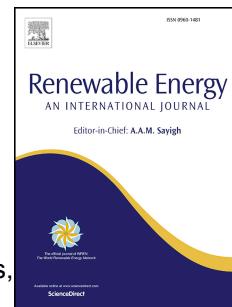


Journal Pre-proof

Bioenergy and bioexergy analyses with artificial intelligence application on combustion of recycled hardwood and softwood wastes

Ria Aniza, Wei-Hsin Chen, Christian J.A. Herrera, Rafael Quirino, Mathieu Petrisans, Anelie Petrisans



PII: S0960-1481(24)01953-0

DOI: <https://doi.org/10.1016/j.renene.2024.121885>

Reference: RENE 121885

To appear in: *Renewable Energy*

Received Date: 6 July 2024

Revised Date: 8 November 2024

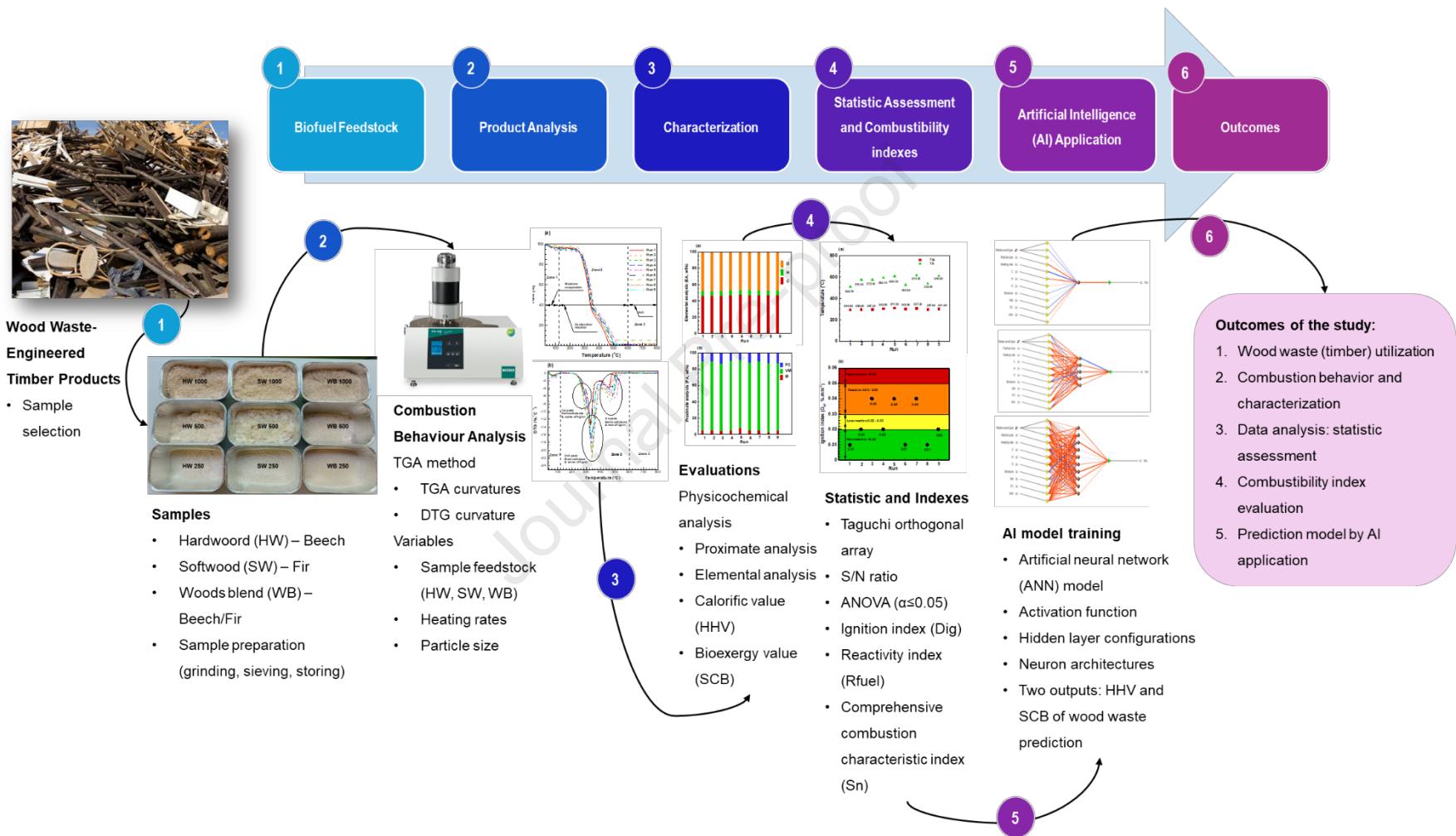
Accepted Date: 11 November 2024

Please cite this article as: Aniza R, Chen W-H, Herrera CJA, Quirino R, Petrisans M, Petrisans A, Bioenergy and bioexergy analyses with artificial intelligence application on combustion of recycled hardwood and softwood wastes, *Renewable Energy*, <https://doi.org/10.1016/j.renene.2024.121885>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

Graphical abstract



1 **Bioenergy and bioexergy analyses with artificial intelligence application on combustion**
 2 **of recycled hardwood and softwood wastes**

3 Ria Aniza ^{1,2,3,4}, Wei-Hsin Chen ^{3,5,6,*}, Christian J. A. Herrera ⁷, Rafael Quirino ⁷, Mathieu
 4 Petrissans ¹, Anelie Petrissans ^{1,*}

5 1. Université de Lorraine, INRAE, LERMAB, F88000, Epinal, France
 6 2. International Doctoral Degree Program in Energy Engineering, National Cheng Kung University, Tainan
 7 701, Taiwan
 8 3. Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
 9 4. Research Center for Energy Conversion and Conservation, National Research and Innovation Agency,
 10 Tangerang Selatan 15314, Indonesia
 11 5. Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
 12 6. Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
 13 7. Chemistry Department, Georgia Southern University, Statesboro, GA-30460, USA

14
 15 * Corresponding author; Email: weihsinchen@gmail.com & chenwh@mail.ncku.edu.tw (W.-
 16 H.Chen); anelie.petrissans@univ-lorraine.fr (A. Petrissans)

17 **Abstract**

18 Novel biomass bioenergy-bioexergy analyses *via* thermogravimetry analysis and
 19 artificial intelligence are employed to evaluate the three biofuels from wood wastes (softwood-
 20 SW, hardwood-HW, and woods blend-WB). The chemical characterization of SW has the
 21 highest bioenergy (higher heating value – HHV: 18.84 MJ·kg⁻¹) and bioexergy (specific
 22 chemical bioexergy – SCB: 19.65 MJ·kg⁻¹) with the SCB/HHV ratio of wood waste as about
 23 1.043-1.046. The high C-element has a significant influence on the HHV-SCB. The SCB/HHV
 24 ratio of wood waste is recognized as about 1.043-1.046. The three distinct zones of wood waste
 25 combustion are identified: moisture evaporation (Zone I, up to 110 °C), combustion reaction –
 26 degradation of three major lignocellulosic components (hemicelluloses, cellulose, and lignin)
 27 at Zone II, 110-600 °C, and ash remains (Zone III, 600-800 °C). The ignition (D_{ig} =0.01-0.04)
 28 and fuel reactivity (R_{fuel} =3.82-6.97 %·min⁻¹·°C⁻¹) indexes are evaluated. The comprehensive
 29 combustion index (S_n :>5×10⁻⁷%²·min⁻²·°C⁻³) suggests that wood waste has a better combustion
 30 performance than bituminous coal. The statistical evaluation presents that the highest HHV-
 31 SCB values are obtained by performing combustion for SW-250 µm at 15 °C·min⁻¹. The S/N

32 ratio and ANOVA results agree that the wood waste type and particle size denote the most
33 influential parameters. The artificial neural network prediction shows an excellent result ($R^2=1$)
34 with 1 hidden layer and 5 neuron configurations.

35 **Keywords:** Wood valorization; biochar; bioenergy-bioexergy; combustibility indexes; Taguchi
36 method; artificial neural network.

37

38 **Nomenclature**39 *Abbreviations*

40	A	Ash
41	AI	Artificial intelligence
42	ANN	Artificial neural network
43	ANOVA	Analysis of variance
44	Bioenergy	Biomass energy
45	Bioexergy	Biomass exergy
46	Biofuel	Biomass fuel
47	DoE	Design of experiment
48	EA	Elemental analysis
49	EU	European Union
50	FA	Fiber analysis
51	FC	Fixed carbon
52	FSC	Forest Stewardship Council
53	FTIR	Fourier transform infrared
54	GC	Gas chromatography
55	HHV	Higher heating value
56	HL	Hidden layer
57	HW	Hardwood
58	IEA	International Energy Agency
59	M	Moisture
60	PA	Proximate analysis
61	PM	Particulate matter
62	RE	Relative error

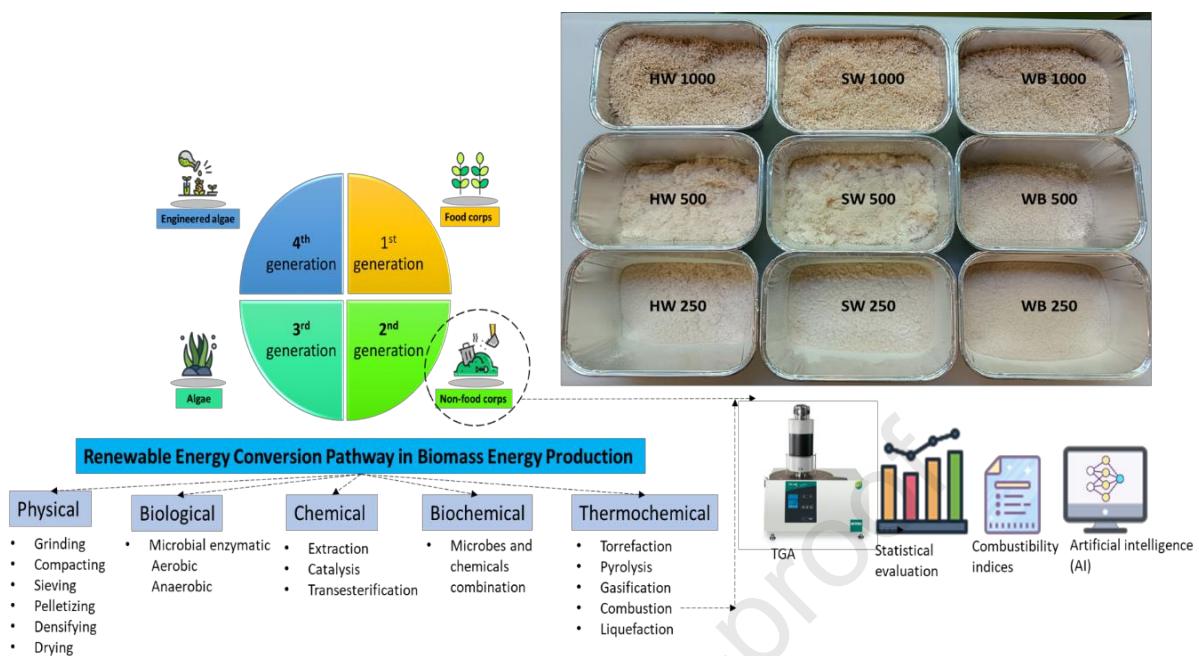
63	RT	Room temperature
64	SCB	Specific chemical bioenergy
65	SW	Softwood
66	TG	Thermogravimetry (device)
67	TGA	Thermogravimetry analysis
68	UN-SDGs	United Nations' Sustainable Development Goals
69	VM	Volatile matter
70	WB	Woods blend
71	WHO	World Health Organization
72	<i>Symbols</i>	
73	D_{ig}	Ignition index
74	L_9	Taguchi orthogonal array for nine runs
75	p	Probability value
76	R_{fuel}	Fuel reactivity index
77	S_n	Comprehensive combustion characteristic index
78	S/N	Signal-to-noise ratio
79	T_b	Burnout temperature
80	T_{ig}	Ignition temperature
81	W	Weight in ANN analysis
82	<i>Greek letter</i>	
83	α	Confidence level on statistical analysis ($\alpha \leq 0.05$)
84		

85 **1. Introduction**

86 The global emission of CO₂ was reported to reach over 36.8 Gt in 2022, which increased
87 by 0.9% or 321 Mt from the observed point of 2021 [1]. According to the data on CO₂ global
88 emissions in 2022 stated by the International Energy Agency (IEA) [1], this number contributes
89 to the increase of the emissions from coal-based energy sources – increased by 1.6% (from
90 2021) or 243 Mt, far surpassing the last decade's average growth rate, and achieving a new all-
91 time high level of CO₂ of almost 15.5 Gt. Unfortunately, the increase in fossil fuel usage such
92 as coal is scientifically proven to trigger increases in several issues including environmental
93 (anthropogenic air [2, 3], soil [4], water [5] pollution, global warming [6], extreme weather [7],
94 flood [8], water resource challenges [9], and disruption of land and water ecosystems) [10] and
95 human health (respiratory disorder [11], cancer [12], even premature death [13]).

