

ACM MobiCom ’24, November 18ś22, 2024, Washington D.C., DC, USA Rongxiang Wang and Felix Xiaozhu Lin

(e.g. łI need to turn on light in bedroom ž) [3] beyond simple
ones (e.g. łlight onž). This paper focuses on encoder-decoder
models, referring to them as deep SU.

Deep SU models are resource-hungry, often requiring GBs
of memory and tens of GFLOPs per input second [1]. As a
result, a model can take a few seconds to process a typical
voice command. Facing the constraints, many embedded
devices chose to offload all voices to the cloud [28], which,
however, raises concerns on high cloud cost [17, 27, 33],
privacy [36], latency [24], and service availability.

Problem & approach This paper presents an engine to
accelerate deep SU on resource-constrained embedded de-
vices1. The engine comprises a local execution path and
an offloading path. While the local/offloading approach is
reminiscent of many ML systems [22, 37, 46], our design
specifically addresses unique challenges from speech.

1.1 The local execution path

Challenge: temporal load imbalance We identify a key
inefficiency in the Speech Understanding (SU) task: poor
resource utilization during the ingestion phase. The state-of-
the-art attention-based SU system necessitates the compute
to remain idle during the ingestion period, creating a surge
of encoding-decoding workload after receiving the complete
data, as illustrated in Figure 1(b). Incomplete data can sig-
nificantly compromise accuracy for these systems. Similar
accuracy degradation is also observed in streaming SU sys-
tems, as discussed in Section 8.
In summary, the device needs to utilize ingestion-time

compute resources, in order to accelerate the expensive pro-
cessing that can only start after the ingestion.

Our idea: pilot inference During ingestion, SU periodically
encodes and decodes the incomplete input the device has
received so far. This is shown in Figure 1 (b). Our key insight
is that the the pilot inference’s intermediate state can assist
the full inference (i.e. the inference executed after ingestion,
over the complete input). With the idea, we present multiple
techniques: (1) beam collapse: the full inference only needs
to verify its beam search path against the path in the pilot in-
ference, and only falls back to full beam search in case of path
divergence; (2) early termination: extrapolating the output
length of pilot inference, the full inference predicts the final
output length and help with beam search early termination;
(3) CTC leap: the full inference approximates the connection-
ist temporal classification (CTC) prefix scoring [41] with the
scores pre-computed by pilot inferences.
Pilot inferences are incremental in nature: the (𝑖 + 1)-th

inference instance reuses of the state from the 𝑖-th instance,
in the same way as the full inference reuses the last pilot

1shortened as łdevicesž, to be defined in Section 2

inference instance. In this way, the total cost of pilot infer-
ence is amortized over the duration of ingestion, and scales
gracefully with the input length.
Pilot inference (PI) is related to recent speculative execu-

tion for language models [15] with a key difference: while
the later optimizes inference on complete inputs, PI processes
successive incomplete inputs, for which it addresses different
challenges. Section 8 presents a detailed comparison.

1.2 The offloading path

Challenge: Lacking offramps for autoregression Typ-
ically, to decide whether to offload an input 𝑥 , the device
assesses its confidence on 𝑥 , i.e. how likely the on-device
inference yields a sufficiently accurate answer. Such an as-
sessment is referred to as offramps in prior work. Existing
offramp designs typically evaluates confidence as an ML
model’s prediction entropy [43, 49]. For SU however, exist-
ing offramps mismatch in two ways.

First is the confidence measure. Unlike a classification task
which evaluate a model’s layers sequentially and provides a
single output that represent the probability, SU’s output gen-
eration is both concurrent and iterative: it produces multiple
hypotheses of probabilistic tokens sequence in a token-by-
token fashion; in each iteration the decoder will generate
the next tokens’ probabilities base on current hypotheses. It
was unclear how to derive a single confidence score out of
an ongoing generation process.
Second is timing. Given an input, offloading represents a

one-shot decision that can be taken at various times through-
out the SU pipeline shown in Figure 1. While a deferred
decision would have more input information for measuring
the model confidence, it also incurs on-device delays. The
timing therefore hinges on tradeoffs between an offramp’s
selectivity and overhead.

Our idea: PI-aid perplexity-based offloading The de-
vice evaluates its offloading decision as soon as it finishes
ingestion, based on the perplexity score [13] of the last pilot
inference. Doing so strikes a sweet-spot: (1) as the discrep-
ancy between the last pilot inference and the full inference
is small, their perplexity scores are also similar; (2) the de-
vice does not need to hold off the offloading decision until
the completion of full inference. Notably, offloading an in-

complete input (i.e. before the ingestion completes) does not
speed up offloading the complete input: as an input utterance
is no more than tens of KB, offloading is typically bound by
a network round trip. With our PI-aid perplexity-based of-
floading, the system can achieve the target accuracy with
reduced latency and offloading cost.

