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ABSTRACT

Modern speech understanding (SU) runs a sophisticated
pipeline: ingesting streaming voice input, the pipeline exe-
cutes encoder-decoder based deep neural networks repeat-
edly; by doing so, the pipeline generates tentative outputs
(called hypotheses), and periodically scores the hypotheses.

This paper sets to accelerate SU on resource-constrained
edge devices. It takes a hybrid approach: to speed up on-
device execution; to offload inputs that are beyond the de-
vice’s capacity. While the approach is well-known, we ad-
dress SU’s unique challenges with novel techniques: (1) late
contextualization, which executes a model’s attentive encoder
in parallel to the input ingestion; (2) pilot inference, which
mitigates the SU pipeline’s temporal load imbalance; (3) au-
toregression offramps, which evaluate offloading decisions
based on pilot inferences and hypotheses.

Our techniques are compatible with existing speech mod-
els, pipelines, and frameworks; they can be applied inde-
pendently or in combination. Our prototype, called PASU, is
tested on Arm platforms with 6 — 8 cores: it delivers SOTA
accuracy; it reduces the end-to-end latency by 2x and reduces
the offloading needs by 2x.
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Figure 1: The SU pipeline and a comparison of execu-
tion approaches

Term Definition
suU Speech Understanding
Hypothesis A tentative output, as a sequence of words or subwords

Autoregression Generate an output sequence token by token

Beam search A known method for generating parallel hypotheses in inference
CTC A well-known method for scoring hypotheses in speech processing
Pilot inference (PI) Our method of periodic executing inference on incomplete inputs

Table 1: A glossary of terms used in the paper

1 INTRODUCTION

Speech is a pervasive user interface for embedded devices.
At its core are two speech understanding (SU) tasks: auto-
matic speech recognition (ASR), transcribing voice to a sen-
tence [47]; spoken language understanding (SLU), mapping
voice to a structured intent, such as {scenario: Calendar,
action: Create_entry} [6].

Modern SU: autoregression with beam search Modern
SU runs a deep, encoder-decoder model [5] as shown in
Figure 1(a). Ingesting an utterance waveform ((1)), the model
comprises a neural encoder ((2)) and a neural decoder ((3)),
generating a sequence of tokens, i.e. words or sub-words
((@). This generation process is autoregressive: to produce
a token, the decoder takes as the input all the latent units
from the encoder, as well the output tokens it produces so far.
To cope with noisy utterances, SU runs multiple decoding
processes in parallel, each generating a candidate output
sequence (called a hypothesis). SU picks the best sequence as
the final output. Thanks to the encoder/decoder wrapped in
beam search, modern SU can understand natural utterances
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(e.g. “Ineed to turn on light in bedroom ”) [3] beyond simple
ones (e.g. “light on”). This paper focuses on encoder-decoder
models, referring to them as deep SU.

Deep SU models are resource-hungry, often requiring GBs
of memory and tens of GFLOPs per input second [1]. As a
result, a model can take a few seconds to process a typical
voice command. Facing the constraints, many embedded
devices chose to offload all voices to the cloud [28], which,
however, raises concerns on high cloud cost [17, 27, 33],
privacy [36], latency [24], and service availability.

Problem & approach This paper presents an engine to
accelerate deep SU on resource-constrained embedded de-
vices!. The engine comprises a local execution path and
an offloading path. While the local/offloading approach is
reminiscent of many ML systems [22, 37, 46], our design
specifically addresses unique challenges from speech.

1.1 The local execution path

Challenge: temporal load imbalance We identify a key
inefficiency in the Speech Understanding (SU) task: poor
resource utilization during the ingestion phase. The state-of-
the-art attention-based SU system necessitates the compute
to remain idle during the ingestion period, creating a surge
of encoding-decoding workload after receiving the complete
data, as illustrated in Figure 1(b). Incomplete data can sig-
nificantly compromise accuracy for these systems. Similar
accuracy degradation is also observed in streaming SU sys-
tems, as discussed in Section 8.

In summary, the device needs to utilize ingestion-time
compute resources, in order to accelerate the expensive pro-
cessing that can only start after the ingestion.

Our idea: pilot inference During ingestion, SU periodically
encodes and decodes the incomplete input the device has
received so far. This is shown in Figure 1 (b). Our key insight
is that the the pilot inference’s intermediate state can assist
the full inference (i.e. the inference executed after ingestion,
over the complete input). With the idea, we present multiple
techniques: (1) beam collapse: the full inference only needs
to verify its beam search path against the path in the pilot in-
ference, and only falls back to full beam search in case of path
divergence; (2) early termination: extrapolating the output
length of pilot inference, the full inference predicts the final
output length and help with beam search early termination;
(3) CTC leap: the full inference approximates the connection-
ist temporal classification (CTC) prefix scoring [41] with the
scores pre-computed by pilot inferences.

Pilot inferences are incremental in nature: the (i + 1)-th
inference instance reuses of the state from the i-th instance,
in the same way as the full inference reuses the last pilot

Ishortened as “devices”, to be defined in Section 2
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inference instance. In this way, the total cost of pilot infer-
ence is amortized over the duration of ingestion, and scales
gracefully with the input length.

Pilot inference (PI) is related to recent speculative execu-
tion for language models [15] with a key difference: while
the later optimizes inference on complete inputs, PI processes
successive incomplete inputs, for which it addresses different
challenges. Section 8 presents a detailed comparison.

1.2 The offloading path

Challenge: Lacking offramps for autoregression Typ-
ically, to decide whether to offload an input x, the device
assesses its confidence on x, i.e. how likely the on-device
inference yields a sufficiently accurate answer. Such an as-
sessment is referred to as offramps in prior work. Existing
offramp designs typically evaluates confidence as an ML
model’s prediction entropy [43, 49]. For SU however, exist-
ing offramps mismatch in two ways.

First is the confidence measure. Unlike a classification task
which evaluate a model’s layers sequentially and provides a
single output that represent the probability, SU’s output gen-
eration is both concurrent and iterative: it produces multiple
hypotheses of probabilistic tokens sequence in a token-by-
token fashion; in each iteration the decoder will generate
the next tokens’ probabilities base on current hypotheses. It
was unclear how to derive a single confidence score out of
an ongoing generation process.

Second is timing. Given an input, offloading represents a
one-shot decision that can be taken at various times through-
out the SU pipeline shown in Figure 1. While a deferred
decision would have more input information for measuring
the model confidence, it also incurs on-device delays. The
timing therefore hinges on tradeoffs between an offramp’s
selectivity and overhead.