96 Wood waste or wood by-products has gained some attention worldwide as a second-
97 generation biomass fuel (biofuel), which may be considered a potential sustainable material of
98 lignocellulosic-based biomass for renewable energy production [14, 15]. Generally speaking,
99 the lignocellulosic components define the chemical composition of both hardwood and
100 softwood. The composition of hardwood species is 38-51% cellulose, 17-38% hemicelluloses,
101 2-31% lignin, and 3% extractives [16, 17]. Softwood species, on the other hand, have a
102 composition of 33-42% cellulose, 22-40% hemicelluloses, 27-32% lignin, and 2-3.5%
103 extractives [18, 19]. One of the thermochemical processes, combustion (**Fig. 1**), is suggested
104 as a viable method for valorizing wood waste into valuable products such as heat. Wood waste
105 direct combustion refers to the conversion process of burning woody waste biomass under a
106 fully oxidative environment such as air or O₂ [20]. Combustion involves several key factors:
107 temperature, heating rate, heating duration, and feedstock composition.

108



109 **Fig. 1.** A recycled wood waste combustion study via TGA was coupled with statistical analysis,
 110 combustion indexes, and AI-aided.

111 If the combustion parameters are not well controlled, it can lead to the generation of
 112 particulate matter (PM) or smoke [3] and high CO emissions [2]. Long-term exposure to PM
 113 and CO emissions for more than its average level as World Health Organization (WHO)
 114 standards $15 \mu\text{gm}^{-3}/24 \text{ h}$, $45 \mu\text{gm}^{-3}/24 \text{ h}$, and $7 \mu\text{gm}^{-3}/24 \text{ h}$ for PM 2.5, PM 10, and CO [21],
 115 respectively, are reported to be one of the root causes of respiratory disorders (asthma,
 116 respiratory inflammation) and even cell death due to DNA damage. Additionally, in some
 117 studies, the combustion analysis is crucial for safety reasons and energy conversion systems,
 118 such as to prevent fire hazards due to overreactive biofuel on spontaneous ignition [22] and to
 119 optimize the combustion process within the reactor [23, 24]. In this matter, evaluating the
 120 physicochemical properties, thermodegradation behavior, and combustibility performance by
 121 investigating the combustion parameter using integrated TGA and bioenergy-bioexergy
 122 analyses to obtain the best condition for bioenergy production — avoiding PM or shoot

123 generation, CO emissions, and considering the safety reasons from wood waste biofuel
 124 feedstock is indeed essential.

125 The TGA method, which uses a thermogravimetry (TG) device, is one of the techniques
 126 used to observe the degradation of material as a function of temperature or time [25]. By
 127 performing the TGA method, the thermodegradation behavior of biomass feedstock, including
 128 combustion, can be fully identified. Some of the valuable information that can be obtained
 129 from the TGA method is the degradation curve of mass loss TGA, differential
 130 thermogravimetry (DTG), ignition temperature (T_i), and burnout temperature (T_b).
 131 Additionally, the biofuel quality during the combustion process can be evaluated by calculating
 132 the fuel reactivity (R_{fuel}) and comprehensive combustion index (S_n).

133 Among the types of bioexergy analysis, SCB is an effective way to evaluate renewable
 134 energy in the circular bioeconomy concept from a biomass-based source. SCB focuses on
 135 identifying the biofuel's energy according to the chemical composition of the biomass [26].
 136 Previous studies claimed that exergy in biomass can be obtained by calculating the elemental
 137 analysis (C, H, O, N, and S elements) and proximate analysis (ash content) [27, 28]. Performing
 138 the SCB evaluation, which relies on the second law of thermodynamics on wood valorization
 139 — can be used to identify the location, amount, quality, and cause of thermodynamic
 140 inefficiencies (exergy destructions and losses), which is suggested to fully represent the actual
 141 energy within the material compared to higher heating value (HHV) or lower heating value
 142 (LHV).

143 The concept of recycling woody waste into biofuel is considered an effective method
 144 that shares the goal of achieving the future United Nations – Sustainable Development Goals
 145 (UN-SDGs) affordable and clean energy (SDG7), responsible consumption and production
 146 (SDG12), and climate action (SDG13), industry, infrastructure, and innovation (SDG9), as well
 147 as align to zero waste principle for managing waste generation. Furthermore, AI accelerates the

148 transition rate to a sustainable energy future by enhancing renewable energy production and
 149 development's reliability, affordability, and scalability [29, 30].

150 Numerous studies have been performed on biomass combustion. However, as far as the
 151 authors' knowledge, no study has focused intensely on wood waste combustion in terms of
 152 bioenergy (HHV) and bioexergy (SCB). There is a lack of knowledge on the related topic of
 153 its technology and development. In this matter, a comprehensive study for biofuel production
 154 through combustion has not yet been developed while considering the physicochemical,
 155 thermodegradation behavior, and combustibility performance. Therefore, this study aims to
 156 provide bioenergy and bioexergy analyses of wood waste (**Fig. 1**) *via* TGA in an all-inclusive
 157 manner (Taguchi orthogonal array, statistical evaluation, combustibility performance, and AI
 158 analysis). This study offers benefits for bridging the current bioenergy technology and
 159 advancement gap. Furthermore, it gives researchers with related interests and professionals in
 160 the industry a better understanding and helpful information, particularly for the development
 161 of renewable bioenergy production and industrial scale-up using bioenergy woody-based
 162 materials.

163 **2. Materials and methods**

164 *2.1. Materials*

165 The wood waste of this study was obtained from the timber industries in North-East
 166 France. The woods (hardwood: beech - *Fagus sylvatica* and softwood: fir - *Abies alba*) were
 167 harvested from the local forest for lumber production. The samples were classified into three
 168 types of sample wood waste, including hardwood (HW), softwood (SW), and woods blend
 169 (WB, 50-50 wt% mixture of HW and SW, respectively). The commercial high-pressure woody-
 170 based briquettes solid biofuel in the European Union (EU) region from raw virgin wood was
 171 certified by the Forest Stewardship Council (FSC) to be smokeless, 100% eco-friendly, and

172 produced without binders-additives with the mixing ratio of 50-50 wt% HW and SW [31]. In
 173 this regard, this study attempted to adopt the commercial wood mixing method for the mixture
 174 of WB.

175 *2.2. Methods*

176 *2.2.1. Sample preparation*

177 The samples were open-air sun-dried for about 24 h. The dried samples were ground
 178 and sieved individually to obtain a uniform particle size into three types of sizes, including 250,
 179 500, and 1000 μm [29]. Furthermore, more biomass was broken down by heat transfer at
 180 smaller particle sizes of less than 0.5 mm (500 μm), which accelerated the thermochemical
 181 process and increased biofuel output [26]. In this manner, the three chosen particle sizes from
 182 250-1000 μm considered appropriate ways to investigate the thermodegradation of biomass.
 183 All the samples were stored in sample storage at room temperature (RT) until the analyses were
 184 performed.

185 *2.2.2. Design of experiment (DoE)*

186 The Taguchi orthogonal array is a tool for conducting experiments and efficiently
 187 optimizing product or process design. The main purpose of Taguchi orthogonal arrays is to
 188 create a matrix representing a set of experimental conditions to effectively reduce the number
 189 of experimental runs without losing the importance of the variable. Taguchi's methods enable
 190 efficient experimentation with minimal trials while providing reliable results. The factors
 191 (**Table 1a**) in this research based on the Taguchi method were considered: wood waste type,
 192 particle size, and heating rate. Additionally, three levels corresponding to these factors design
 193 (1) hardwood (HW), softwood (SW), and woods blend (WB); (2) 250, 500, and 1000 μm ; and
 194 (3) 10, 15, and 20 $^{\circ}\text{C}\cdot\text{min}^{-1}$. The design matrix involving the three factors and three levels of
 195 design contained nine runs (L_9) of experiments (**Table 1b**).

196 **Table 1**

197 Design of experiment (DoE) of direct combustion of recycled wood wastes (a) three factors
 198 and three levels and (b) Taguchi orthogonal array for nine runs (L_9).

199 **(a)**

Factors	Control parameters	Levels		
		1	2	3
A	Wastes type (%)	Hardwood (100%)	Softwood (100%)	Woods blend ^a (50%:50%)
B	Particle size (μm)	250	500	1000
C	Heating rate ($^{\circ}\text{C}\cdot\text{min}^{-1}$)	10	15	20

200 a: woods blend contains 50% hardwood (beech) and 50% softwood (fir)

201 **(b)**

Run	DoE combinations		
	A	B	C
1	Hardwood	250 μm	$10\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$
2	Hardwood	500 μm	$15\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$
3	Hardwood	1000 μm	$20\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$
4	Softwood	250 μm	$15\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$
5	Softwood	500 μm	$20\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$
6	Softwood	1000 μm	$10\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$
7	Woods blend	250 μm	$20\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$
8	Woods blend	500 μm	$10\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$
9	Woods blend	1000 μm	$15\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$

202

203 *2.2.3. Statistical evaluation*

204 The results acquired from the Taguchi orthogonal array were evaluated using the signal-
 205 to-noise (S/N) ratio and analysis of variance (ANOVA) to identify which parameter and level
 206 had significant influences on the bioenergy (HHV) and bioexergy (SCB) values.

207 In terms of the S/N ratio, the HHV and SCB were analyzed for the larger-is-the-better
 208 characteristic (Eq. (1)) [29], as follows:

$$Sn = -10 \log \left(\frac{1}{y^2} \right) \quad (1)$$

209 where y represents the objective function of HHV or SCB of biofuel.

210 For ANOVA, the result was observed to calculate the differences between groups. The
211 characteristic of ANOVA was described in Eq. (2) [32] as follows:

$$\text{ANOVA: } \alpha \leq 0.05 \quad (2)$$

212 where α represents a significant level, with 95% confidence and 5% of maximum risk. The
213 lack-of-fit test is used when dealing with data containing replicates or observations with
214 identical x-values. Because discrepancies between the observed response values can only be
215 caused by random variation, replicates are a representation of "pure error". One compares the
216 p-value to the significant level to ascertain whether the model fits the data appropriately. A
217 significance level of 0.05 is typically effective, also known as alpha or α . When a model has
218 an α of 0.05, there is only a 5% chance of finding that the data does not fit the model. In this
219 manner, a 5% significant level was considered to be utilized in this study. Additionally, to
220 quantify the accuracy of the result, the relative error (RE) of data was determined (Eq. (3)) [26,
221 29],

$$RE (\%) = \left| \frac{(A - B)}{A} \right| \times 100 \quad (3)$$

222 where A and B are observed (first trial) and measured (second trial) values, respectively.