ACM MobiCom ’24, November 18ś22, 2024, Washington D.C., DC, USA Rongxiang Wang and Felix Xiaozhu Lin

Throughout decoding, hypotheses are scored by a combi-
nation of the transformer and CTC prefix scorers [41]. Prior
work deem both scorers vital: the transformer exploits lan-
guage features; CTC exploits acoustic features.
Notably, the CTC scorer can be slow, as its dynamic pro-

gramming algorithm shows lower parallelism, barely bene-
fiting from modern CPU/GPU. It calculates CTC prefix prob-
abilities 𝑝ctc ((𝑔, 𝑐, ...) |𝑍) based on newly developed hypothe-
ses (𝑔, 𝑐) and the CTC framewise output 𝑝 (𝑧𝑖 = 𝑐 |𝑍). The
best K hypotheses with highest 𝜆 log 𝑝attn ((𝑔, 𝑐) |𝑍) + (1 −

𝜆) log 𝑝ctc ((𝑔, 𝑐, ...) |𝑍) are retained in the beam for the sub-
sequent rounds of decoding, based on a weighted sum of
probabilities from the transformer decoder and CTC pre-
fix scorer. The decoding process concludes when the com-
pleted hypothesis significantly outperforms the developing
hypotheses, as described in [41].
We next analyze the inefficiencies in the two modules.

2.3 The encoding inefficiency

First, the ingestion is streaming. A typical spoken input lasts
as long as 3ś5 seconds [3, 29]. In contrast to vision and NLP
systems which usually ingest complete images or sentences,
an SU system receives an input utterance by pieces.
Second, the input completeness matters to accuracy. The

information in the input audio is distributed throughout its
entire duration, with the entirety of the audio serving as the
context for each individual part. While waiting for data inges-
tion may seem to hinder resource efficiency, it is a necessity
for attention models. The all-to-all attention mechanism in
transformer-based models is the key to their superiority in
NLP and speech-related tasks. Thismechanism leverages con-
textual information from the complete dataset to generate
results with better language consistency. As shown in prior
work [5, 10, 30], any portion of the output should take into
account the whole input (i.e. the context). As an anecdote,
in time-related phrases, words like łcalendarž or łreminderž
should be assigned with higher probabilities. Partial input
data with incomplete context can significantly impair the
model’s decoding accuracy. As such, a common practice is
for the models to wait for ingestion completion [32].
As a result, throughout a deep SU pipeline the resource

utilization is severely imbalanced. The compute remains
idle during ingestion, while becoming busy during the time-
consuming encoding and decoding processes. This motivates
us to overcome the aforementioned algorithmic constraint,
shifting a fraction of computation to the ingestion.We expect
only marginal increase in energy consumption, as the device
is already busy processing audio IO. We will validate energy
in Section 7.

2.4 The decoding inefficiency

Algorithmically, SU decoding exhibits high complexity. If we
use 𝑁𝐹𝐸 to denote the number of neural function evalua-
tions in generating one token, the total decoding complexity
is roughly 𝑂 (𝑘 × ℓ × 𝑁𝐹𝐸), where the beam width 𝑘 is the
number of parallel hypotheses, and the depth ℓ is the max hy-
pothesis length before the search termination. As an example,
an input of 3 seconds would require 50Ð125 NFEs.

Much computation is likely redundant. Notably, the decod-
ing process generates hypotheses much longer than the best
hypothesis it eventually selected as the output: on popular
benchmarks, we observe the average ℓ is ~18, while the true
output length is ~11 on average, suggesting up to 40% NFEs
could have been saved.

Empirically, the decoding is slow on typical edge devices.
As section 7 will show, a modern Arm SoC takes around 1
second to process a typical voice command, far exceeding
user’s perception threshold at a few hundred milliseconds.
Unfortunately, mobile GPUs would not help much. Our ex-
periments on Nvidia’s Ampere mobile GPUs are even 1.6x
slower than CPUs on the same board (see Table 2, 6CB). This
is likely due to the irregular decoding workloads, especially
the CTC scorer, leaving the GPU hardware parallelism un-
derutilized. Long decoding latency also keeps the device SoC
in a high power mode, consuming more energy.

3 PASU OVERVIEW

3.1 The on-device SU model

As prerequisites to system design, we refactor a typical SU
model. This is shown in Figure 3 (a).

Encoder: late contextualization We ensure that most of
encoding layers can execute in parallel to ingestion. Rather
than computing all-to-all attention at each encoding layer,
we make the bottom layers (closer to the input) compute
only convolution, and the few top layers compute attention.

Decoder PASU has separate decoder instances for pilot in-
ferences and for the full inference. The two instances share
the same structure and weights, whereas the pilot decoder
runs a narrower search beam.
The model details can be found in Section 6.