Our idea: PI-aid perplexity-based offloading The de-
vice evaluates its offloading decision as soon as it finishes
ingestion, based on the perplexity score [13] of the last pilot
inference. Doing so strikes a sweet-spot: (1) as the discrep-
ancy between the last pilot inference and the full inference
is small, their perplexity scores are also similar; (2) the de-
vice does not need to hold off the offloading decision until
the completion of full inference. Notably, offloading an in-
complete input (i.e. before the ingestion completes) does not
speed up offloading the complete input: as an input utterance
is no more than tens of KB, offloading is typically bound by
a network round trip. With our PI-aid perplexity-based of-
floading, the system can achieve the target accuracy with
reduced latency and offloading cost.
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1.3 Results and contributions

We implement a system called PASU (Pilot-Aid SU), atop two
embedded platforms with 6 and 8 Arm64 cores respectively.
We test PASU on SLURP [3], a challenging speech benchmark
comprising 102 hours of speech. On both ASR and SLU tasks,
PASU delivers strong accuracies with end-to-end latencies as
low as 100s of ms, which is close to or below the thresh-
old for human latency perception. Compared to popular,
efficiency-optimized on-device models [10, 30], PASU’s on-
device execution incurs 2x lower latency with little energy
overhead.

Combining local execution with offloading, PASU’s hybrid
execution offers much higher accuracy than on-device mod-
els at similar or lower latency; the hybrid execution offers
close-to-gold accuracy (only 1% below SOTA), while reduc-
ing the offloading needs by 47% — 53%.

Towards deep SU on embedded devices, we contribute:

o PASU, a first-of-its-kind hybrid SU engine specifically opti-
mizes for embedded devices.

e Pilot inference, a novel design to exploit under-utilized
resources during ingestion.

e A new offramp design that assesses model confidence in
generative, autoregressive output. This is the first mechanism
for offloading generative tasks, to the best of our knowledge.

We will make our model and code publicly available.

2 MOTIVATIONS
2.1 Speech understanding (SU) at the edge

An unsolved mission On simple utterances, classic ML
already attained word error rate (WER) as low as 4% on Lib-
riSpeech [29]. On real-life speech as in the SLURP dataset [3],
however, WER can be as high as 20% [11]. Deep models re-
duce WER significantly, albeit requiring much more compute
resources.

Our system model A device has several CPU cores (no
more than 8) and around 100 MB of memory budget [18, 19].
The device is wirelessly connected to the cloud speech ser-
vices; yet, fewer cloud invocations are preferred, as they
incur monetary cost and increase privacy risks. Users expect
low latency (below a few hundred milliseconds) after they
finish speaking to the devices. The device detects the begin-
ning and end of an utterance with well-known, lightweight
algorithms [21, 25].

2.2 A primer on SU pipelines
As shown in Figure 2, a pipeline consists of two modules.

Module 1: The encoding process Typically, the encoder
in an SU model consists of multiple layers that combine con-
volution and attention-based elements. This design can be
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Figure 2: The deep SU pipeline [2, 10, 30]. The input
of SU tasks, an 1D raw wavform of the audio, will first
go through STFT+Mel filter bank to get spectrum, then
processed by encoder to get intermediate encode rep-
resentation, and finally decoded in an autoregressive
fashion by hybrid transformer/CTC decoder coupled
with beam search method

found in models such as Conformer [10], Branchformer [30],
Wav2vec [2], and HuBERT [12]. During operation, as shown
in Figure 2 left part, the 1-D speech data will be broke in
to frames and undergoes STFT and Mel-filter bank meth-
ods to create a 2D spectrum that have f;...f7, , each f; is the
processed frequency component of that time frame. The 2D
spectrum [fi, ..., fr,] is then processed by a few convolu-
tional layers for downsampling, X = xi, ..., xr is get from
X = subsampling([fi, ..., fr,]). The X is subsequently passes
through multiple encoder layers that include both convolu-
tional and transformer component and get the latent speech
representation Z among the same time frames z, ..., z7 like
X, Z = encoders(X). This entire encoding process is a one-
pass operation, providing an intermediate representation of
the speech signal framewise with a specific dimension.

Module 2: The decoding process The generation of the
final transcript involves an autoregressive beam search pro-
cess as shown in Figure 2 right part, with tokens generated
one by one. The beam search employs a specific beam width
(k), maintaining k developing hypotheses during the decod-
ing process. In decoding, the CTC decoder first calculates
posterior token probabilities p(z; = ¢|Z) for each frame z;
of the encoder output. Beginning with the "<sos>" (start of
the sentence) token, the transformer decoder calculates the
next token c¢’s posterior probabilities based on current par-
tial hypothesis g and speech latent representation and get
Patn(clg, Z), combine with the previous token probability
we have paiun((g, ¢)|Z).
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Throughout decoding, hypotheses are scored by a combi-
nation of the transformer and CTC prefix scorers [41]. Prior
work deem both scorers vital: the transformer exploits lan-
guage features; CTC exploits acoustic features.

Notably, the CTC scorer can be slow, as its dynamic pro-
gramming algorithm shows lower parallelism, barely bene-
fiting from modern CPU/GPU. It calculates CTC prefix prob-
abilities petc((g, ¢, ...)|Z) based on newly developed hypothe-
ses (g,c) and the CTC framewise output p(z; = ¢|Z). The
best K hypotheses with highest Alog paun((g,¢)|Z) + (1 —
A) log petc ((g, ¢, ...)|Z) are retained in the beam for the sub-
sequent rounds of decoding, based on a weighted sum of
probabilities from the transformer decoder and CTC pre-
fix scorer. The decoding process concludes when the com-
pleted hypothesis significantly outperforms the developing
hypotheses, as described in [41].

We next analyze the inefficiencies in the two modules.

2.3 The encoding inefficiency

First, the ingestion is streaming. A typical spoken input lasts
as long as 3-5 seconds [3, 29]. In contrast to vision and NLP
systems which usually ingest complete images or sentences,
an SU system receives an input utterance by pieces.

Second, the input completeness matters to accuracy. The
information in the input audio is distributed throughout its
entire duration, with the entirety of the audio serving as the
context for each individual part. While waiting for data inges-
tion may seem to hinder resource efficiency, it is a necessity
for attention models. The all-to-all attention mechanism in
transformer-based models is the key to their superiority in
NLP and speech-related tasks. This mechanism leverages con-
textual information from the complete dataset to generate
results with better language consistency. As shown in prior
work [5, 10, 30], any portion of the output should take into
account the whole input (i.e. the context). As an anecdote,
in time-related phrases, words like “calendar” or “reminder”
should be assigned with higher probabilities. Partial input
data with incomplete context can significantly impair the
model’s decoding accuracy. As such, a common practice is
for the models to wait for ingestion completion [32].

As a result, throughout a deep SU pipeline the resource
utilization is severely imbalanced. The compute remains
idle during ingestion, while becoming busy during the time-
consuming encoding and decoding processes. This motivates
us to overcome the aforementioned algorithmic constraint,
shifting a fraction of computation to the ingestion. We expect
only marginal increase in energy consumption, as the device
is already busy processing audio I0. We will validate energy
in Section 7.
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2.4 The decoding inefficiency

Algorithmically, SU decoding exhibits high complexity. If we
use NFE to denote the number of neural function evalua-
tions in generating one token, the total decoding complexity
is roughly O(k x £ X NFE), where the beam width k is the
number of parallel hypotheses, and the depth £ is the max hy-
pothesis length before the search termination. As an example,
an input of 3 seconds would require 50—125 NFEs.