223 *2.2.4. Proximate, elemental, and calorific value analyses*

224 Proximate analysis (PA) was performed by applying the ISO 18134-1:2022 [33], ISO
225 18123:2023 [34], and ISO 18122:2022 [35] for moisture (M), volatile matter (VM), and ash
226 (A) analysis, respectively. Proximate analysis of solid biofuels was using a muffled furnace –
227 Carbolite Furnace CSF 1200. Meanwhile, the fixed carbon (FC) was calculated by difference
228 (Eq. (4)) [36].

$$FC (\%) = 100\% - M - VM - A \quad (4)$$

229 Elemental analysis (C, H, O, N, and S) was performed using an automatic elemental
 230 analyzer (Thermo Flash Smart Elemental Analyzer). To determine the calorific value, the
 231 higher heating values (HHVs) of the sample tests were calculated by employing the HHV in
 232 Eq. (5) [37], as follows:

$$HHV = 0.3491 C + 1.1783 H - 0.1034 O - 0.0151 N + 0.1005 S - 0.0211 A \quad (5)$$

233 where C, H, O, N, and S are the chemical compounds in EA and A is the ash content in PA.

234 *2.2.5. Specific chemical bioexergy (SCB)*

235 The bioexergy analysis of this study was evaluated by determining the chemical
 236 compound in elemental analysis and considering the ash in proximate analysis. The calculation
 237 of the SCB [27, 28] utilized the bioexergy equation in Eq. (6), as follows:

$$SCB = 36.3439 C + 107.5633 H - 8.6308 O + 0.4147 N + 19.0798 S - 21.100 A \quad (6)$$

238 *2.2.6. Combustion experiment via TGA and product analysis via FTIR*

239 The direct combustion of wood waste was carried out using the TG device NETZSCH
 240 STA 449 F3 Jupiter. About 5 mg of the sample was loaded into a ceramic crucible about 90 μL
 241 size. For instance, the N_2 gas was purged into the system for $100 \text{ mL}\cdot\text{min}^{-1}$ in 5 min. Then, the
 242 sample was heated using three heating rates, including 10, 15, and $20 \text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$ from RT to 800
 243 $^{\circ}\text{C}$ (Fig. 1). The solid remaining in the crucible was considered the ash content. The
 244 experiments in this study, including proximate analysis, elemental analysis, calorific value, and
 245 direct combustion, were performed in duplicate. The reproducibility of the data was managed
 246 at $>95\%$ (maximum risk at 5%). Additionally, the Fourier Transform Infrared (FTIR)
 247 Spectroscopy FTIR spectra were recorded using FTIR Shimadzu between 4000 and 600 cm^{-1}
 248 by the potassium bromide pellet method to analyze the best wood waste type for the combustion
 249 process.

250 2.2.7. Combustion index calculation

251 (1) Ignition index

252 The ignition index D_{ig} (%·min⁻³) was determined as follows [24, 38] (Eq. (7)):

$$D_{ig} = \frac{(dw/dt)_{max}}{(t_{max} \cdot t_{ig})} \quad (7)$$

253 where $(dw/dt)_{max}$ (%·min⁻¹) is the maximum combustion rate (DTG curve at the highest
254 peak - DTGmax), t_{max} is the corresponding time when $(dw/dt)_{max}$ use equation the maximum
255 combustion rate occurs, and t_{ig} was the ignition time. The ignition index implied the potential
256 of accumulated fine fuels to ignite in the presence of a heat source (flammability behavior),
257 demonstrating the fuels' tendency to receive heat and initiate combustion. The low ignition
258 index indicated that the material ignited at high temperatures. In this regard, a higher heat
259 supply was required to ignite the material. In contrast, the high ignition index indicated that the
260 material ignited at low temperatures.

261 (2) Reactivity index

262 The combustion reactivity index (R_{fuel} , %·min⁻¹·°C) facilitated the evaluation of the
263 reactivity level of fuel in this study. It may be expressed as follows [39] (Eq. (8)):

$$R_{fuel} = \frac{(dw/dt)_{max}}{T_{max}} \quad (8)$$

264 where $(dw/dt)_{max}$ is data in the DTG curve known as DTGmax (%·min⁻¹). Additionally, T_{max}
265 (°C) corresponded to the peak of the DTG curve. The reactivity index indicates how reactive
266 the fuel could be when the heat source is present. The lowest to highest reactivity index value
267 is about 0.00 to >0.05 %·min⁻¹·°C. There are four distinguished regions in the reactivity index
268 according to the value, including non-reactive (0.00-0.02), low-reactive (0.021-0.03), reactive

269 (0.031-0.05), and high reactive (>0.051). The highly reactive biofuel is unfavorable because it
 270 could trigger incomplete combustion and explosion.

271 *(3) Comprehensive combustion characteristic index*

272 The comprehensive combustion characteristic index (S_n) is a combustion index to
 273 evaluate the comprehensive behavior of biofuel combustion [40, 41]. It was defined as (Eq.
 274 (9)):

$$S_n = \frac{(dw/dt)_{max} (dw/dt)_{mean}}{(T_{ig}^2 \cdot T_b)} \quad (9)$$

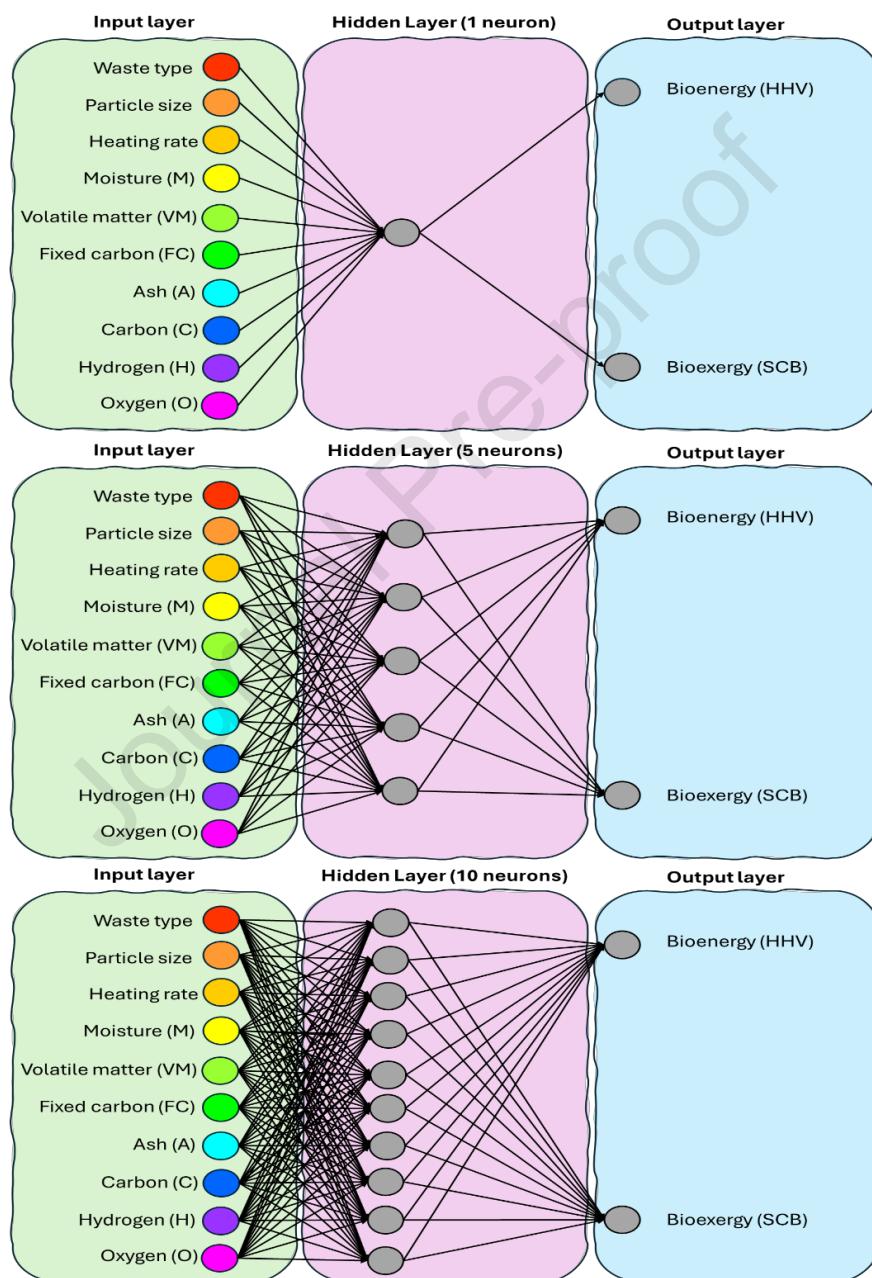
275 where $(dw/dt)_{max}$ and $(dw/dt)_{mean}$ are the maximum and average weight loss rates,
 276 respectively. A higher S_n value indicated a better biofuel combustion performance. Meanwhile,
 277 T_{ig} and T_b were the ignition and burnout temperatures, respectively.

278 *2.2.8. Artificial neural network (ANN) analysis*

279 The ANN is one sort of computerized artificial intelligence that mimics how neurons in
 280 the human brain process information. ANN provides predictive benefits, such as indirectly
 281 detecting complex non-linear connections between variables and taking a small dataset to
 282 obtain a high-accuracy result. To validate the ANN model, the trained ANN's predictions of
 283 HHV-SCB values were compared to experiment data. Additionally, the sensitivity analysis was
 284 automatically calculated during the training process, and the result notified whether the model
 285 was overfitting or underfitting. The parameters were designed as input data to determine the
 286 influence of the HHV and SCB as the output data. The ten parameters used for feeding the
 287 input data include the duplicate of the Taguchi parameters (waste type, particle size, and heating
 288 rate-9 runs): 18 data, EA (C-H-O): 18 data (HW, SW, and WB), and PA (M, VM, FC, Ash): 24
 289 data (HW, SW, and WB). The ANN model software used was Megaputer Polyanalyst 6.5. The
 290 hidden layer was designed for one layer with 1, 5, and 10 neurons (detailed in supplementary
 291 material **Table S1**). The activation functions used in this study were sigmoid and piecewise

292 linear in the hidden layers and output layer, respectively. The dataset (60 data in total) was
 293 divided into 80:20 for training (80%) and testing (20%) [26, 29]. The training algorithm used
 294 in this study was quick backpropagation (quick prop) [26]. The three configurations of the
 295 ANN model are illustrated in **Fig. 2**.

296



297

298 **Fig. 2.** Configuration of the artificial neural network (ANN) model.

299

300 **3. Results and discussion**301 *3.1. Properties of wood waste*

302 The initial characterizations of biomass feedstock, including HW, SW, and WB, are
 303 described in **Table 2**. For proximate analysis, HW, SW, and WB moisture contents are 5.94,
 304 4.00, and 3.00 wt%, respectively. The low moisture content in biofuel is favorable because it
 305 may increase the energy density, thereby improving combustion efficiency. The VM in all
 306 samples show > 80wt%, including HW (84.05 wt%), SW (83.50 wt%), and WB (83.67 wt%).
 307 A high VM in the sample indicates that the material has a high possibility of solid chemical
 308 compounds, such as lignocellulosic components (hemicelluloses, cellulose, and lignin) to
 309 devolatilize into gaseous chemical compounds.

