. Ift # 0, the trace of the scaled propagator Uy (t /~/N) = i VNtHy
admits the following aymptotic expansion

/UN(z/ﬁ,z,z)d volps (2)
zeM
t«/ﬁ —m eit\/ﬁH(z()e(inM)sgn(DdH(zc))

T4n VI det(DdH (z.)))]

ze€crit(H)

=~ ( (14 0(tPN~2)).

Remark 5.9. We note that the Gaussian factor equals 1 at the critical points.

We see that the operator Uy (t/~/N) is given by
Un(t/~'N) = exp(itTISF (VN by + b-1)TIEF) + O(1//N).

IfXpo = 0, then we may directly apply Theorem 5.8 with M = CP?~', L = O(1),
and H = by lgpa—1 = Xp1 to obtain Theorem 1.3. A complete asymptotic
expansion with remainder could be obtained by the same method if one wished to
have lower order terms.

Corollary 5.10. IfXp; = b |¢pa—1 is a Morse function on CPY~, the asymptotics
of (11) are given by Theorem 5.8 withm = d — 1.

If X po # 0, then the contribution of 15_1 lgpa—1 = X po may be absorbed into
the amplitude and repeating the stationary phase calculation as in [11], we obtain
Theorem 1.3.

6. Equivalence of the expansions

In this section we show that the large A expansion of Theorem 1.1 agrees with the
large N expansion of Theorem 1.3 to leading order.

Consider the Fourier series

oo
wy(t,a) = Z N_re_i(N"’d/z)le—iatﬁ‘
N=1
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We introduce a cutoff p(¢) supported near 1 = 2wk with p(2wko) = 1 and
calculate asymptotics as A — oo of

Foalp)w,(t,a)} (1) = (Zn)‘l/ﬁ(t)e’“w,(t,a)dz
R

o0
e Y N—r/ﬁ(t)eitke—it(N+d/2)e—iat«/ﬁdl‘
N=1

R
(14)

We claim that the large A asymptotics of the integral (14) coincides with the large
N asymptotics of the Fourier coefficients.

Proposition 6.1. Let w, and p be as above. Then
FrlatpOw, (1, @)} (h) = AT el mhod 2mikoat 2 4 o712,

Proof. Let f, € C*°(R) such that f.(§) = &7 for £ > 1/2 and f,(§) = O for
& < 0. By applying the Poisson summation formula to the function

£ fr(6) T (e EHa/Diatlel 2y ()

we have that
1) =91, {p(0w,(t.a)}(A)

=(2n)—1 Z//ﬁ(t)eitle%rik;-'fr(%-)e—iat|5|1/2e—it(§-‘+d/2)di_- dt.

k€Z R o
Changing variables & + A for A > 0 yields

- -r A iA(— P —iatAV/2(1g11/2
IA) =)~ A Z//P(t)e RtE+42kE) ¢ () o—iath V20112 itd 2 gy

kEZ]R 0
+O00™).

We set

ap(t,§) = Qm) 7 p(r) fr(E)e oA I E pmird /2

and

P (2,8) = (1 = &)t + 27k§
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and note that derivatives in £ decrease the order in & by 1/2 while increasing it in
A by 1/2. This suffices, since integration by parts decreases the orders by 1. We
have

o0

IA) = A7 Z//e”"’k(’f)a,l(t,s)dédt + O(A™).

k€Z R o

We may decompose the integral as follows:
FroalpOW o, a)y(A) = 2 (L) + LX) + 13(A) + 0(A™)),

where

L) = Y (§)e 0y, (1, 8)dEd!,

/]

LA = [ [ =y E)e*P0Dq; (1, 8)dkdt,
/]

s =X [ [ w0 pasa,

k#koR o

L= Y [ [a-w@ern O odsn

kFkoR o

First, we consider the integral /(1). We have that ;¢ (¢,§) = 1 — & # O on
supp ¥. Thus, by integration by parts we obtain arbitrary decay in both A and &,
which yields that the integral converges and is O(A~%°).

The I5(1) integral posses no problem, since by integration by parts For /3(1),
we use that dg¢py = 2wk —t # 0 for k # ko on the support of p. Hence, we obtain
arbtrary decay in k to make the series converge, this gives also rapid decay in A,
showing that we have indeed /3(1) = O(A™%°).

The last integral, I4(A), can be treated by a combination of the previous
arguments to make the integral and series converge with arbitrary decay in A.

Hence, we have that

FroalpOw™ ot a)}(A) = AV LX) + 0(A™)
— )l / Mo Oy (£)a; (1, £)dE dt + O(A™).
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The phase function ¢y, is stationary on t = 2mko and § = 1 and its Hessian is
given by

0 1
Ddpiylasny-o= (] o)
The method of stationary phase yields

I (A) — A—1e2nikoe—2nik0all/zeink0d + 0()&_3/2). O

A. Duhamel’s formula

We recall the Duhamel principle for general isotropic evolution equations. Let
H e G*(R9) elliptic and R € G~°°(R%) such that H and H + R are self-adjoint.
Consider the propagators U(t) = e "*H and V(1) = e 7#(H+R),

Proposition A.1. The difference U(t) — V(t) is a smoothing operator.

Proof. The difference of the propagators, F(¢t) = U(t) — V(¢) solves the equation

{iatF(l) = (H + R)F(t) + R(?), (15)

F0) =0,
where R(¢) = RU(t). By the Duhamel principle,

t

F(t) = / V(t —s)R(s)ds.

0

Since V(¢) and U(¢) are unitary, we obtain that for any N € IN,

IHY F@t)| 2 = H/HONV(z — $)R(s)ds
0

L2

t
< [ 1R 1 2ds
0

< sup |[RH{' |12
s€[0,z]

< 0.

This shows that F(¢) is bounded in every isotropic Sobolev space (cf. [3] for the
definition) and this implies that F(t) € G~°(R?). |
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