3.2 The system

Ingestion As shown in Figure 3(b)., PASU ingests segments of
voice input. Upon the arrival of each segment, PASU executes
the convolutional encoder layers, producing per-segment
results (1). Periodically, PASU executes pilot inference (2):
combining the per-segment results accumulated so far and
sending them to the attentive encoding layers, followed by
the decoding process that generates a sequence of tentative
tokens, which we refer to as a łpilot outputž.

ACM MobiCom ’24, November 18ś22, 2024, Washington D.C., DC, USA Rongxiang Wang and Felix Xiaozhu Lin

4.1 The mechanisms

Pilot inference works periodically on partial data as shown
in Figure 3(b) (2). PASU refrains from performing pilot in-
ference on excessively short data as it is hard to generate
meaningful result with too short partial data. During data in-
gestion starting from𝑇0, the system conducts pilot inference
on partial data periodically with a pre-defined granularity
of 𝛿𝑡 , intended to complete within 𝛿𝑡 . In each round of pi-
lot inference, the system utilizes the same encoder and the
pilot decoder to engage in beam search inference with a
beam size of k. Supposing the pilot inference is performed
on data length 𝑇0 + 𝑛𝛿𝑡 , it will take at most 𝛿𝑡 to finish and
the results cover the full data that have length range between
[𝑇0 + (𝑛 + 1)𝛿𝑡 , 𝑇0 + (𝑛 + 2)𝛿𝑡]. To manage the runtime of
pilot inference, a token limit of ℓ tokens is set. Following
the decoding of ℓ tokens, the hypothesis with the highest
probability is chosen as the reference hypothesis for local
execution or hybrid execution path decisions. The reference
hypothesis, denoted as 𝑦𝑝1:𝑛 = (𝑦𝑝1, . . . , 𝑦𝑝𝑛), offers the po-
tential to accelerate the full inference process from multiple
perspectives mentioned in the next few subsections.

Hyperparamters Several key parameters in pilot inference
require pre-operation definition. These parameters include
granularity 𝛿𝑡 , beam size 𝑘 , and the maximum token length
for beam search inference, denoted as ℓ . These hyperparam-
eters are determined through heuristic methods based on
experimental experience. The granularity needs to be es-
tablished initially. Typically, the system anticipates that the
longest partial data covers at least 70% of the full-length
data. To achieve this, the granularity is expected to satisfy
𝛿𝑡 < 0.2𝑇 . It’s important to note that the granularity doesn’t
have to remain a fixed number throughout system opera-
tion. As data lengthens, the pilot inference take longer time
as shown in Figure 3(b). (2) comparing the different pilot
inference, the granularity can also expand. The beam size
for pilot inference is set at 60% of the beam size used for full
decoding to ensure lightweight pilot inference while main-
taining fidelity. The inference length is determined based on
average inference length. If the average inference length is
ℓfull, PASU sets ℓ to be 0.7 · ℓfull.

Incremental execution The pilot inference based full de-
coding acceleration techniques (which will be elaborated in
the following sub-sections) can also be adopted in the pilot
inference execution. More specifically, the reference based
beam collapse can be adopted in the pilot inference. In our
system, as shown in Figure 3(b). (2), from the second pilot
inference, each pilot inference can take reference hypothesis
from the previous pilot inference and perform all the opti-
mization in the pilot beam search procedure. Incremental
execution is critical for pilot inference runtime reduction.

4.2 Optimization 1: beam collapse

AssumptionMost tokens of the full transcript should be the
best token in the beam search decoding process at the corre-
sponding round. For the beginning part of the transcript, the
reference transcript from pilot inference should share most
of the tokens the same with the final transcript.What we

do Base on this assumption, during full inference, starting
from the first token, in each inference round before predict-
ing the next token probability using the scorers, the system
attempts to validate the reference hypothesis. It checks the
latest token in the current best hypothesis, 𝑦𝑖 . If 𝑦𝑖 = 𝑦𝑝𝑖 , the
token is validated, and the system retains only the best hy-
pothesis for the subsequent token calculation in this round.
Complexity reduction This verification reduces the num-
ber of running hypothesis for predicting the next token to 1,
also reduces required NFE to 1. Why such approximation

is acceptable The approximation is reasonable because of
two point: the reference result is from pilot inference works
on most part of the data by design. The verification step
also partially secures the inference not to be deviated by the
potential wrong part in the reference transcript.