310 **Table 2**

311 Raw wood waste properties of proximate analysis, elemental analysis, and bioenergy-
 312 bioexergy values.

Biomass properties	Waste types		
	Hardwood (HW)	Softwood (SW)	Woods blend (WB)
Proximate (wt%)			
M	5.94	4.00	3.00
VM	84.05	83.50	83.67
FC	10.00	12.50	13.32
Ash	<0.01	<0.01	0.01
Elemental (wt%)			
C	45.99	47.26	46.58
H	5.77	5.86	5.86
O	45.05	44.36	45.32
N	< 0.05	< 0.05	< 0.05
S	< 0.05	< 0.05	< 0.05
Bioenergy-HHV and bioexergy-SCB (MJ·kg⁻¹)			
HHV	18.20	18.84	18.52

SCB	19.03	19.65	19.32
SCB/HHV ratio	1.046	1.043	1.043

313

314 The gaseous compounds from biomass devolatilization can be condensed into liquid
 315 biofuel such as bio-oil, biodiesel, bioethanol, etc [26, 42]. In contrast, some studies suggested
 316 that the high VM in biomass feedstock tends to have a spontaneous ignition [43] and lower
 317 calorific value due to the high O-element. The samples have a slight amount of FC (FC, HW:
 318 10.00 wt%; SW: 12.50 wt%; and WB: 13.32 wt%) but very low ash content (A, HW: <0.01;
 319 SW: <0.01; WB: 0.01). The lower FC in biofuel implies that the ash formation is minor. The
 320 low ash content in biofuel is favorable because it may prevent clogging in the combustion
 321 chamber or utility [44].

322 Moreover, the EA identification shows that the samples rich in C (HW: 45.99 wt%, SW:
 323 47.26 wt%, WB: 46.58 wt%) and O (HW: 45.05 wt%, SW: 44.36 wt%, WB: 45.32 wt%)
 324 elements, but slightly contain H (HW: 5.77 wt%, SW: 5.86 wt%, WB: 5.86 wt%) and very low
 325 of N (all samples < 0.05 wt%), and S (all samples < 0.05 wt%) elements. The H/C (0.13 for all
 326 samples) and C/O (HW: 0.98, SW: 0.92, and WB: 0.96) ratios indicate that the samples are far
 327 from the petroleum characteristics as reported in the Van Krevelen diagram (H/C < 1 and O/C
 328 < 0.2) [45]. The raw biomass has the typical atomic values of low H/C and high O/C due to
 329 biomass generally containing hemicelluloses, cellulose, and lignin.

330 *3.2. Characterization of wood wastes*

331 *3.2.1. Bioenergy and bioexergy analyses*

332 Bioenergy (HHV) and bioexergy (SCB) analyses of wood wastes are identified by
 333 analyzing four elements in EA (C, H, O, N, and S) and 1 component of PA (ash). However, the
 334 S-element in EA and the ash content in PA in the wood waste of this study reveal that they are
 335 negligible (**Table 2**). Accordingly, the terms of S and ash content in **Eq. (6)** for calculating SCB
 336 can be ignored. In **Table 2**, the HHV-SCB values of SW (HHV: 18.84 MJ·kg⁻¹, SCB: 19.65

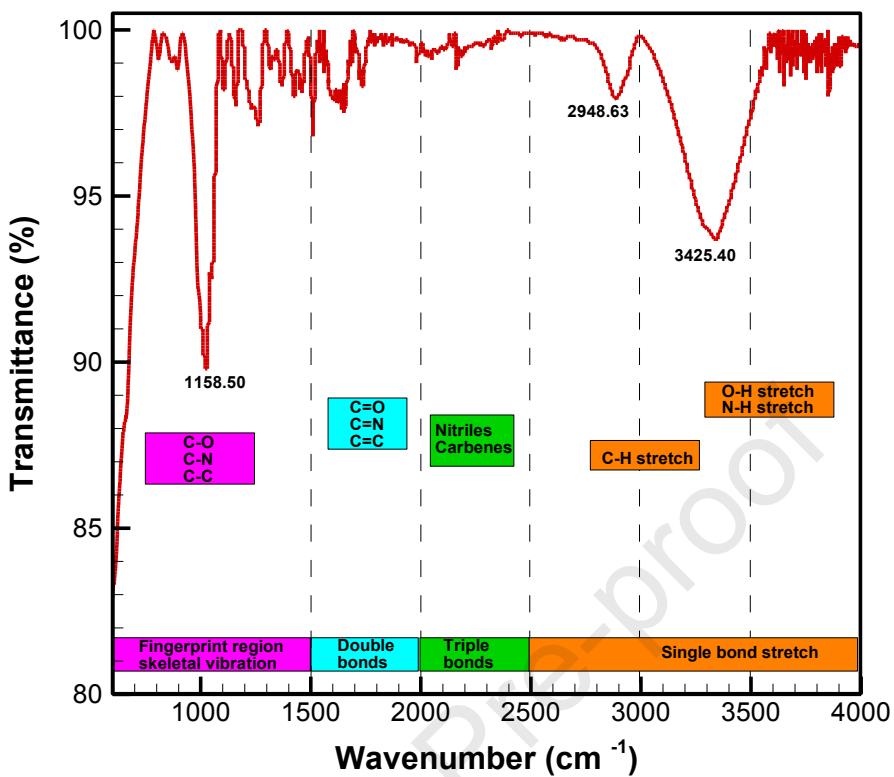
337 MJ·kg⁻¹) are identified to possess the highest HHV-SCB values among all samples (WB –
 338 HHV: 19.32 MJ·kg⁻¹, SCB: 18.52 MJ·kg⁻¹ and HW – HHV: 19.03 MJ·kg⁻¹ and SCB: 18.20
 339 MJ·kg⁻¹). These phenomena occur due to the SW having a higher C-element within SW (C:
 340 47.26 wt%) than WB (C: 46.58 wt%) or HW (C: 45.99 wt%). Although the H-element has the
 341 highest coefficient value in the SCB determination (**Eq. (6)**), the amount of H-element in the
 342 samples is identified as very low (about <6 wt%). Thus, the H element does not significantly
 343 influence the HHV-SCB values of wood waste samples.

344 The FTIR spectrum of the highest HHV-SCB sample of SW is illustrated in **Fig. 3**. The
 345 FTIR analysis shows that about three peaks are noticeable at (1st) 1,158.50 cm⁻¹; (2nd) 2,948.63
 346 cm⁻¹; and (3rd) 3,425.40 cm⁻¹. According to the FTIR spectrum, the 1st, 2nd, and 3rd peaks occur
 347 in the functional group in wavenumber 1,120-1,160 cm⁻¹ (fingerprint skeletal region), 2,850-
 348 2,950 cm⁻¹ (single bond stretch), and 3,350-3,450 cm⁻¹ (single bond stretch) correspond to the
 349 C-O-C polysaccharide, CH₂ stretching aliphatic group, and OH functional groups, respectively
 350 [46]. The 1st peak at 1,158.50 cm⁻¹ corresponds to the C-O-C polysaccharide functional group
 351 associated with the cellulose chemical compound [47] and the mannose group of
 352 hemicelluloses [48, 49]. The mannan-type hemicellulose group (mannose) is a polysaccharide
 353 composed of six-carbon sugar glucose. Mannose in softwood can be found as the most
 354 abundant sugar compared to other polysaccharide groups [50]. The asymmetric CH₂ stretching
 355 vibration is classified as methylene and methine groups in the 2nd peak, correlated to the two
 356 types of hemicelluloses (xytan and mannose), cellulose, and lignin [47, 48]. Furthermore, the
 357 3rd peak is acknowledged at 3,425.40 cm⁻¹, which is assigned to the OH molecules, associated
 358 with cellulose and hemicelluloses [51, 52].

359 Additionally, some absorbance with weak peaks is noticed in between the double and
 360 triple bonds region in FTIR spectra corresponding to the alkenes and alkynes, respectively (**Fig.**
 361 **3**). The double bond (alkenes) comprises carbon-carbon double bond (-C=C-), which appear in

362 the moderate band. The stretching vibration of the carbon double bond (-C=C-) is associated
 363 with aromatic compounds mostly found in lignin [48, 52]. The alkynes are comprised of
 364 carbon-carbon triple bonds (-C≡C-). Few organic compounds exhibit absorption in the triple
 365 bond region, where the -C≡C- stretch manifests as a weak band (**Fig. 3**). Organic molecules
 366 are considered to have rare triple bonds, but metallic compounds frequently have them. This
 367 could be because organic compounds lack valence d-orbitals, making creating triply-bound
 368 molecules using metallic atoms challenging. At present, the carbon-carbon triple bond is being
 369 massively explored to create organic semiconductors in solar energy systems – photovoltaic
 370 applications [53, 54].

371 Furthermore, the weight of O-element in all samples is identified as a high amount. The
 372 high level of O-element in biofuel feedstock is not recommended since it causes some
 373 problems, such as instability of combustion reaction [55], and decreased energy density [56].
 374 Thus, the feedstock's deoxygenation prior to biofuel utilization is suggested to avoid rust
 375 formation, obtain better combustion performance, and increase the energy density of the
 376 feedstock. The biomass sample in the present study shows insignificant amounts of the N- and
 377 S-elements and low ash contents. Thus, the influences of N- and S-elements and ash content
 378 may be less in HHV-SCB values. In this manner, the terms for S-element and ash content in
 379 Eqs. (5) and (6) for HHV-SCB can be ignored. In the HHV calculation (Eq. (5)), C-H-S
 380 elements are considered energy sources that can be extracted during energy conversion. In
 381 contrast, O-N elements have contradictory influences and may not be considered an energy
 382 source. The HHV level rises in proportion to the biomass's C-H-S concentrations. In contrast,
 383 when the O-N composition of biomass rises, the HHV level falls. Nevertheless, the O-element
 384 alone remains the contradictory element for the SCB value, while the N-element has included
 385 (C-H-S-N) in the SCB computation (Eq. (6)) as an energy source that can be retrieved.



386

387 **Fig. 3.** A record of the FTIR spectrum of SW.

388 According to certain studies, it has been possible to effectively synthesize fuels based on
 389 sulfur and nitrogen [57, 58] to meet the world's energy needs. In many applications, the S-N
 390 elements are suggested to be energy-storage materials. For instance, S- and N-based fuels may
 391 derived from biomass to produce advanced lithium-sulfur (Li-S) batteries [59] and liquid
 392 ammonia fuel [60], respectively. Although N and S influences are considered small, in this
 393 regard, by considering N-element as an energy source, the SCB computation provides a better
 394 insight than HHV to analyze the energy content within the biomass.

395 *3.2.2. Taguchi method analysis*

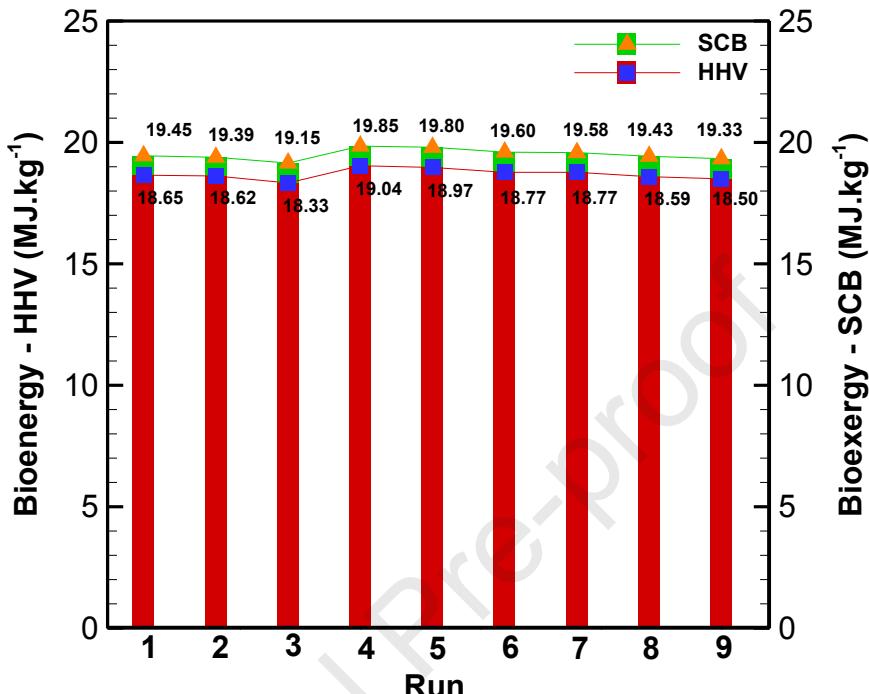
396 The Taguchi method aims to achieve a favorable product quality by design. The system
 397 design can reduce the number of experiments, time, energy, and cost by selecting the desirable
 398 factors (variable) and levels (variable intensity). The significant and insignificant parameters

399 that influence the outcomes can be adequately evaluated. By doing so, further investigation of
 400 the topic can be accomplished without repeating the same insignificant parameters. This
 401 condition can make the concept of further research more novel and explorative.