Much computation is likely redundant. Notably, the decod-
ing process generates hypotheses much longer than the best
hypothesis it eventually selected as the output: on popular
benchmarks, we observe the average ¢ is ~18, while the true
output length is ~11 on average, suggesting up to 40% NFEs
could have been saved.

Empirically, the decoding is slow on typical edge devices.
As section 7 will show, a modern Arm SoC takes around 1
second to process a typical voice command, far exceeding
user’s perception threshold at a few hundred milliseconds.
Unfortunately, mobile GPUs would not help much. Our ex-
periments on Nvidia’s Ampere mobile GPUs are even 1.6x
slower than CPUs on the same board (see Table 2, 6CB). This
is likely due to the irregular decoding workloads, especially
the CTC scorer, leaving the GPU hardware parallelism un-
derutilized. Long decoding latency also keeps the device SoC
in a high power mode, consuming more energy.

3 prasu OVERVIEW
3.1 The on-device SU model

As prerequisites to system design, we refactor a typical SU
model. This is shown in Figure 3 (a).

Encoder: late contextualization We ensure that most of
encoding layers can execute in parallel to ingestion. Rather
than computing all-to-all attention at each encoding layer,
we make the bottom layers (closer to the input) compute
only convolution, and the few top layers compute attention.

Decoder PASU has separate decoder instances for pilot in-
ferences and for the full inference. The two instances share
the same structure and weights, whereas the pilot decoder
runs a narrower search beam.

The model details can be found in Section 6.

3.2 The system

Ingestion Asshown in Figure 3(b)., PASU ingests segments of
voice input. Upon the arrival of each segment, PASU executes
the convolutional encoder layers, producing per-segment
results ((1)). Periodically, PASU executes pilot inference ((2)):
combining the per-segment results accumulated so far and
sending them to the attentive encoding layers, followed by
the decoding process that generates a sequence of tentative
tokens, which we refer to as a “pilot output”.
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pipeline of PASU. Our system performs pilot inference periodically on partial input, and use the pilot inference

result to speedup the final inference

Pilot inference Over the course of ingesting an input, PASU
repeats pilot inference multiple times, each time on an in-
creasingly longer input. The frequency of pilot inferences is a
configuration parameter to be evaluated experimentally. Es-
sentially, pilot inferences extract valuable information from
the partial inputs, during the ingestion. This information
speeds up full inference, which benefits the local execution
path; it also contributes to confidence estimation, which

benefits the offloading path.

Offramp Once the ingestion is over (e.g. a detected pause [21]),
PASU evaluates the offloading decision immediately, by com-
puting the confidence score of the last pilot output ((5)). By
doing so, PASU makes the decision without waiting for in-
ference on the complete input {x;=;_7}; since the last pilot
inference is based on the longest partial input, the resultant
confidence is expected to approximate to that in decoding
the full input.

If the confidence is low, PASU offloads the input as wave-
form and waits for results; otherwise, it encodes the complete
input and does full decoding locally. Note that: offloading in-
termediate results (as opposed to waveforms) often saves no
network traffic, as each waveform is often tens of KBs. PASU
refrains from emitting the pilot output to the user, because
of high word errors. Nevertheless, the pilot output benefits
decoding in crucial ways: to reduce the beam search width
(®)), to approximate the CTC prefix scores ((3)), and to help
with the beam search early termination ((4)).

3.3 Applicability

Our techniques can be applied independently or in combi-
nation to existing SU. (1) Late contextualization and pilot

inference both speed up local execution; they can be applied
separately to existing models. Specifically, pilot inference
can be applied to unmodified models, such as Branchformer
and HuBERT. Notably, it is compatible with both attention
decoding (such as in Whisper [34]) and hybrid CTC/atten-
tion decoding, as we will show in Section 7. (2) Our offramps,
which introduce offloading to SU, can be applied to other
on-device SU models in order to allow local/cloud hybrid
execution. Without our design in (1) however, offloading de-
cision would have to be evaluated on full decoding sequences,
incurring extra delays.

Our techniques require light modifications to the existing
SU implementations. It does not requires to develop new
ML operators. Late contextualization requires to train a new
model architecture; the model can run atop existing ML
libraries and toolkits such as ONNX runtime and ESPnet.
Pilot inference and offramps modify the SU pipeline logic,
which is implemented in Python code on CPU.

Our system generally targets commodity mobile devices
like smartphones and laptops. We expect these devices to
be capable enough to execute the on-device model in PASU
faster than offloading to the cloud. For more constrained
devices, a customized, lighter-weight on-device model can
still help orchestrate the system, though this may require
compromising on local processing accuracy.

4 THE LOCAL EXECUTION PATH

This section focuses on pilot inference for local execution.
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4.1 The mechanisms

Pilot inference works periodically on partial data as shown
in Figure 3(b) ((2)). PASU refrains from performing pilot in-
ference on excessively short data as it is hard to generate
meaningful result with too short partial data. During data in-
gestion starting from Ty, the system conducts pilot inference
on partial data periodically with a pre-defined granularity
of 6t, intended to complete within §t. In each round of pi-
lot inference, the system utilizes the same encoder and the
pilot decoder to engage in beam search inference with a
beam size of k. Supposing the pilot inference is performed
on data length T + nét, it will take at most §t to finish and
the results cover the full data that have length range between
[To + (n+ 1)6t, Ty + (n + 2)5t]. To manage the runtime of
pilot inference, a token limit of ¢ tokens is set. Following
the decoding of ¢ tokens, the hypothesis with the highest
probability is chosen as the reference hypothesis for local
execution or hybrid execution path decisions. The reference
hypothesis, denoted as yp1., = (yp1, - - ., ypn), offers the po-
tential to accelerate the full inference process from multiple
perspectives mentioned in the next few subsections.

Hyperparamters Several key parameters in pilot inference
require pre-operation definition. These parameters include
granularity 6t, beam size k, and the maximum token length
for beam search inference, denoted as . These hyperparam-
eters are determined through heuristic methods based on
experimental experience. The granularity needs to be es-
tablished initially. Typically, the system anticipates that the
longest partial data covers at least 70% of the full-length
data. To achieve this, the granularity is expected to satisfy
Ot < 0.2T.It’s important to note that the granularity doesn’t
have to remain a fixed number throughout system opera-
tion. As data lengthens, the pilot inference take longer time
as shown in Figure 3(b). (2)) comparing the different pilot
inference, the granularity can also expand. The beam size
for pilot inference is set at 60% of the beam size used for full
decoding to ensure lightweight pilot inference while main-
taining fidelity. The inference length is determined based on
average inference length. If the average inference length is
Lrar, PASU sets £ to be 0.7 - £gy.