4.3 Optimization 2: early termination of
beam search

Assumption The reference inference results can reflect the
final transcript length, as the token number grows propor-
tionally as time grows. What we do The system predicts
the final inference length using three key parameters: the
length of the partial data, ℓpartial obtained in the latest pi-
lot inference; the full data length, ℓfull; and the token count
of the reference hypothesis, 𝑛𝑝 . The calculation for the full
inference length is expressed as 𝑛 = ℓfull/ℓpartial · 𝑛𝑝 + 𝐶 . 𝐶
represents a tunable constant that loose the early termina-
tion in full inference. During the full inference, when the full
inference reaches the predicted length n, if there are termi-
nated hypotheses, the system terminates the beam search
inference. Otherwise, the system continues inference until
at least one hypothesis ends before terminating the process.
Complexity reduction Assume the vanilla beam search
length is ℓ𝑣 , the early termination can save (ℓ𝑣 − 𝑛) round of
NFE calculation. Why such approximation is acceptable

The approximation works well because the tokens distribute
evenly among time statistically. The loose factor C can also
help to decrease the deletion error that introduced by too
aggressive early termination.

4.4 Optimization 3: fast prefix scoring with
CTC leap

Assumption Some of the CTC prefix scoring computation
during pilot inference can be reused in the full inference pro-
cess. The original CTC prefix scoring requires recursively

ACM MobiCom ’24, November 18ś22, 2024, Washington D.C., DC, USA Rongxiang Wang and Felix Xiaozhu Lin

inputs. It also cannot offload prior to ingestion completion:
as each voice input is typically tens of KB to ∼300 KB for
speech less than 10 s, the offloading is bound by network
round trips (RTTs); the device would still need one RTT to
offload the whole input, after the ingestion completes.

Confidence estimation Perplexing Score-Based Approach

The perplexing score is derived from the reciprocal of the
average probability of all tokens in the hypothesis, calculated
by 𝑒𝑥𝑝 (− 1

ℓ

∑ℓ
𝑖=0 log(𝑝 (𝑦𝑖 |𝑦0..𝑖−1))). A high perplexing score

indicates low confidence of the local model with the data.
The system sets different thresholds for the perplexing score
and offloads data that surpasses these thresholds.

RNN-Based ApproachDuring beam search, the system gath-
ers the probability of each token in the hypothesis. This
fine-grained probability information better represents the
local confidence in the data. Different patterns in the token
probability sequence may signify different meanings. For
instance, sequences of low-probability tokens often imply
a lack of model confidence in the semantic correctness of
an entire output span. Conversely, if such tokens are scat-
tered, it could be attributed to acoustic noise while the output
remains mostly correct. Defining rules manually can be chal-
lenging, so we adopt a learning-based approach: constructing
a lightweight BiLSTM model to predict the local SU confi-
dence. To achieve this, we label the dev set data into two
classes based on their accuracy and the threshold, and then
train the BiLSTM model to predict the classes. The model’s
output serves a similar role as the perplexing score.
CNN-Based Approach The intermediate results from the

encoder contain rich information about the data but possess
significantly higher dimensions compared to the token prob-
ability sequence. To address this, we propose a CNN-based
approach to assist in down sampling the intermediate re-
sults and predict the confidence. Similar to the RNN-based
approach, we train the CNN model on the develop set to
predict the local SU accuracy. It’s noteworthy that during
the design of the CNN network, we observed that the CNN
model typically require a larger model size compared to the
RNN approach. This issue makes it less practical.

Decision timing The PASU makes the offloading decision
precisely when the data ingestion is completed, along with
the pilot inference result. This is shown in Figure 3(b).(5)
Both the perplexing score method and the BiLSTM method
require post-decoding results. However, if the system per-
forms confidence estimation after the full local execution,
the offloaded data will also suffer from local decoding latency.
To circumvent this, the system executes the aforementioned
methods on the latest pilot inference result, , i.e. the 3rd pilot
inference in Figure 3(b).(2) enabling the system to make
the execution path decision simultaneously with the com-
pletion of data ingestion. This approach is founded on the

assumption that the partial data in the pilot inference can
reflect corresponding information in the full-length data.

6 IMPLEMENTATION

We implemented PASU using 4K SLOC in Python, built upon
a popular speech toolkit ESPnet [40] .

Model design and training details Our model is moti-
vated by the Branchformer [30], as shown in the comparison
in Figure 3(a). Branchformer has parallel weighted sum con-
volutional and transformer blocks in each layer for local and
contextual feature extraction. Our model keeps the blocks
that have higher weight and rearrange them to make the
convolutional layers at the bottom (near the input). To train
our model, we first configure and train an example branch-
former model base on the memory and latency budget. In
the experiment case, encoder has 9 layers and decoder has 1
layer. To construct PASU’s model, assume there are k trans-
former blocks with weights exceeding ℎ = 0.2 in the trained
branchformer encoder, we design the encoder with N-k-1
CNN layers followed by transformer k+1 layers. In the exper-
iment, we get 2+1 transformer and 9-2-1 CNN layers. This
design is then trained from scratch on the same dataset, with
the same decoder design branchformer model has.