402 Similar to the biomass feedstock with the bulk size, the feedstock with three different
 403 sizes (250, 500, and 1000 μm) has the typical characteristic (detailed in supplementary material
 404 **Fig. S1**) that is rich in C (47.32-48.82 wt%) and O (45.18-36.87 wt%), but very low in H (5.55-
 405 6.27 wt%) elements. The proximate analysis also suggests that the samples contain very high
 406 VM (> 80 wt%), few FC (< 14 wt%), slightly M (< 9 wt%), and negligible A (< 0.01 wt%). In
 407 this regard, the combustibility performance of wood waste is dominated by the volatile
 408 compounds (VM) within biomass compared to the non-volatile compounds such as FC. To
 409 improve the energy density of the solid biofuel, some of the previous studies demonstrated
 410 several types of thermochemical conversion, such as torrefaction in low-temperature operation
 411 (< 350 °C) [15, 61] and pyrolysis (medium to high-temperature operation, 350-800 °C) [26,
 412 29].

413 The HHV determination, according to the Taguchi orthogonal array, is 18.33-19.04
 414 $\text{MJ}\cdot\text{kg}^{-1}$. Meanwhile, SCB is 19.15-19.85 $\text{MJ}\cdot\text{kg}^{-1}$. These results (SCB: 19.15-19.85 $\text{MJ}\cdot\text{kg}^{-1}$)
 415 are aligned with the exergy of previous studies for alder-fir sawdust (SCB: 20.89 $\text{MJ}\cdot\text{kg}^{-1}$),
 416 beech bark (SCB: 19.63 $\text{MJ}\cdot\text{kg}^{-1}$), and wood residue (SCB: 20.15 $\text{MJ}\cdot\text{kg}^{-1}$) [27]. Compared to
 417 the biowaste from a previous study using a raw sample of mushroom log waste (12.48 $\text{MJ}\cdot\text{kg}^{-1}$)
 418 [26], this study shows better results of SCB of raw biomass wood waste, about a 35-39 %
 419 increase. The correlation between HHV and SCB is noticed due to the similarity of the analysis,
 420 depending on the elemental and proximate analyses. The HHV calculation involves elemental
 421 components (CHONS) and proximate analysis (ash content) on a dry basis. Likewise, a similar
 422 identification occurs in SCB, which involves elemental and proximate components. According
 423 to **Fig. 4**, the linear correlation is acknowledged between HHV and SCB. The SCB value

424 increases when the HHV value increases. This phenomenon occurs in all samples of wood
 425 waste feedstocks. This linear correlation can be expressed in a ratio of SCB/HHV.



426
 427 **Fig. 4.** Bioenergy (HHV) and bioexergy (SCB) values of wood waste according to the Taguchi
 428 orthogonal array.

429
 430 The SCB/HHV ratio in **Table 2** indicates that the ratio value of HHV and SCB is 1.043-
 431 1.046. The highest HHV value (HHV-SW) coincides with the highest SCB value (SCB-SW),
 432 and the lowest HHV value (HHV-HW) coincides with the lowest SCB value (SCB-HW) (**Fig.**
 433 **4**). The typical evaluation of the energy density using HHV commonly applied for the biofuel
 434 product can be corrected by the SCB value through $HHV = 1.043-1.046 \times SCB$. This result is
 435 similar to a previous study by Zhang et al. [62] that investigated the connection between exergy
 436 and HHV of rice residue. The study revealed that the exergy has a higher value of HHV with a
 437 detailed expression of exergy ($kJ \cdot kg^{-1}$) $Ex = 1312.038 + 0.977 HHV$.

438 In the biofuel field, the current indicator used to determine the quality of the material
 439 for renewable bioenergy production is the HHV value [15, 37]. However, the SCB analysis,
 440 using wood waste as the sample feedstock, reveals that the actual energy within the material is
 441 about 1.043-1.046 fold of HHV. The ratio of the SCB/HHV (1.043-1.046) indicates that the
 442 number range can be utilized as the factor correction on energy yield calculation. To minimize
 443 the error and avoid calculation failure, the result implies that the researcher and industrial
 444 practitioner should know vital information about the SCB/HHV ratio to determine the energy
 445 balance and production cost using renewable bioenergy feedstock.

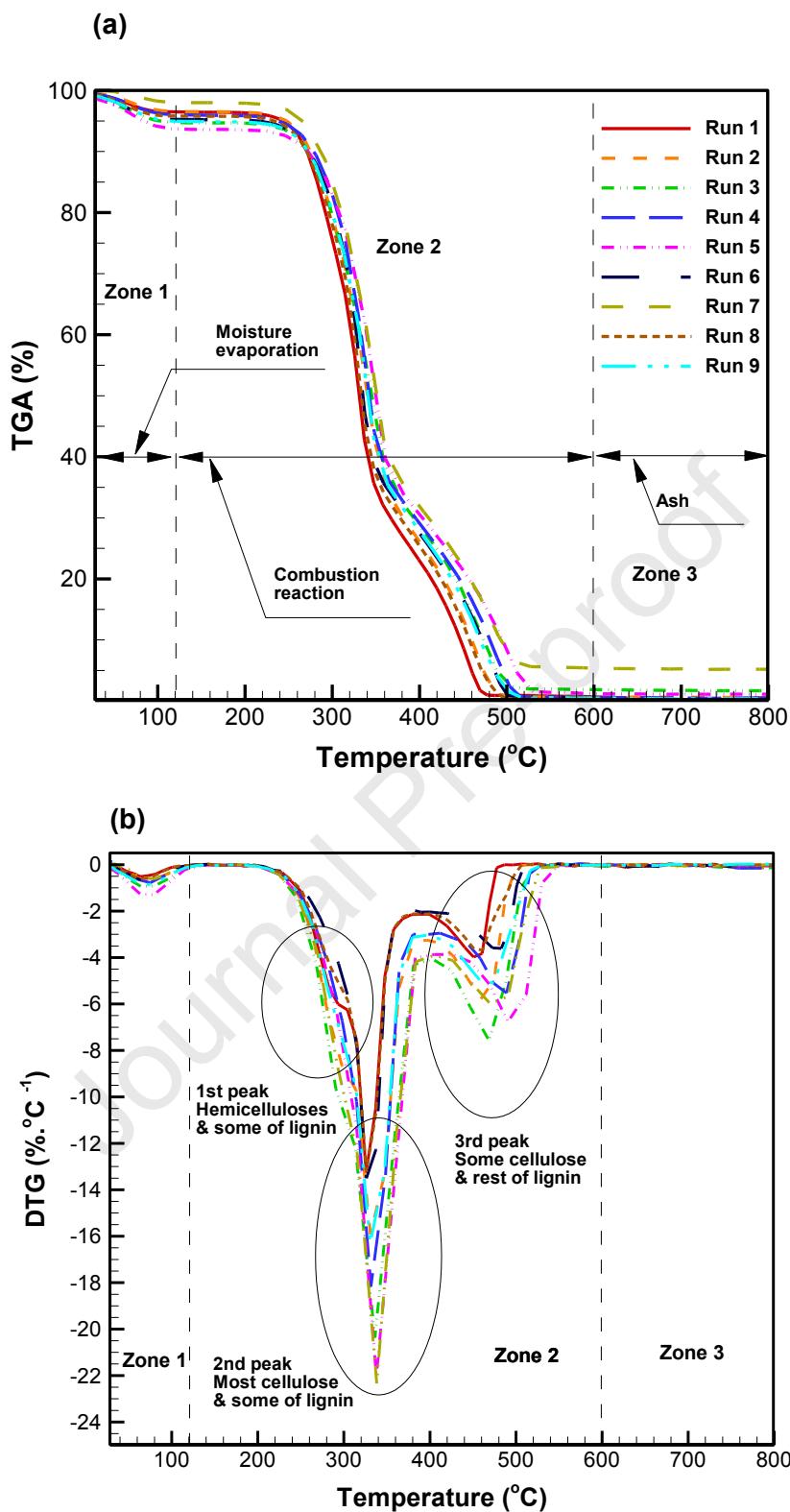
446 *3.3. Thermodegradation behavior of wood waste under the combustion process*

447 The behavior of thermodegradation of wood waste under the combustion process is
 448 described in three conditions: wood waste, particle size, and heating rate (see the
 449 supplementary material **Fig. S2**). The thermodegradation behavior of 9 runs of wood waste
 450 (HW, SW, and WB) during the combustion process presents insignificant differences. This may
 451 be due to the similarity of the chemical element composition of the three wood wastes. Unlike
 452 the inert process of torrefaction or pyrolysis energy conversion, all organic chemical elements,
 453 including the three major lignocellulosic components, such as hemicelluloses, cellulose, and
 454 lignin, will burn completely during complete combustion to produce CO₂ and H₂O. Therefore,
 455 the thermodegradation behavior of the three components shows no apparent difference in
 456 TGA/DTG curves. Hemicelluloses and cellulose will thermally degrade in lower temperatures,
 457 around 200-315 °C and 300-400 °C, respectively. In contrast, lignin will thermally degrade in
 458 a wide temperature range of about 150-600 °C.

459 The EA in **Table 2** is performed in duplicate, revealing that the N and S elements are
 460 very low. The N and S elements are identified at around < 0.05 for all the samples. These
 461 phenomena suggest that the wood waste sample has an excellent chemical characteristic as a
 462 combustion feedstock. Thus, the chance of producing NO_x and SO_x from these samples during

463 combustion is relatively low. A few investigations suggest that short-term exposure to NOx and
464 SOx might cause respiratory diseases, such as reduced pulmonary function, increased lung
465 inflammation, and compromised immune system function [63, 64]. In this regard, choosing
466 wood waste as a feedstock is an appropriate step to produce potential environmentally friendly
467 biofuel through combustion conversion. The combustion via TGA of the nine samples exhibits
468 a typical pattern of more than 80 wt% from 110 to 600 °C of VM release during
469 devolatilization. Simultaneously, at temperatures >600 °C, the ash is formed after the FC is
470 burned completely.

471 Degradation zones of the wood waste are distinguishably identified in **Fig. 5**. The three
472 zones can be noticed from TGA curves in **Fig. 5a**. Zone 1 occurs at about RT to 110 °C, where
473 the moisture content evaporates. Zone 2 occurs at about 110-600 °C, where the activity of the
474 combustion reaction is significantly detected. In Zone 2, two to three peaks are recognized from
475 DTG curves (**Fig. 5b**), where the first peak appears between 250-300 °C (Runs 1, 6, and 8,
476 with the lowest heating rate at $10\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$) which corresponds to the thermodegradation of
477 lignocellulosic chemical compounds with light molecular weight (hemicelluloses) and some
478 lignin. The second peak appears at about 300-400 °C (Runs 3, 5, and 7 with the highest heating
479 rate at $20\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$) which corresponds to the thermodegradation of mostly cellulose and some
480 lignin. The third peak appears at about 400-550 °C for all the Runs which corresponds to the
481 thermodegradation of slightly cellulose and the rest of the lignin. The DTG curve reveals that
482 the higher heating influences the significant mass loss rate [15, 65].