Incremental execution The pilot inference based full de-
coding acceleration techniques (which will be elaborated in
the following sub-sections) can also be adopted in the pilot
inference execution. More specifically, the reference based
beam collapse can be adopted in the pilot inference. In our
system, as shown in Figure 3(b). (2)), from the second pilot
inference, each pilot inference can take reference hypothesis
from the previous pilot inference and perform all the opti-
mization in the pilot beam search procedure. Incremental
execution is critical for pilot inference runtime reduction.
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4.2 Optimization 1: beam collapse

Assumption Most tokens of the full transcript should be the
best token in the beam search decoding process at the corre-
sponding round. For the beginning part of the transcript, the
reference transcript from pilot inference should share most
of the tokens the same with the final transcript. What we
do Base on this assumption, during full inference, starting
from the first token, in each inference round before predict-
ing the next token probability using the scorers, the system
attempts to validate the reference hypothesis. It checks the
latest token in the current best hypothesis, y;. If y; = yp;, the
token is validated, and the system retains only the best hy-
pothesis for the subsequent token calculation in this round.
Complexity reduction This verification reduces the num-
ber of running hypothesis for predicting the next token to 1,
also reduces required NFE to 1. Why such approximation
is acceptable The approximation is reasonable because of
two point: the reference result is from pilot inference works
on most part of the data by design. The verification step
also partially secures the inference not to be deviated by the
potential wrong part in the reference transcript.

4.3 Optimization 2: early termination of
beam search

Assumption The reference inference results can reflect the
final transcript length, as the token number grows propor-
tionally as time grows. What we do The system predicts
the final inference length using three key parameters: the
length of the partial data, £,4tia Obtained in the latest pi-
lot inference; the full data length, ); and the token count
of the reference hypothesis, n,. The calculation for the full
inference length is expressed as n = £/ fpartial - 1p + C. C
represents a tunable constant that loose the early termina-
tion in full inference. During the full inference, when the full
inference reaches the predicted length n, if there are termi-
nated hypotheses, the system terminates the beam search
inference. Otherwise, the system continues inference until
at least one hypothesis ends before terminating the process.
Complexity reduction Assume the vanilla beam search
length is ¢, the early termination can save (£, — n) round of
NFE calculation. Why such approximation is acceptable
The approximation works well because the tokens distribute
evenly among time statistically. The loose factor C can also
help to decrease the deletion error that introduced by too
aggressive early termination.

4.4 Optimization 3: fast prefix scoring with
CTC leap

Assumption Some of the CTC prefix scoring computation
during pilot inference can be reused in the full inference pro-
cess. The original CTC prefix scoring requires recursively
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Algorithm 1: CTC prefix scormg with CTC leap

1. function oy h, X, rp[1 o B, rp[1 Tt 1
2 gc«h  #splithinto the last label c and the rest g
3 if c = <eos> then
4 return log{r,gn)(g) + r,;b) (@)
5 else
6 ) p(zy =c|X) if g =<sos>
h
i) < { 0 otherwise
7: P (h) <0
8: Y rl(n) (h)
9 Dppro1) < 1) () + 1y () - (last(g) ==
[1..7-1] r[l..'r—l] 9 T[l .T-1] 9) - (last(g) == c)
: (n.b) ,b)
10: T ORI )
11: for t = int(Tpjjor - g + 1) ... Tdo
12: i) < (0 + &y Jp(z, = clX)
13: i) « (W + 11 W) plz =< b > 1X)
14: end for
15: Y e+ sum(Ppy gy [p(z2 = clX) .. p(z7 = clX)])
16: return log(¥)
17: end if

18: end function

Algorithm 1: Algorithm modified with CTC leap for
CTC prefix scoring speedup. The highlighted part is our
modification to reuse the calculation in pilot inference
and skip part of the calculation. The remaining parts are
the same as the hybrid CTC/attention algorithm [41].

calculated among all the time frame [1, T]. In pilot inference,
calculation among [1, Tpilot] has been done. The system just
need to finish the calculation among [Tyio, T] What we
do We propose CTC leap to help accelerate the CTC prefix
scoring step in Hybrid CTC/Attention decoding (HD) algo-
rithm [41] by reusing the computation in pilot inference. The
algorithm modified with CTC leap is shown in algorithm 1
The CTC prefix scoring in HD algorithm is a modified ver-
sion of forward algorithm that help calculate the prefix CTC
probabilities among all the time frames. In the algorithm,
the prefix forward probability of prefix h among 1 to t time
frames is denoted as r(") (h) and r,(b) (h), for the prefix end
with non-blank and blank token. In the algorithm, the pre-
fix h will be divided into the last token c, which is the new
token that to be developed, and the prefix part g. basically
(g, ¢) equals h. If ¢ is the <eos> token, same with original
algorithm, r(n) (9) + r(b) (g9) by definition is the ﬁnal overall

probability result . When c is other tokens, the r[1 7] (h) and
)
"1

recursively. The ¢ is the final cumulative prefix probability

(h) is calculated through the loop between line 11-14

among all the time frame, calculated based on the r[(f ?_T] (9)

[(lbfﬂ (g) and the CTC posterior probability p(z; = c|X).

In the calculation, the bottleneck is the recursive loop calcu-
lation of r[(ln ?‘T] (h) and r[(lb‘)”T] (h). Different from the original
algorithm, as high lighted in algorithm 1, in our algorithm,

andr
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we reuse the r[1 T (h) and r[(f)”Tpﬂot
ence to skip the calculatlon from time frame 1 to Tyt - g and
only do Tyt g to T when beam collapse happens. g € [0.5,1]
isa factor that help discard the end part of the time frames.
This could work because if the beam collapse happens, the

reference hypothesis from pilot inference should also include
](h) and

ql (h) from pilot infer-

prefix g, as well as the calculation result of r!

(b)
[1---Tpilut'q]
requirement is met (pilot inference token is verified), the

CTC prefix probability calculation in this round can be saved
by Thitot - /T - NFEctc. Why such approximation is ac-

ceptable We reused the rm_ (h) and r[(f.)jpﬂm.q] (h) in

[1 Thito
(h). Complexity reduction When the speedup

[1...Tpilot-q]
the pilot inference. We argue that the reused computation

result is a good approximation. It is because essentially the
reused calculation are (1) ultimately calculated from CTC
posterior p(z; = ¢|X), which is calculated framewisely with
CTC linear layer, thus the beginning part does not depend
on the latter part. (2) the reused calculation is also based on
a forward recursive algorithm, make it independent to the
latter time frame.

4.5 Implications of approximation

Approximate execution is common to SU and more general
autoregressive system like LLM, because the whole thing is
statistically in nature; and people often make approximate
at their discretion, as long as the approximation can be em-
pirically validated. The speculative decoding technique in
[15] also involves tentative hypothesis validation. The beam
search end estimation technique in [14] introduce tunable
parameter "patience factor" to help tune the beam search
length. The truncate CTC prefix scoring in [26] estimate the
CTC prefix alignment with time frame to save part of the
computation. Different from these method, our system can
better work on these estimation with the help of reference
result from pilot inference.