Operation details During system operation on the SLURP
dataset, we set the shortest partial data for pilot inference
at 1.5 seconds. The granularity is determined based on hard-
ware specifications, tested across 0.5s - 2s. The pilot beam
size is set to be 3, which is 60% of the full inference beam
size of 5. The length limit for pilot inference tokens is set to
be 15. The length prediction 𝐶 is set to be 5.

Hybrid execution details For hybrid execution and offload-
ing decision-making, in the perplexing score-based method,
we calculate the perplexing score based on the reference
result from the pilot inference. Regarding the LSTM and
CNN-based methods, we utilize the full dev set in SLURP as
the training set for the LSTM and CNN models. The CNN
approach employs a CNN model that takes the encoder’s
full output as input. The CNN model has two convolutional
layers and two fully connected layers, with 192.5 M param-
eters. The LSTM approach employs a BiLSTM model that
takes CTC prefix probability and transformer token-wise
probability of the reference result as the input. The LSTM
model we adopted is a 1-layer BiLSTM model with 11.1k
parameters. The training task is defined as a binary classi-
fication task, where a local execution WER > 0.1 is labeled
as 1, and otherwise as 0. During operation, the BiLSTM and
CNN process the respective input and provide predictions,
representing the probability of the data having a WER > 0.1
as a float number between 0 and 1. Further, we set thresholds
on this output for different offloading accuracy targets.

Turbocharge Speech Understanding with Pilot Inference ACM MobiCom ’24, November 18ś22, 2024, Washington D.C., DC, USA

faster than cloud offloading. While our system can further
compress the model to suit the device resource constraints,
this would also result in a drop in accuracy.
Within the capable device regime, our local execution

maintains consistent speed advantages over baselines, as
shown by the comparison Jetson Orin Nano and Jetson AGX
Xavier in Figure 4. Besides, faster device computation can
perform pilot inference with smaller interval.

Network conditions Our measurement was from decent
network conditions that favor offloading. With longer net-
work delays, PASU’s benefit would be even more pronounced,
as fast local executions and selective offloading will be more
important. If network delays further reduce, the latency gap
between our system and OffloadAll may narrow. Even if that
happens, our benefit of reduced cloud cost will still remain.
Network conditions, especially when unstable, could also be
a key consideration in offloading decisions. The system may
need to adjust the offloading threshold based on network
latency and availability. Under typical network conditions,
placing the SU model on a nearby edge system may not im-
prove overall performance. This is because the SU model on
the cloud is resource-intensive, running it on the edge could
result in a latency increase that is significantly longer than
the network roundtrip latency.

8 RELATED WORK

LLM speculative decoding (SD) Speculative decoding for
LLM decoding speedup includes a fast generating and verify
later pattern. Examples include copy-and-verify scheme [45],
non-autoregressive translation methods [42], shallow de-
coder and parallel decoding [38], token confidence based de-
coding [15]. Similar techniques have been adopted in speech
processing, such as theWhisper Speculative Decoding [7] in
which the audio is first encoded with a transformer encoder,
then decoded by a distilled, lightweight decoder initially,
and later verified by a larger decoder through a one-pass for-
ward process. Comparing SD to our pilot inference Tasks:

Pilot inference targets streaming SU task, addressing tempo-
ral workload imbalance. SD targets LLM and SU decoding,
tackling underutilized hardware parallelism. Solutions: Pilot
inference work with incomplete streaming input. SD deals
with a complete input with concurrent fast and slow tasks.
SD’s speedup is contingent upon high hardware parallelism,
which is lacking on embedded devices. The connection in
between is that the full decoding benefit from an earlier
decoding process. More specifically, Whisper Speculative
Decoding still encodes the complete audio and decodes with
two-pass speculative scheme all after the ingestion finished.
In contrast, our system exploits the temporal load imbalance,
finishs part of the encoding and pilot inference during the
audio ingestion and saves a substantial amount of time.

Streaming speech procssing Streaming approaches like
transducer-based models [9, 35, 48] process the data in a
chunk-wise fashion, initiating transcription during data in-
gestion and reduces the latency. However, they only possess
partial data during streaming processing and lack contextual
information. Compare to attention-based model [2, 10, 30],
the accuracy of streaming models is inferior [20]. Our work
focuses on speedup attention-based models.

Offloading and hybrid execution Device-cloud collabo-
ration [23] is well-discussed in general scenarios. The cost
during collaboration is an important concern [17, 27, 33].
A related work optimizes SU for microcontrollers in the
local/cloud setting [4]. Yet, incapable of deep SU models ,
microcontrollers only run an inference cache, rather than a
complete engine like PASU. These two projects have orthogo-
nal contributions; they do not depend each other.