483

484 **Fig. 5.** Combustion zone of (a) TGA and (b) DTG curvatures of wood waste *via* TGA approach.

485

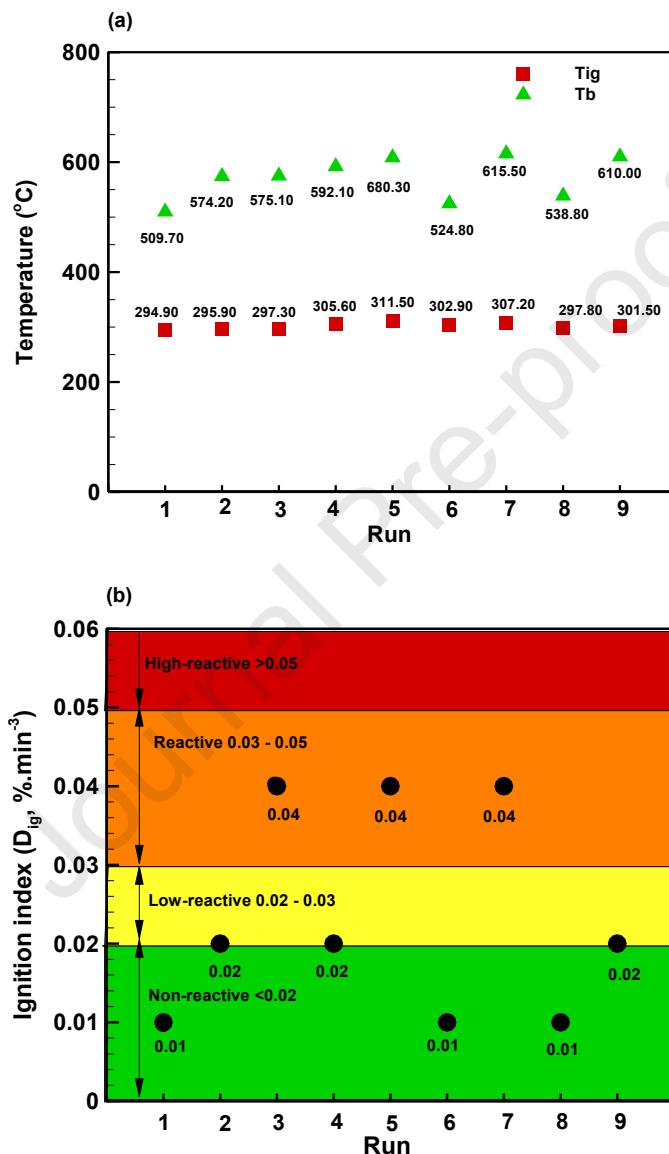
486 Additionally, Zone 3 (600-800 °C) reveals no degradation (TGA) or peak (DTG)
 487 detected. This circumstance suggests that the FC has entirely burned and that ash is the only
 488 solid matter left (ash remains). The TGA curves show that Runs 3, 5, and 7, with the highest
 489 heating rate, have higher ash contents among the runs. It may be due to the combustion process
 490 having less time to burn the entire biomass. Therefore, the solid remains are detected higher
 491 than those with lower heating rates. Moreover, the Runs with the lower heating rate (Runs 1,
 492 6, and 8) illustrate that the peaks obtained are one extra in an early stage of the combustion
 493 process among other Runs. These conditions imply that the combustible component in the early
 494 stage can be evaluated using a lower heating. The ash formation of Runs 1, 6, and 8 also shows
 495 an insignificant amount – implying that the complete combustion is more pronounced.
 496 Unfortunately, the drawback of using the lower heating may lead to a more time-consuming
 497 process, equal to the energy consumption for the electricity supply to the TGA equipment and
 498 experimental cost.

499 *3.4. Combustibility of wood waste in terms of combustion indices*

500 The combustibility of biomass fuel refers to its ability to undergo combustion, releasing
 501 heat energy in the process. The chemical composition of biomass, particularly the presence of
 502 volatile organic compounds, influences its combustibility. As seen in **Fig. 6**, the ignition index
 503 (D_{ig}) value increases as the heating rate for the combustion process increases [66]. The ignition
 504 index (D_{ig}) measures a material's susceptibility to ignition under specific conditions. When the
 505 heating rate is increased, it means that the material is being heated at a faster rate. This can lead
 506 to several changes in the ignition process, including reducing heat transfer duration, reducing
 507 volatile matter release, and accelerating the chemical reaction. This is the primary reason why
 508 the ignition index increases accordingly.

509 A high ignition index at the same heating rate supply suggests that the material is more
 510 likely to ignite at lower temperatures. This phenomenon implies that the material requires less

511 energy or heat than materials with lower ignition indexes to initiate the ignition process.
 512 Additionally, the criterion of self-ignition is classified into four classes, including non-reactive
 513 (D_{ig} 0.00-0.02), low-reactive (D_{ig} 0.021-0.03), reactive (D_{ig} 0.031-0.05), and high-reactive
 514 (>0.051).



515

516 **Fig. 6.** Ignition and burnout temperature (a) and Ignition index (D_{ig}) (b) of wood waste.

517 Among the Runs in the Taguchi method, Run 1 (HW 250), 6 (SW 1000), and 8 (WB
 518 500) utilize the lowest heating rate (HR) of $10\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$ have D_{ig} values of 0.01 which belongs
 519 to the non-reactive region; Run 2 (HW 500), 4 (SW 250), and 9 (WB 1000) utilize the medium

520 heating rate (HR) of $15\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$ precisely have D_{ig} of 0.02 which indicates in the low reactive
 521 region, and run 3 (HW 1000), 5 (SW 500), and 7 (WB 250) utilize the highest heating rate (HR)
 522 of $20\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$ have D_{ig} values of 0.04 which suggests belonging to the reactive region. This
 523 implies that the higher heating rate of the combustion process may provide a higher ignition
 524 index of the material, which proves the ignition index theory [39]. According to the study, the
 525 higher heating rate ($>20\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$) is not recommended since it may initiate the reactivity index
 526 value to reach out of the high-reactivity region. Additionally, due to the high volatile content
 527 of biomass, it is particularly vulnerable to devolatilization and subsequent volatile combustion
 528 in the surrounding gas, which makes these sub-mechanisms much more predominant in the
 529 behavior of biomass ignition and combustion. Thus, the highly reactive biofuel (>0.051) is not
 530 suggested due to safety concerns (fire, explosion), handling challenges (transporting, storing,
 531 packaging), and environmental impacts (air pollution).

532 The reactivity fuel index analysis illustrates that the higher the heating rate, the higher
 533 the reactivity fuel index (R_{fuel}) (detailed in supplementary material **Fig. S3**). The R_{fuel} index
 534 values of the wood waste are about $3.82\text{--}6.97\text{ }%\cdot\text{min}^{-1}\cdot{}^{\circ}\text{C}^{-1}$. This result implies that the lowest
 535 heating rate ($10\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$) may utilize about 3.82 wt% per minute of biofuel. In contrast, the
 536 highest heating rate ($20\text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$) may utilize about 6.97 wt% per minute of biofuel. The
 537 comprehensive combustion index (S_n) or combustibility index values of wood waste are about
 538 $3.20\text{--}9.37 \times 10^{-7}\text{ }%^2\cdot\text{min}^{-2}\cdot{}^{\circ}\text{C}^{-3}$. The results in the present study for S_n index are higher than the
 539 results from a previous study of biomass/bituminous coal ($<5 \times 10^{-7}\text{ }%^2\cdot\text{min}^{-2}\cdot{}^{\circ}\text{C}^{-3}$) by Liu et
 540 al. [55]. The higher S_n value of wood waste for biofuel production demonstrates that biomass
 541 has better combustion performance than solid fossil fuels such as coal.

542
 543

544 3.5. Statistical evaluation (bioenergy and bioexergy)

545 The criterion (larger-is-the-better characteristic of the *S/N* ratio) explains that the larger
 546 the value for the corresponding outcome in the matrix of Taguchi, the more favorable the
 547 research results are. Additionally, the criterion in ANOVA analysis is fixed with the significant
 548 value (α) ≥ 0.05 , by means the parameter is considered to be significant when the P -value $\leq \alpha$
 549 ($P \leq 0.05$; 5% risk). In the analysis of the *S/N* ratio for HHV, the results show that the wood
 550 waste type has the highest influence (delta) (see supplementary material **Table S2**) by 0.18,
 551 followed by particle size 0.13, then the heating rate 0.02 (insignificant). Align with the *S/N*
 552 ratio, the ANOVA analysis also shows that wood waste type has a higher influence (F : 29.93),
 553 with a significant value (P) of about 0.032, followed by particle size (P : 0.061) and heating
 554 rate (0.727). Likewise, in the *S/N* ratio for SCB (see supplementary material **Table S2**), the
 555 result describes that wood waste type (delta: 0.19) has a higher value of influence, followed by
 556 particle size (delta: 0.12) and heating rate (delta: 0.01). Moreover, the ANOVA analysis for
 557 SCB shows that wood waste type and particle size significantly influence about 53.53 and
 558 20.67, with p -values of 0.018 and 0.046, respectively. Meanwhile, the heating rate is
 559 recognized as an insignificant parameter. For the optimum result, the highest HHV and SCB
 560 are obtained by experimenting with waste type level 2 (softwood), particle size level 1 (250
 561 μm), and heating rate (insignificant) level 2 ($15 \text{ }^{\circ}\text{C}\cdot\text{min}^{-1}$). The optimum results are combined
 562 in Run 4 of the Taguchi orthogonal array.

563 3.6. ANN analysis for bioenergy and bioexergy prediction

564 The AI-ANN analysis is carried out with the configuration of one hidden layer (HL)
 565 but in three different configurations, including 1, 5, and 10 neurons (N) (detailed in
 566 supplementary material **Table S3**). The number of neurons is considered by the number of input
 567 parameters [61, 67]. Although the ANN analysis has no fixed rules to train the model, the
 568 convenient way to decide the neuron in the hidden layer is by determining the number of

569 neurons based on the amount of the input layer. The five input parameters, including wood
 570 waste type, particle size, heating rate, elemental analysis (C, H, O), and proximate analysis (M,
 571 VM, FC, and A), are simulated to predict the output result. Therefore, the neurons to
 572 accommodate the input data are considered about 1 ($5 \times 0 = 1$), 5 ($5 \times 1 = 5$), and ($5 \times 2 = 10$).

573 The training specification of the models shows that the three configurations for HHV
 574 prediction have excellent results with a fit-quality value (R^2) of precisely 1.0000. The standard
 575 deviation values for the three configurations for HHV model prediction are 0.000080,
 576 0.000013, and 0.000022 for 1HL-1N, 1HL-5N, and 1HL-10N, respectively. The model with
 577 1HL-1N configuration shows that the heating rate is the most significant parameter that
 578 influences the HHV prediction. However, the other two prediction models (1HL-5N and 1HL-
 579 10N) show that waste type is the most prominent input parameter. Meanwhile, the standard
 580 deviation for the SCB model prediction ($R^2=1.0000$) with the configuration of 1HL-1N, 1HL-
 581 5N, and 1HL-10N are 0.014582, 0.000014, and 0.000015, respectively. The three
 582 configurations agree that the waste type is the most influential parameter for SCB prediction.