5 THE OFFLOADING PATH

While the above designs accelerate the local execution, the
SU task accuracy is nevertheless bound by the model size on
the device. To deliver SOTA accuracy, we further augment
the SU pipeline with cloud execution. The key challenges
are twofold. (1) The device should estimate confidence (as
the offloading criteria). Existing method [43] used in classifi-
cation tasks cannot be directly applied to the generative SU
task. It is because it works with the BERT style encoder, only
take first frame of the output for classification and cannot
take the full input into consideration. (2) The device should
do so without delaying the local processing. It cannot, for
example, simply evaluate the decision after full inference,
as this would result in extended local decoding times for all
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inputs. It also cannot offload prior to ingestion completion:
as each voice input is typically tens of KB to ~300 KB for
speech less than 10 s, the offloading is bound by network
round trips (RTTs); the device would still need one RTT to
offload the whole input, after the ingestion completes.

Confidence estimation Perplexing Score-Based Approach
The perplexing score is derived from the reciprocal of the
average probability of all tokens in the hypothesis, calculated
by exp(—$ -0 10g(p(yilyo.i-1))). A high perplexing score
indicates low confidence of the local model with the data.
The system sets different thresholds for the perplexing score
and offloads data that surpasses these thresholds.

RNN-Based Approach During beam search, the system gath-
ers the probability of each token in the hypothesis. This
fine-grained probability information better represents the
local confidence in the data. Different patterns in the token
probability sequence may signify different meanings. For
instance, sequences of low-probability tokens often imply
a lack of model confidence in the semantic correctness of
an entire output span. Conversely, if such tokens are scat-
tered, it could be attributed to acoustic noise while the output
remains mostly correct. Defining rules manually can be chal-
lenging, so we adopt a learning-based approach: constructing
a lightweight BiLSTM model to predict the local SU confi-
dence. To achieve this, we label the dev set data into two
classes based on their accuracy and the threshold, and then
train the BiLSTM model to predict the classes. The model’s
output serves a similar role as the perplexing score.

CNN-Based Approach The intermediate results from the
encoder contain rich information about the data but possess
significantly higher dimensions compared to the token prob-
ability sequence. To address this, we propose a CNN-based
approach to assist in down sampling the intermediate re-
sults and predict the confidence. Similar to the RNN-based
approach, we train the CNN model on the develop set to
predict the local SU accuracy. It’s noteworthy that during
the design of the CNN network, we observed that the CNN
model typically require a larger model size compared to the
RNN approach. This issue makes it less practical.

Decision timing The PASU makes the offloading decision
precisely when the data ingestion is completed, along with
the pilot inference result. This is shown in Figure 3(b).(5))
Both the perplexing score method and the BiLSTM method
require post-decoding results. However, if the system per-
forms confidence estimation after the full local execution,
the offloaded data will also suffer from local decoding latency.
To circumvent this, the system executes the aforementioned
methods on the latest pilot inference result, , i.e. the 3rd pilot
inference in Figure 3(b).(2)) enabling the system to make
the execution path decision simultaneously with the com-
pletion of data ingestion. This approach is founded on the
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assumption that the partial data in the pilot inference can
reflect corresponding information in the full-length data.

6 IMPLEMENTATION

We implemented PASU using 4K SLOC in Python, built upon
a popular speech toolkit ESPnet [40] .

Model design and training details Our model is moti-
vated by the Branchformer [30], as shown in the comparison
in Figure 3(a). Branchformer has parallel weighted sum con-
volutional and transformer blocks in each layer for local and
contextual feature extraction. Our model keeps the blocks
that have higher weight and rearrange them to make the
convolutional layers at the bottom (near the input). To train
our model, we first configure and train an example branch-
former model base on the memory and latency budget. In
the experiment case, encoder has 9 layers and decoder has 1
layer. To construct PASU’s model, assume there are k trans-
former blocks with weights exceeding h = 0.2 in the trained
branchformer encoder, we design the encoder with N-k-1
CNN layers followed by transformer k+1 layers. In the exper-
iment, we get 2+1 transformer and 9-2-1 CNN layers. This
design is then trained from scratch on the same dataset, with
the same decoder design branchformer model has.

Operation details During system operation on the SLURP
dataset, we set the shortest partial data for pilot inference
at 1.5 seconds. The granularity is determined based on hard-
ware specifications, tested across 0.5s - 2s. The pilot beam
size is set to be 3, which is 60% of the full inference beam
size of 5. The length limit for pilot inference tokens is set to
be 15. The length prediction C is set to be 5.

Hybrid execution details For hybrid execution and offload-
ing decision-making, in the perplexing score-based method,
we calculate the perplexing score based on the reference
result from the pilot inference. Regarding the LSTM and
CNN-based methods, we utilize the full dev set in SLURP as
the training set for the LSTM and CNN models. The CNN
approach employs a CNN model that takes the encoder’s
full output as input. The CNN model has two convolutional
layers and two fully connected layers, with 192.5 M param-
eters. The LSTM approach employs a BiLSTM model that
takes CTC prefix probability and transformer token-wise
probability of the reference result as the input. The LSTM
model we adopted is a 1-layer BiLSTM model with 11.1k
parameters. The training task is defined as a binary classi-
fication task, where a local execution WER > 0.1 is labeled
as 1, and otherwise as 0. During operation, the BiLSTM and
CNN process the respective input and provide predictions,
representing the probability of the data having a WER > 0.1
as a float number between 0 and 1. Further, we set thresholds
on this output for different offloading accuracy targets.
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Platforms Compute resources GFLOPs/s
Jetson Orin Nano 6-core Arm Cortex-A78AE CPU 1.5GHz 149
Jetson AGX Xavier 8-core NVIDIA Carmel Arm CPU 2.2GHz 30.8

Table 2: Embedded platforms used in evaluation

Train set Dev set Test set Overall
# of speakers 167 137 142 177
# of audio files 119880 8690 13078 141648
Total audio len 84.7h 6.9h 10.2h 101.8h
Audio len /input  2.5+1.1s 29+1.2s 2.8t1.3s 2.6x1.1s
# tokens / input 11.4+6.1 11.5+6.4 11.3+6.7 11.446.2

Table 3: Overview of SLURP dataset for SU tasks

7 EVALUATION

We answer the following questions:

e Can PASU reduce latency with competitive accuracy?
e PASU’s local path: what is its efficacy?

e PASU’s offloading path: what is its efficacy?

7.1 Methodology

Test platforms As shown in Table 2, we test on two embed-
ded boards: Jetson Orin Nano (shortened as Orin) with an
efficiency-oriented SoC with six cores, whereas Jetson AGX
Xavier (shortened as Xavier) with a performance-oriented
SoC with eight cores. Our experiments focus on CPUs, though
our idea applies to GPUs as well.

We run the cloud runtime on an x86/NVidia machine and
measure accuracy. To better estimate the cloud offloading
delay, we measure Microsoft’s speech service [28]: we invoke
the Azure APIs to offload waveforms and record each wave-
form’s end-to-end wall time. Our measurement runs from
the US east coast and invokes datacenters on the east coast.
For each input, we repeat the test on enterprise WiFi (band-
width in 100s of MB and RTT in ms) and on 5G networks,
and take the average. Note that we do not use Azure speech
for accuracy evaluation, as we find its accuracy inferior to
the SOTA model used by us (two-pass SLU [1]).