Comparing CTC Leap with the Online CTC/Attention

Method Online CTC/attention method [26] reduces CTC
scoring latency by Truncated CTC method. Both Truncated
CTC and CTC leap try to skip part of the CTC prefix scoring
computation among all the time frame. The difference is that:
we reuse the CTC computation from the pilot inference to
skip the beginning part; whereas they stop early by using
the CTC peak heuristics to skip the latter part. Notably, same
with the original approach [41] our method still includes all
the time frames while they choose to drop some temporal
information, which may include crucial information for CTC.

Mobile speech processing Various efforts have been made
to run SU tasks on resource-constrained mobile devices. LUT-
NN [39] employed table lookup inference execution for ma-
chine learning models to enhance inference speed and re-
duce memory footprint. However, the lookup table scheme is
specifically designed for the encoding process and cannot be
easily applied to generative tasks in SU. Other methods such
as quantization [8, 44] and pruning [16, 31] have also been
proposed. These methods are orthogonal to our approach.

9 CONCLUSIONS

We present PASU, a novel system for fast speech processing
in SU tasks. PASU contributes late contextualization, beam
collapse/ termination, and CTC leap for local execution; and
confidence estimation for selective offloading. All optimiza-
tions combined, PASU speeds up its local path by 2x and re-
duces the offloading needs by 2x in its offloading path.

ACKNOWLEDGMENT

The authors were supported in part by NSF awards #2128725,
#1919197, #2106893, and Virginia’s Commonwealth Cyber
Initiative. The authors thank the anonymous reviewers for
their insightful feedback.

ACM MobiCom ’24, November 18ś22, 2024, Washington D.C., DC, USA Rongxiang Wang and Felix Xiaozhu Lin

REFERENCES
[1] Siddhant Arora, Siddharth Dalmia, Xuankai Chang, Brian Yan, Alan

Black, and Shinji Watanabe. Two-pass low latency end-to-end spoken

language understanding. In Proceedings of the Annual Conference of

the International Speech Communication Association, INTERSPEECH,

volume 2022, pages 3478ś3482, 2022.

[2] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael

Auli. wav2vec 2.0: A framework for self-supervised learning of speech

representations. Advances in neural information processing systems,

33:12449ś12460, 2020.

[3] Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojanski, and Verena

Rieser. SLURP: A Spoken Language Understanding Resource Package.

In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 2020.

[4] Afsara Benazir, Zhiming Xu, and Felix Xiaozhu Lin. Leveraging cache

to enable slu on tiny devices, 2023.

[5] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun

Cho, and Yoshua Bengio. Attention-based models for speech recogni-

tion. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,

editors, Advances in Neural Information Processing Systems, volume 28.

Curran Associates, Inc., 2015.

[6] Renato De Mori. Spoken language understanding: A survey. In

2007 IEEE Workshop on Automatic Speech Recognition & Understanding

(ASRU), pages 365ś376. IEEE, 2007.

[7] Sanchit Gandhi. Speculative decoding for 2x faster whisper inference,

2023. Accessed: 2024-7-21.

[8] Santosh Gondi. Wav2vec2.0 on the edge: Performance evaluation,

2022.

[9] Alex Graves. Sequence transduction with recurrent neural networks.

arXiv preprint arXiv:1211.3711, 2012.

[10] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang,

Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and

Ruoming Pang. Conformer: Convolution-augmented transformer for

speech recognition. CoRR, abs/2005.08100, 2020.

[11] Awni Y. Hannun. The history of speech recognition to the year 2030.

ArXiv, abs/2108.00084, 2021.

[12] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakho-

tia, Ruslan Salakhutdinov, and Abdelrahman Mohamed. Hubert:

Self-supervised speech representation learning by masked predic-

tion of hidden units. IEEE/ACM Trans. Audio, Speech and Lang. Proc.,

29:3451ś3460, oct 2021.

[13] Frederick Jelinek, Robert L. Mercer, Lalit R. Bahl, and Janet M. Baker.

PerplexityÐa measure of the difficulty of speech recognition tasks.

Journal of the Acoustical Society of America, 62, 1977.

[14] Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Dragomir Radev, Yejin

Choi, and Noah A. Smith. Beam decoding with controlled patience,

2022.

[15] Sehoon Kim, Karttikeya Mangalam, Suhong Moon, John Canny, Ji-

tendra Malik, Michael W. Mahoney, Amir Gholami, and Kurt Keutzer.

Speculative decoding with big little decoder. In Advances in Neural

Information Processing Systems. Curran Associates, Inc., 2023.

[16] Cheng-I Jeff Lai, Yang Zhang, Alexander H Liu, Shiyu Chang, Yi-Lun

Liao, Yung-Sung Chuang, Kaizhi Qian, Sameer Khurana, David Cox,

and Jim Glass. Parp: Prune, adjust and re-prune for self-supervised

speech recognition. Advances in Neural Information Processing Systems,

34:21256ś21272, 2021.