583 Among the configurations, the best result of the ANN model for HHV and SCB model
 584 predictions with the lowest standard deviation is obtained using a 1 HL with 5 N for HHV with
 585 the fit quality precisely (R^2) 1. In this regard, the wood waste type is the most influence factor
 586 in bioenergy analysis (HHV), followed by FC, O, C, H, particle size, A, heating rate, VM, and
 587 M. Likewise, the configuration of 1HL with 5N illustrates the best result prediction for the
 588 bioexergy analysis (SCB). The most influential parameters are wood waste type, followed by
 589 H, FC, C, O, A, particle size, heating rate, M, and VM. The validation of the model shows that
 590 all the models are not underfitting or overfitting. The values between the experiment data and
 591 the ANN model (**Table 3**) reveal that the configuration using the formula of 1HL and 5N is
 592 suitable for executing the wood waste combustion in this study. In this manner, the models are
 593 considered to be well-trained. Compared to the previous studies in the bioenergy production

594 field (detailed in supplementary material **Table S4**), the present study shows the best results.
595 Some previous studies showed that fewer hidden layers and neurons would provide the best-
596 fit quality of the model [26, 68]. However, in the present study, the number of input parameters
597 is about five in general, but in the overall calculation, the input parameters are 10 in total. For
598 1HL with 1N, excellent results are obtained with $R^2=1$. Nevertheless, the stopping criterion
599 describes the maximum epoch that is reached. This result implies that the model reaches the
600 saturation process. Additionally, the higher epoch in the training model in machine learning
601 may lead the model to the underfit or overfit level [29]. Moreover, the 1HL with 10 N displays
602 good results, but the standard deviations for HHV and SCB prediction models are higher than
603 1HL with 5N. These results indicate that providing more neurons in the hidden layer does not
604 necessarily improve the model prediction. Likewise, the fewer neurons in a hidden layer may
605 lead to the model having a higher standard deviation level due to insufficient neurons to execute
606 the task. This phenomenon implies that 1 neuron is insufficient in this study, but 10 neurons
607 are abundant to accommodate the model prediction. The optimum for five neurons to execute
608 the task is considered ideal in the ANN model prediction of this study.

609

610

611 **Table 3**

612 ANN training numerical analysis using 1HL-5N configuration compared to the experiment data.

Wood waste	Particle size	Heating rate	C	H	O	HHV	SCB	M	VM	FC	A	*ANN (HHV)	*ANN (SCB)
Hardwood	250	10	46.130	6.030	44.100	18.649	19.445	4.950	84.219	10.831	0.000	18.649	19.445
Hardwood	500	15	45.880	5.850	41.440	18.625	19.390	4.950	84.219	10.831	0.000	18.625	19.390
Hardwood	1000	20	45.880	5.900	44.880	18.328	19.147	4.000	82.292	13.708	0.000	18.328	19.147
Softwood	250	15	47.020	6.180	45.080	19.035	19.846	5.000	85.263	9.737	0.000	19.035	19.846
Softwood	500	20	47.380	5.950	44.270	18.974	19.799	8.000	83.696	8.284	0.020	18.974	19.799
Softwood	1000	10	47.190	5.820	44.100	18.772	19.605	4.950	83.167	11.883	0.000	18.772	19.605
Wood blends	250	20	46.500	6.110	45.080	18.771	19.581	5.000	84.211	10.789	0.000	18.771	19.581
Wood blends	500	10	46.650	5.980	45.810	18.595	19.433	2.970	84.541	12.479	0.010	18.595	19.433
Wood blends	1000	15	46.630	5.770	44.300	18.497	19.330	4.950	82.292	12.748	0.010	18.497	19.330

613 Particle size (μm)614 Heating rate ($^{\circ}\text{C}\cdot\text{min}^{-1}$)615 HHV and SCB ($\text{MJ}\cdot\text{kg}^{-1}$)

616 Standard deviation (SD): HHV (0.000013) and SCB (0.000014)

617 *: ANN model prediction

618 **4. Conclusions**

619 This study has explored wood wastes (HW, SW, and WB) for the behavior of
620 combustion thermodegradation via the TGA method integrated with the Taguchi orthogonal,
621 statistical analysis, combustibility indexes, and AI model prediction. The physicochemical
622 analyses show that all wood waste feedstock is high in VM (>80 wt%), rich in C and O, but
623 low in ash, N, and S contents. The evaluation shows that the SCB is typically higher (about >
624 19 MJ·kg⁻¹) than HHV (about 18 MJ·kg⁻¹), with SW reported to possess the highest HHV
625 (18.84 MJ·kg⁻¹) and SCB (19.65 MJ·kg⁻¹) values. The TGA/DTG curves obtained, using
626 typical heating rates of 10, 15, and 20 °C·min⁻¹, suggest there are 3 zones distinguished, and
627 hemicelluloses (< 275 °C), while cellulose and lignin degradation have more way to undergo
628 in about 275–600 °C. The combustibility indexes indicate that wood waste has 4 classes of
629 ignition index (non-reactive to high-reactive), reactivity fuel index at higher heating rate
630 utilizing more feedstock (3.82–6.97 %·min⁻¹·°C⁻¹), comprehensive combustion characteristic
631 index of wood waste has better combustion performance than solid fossil fuel of bituminous
632 coal. Unlike the heating rate, the wood waste type and particle size significantly influence the
633 HHV and SCB. The optimum Run is achieved with SW250 at 20 °C·min⁻¹ heating rate. The
634 ANN model with 1HL–5N configuration successfully predicts the values of HHV and SCB
635 with excellent fit-quality values ($R^2=1$). This study has limitations on the molecular interaction
636 of lignocellulosic components during the combustion conversion process. However, because
637 the exploration is not feasible to Run by TGA only, this study's findings offer new potential
638 information for further investigation. Research on kinetics, by-products in molecular
639 approaches, and catalytic co-combustion are potential topics for future work.

640 **Acknowledgments**

641 The authors gratefully acknowledge the financial support under the program ANR-11-
 642 LABEX-0002-01 (Lab of Excellence ARBRE) in France, and the FACE Foundation, iCemiture
 643 (NSF-IRES 1952402), and Georgia Southern University. The authors also acknowledge the
 644 financial support of the National Science and Technology Council, Taiwan, R.O.C., under the
 645 contracts NSTC 113-2218-E-006-012- and NSTC 113-2218-E-002-029- for this research. This
 646 research is also supported in part by Higher Education Sprout Project, Ministry of Education
 647 to the Headquarters of University Advancement at National Cheng Kung University (NCKU).

648 **References**

649 [1] IEA, CO2 Emission in 2022, Growth in emissions lower than feared, International Energy Agency
 650 (IAE) 2022.

651 [2] Y.-Y. Lee, S.-L. Lin, R. Aniza, C.-S. Yuan, Reduction of Atmospheric PM2.5 Level by Restricting the
 652 Idling Operation of Buses in a Busy Station, *Aerosol and Air Quality Research* 17(10) (2017) 2424-
 653 2437.

654 [3] S.-L. Lin, R. Aniza, Y.-Y. Lee, C.-L. Wang, Reduction of traditional pollutants and polychlorinated
 655 dibenzo-p-dioxins and dibenzofurans emitted from a diesel engine generator equipped with a
 656 catalytic ceramic fiber filter system, *Clean Technologies and Environmental Policy* 20(6) (2018)
 657 1297-1309.

658 [4] X. Nie, T. Zhao, Y. Su, Fossil fuel carbon contamination impacts soil organic carbon estimation in
 659 cropland, *CATENA* 196 (2021) 104889.

660 [5] Y. Su, Y. Liang, L. Chai, Z. Han, S. Ma, J. Lyu, Z. Li, L. Yang, Water Degradation by China's Fossil Fuels
 661 Production: A Life Cycle Assessment Based on an Input–Output Model, *Sustainability*, 2019.

662 [6] A. Boretti, Continued fossil fuel emissions and cognition impairment, *International Journal of Global
 663 Warming* 24(1) (2021) 86-90.

664 [7] P. Dai, J. Nie, Robust Expansion of Extreme Midlatitude Storms Under Global Warming, *Geophysical
 665 Research Letters* 49(10) (2022) e2022GL099007.

666 [8] H. Cho, Climate Change Risk Assessment for Kurunegala, Sri Lanka: Water and Heat Waves, *Climate*,
 667 2020.

668 [9] E. Dubois, M. Larocque, S. Gagné, M. Braun, Climate Change Impacts on Groundwater Recharge in
 669 Cold and Humid Climates: Controlling Processes and Thresholds, *Climate*, 2022.

670 [10] X. Ma, T. Zhang, C. Ji, Y. Zhai, X. Shen, J. Hong, Threats to human health and ecosystem: Looking
 671 for air-pollution related damage since 1990, *Renewable and Sustainable Energy Reviews* 145
 672 (2021) 111146.

673 [11] P.J. Landrigan, S. Fisher, M.E. Kenny, B. Gedeon, L. Bryan, J. Mu, D. Bellinger, A replicable strategy
 674 for mapping air pollution's community-level health impacts and catalyzing prevention,
 675 *Environmental Health* 21(1) (2022) 70.

676 [12] C. Rublee, J. Bikomeye, S. Rao, M. Husain, K. Beyer, Climate mitigation and adaptation is cancer
 677 prevention and control, *The Journal of Climate Change and Health* 10 (2023) 100209.

678 [13] K. Vohra, A. Vodonos, J. Schwartz, E.A. Marais, M.P. Sulprizio, L.J. Mickley, Global mortality from
 679 outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem,
 680 Environmental Research 195 (2021) 110754.

681 [14] Y.-Y. Lin, W.-H. Chen, B. Colin, A. Petriessans, R. Quirino, M. Pétrissans, Thermodegradation
 682 characterization of hardwoods and softwoods in torrefaction and transition zone between
 683 torrefaction and pyrolysis, Fuel 310 (2022) 122281.

684 [15] A. Petriessans, Y.-Y. Lin, T. Nguyen, B. Colin, R. Quirino, P. Rios-Teixeira, W.-H. Chen, M. Pétrissans,
 685 Influence of the heating rate on the thermodegradation during the mild pyrolysis of the wood,
 686 Wood Material Science & Engineering 18 (2022) 1-10.

687 [16] J. Hamada, A. Pétrissans, F. Mothe, P. Gérardin, M. Pétrissans, European oak's growth rings
 688 properties: density distribution and thermal behavior analysis of early- and latewood, Innovation
 689 in woodworking industry and engineering design 2 (2015) 11-17.

690 [17] W. Schutyser, T. Renders, G. Van den Bossche, S. Van den Bosch, S.-F. Koelewijn, T. Ennaert, B.F.
 691 Sels, Catalysis in Lignocellulosic Biorefineries: The Case of Lignin Conversion, Nanotechnology in
 692 Catalysis2017, pp. 537-584.

693 [18] A. Petriessans, R. Younsi, M. Chaouch, P. Gerardin, M. Petriessans, Wood thermodegradation:
 694 experimental analysis and modeling of mass loss kinetics, MADERAS: Ciencia y Tecnología 16(2)
 695 (2014) 133-148.

696 [19] M.J. Suota, T.A. da Silva, S.F. Zawadzki, G.L. Sasaki, F.A. Hansel, M. Paleologou, L.P. Ramos,
 697 Chemical and structural characterization of hardwood and softwood LignoForce™ lignins,
 698 Industrial Crops and Products 173 (2021) 114138.

699 [20] H. Dai, H. Dai, Green hydrogen production based on the co-combustion of wood biomass and
 700 porous media, Applied Energy 324 (2022) 119779.

701 [21] WHO, WHO air quality guidelines Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide,
 702 sulfur dioxide, and carbon monoxide, World Health Organization Geneva, 2021.

703 [22] Y. Rahib, V. Leroy-Cancellieri, D. Cancellieri, J. Fayad, J.-L. Rossi, E. Leoni, Study on the combustion
 704 indices of forest species using thermogravimetric analysis, Journal of Thermal Analysis and
 705 Calorimetry 148(22) (2023) 12919-12935.