Dataset and model training We run our experiments on
SLURP (3] as summarized in Table 3. Comprising 102 hours
of speech, SLURP’s utterances are complex and closer to
daily human speech (e.g. “within the past three months how
many meetings did i have with mr richards”), as opposed to
short commands (e.g. “light on”) in many other datasets. Of
all 141,530 utterances, we use 119,880 (85%) for training and
the rest for dev set and test set. The accuracy and latency
are reported from the test set data range from 2s to 6s. The
on-device model training was performed on an RTX 2080
Ti GPU and took 48 hours. It is important to note that this
training is a one-time effort.
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Metrics We follow the common practice. Accuracy. For ASR,
we report word error rate (WER): the discrepancy between
the model output and the ground truth transcript, defined as
count of errors (substitutions, deletions, insertions) normal-
ized by the sentence length. For SLU, we report the intent
classification accuracy (IC).

Latency. (1) We report user-perceive latency [47]: the elapsed
time from a user completing her utterance to the system emit-
ting the complete SU result. (2) We further report the real
time factor (RTF): the user-perceived latency normalized by
the input utterance’s duration.

Baselines We compare the following designs.

o OnDevice: SU completely runs on device, for which we
test a wide selection of model architectures: Conformer [10],
Branchformer [30], and CNN-RNNT [48]. Note that CNN-
RNNT is streaming, with 640ms chunks as in prior work.
For fair comparison, we choose models sizes to be around
30M parameters, which are comparable to ours. They are
summarized in Table 4.

o AllOffload: The device offloads all inputs, for which the
cloud runs a SOTA model [1]: a two-pass end-to-end SLU
model with one conformer-based encoder, one conformer-
based deliberation encoder, two transformer-based decoders
for the two passes, and a pretrained BERT language model. It
has >10x parameters as compared to the local models above.
We refer to its accuracy as gold.

o NaiveHybrid: To combine OnDevice and AllOffload, execute
any input with probability « for local execution and (1 — @)
for offloading.

o Ours: By varying the confidence threshold 8, we tested a
range of variants which we refer to as Ours-OnDevice (0%
offloaded), Ours-Offload-L (25%), Ours-Offload-M (47%), and
Ours-Offload-H (63%). Here the offloading thresholds and
percentages are chosen to meet overall WER targets 0.15,
0.13 and 0.12.

7.2 End-to-end results

As demonstrated in Figure 4, PASU is able to deliver a wide
range of accuracies (from modest to nearly gold), with laten-
cies as low as 100s of ms.

Compared to OnDevice, all variants of our system are bet-
ter in the latency - accuracy trade-off. Ours-Offload-M and
Ours-Offload-H achieve much higher accuracy (WER lower
by 5%; IC higher by 2.5%) at similar or lower latencies; Ours-
OnDevice achieves similar accuracies while reducing laten-
cies by around 2x.

Compared to AllOffload, Ours-Offload-L and Ours-Offload-
M reduce the overall latency by as much as 37% and 27%
while seeing minor degradation in accuracy (no more than
4% WER and 2% of IC). They process 75% and 53% of inputs
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Figure 4: Our system deliver low delays and competitive accuracy. Compared to other local models marked with
show similar accuracies at much lower delays or higher accuracies;
Compared to AllOffload @, our hybrid executions @ @ @ show much lower delays with little accuracy loss.

A/ A, our local execution Ours-OnDevice

Conformer-M Branchformer CNN + RNN-T Ours

Orin \ Xavier Orin | Xavier Orin ] Xavier Orin | Xavier
Params__| 27.21M 36.02M 24.18M 23.33M
Encode. | 0.76G 3.026 3.026 3.026
embed [0.01 To.o1 0.04 [o.02 0.03 [o.02 0.03 [o.02
Encode. | 1.54G 1.88G6 1.00G 1.00G /0.34G
encoders [0.10 [0.09 0.14 [o.12 0.10/0.02 [ 0.10/0.02 [0.08/0.02 [0.07/0.02
Encode. | 2.30G /1.54G 4.90G/1.88G 4.026 4.02G/0.34G
Total 0.11/0.10 [ 0.10/0.09 | 0.17/0.14 | 0.15/0.12 | 0.13/0.02 ] 0.12/0.02 | 0.11/0.02 | 0.10/0.02
Decode [026  [017 024 o1 0.50/0.10 | 035/0.07 | 0.18 010

Underscore = the portion of workloads that cannot be processed in streaming

Table 4: Our local encoder executes mostly streaming
FLOPs, for which latency can be hidden behind IO; do-
ing so does not compromise the final accuracy. FLOPs
numbers normalized to 1 second of input. Our local
execution path incurs lower latencies (reported as RTF)
as compared to other on-device models.

on device, reducing the need for cloud invocations by 2x or
more. Ours-Offload-H has negligible accuracy degradation
(<0.5% of IC) while still reducing latency by 20% and offload
needs by 37%.

NaiveHybrid, shown as the dash lines interpolating be-
tween OnDevice and AllOffload on Figure 4, always shows
inferior accuracy or latency to ours.

7.3 Efficacy of our local path

As shown in Figure 4, our local-only execution (Ours-OnDevice)
significantly outperforms OnDevice, reducing latencies by
1.7x - 2.2x at similar accuracies. We next break down the
benefit into two parts: encoding and decoding.

Encoding speedup We strike a sweet spot between speed
(by processing inputs in a streaming fashion) and accuracy
(by attending to the whole input). Table 4 breaks down the
encoding computation. Compared to encoders with all atten-
tion layers (Con/Branchformers) where 67% and 38% FLOPs
are non-streaming (i.e. must execute after ingestion), 92%
FLOPs of ours is streaming, for which the latency is hid-
den behind the ingestion. Meanwhile, we do not lose much
accuracy compared to Con/Branchformers, as our design
runs three attention layers after ingestion ends. This design

Ours Branchformer
w/o pilot
. +ET
Orin  +g1,8C
+ET, BC, CL
0 005 01 015 02 025 0 005 01 015 02 025
w/o pilot
ier *ET
XawerJfET'BC
+ET, BC, CL
0 005 01 015 02 025 0 005 01 015 02 025
Conformer Transformer
w/o pilot
. +ET
Orin  +€T,BC
+ET,BC, CL
0 005 01 015 02 025 0 005 01 015 02 025
P—
XawerHET’BC
+ET, BC, CL
0 005 01 015 02 025 0 005 01 015 02 025

RTF (lower = better)

Figure 5: An ablation study of pilot inference, showing
that all its three optimizations contribute to lower la-
tency significantly. It also shows that pilot inference
has generalizability to be applied to various on-device
models (e.g. Branchformer, Conformer, and Trans-
former) other than ours. ET: Early termination, BC:
Beam collapse, CL: CTC Leap

reduces the latency by 3.6x - 5.4x (220 — 345 ms or 0.07 —
0.11 RTF) as shown in Table 4. Compared to full streaming
encoders (CNN+RNNT) for which 100% FLOPs is streaming,
our accuracy is much higher by 4% in WER and 2.6% in IC,
because the former critically lacks attention over the whole
input. Meanwhile, our encoding latency is only higher by
0.005 RTF (15 ms for a 3 second input) as in Table 4. Such a
difference is dwarfed by the difference in decoding delays.