[17] Pat Lawlor. Generative ai trends by the numbers: Costs, resources,

parameters and more, 2023. Accessed: 2023-7-26.

[18] Niel Lebeck, Arvind Krishnamurthy, Henry M. Levy, and Irene Zhang.

End the senseless killing: Improving memory management for mo-

bile operating systems. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 873ś887. USENIX Association, July 2020.

[19] Soyoon Lee and Hyokyung Bahn. Characterization of android memory

references and implication to hybrid memory management. IEEE

Access, 9:60997ś61009, 2021.

[20] Jinyu Li, Yu Wu, Yashesh Gaur, Chengyi Wang, Rui Zhao, and Shujie

Liu. On the comparison of popular end-to-end models for large scale

speech recognition. In Helen Meng, Bo Xu, and Thomas Fang Zheng,

editors, Interspeech 2020, 21st Annual Conference of the International

Speech Communication Association, Virtual Event, Shanghai, China,

25-29 October 2020, pages 1ś5. ISCA, 2020.

[21] Baiyang Liu, Björn Hoffmeister, and Ariya Rastrow. Accurate end-

pointing with expected pause duration. In Interspeech, 2015.

[22] Chengfei Lv, Chaoyue Niu, Renjie Gu, Xiaotang Jiang, Zhaode Wang,

Bin Liu, ZiqiWu, Qiulin Yao, CongyuHuang, Panos Huang, et al. Walle:

An {End-to-End},{General-Purpose}, and {Large-Scale} production

system for {Device-Cloud} collaborative machine learning. In 16th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 22), pages 249ś265, 2022.

[23] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey

on architecture and computation offloading. IEEE Communications

Surveys & Tutorials, 19(3):1628ś1656, 2017.

[24] Sumit Maheshwari, Dipankar Raychaudhuri, Ivan Seskar, and

Francesco Bronzino. Scalability and performance evaluation of edge

cloud systems for latency constrained applications. In 2018 IEEE/ACM

Symposium on Edge Computing (SEC), pages 286ś299, 2018.

[25] A. Martin, D. Charlet, and L. Mauuary. Robust speech/non-speech

detection using lda applied to mfcc. In 2001 IEEE International Con-

ference on Acoustics, Speech, and Signal Processing. Proceedings (Cat.

No.01CH37221), volume 1, pages 237ś240 vol.1, 2001.

[26] Haoran Miao, Gaofeng Cheng, Pengyuan Zhang, and Yonghong Yan.

Online hybrid ctc/attention end-to-end automatic speech recognition

architecture. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 28:1452ś1465, 2020.

[27] microsoft. Azure hybrid benefit, 2023. Accessed: 2023-11-18.

[28] Brian Mouncer, Henry van der Vegte, and Mark Hillebrand. Azure-

samples/cognitive-services-speech-sdk, 2023. Accessed: 2023-9-24.

[29] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur.

Librispeech: An asr corpus based on public domain audio books. In

2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 5206ś5210, 2015.

[30] Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji Watanabe. Branch-

former: Parallel mlp-attention architectures to capture local and global

context for speech recognition and understanding. In International

Conference on Machine Learning, pages 17627ś17643. PMLR, 2022.

[31] Yifan Peng, Kwangyoun Kim, Felix Wu, Prashant Sridhar, and Shinji

Watanabe. Structured pruning of self-supervised pre-trained models

for speech recognition and understanding. In ICASSP 2023 - 2023 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 1ś5, 2023.

[32] Golan Pundak, Tara N. Sainath, Rohit Prabhavalkar, Anjuli Kannan,

and Ding Zhao. Deep context: End-to-end contextual speech recogni-

tion. In 2018 IEEE Spoken Language Technology Workshop (SLT), pages

418ś425, 2018.

[33] qualcomm. The future of ai is hybrid, 2023. Accessed: 2023-11-18.

[34] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine

Mcleavey, and Ilya Sutskever. Robust speech recognition via large-scale

weak supervision. In Andreas Krause, Emma Brunskill, Kyunghyun

Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,

Proceedings of the 40th International Conference on Machine Learning,

volume 202 of Proceedings of Machine Learning Research, pages 28492ś

28518. PMLR, 23ś29 Jul 2023.

Turbocharge Speech Understanding with Pilot Inference ACM MobiCom ’24, November 18ś22, 2024, Washington D.C., DC, USA

[35] Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar. Exploring archi-

tectures, data and units for streaming end-to-end speech recognition

with rnn-transducer. In 2017 IEEE Automatic Speech Recognition and

Understanding Workshop (ASRU), pages 193ś199. IEEE, 2017.