706 [23] A.J. Martyr, D.R. Rogers, Chapter 16 - The combustion process and combustion analysis, in: A.J.
 707 Martyr, D.R. Rogers (Eds.), Engine Testing (Fifth Edition), Butterworth-Heinemann, Oxford, 2021,
 708 pp. 537-597.

709 [24] J. Liu, F. Zhong, W. Niu, J. Su, Z. Gao, K. Zhang, Effects of heating rate and gas atmosphere on the
 710 pyrolysis and combustion characteristics of different crop residues and the kinetics analysis,
 711 Energy 175 (2019) 320-332.

712 [25] R. Aniza, W.-H. Chen, Y.-Y. Lin, K.-Q. Tran, J.-S. Chang, S.S. Lam, Y.-K. Park, E.E. Kwon, M. Tabatabaei,
 713 Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model
 714 carbohydrates in microalgae, Applied Energy 300 (2021) 117372.

715 [26] W.-H. Chen, R. Aniza, Specific chemical bioexergy and microwave-assisted torrefaction
 716 optimization via statistical and artificial intelligence approaches, Fuel 333 (2023) 126524.

717 [27] G. Song, L. Shen, J. Xiao, Estimating Specific Chemical Exergy of Biomass from Basic Analysis Data,
 718 Industrial & Engineering Chemistry Research 50(16) (2011) 9758-9766.

719 [28] G. Song, L. Shen, J. Xiao, L. Chen, Estimation of Specific Enthalpy and Exergy of Biomass and Coal
 720 Ash, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35(9) (2013) 809-
 721 816.

722 [29] R. Aniza, W.-H. Chen, F.-C. Yang, A. Pugazhendh, Y. Singh, Integrating Taguchi method and artificial
 723 neural network for predicting and maximizing biofuel production via torrefaction and pyrolysis,
 724 Bioresource Technology 343 (2022) 126140.

725 [30] M. Ghaslani, R. Rezaee, O. Aboubakri, E. Sarlaki, T. Hoffmann, A. Maleki, N. Marzban, Lime-assisted
 726 hydrothermal humification and carbonization of sugar beet pulp: Unveiling the yield, quality, and
 727 phytotoxicity of products, Biofuel Research Journal 11(1) (2024) 2025-2039.

728 [31] L. HSFuels, RUF EKO briquettes (Harwood softwood mix 50/50) 2018.
 729 <https://www.hsfuels.co.uk/p39-ruf-eko-briquettes-harwood-softwood-mix-5050>. 2024).

730 [32] T.H. Rizk, Chapter 31 - Analysis of variance, in: A.E.M. Eltorai, T. Liu, R. Chand, S.P. Kalva (Eds.),
 731 *Translational Interventional Radiology*, Academic Press2023, pp. 149-152.

732 [33] ISO, Solid biofuels - determination of moisture content ISO 18134 - 1: 2022, ISO org, Switzerland
 733 2022.

734 [34] ISO, Solid biofuels - determination of volatile matter, ISO 18123: 2023, ISO org, Switzerland, 2023.

735 [35] ISO, Solid biofuels - determination of ash content ISO 18122: 2022, ISO org, Switzerland, 2022.

736 [36] R. Aniza, W.-H. Chen, E.E. Kwon, Q.-V. Bach, A.T. Hoang, Lignocellulosic biofuel properties and
 737 reactivity analyzed by thermogravimetric analysis (TGA) toward zero carbon scheme: A critical
 738 review, *Energy Conversion and Management: X* 22 (2024) 100538.

739 [37] S.A. Channiwala, P.P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous
 740 fuels, *Fuel* 81(8) (2002) 1051-1063.

741 [38] D. López-González, M.M. Parascanu, M. Fernandez-Lopez, M. Puig-Gamero, G. Soreanu, A. Avalos-
 742 Ramírez, J.L. Valverde, L. Sanchez-Silva, Effect of different concentrations of O₂ under inert and
 743 CO₂ atmospheres on the swine manure combustion process, *Fuel* 195 (2017) 23-32.

744 [39] W. Gao, M. Zhang, H. Wu, Ignition temperatures of various bio-oil based fuel blends and slurry
 745 fuels, *Fuel* 207 (2017) 240-243.

746 [40] S.Y. Luo, B. Xiao, Z.Q. Hu, S.M. Liu, Y.W. Guan, Experimental study on oxygen-enriched combustion
 747 of biomass micro fuel, *Energy* 34(11) (2009) 1880-1884.

748 [41] C. Wang, F. Wang, Q. Yang, R. Liang, Thermogravimetric studies of the behavior of wheat straw
 749 with added coal during combustion, *Biomass and Bioenergy* 33(1) (2009) 50-56.

750 [42] A. Tesfaw, D. Kosebent, E.T. Oner, F. Assefa, Bioethanol production from grass pea and wild oat
 751 hydrolysates using *S. cerevisiae* ETP53, *K. marxianus* ETP87, and *P. fermentans* ETP22, *Discover
 752 Energy* 1(1) (2021) 4.

753 [43] A.T. Conag, J.E.R. Villahermosa, L.K. Cabatingan, A.W. Go, Energy densification of sugarcane leaves
 754 through torrefaction under minimized oxidative atmosphere, *Energy for Sustainable
 755 Development* 42 (2018) 160-169.

756 [44] R. Aniza, W.-H. Chen, A. Pétrissans, A.T. Hoang, V. Ashokkumar, M. Pétrissans, A review of biowaste
 757 remediation and valorization for environmental sustainability: Artificial intelligence approach,
 758 *Environmental Pollution* 324 (2023) 121363.

759 [45] W. Kew, J.W. Blackburn, D.J. Clarke, D. Uhrin, Interactive van Krevelen diagrams - Advanced
 760 visualisation of mass spectrometry data of complex mixtures, *Rapid Commun Mass Spectrom*
 761 31(7) (2017) 658-662.

762 [46] M. Mecozzi, M. Pietroletti, M. Scarpiniti, R. Acquistucci, M.E. Conti, Monitoring of marine mucilage
 763 formation in Italian seas investigated by infrared spectroscopy and independent component
 764 analysis, *Environmental Monitoring and Assessment* 184(10) (2012) 6025-6036.

765 [47] V. Emmanuel, B. Odile, R. Céline, FTIR spectroscopy of woods: A new approach to study the
 766 weathering of the carving face of a sculpture, *Spectrochimica Acta Part A: Molecular and
 767 Biomolecular Spectroscopy* 136 (2015) 1255-1259.

768 [48] X. Li, Y. Wei, J. Xu, N. Xu, Y. He, Quantitative visualization of lignocellulose components in
 769 transverse sections of moso bamboo based on FTIR macro- and micro-spectroscopy coupled with
 770 chemometrics, *Biotechnology for Biofuels* 11(1) (2018) 263.

771 [49] Y. Horikawa, S. Hirano, A. Mihashi, Y. Kobayashi, S. Zhai, J. Sugiyama, Prediction of Lignin Contents
 772 from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of *Cryptomeria
 773 japonica*, *Applied Biochemistry and Biotechnology* 188 (2019).

774 [50] J. Campos, J. Bao, G. Lidén, Optically pure lactic acid production from softwood-derived mannose
 775 by *Pediococcus acidilactici*, *Journal of Biotechnology* 335 (2021) 1-8.

776 [51] s.m. Moosavi, M. Madhoushi, M. Vakili, D. Rasouli, Evaluation of degradation in chemical
 777 compounds of wood in historical buildings using FT-IR and FT-Raman vibrational spectroscopy,
 778 *Maderas. Ciencia y tecnología* 21 (2019).

779 [52] A. Sharma, S. Garg, V. Sharma, ATR-FTIR spectroscopy and Machine learning for sustainable wood
 780 sourcing and species Identification: Applications to wood forensics, *Microchemical Journal* 200
 781 (2024) 110467.

782 [53] M. Seri, A. Marrocchi, The carbon–carbon triple bond as a tool to design organic semiconductors
 783 for photovoltaic applications: an assessment of prospects and challenges, *Journal of Materials
 784 Chemistry C* 9(45) (2021) 16164-16186.

785 [54] Q. Meng, J. Gao, R. Li, L. Jiang, C. Wang, H. Zhao, C. Liu, H. Li, W. Hu, New type of organic
 786 semiconductors for field-effect transistors with carbon-carbon triple bonds, *Journal of Materials
 787 Chemistry* 19(10) (2009) 1477-1482.

788 [55] X. Liu, M. Chen, Y. Wei, Assessment on oxygen enriched air co-combustion performance of
 789 biomass/bituminous coal, *Renewable Energy* 92 (2016) 428-436.

790 [56] Y. Huang, M. Finell, S. Larsson, X. Wang, J. Zhang, R. Wei, L. Liu, Biofuel pellets made at low
 791 moisture content – Influence of water in the binding mechanism of densified biomass, *Biomass
 792 and Bioenergy* 98 (2017) 8-14.

793 [57] A. Grinberg Dana, O. Elishav, A. Bardow, G.E. Shter, G.S. Grader, Nitrogen-Based Fuels: A Power-
 794 to-Fuel-to-Power Analysis, *Angewandte Chemie International Edition* 55(31) (2016) 8798-8805.

795 [58] O. Elishav, B. Mosevitzky Lis, E.M. Miller, D.J. Arent, A. Valera-Medina, A. Grinberg Dana, G.E. Shter,
 796 G.S. Grader, Progress and Prospective of Nitrogen-Based Alternative Fuels, *Chemical Reviews*
 797 120(12) (2020) 5352-5436.

798 [59] H. Yuan, T. Liu, Y. Liu, J. Nai, Y. Wang, W. Zhang, X. Tao, A review of biomass materials for advanced
 799 lithium–sulfur batteries, *Chemical Science* 10(32) (2019) 7484-7495.

800 [60] P. Wang, C. Shen, B. Wang, P. Xu, L. Shen, Ammonia production from nitrogen-rich biomass
 801 gasification: Nitrogen transformation from model amino acids, *Fuel* 326 (2022) 125071.

802 [61] W.-H. Chen, R. Aniza, A.A. Arpia, H.-J. Lo, A.T. Hoang, V. Goodarzi, J. Gao, A comparative analysis of
 803 biomass torrefaction severity index prediction from machine learning, *Applied Energy* 324 (2022)
 804 119689.

805 [62] Y. Zhang, Q. Wang, B. Li, H. Li, W. Zhao, Is there a general relationship between the exergy and
 806 HHV for rice residues?, *Renewable Energy* 117 (2018) 37-45.

807 [63] A.C. César, J.A. Carvalho, Jr., L.F. Nascimento, Association between NO_x exposure and deaths
 808 caused by respiratory diseases in a medium-sized Brazilian city, *Braz J Med Biol Res* 48(12) (2015)
 809 1130-5.

810 [64] C. Maftei, R. Muntean, I. Poinareanu, The Impact of Air Pollution on Pulmonary Diseases: A Case
 811 Study from Brasov County, Romania, *Atmosphere* 13(6) (2022) 902.

812 [65] L.G. Fraga, J. Silva, S. Teixeira, D. Soares, M. Ferreira, J. Teixeira, Influence of Operating Conditions
 813 on the Thermal Behavior and Kinetics of Pine Wood Particles Using Thermogravimetric Analysis,
 814 *Energies*, 2020.

815 [66] J. Mularski, J. Li, A review on biomass ignition: Fundamental characteristics, measurements, and
 816 predictions, *Fuel* 340 (2023) 127526.

817 [67] K.-T. Lee, J.-T. Du, W.-H. Chen, A.T. Ubando, K.T. Lee, Green additive to upgrade biochar from spent
 818 coffee grounds by torrefaction for pollution mitigation, *Environmental Pollution* 285 (2021)
 819 117244.

820 [68] P. Sakiewicz, K. Piotrowski, S. Kalisz, Neural network prediction of parameters of biomass ashes,
 821 reused within the circular economy frame, *Renewable Energy* 162 (2020) 743-753.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