Decoding speedup Our design shows 1.5x lower decod-
ing delays compares to OnDevice (Table 4). All three tech-
niques show contribution to the overall speedup as Figure 5
shows. We also demonstrate the decoding speedup method
on branchformer. The speedup ratio is similar with it on
ours model, shows that our speedup method is applicable on
general transformer based encoder-decoder speech model.
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OnDevice | Ours-Offload-L Ours-Offload-H

RTF RTF Tgt /nTgt | RTF Tgt / nTgt
w/o pilotinf | 0.168 0.238 1370/336 [ 0.356 | 3306 /1267
w/ | t=2s 0.145 0.209 1743 /932 | 0.298 | 3665 /2906
pilot | t=1s 0.138 0.197 1653 /826 | 0.286 3538 /2637
inf | t=0.5s | 0.120 0.178 1644 /657 | 0.268 | 3534 /2264

Table 5: Pilot inference reduces the end-to-end delay. It
benefits our local-only execution (Ours-NoOffload) as
well as our hybrid executions (Ours-Offload-X), mak-
ing the latter’s offloading more selective. Tgt / nTgt
refers to target / non-target inputs, respectively, in
which Tgt are the input data on which the cloud gets
lower WER, i.e. they should be offloaded.

The incremental nature of pilot inference is crucial, as
it amortizes the decoding cost over the past input, making
the cost scale slower as the input grows. Turning off the
incremental design (i.e. each pilot inference starts from the
input’s start) increases the average decoding delay by 30%,
from 156 ms to 205 ms; it increases the 90th percentile delay
by 40%, from 198 ms to 282 ms. Reduction in pilot inference
cost allows the system to execute pilot inference more fre-
quently. The pilot inference shows generalizability on main-
stream SOTA speech models. As Figure 5 shows, besides our
model, the pilot inference can effectively bring speedup to
Branchformer, Conformer (with transformer decoder) and
Transformer model. All three techniques contribute to the
overall latency reduction.

We further study the impact of pilot inference’s eagerness:
during ingestion, every 7 seconds PASU decodes the input it
has accumulated so far. Lower 7 reduces the discrepancy be-
tween the last pilot inference and the full decoding, therefore
improving the full decoding speed and quality. As shown in
Table 5, 4x reduction in 7 (from 2s to 0.5 s) reduces final RTF
by 0.025. further reduction in 7 helps the pilot inference get
longer partial data that cover more part of the full length
data In exchange, the expense is that the ingestion consumes
more compute. 7 is lower bounded by the available compute
resource during ingestion. For instance, Jetson AGX Xavier
can sustain 7 = 0.5s while Jetson Orin Nano cannot.

7.4 Efficacy of our offloading path

PASU effectively identifies and uploads the inputs that would
suffer from low accuracy on device. With our selective of-
floading technique, PASU achieves lower latency and offload-
ing cost. In this section, we define data as target inputs (short-
ened as Tgt) when they get lower WER (i.e. higher accuracy)
from the cloud processing than local processing.

WER=0.15 WER=0.14 WER=0.13 WER=0.12

RTF offload | RTF offload | RTF offload | RTF offload
NaiveHybrid | 0.234 47.6% | 0.264 59.8% | 0.293 72.2% | 0.323 84.5%
DeeBERT - - - - - - -
CNN 0.190 27.6% | 0.215 37.8% |0.243 49.8% | 0.280 65.7%
LSTM 0.171 21.5% | 0.195 31.1% | 0.222 43.0% | 0.263 60.2%
PPL 0.178 25.0% | 0.200 34.5% |0.230 47.3% | 0.268 63.1%

Ours

Table 6: Our offloading strategies based on sequence
modeling outperform NaiveHybrid (random selection)
and DeeBERT (sequence classification, failing to pro-
duce useful results). In the experiment, we tune 6 and «
to meet WER goals and compare delays and offloading
ratio

M local non-tgt M offloading non-tgt offloading tgt M local

T 17 Shoui
offload

5000

Should
2500 not
offload
0

Ourg NaiveHybrid

# of inputs
offloaded

WER=0.15 WER=0.14  WER=0.13 WER=0.12

Figure 6: Our design shows good selectivity in making
offloading decisions, offloading much fewer inputs
compared to NaiveHybrid achieving similar accuracies.
tgt / non-target refer to target / non-target input, target
input is data that get lower WER on cloud

Comparison vs. NaiveHybrid We replace PASU’s offloading
strategy with NaiveHybrid while keeping all other optimiza-
tions. The results in Table 6 show that to reach the same
accuracy (WER), NaiveHybrid has to offload up to 2x more
inputs. The extra offloading translates to higher cloud cost
as well as higher latency (0.06 RTF; 180 ms on average).
Figure 6 shows detailed offloading decisions: For Ours-
Offload-M (WER=0.13) and Ours-Offload-H (WER=0.12), PASU
offloads the majority of target inputs, while still executing
the majority of non-target inputs on device. This is much
higher than NaiveHybrid which make decisions “by chance”.

Comparison vs. DeeBERT Our experiment also shows
that a popular early-exit approach [43], estimating model
confidence with linear classifiers inserted after the encoder,
performs poorly for encoder-decoder SU models. We imple-
mented such an approach: training linear classifiers atop the
first output frame embedding from the encoder. We could
not get meaningful results - the classifier is no better than a
random predictor. This highlights the challenge of predicting
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SU confidence, for which the entire generated sequence (not
just the 1st frame from encoding) must be considered.

Choice of sequence modeling strategies The sequence
modeling techniques in Section 6 (CNN, LSTM, and perplex-
ity) can well estimate the model confidence. Table 6 shows
that LSTM offers the lowest offloading percentage and RTF.
PPL perform slightly worse, but as perplexity has much lower
computational complexity (no training, no parameters), we
deem PPL as the most suitable.

How PI affects offloading decisions? Recall that PASU
makes offloading decisions based on the last pilot inference
(section 5). We answer the following questions. (1) How does
pilot inference’s execution plan affect offloading decisions?
Our results show that finer granularity (i.e. smaller discrep-
ancy between the pilot and the full inference) leads to better
estimation of model confidence, which results in more accu-
rate offloading decisions. For instance in Table 5, to maintain
the accuracy at WER=0.15, reducing 7 from 2 s to 0.5 s re-
duces the offloaded inputs by 14%, which translates to 93 ms
lower end-to-end delay. (2) What if we make offloading deci-
sions based on the full decoding outcome? Our results show
that while the offloading selectivity slightly improves, the
end-to-end latency is much higher (by 264 ms or 0.088 RTF),
because the device makes offloading decisions much late —
after ingesting the whole input and executing full decoding.