[36] Alaa Saade, Joseph Dureau, David Leroy, Francesco Caltagirone, Alice

Coucke, Adrien Ball, Clément Doumouro, Thibaut Lavril, Alexandre

Caulier, Théodore Bluche, et al. Spoken language understanding on

the edge. In 2019 Fifth Workshop on Energy Efficient Machine Learning

and Cognitive Computing-NeurIPS Edition (EMC2-NIPS), pages 57ś61.

IEEE, 2019.

[37] Ali Shakarami, Mostafa Ghobaei-Arani, and Ali Shahidinejad. A survey

on the computation offloading approaches in mobile edge computing:

Amachine learning-based perspective. Computer Networks, 182:107496,

2020.

[38] Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. Instantaneous gram-

matical error correction with shallow aggressive decoding. arXiv

preprint arXiv:2106.04970, 2021.

[39] Xiaohu Tang, YangWang, Ting Cao, Li Lyna Zhang, Qi Chen, Deng Cai,

Yunxin Liu, and Mao Yang. Lut-nn: Empower efficient neural network

inference with centroid learning and table lookup. In Proceedings

of the 29th Annual International Conference on Mobile Computing and

Networking, ACMMobiCom ’23, New York, NY, USA, 2023. Association

for Computing Machinery.

[40] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro

Nishitoba, Yuya Unno, Nelson Enrique Yalta Soplin, Jahn Heymann,

Matthew Wiesner, Nanxin Chen, Adithya Renduchintala, and Tsubasa

Ochiai. ESPnet: End-to-end speech processing toolkit. In Proceedings

of Interspeech, pages 2207ś2211, 2018.

[41] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R. Hershey, and

Tomoki Hayashi. Hybrid ctc/attention architecture for end-to-end

speech recognition. IEEE Journal of Selected Topics in Signal Processing,

11(8):1240ś1253, 2017.

[42] Heming Xia, Tao Ge, Furu Wei, and Zhifang Sui. Lossless speedup

of autoregressive translation with generalized aggressive decoding.

arXiv preprint arXiv:2203.16487, 2022.

[43] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Dee-

BERT: Dynamic early exiting for accelerating BERT inference. In

Proceedings of the 58th Annual Meeting of the Association for Computa-

tional Linguistics, pages 2246ś2251, Online, July 2020. Association for

Computational Linguistics.

[44] Junhao Xu, Shoukang Hu, Jianwei Yu, Xunying Liu, and Helen Meng.

Mixed precision quantization of transformer language models for

speech recognition. In ICASSP 2021 - 2021 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 7383ś7387,

2021.

[45] Nan Yang, Tao Ge, LiangWang, Binxing Jiao, Daxin Jiang, Linjun Yang,

Rangan Majumder, and Furu Wei. Inference with reference: Lossless

acceleration of large language models. arXiv preprint arXiv:2304.04487,

2023.

[46] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong

Liu, Huajie Shao, and Tarek Abdelzaher. Deep compressive offloading:

Speeding up neural network inference by trading edge computation

for network latency. In Proceedings of the 18th Conference on Embedded

Networked Sensor Systems, SenSys ’20, page 476ś488, New York, NY,

USA, 2020. Association for Computing Machinery.

[47] Dong Yu and Lin Deng. Automatic speech recognition, volume 1.

Springer, 2016.

[48] Qian Zhang, Han Lu, Hasim Sak, Anshuman Tripathi, Erik McDermott,

Stephen Koo, and Shankar Kumar. Transformer transducer: A stream-

able speech recognition model with transformer encoders and rnn-t

loss. In ICASSP 2020-2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 7829ś7833. IEEE, 2020.

[49] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and

Furu Wei. Bert loses patience: Fast and robust inference with early

exit. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,

editors, Advances in Neural Information Processing Systems, volume 33,

pages 18330ś18341. Curran Associates, Inc., 2020.

	Abstract
	1 Introduction
	1.1 The local execution path
	1.2 The offloading path
	1.3 Results and contributions

	2 Motivations
	2.1 Speech understanding (SU) at the edge
	2.2 A primer on SU pipelines
	2.3 The encoding inefficiency
	2.4 The decoding inefficiency

	3 PASU Overview
	3.1 The on-device SU model
	3.2 The system
	3.3 Applicability

	4 The local execution path
	4.1 The mechanisms
	4.2 Optimization 1: beam collapse
	4.3 Optimization 2: early termination of beam search
	4.4 Optimization 3: fast prefix scoring with CTC leap
	4.5 Implications of approximation

	5 The offloading path
	6 Implementation
	7 Evaluation
	7.1 Methodology
	7.2 End-to-end results
	7.3 Efficacy of our local path
	7.4 Efficacy of our offloading path
	7.5 Energy impact
	7.6 Discussion

	8 Related work
	9 Conclusions
	References