7.5 Energy impact

Methodology We study system-level energy consumption
to demonstrate the impact of our techniques, specifically fo-
cusing on the overall energy consumption during speech pro-
cessing. The experiments are conducted on Jetson AGX Xavier
with the built-in power profiling tool tegrastats. Power pro-
filing is performed during inference on all test data, with a
measurement interval of 20ms to capture the device’s overall
power consumption. Six different settings are tested: four
on PASU, include OnDevice, Ours-Offload-L, Ours-Offload-M,
and Ours-Offload-H. The remaining two settings involve the
default full encoding-decoding execution scheme with our
on-device model and the branchformer model. The aver-
age energy consumption on each voice input is shown in
Figure 7, with a detailed breakdown of energy consumption
across three execution stages: data ingestion, pilot inference
(if applicable), and full inference.

Energy comparison In the experiments mentioned above,
we observed a 32% energy overhead on our OnDevice system
compared to the two default full encoding-decoding systems
with ours on-device model and the branchformer model. The
average inference energy consumption breakdown is shown
in Figure 7. From the figure, we can see that although the
pilot inference introduces energy overhead, the full inference
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Figure 7: Our system incurs minor energy overhead
(18% to 32%) as compared to the baseline system.

is shorter, therefore reducing the overall energy consumption
overhead. With the selective offloading, PASU can further
reduce the energy consumption overhead by up to 44%. It’s
important to note that the Jetson AGX Xavier used in the
experiments is relatively power inefficient. We assume that
more efficient modern chips, such as Apple M1 and A17,
would result in a lower energy overhead.

What-if analysis Many factors may influence the overall
energy consumption. Assuming we have larger models, PASU
will see greater latency reduction, which therefore saves
more energy in the full inference process. Designing a more
energy-efficient model can also help reduce the overhead of
PASU in the pilot inference stage. Also, as mentioned earlier,
more efficient hardware processors can help mitigate the
energy overhead of pilot inference.

7.6 Discussion

Device hardware As mentioned in Section 3, our system
targets commodity devices capable of executing the local
model notably faster (e.g. >50%) than offloading to the cloud,
in order to warrant the higher local WER (often by 7%-10%).
Less capable devices, however, experience longer latency,
making it impractical compared to simply offloading to the
cloud. The problems are twofold: constrained hardware leads
to longer pilot inference latency and makes the intervals
between consecutive pilot inferences longer, impairing its
efficacy for both local and offloading paths. Additionally,
the resource constraints also slow down the full decoding.
Experiments on a Raspberry Pi 4b with the same model and
system settings showed that the pilot inference intervals
cannot be less than 1.2 seconds, otherwise some of the pilot
inference could not finish before the next pilot inference
starts. The overall latency was 0.343 RTF, only marginally
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faster than cloud offloading. While our system can further
compress the model to suit the device resource constraints,
this would also result in a drop in accuracy.

Within the capable device regime, our local execution
maintains consistent speed advantages over baselines, as
shown by the comparison Jetson Orin Nano and Jetson AGX
Xavier in Figure 4. Besides, faster device computation can
perform pilot inference with smaller interval.

Network conditions Our measurement was from decent
network conditions that favor offloading. With longer net-
work delays, PASU’s benefit would be even more pronounced,
as fast local executions and selective offloading will be more
important. If network delays further reduce, the latency gap
between our system and OffloadAll may narrow. Even if that
happens, our benefit of reduced cloud cost will still remain.
Network conditions, especially when unstable, could also be
a key consideration in offloading decisions. The system may
need to adjust the offloading threshold based on network
latency and availability. Under typical network conditions,
placing the SU model on a nearby edge system may not im-
prove overall performance. This is because the SU model on
the cloud is resource-intensive, running it on the edge could
result in a latency increase that is significantly longer than
the network roundtrip latency.

8 RELATED WORK

LLM speculative decoding (SD) Speculative decoding for
LLM decoding speedup includes a fast generating and verify
later pattern. Examples include copy-and-verify scheme [45],
non-autoregressive translation methods [42], shallow de-
coder and parallel decoding [38], token confidence based de-
coding [15]. Similar techniques have been adopted in speech
processing, such as the Whisper Speculative Decoding [7] in
which the audio is first encoded with a transformer encoder,
then decoded by a distilled, lightweight decoder initially,
and later verified by a larger decoder through a one-pass for-
ward process. Comparing SD to our pilot inference Tasks:
Pilot inference targets streaming SU task, addressing tempo-
ral workload imbalance. SD targets LLM and SU decoding,
tackling underutilized hardware parallelism. Solutions: Pilot
inference work with incomplete streaming input. SD deals
with a complete input with concurrent fast and slow tasks.
SD’s speedup is contingent upon high hardware parallelism,
which is lacking on embedded devices. The connection in
between is that the full decoding benefit from an earlier
decoding process. More specifically, Whisper Speculative
Decoding still encodes the complete audio and decodes with
two-pass speculative scheme all after the ingestion finished.
In contrast, our system exploits the temporal load imbalance,
finishs part of the encoding and pilot inference during the
audio ingestion and saves a substantial amount of time.
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Streaming speech procssing Streaming approaches like
transducer-based models [9, 35, 48] process the data in a
chunk-wise fashion, initiating transcription during data in-
gestion and reduces the latency. However, they only possess
partial data during streaming processing and lack contextual
information. Compare to attention-based model [2, 10, 30],
the accuracy of streaming models is inferior [20]. Our work
focuses on speedup attention-based models.

Offloading and hybrid execution Device-cloud collabo-
ration [23] is well-discussed in general scenarios. The cost
during collaboration is an important concern [17, 27, 33].
A related work optimizes SU for microcontrollers in the
local/cloud setting [4]. Yet, incapable of deep SU models ,
microcontrollers only run an inference cache, rather than a
complete engine like PASU. These two projects have orthogo-
nal contributions; they do not depend each other.

Comparing CTC Leap with the Online CTC/Attention
Method Online CTC/attention method [26] reduces CTC
scoring latency by Truncated CTC method. Both Truncated
CTC and CTC leap try to skip part of the CTC prefix scoring
computation among all the time frame. The difference is that:
we reuse the CTC computation from the pilot inference to
skip the beginning part; whereas they stop early by using
the CTC peak heuristics to skip the latter part. Notably, same
with the original approach [41] our method still includes all
the time frames while they choose to drop some temporal
information, which may include crucial information for CTC.

Mobile speech processing Various efforts have been made
to run SU tasks on resource-constrained mobile devices. LUT-
NN [39] employed table lookup inference execution for ma-
chine learning models to enhance inference speed and re-
duce memory footprint. However, the lookup table scheme is
specifically designed for the encoding process and cannot be
easily applied to generative tasks in SU. Other methods such
as quantization [8, 44] and pruning [16, 31] have also been
proposed. These methods are orthogonal to our approach.

9 CONCLUSIONS

We present PASU, a novel system for fast speech processing
in SU tasks. PASU contributes late contextualization, beam
collapse/ termination, and CTC leap for local execution; and
confidence estimation for selective offloading. All optimiza-
tions combined, PASU speeds up its local path by 2x and re-
duces the offloading needs by 2x in its offloading path.
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