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Abstract

Novel biomass bioenergy-bioexergy analyses via thermogravimetry analysis and
artificial intelligence are employed to evaluate the three biofuels from wood wastes (softwood-
SW, hardwood-HW, and woods blend-WB). The chemical characterization of SW has the
highest bioenergy (higher heating value — HHV: 18.84 MJ-kg') and bioexergy (specific
chemical bioexergy — SCB: 19.65 MJ-kg!) with the SCB/HHYV ratio of wood waste as about
1.043-1.046. The high C-element has a significant influence on the HHV-SCB. The SCB/HHV
ratio of wood waste is recognized as about 1.043-1.046. The three distinct zones of wood waste
combustion are identified: moisture evaporation (Zone I, up to 110 °C), combustion reaction —
degradation of three major lignocellulosic components (hemicelluloses, cellulose, and lignin)
at Zone II, 110-600 °C, and ash remains (Zone III, 600-800 °C). The ignition (Dig=0.01-0.04)
and fuel reactivity (Rje=3.82-6.97 % min’'-°C!) indexes are evaluated. The comprehensive
combustion index (S»>5%107%?2-min?-°C?) suggests that wood waste has a better combustion
performance than bituminous coal. The statistical evaluation presents that the highest HHV-

SCB values are obtained by performing combustion for SW-250 pm at 15 °C-min’!. The S/N
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ratio and ANOVA results agree that the wood waste type and particle size denote the most
influential parameters. The artificial neural network prediction shows an excellent result (R?=1)
with 1 hidden layer and 5 neuron configurations.

Keywords: Wood valorization; biochar; bioenergy-bioexergy; combustibility indexes; Taguchi

method; artificial neural network.
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Nomenclature

Abbreviations
A Ash
Al Artificial intelligence

ANN
ANOVA
Bioenergy
Bioexergy
Biofuel
DoE

EA

EU

FA

FC

FSC
FTIR

GC

HHV

HL

HW

IEA

PA

PM

Artificial neural network
Analysis of variance
Biomass energy

Biomass exergy

Biomass fuel

Design of experiment
Elemental analysis
European Union

Fiber analysis

Fixed carbon

Forest Stewardship Council
Fourier transform infrared
Gas chromatography
Higher heating value
Hidden layer

Hardwood

International Energy Agency
Moisture

Proximate analysis
Particulate matter

Relative error
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RT

Room temperature

SCB Specific chemical bioenergy

SW Softwood

TG Thermogravimetry (device)

TGA Thermogravimetry analysis

UN-SDGs United Nations' Sustainable Development Goals
VM Volatile matter

WB Woods blend

WHO World Health Organization

Symbols

Dig Ignition index

Lo Taguchi orthogonal array for nine runs

)4 Probability value

Riiel Fuel reactivity index

Sh Comprehensive combustion characteristic index
S/N Signal-to-noise ratio

T Burnout temperature

Tig Ignition temperature

w Weight in ANN analysis

Greek letter

o Confidence level on statistical analysis (a <0.05)
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1. Introduction

The global emission of CO2 was reported to reach over 36.8 Gt in 2022, which increased
by 0.9% or 321 Mt from the observed point of 2021 [1]. According to the data on CO2 global
emissions in 2022 stated by the International Energy Agency (IEA) [1], this number contributes
to the increase of the emissions from coal-based energy sources — increased by 1.6% (from
2021) or 243 Mt, far surpassing the last decade's average growth rate, and achieving a new all-
time high level of COz of almost 15.5 Gt. Unfortunately, the increase in fossil fuel usage such
as coal is scientifically proven to trigger increases in several issues including environmental
(anthropogenic air [2, 3], soil [4], water [5] pollution, global warming [6], extreme weather [7],
flood [8], water resource challenges [9], and disruption of land and water ecosystems) [10] and
human health (respiratory disorder [11], cancer [12], even premature death [13]).

Wood waste or wood by-products has gained some attention worldwide as a second-
generation biomass fuel (biofuel), which may considered a potential sustainable material of
lignocellulosic-based biomass for renewable energy production [14, 15]. Generally speaking,
the lignocellulosic components define the chemical composition of both hardwood and
softwood. The composition of hardwood species is 38-51% cellulose, 17-38% hemicelluloses,
2-31% lignin, and 3% extractives [16, 17]. Softwood species, on the other hand, have a
composition of 33-42% cellulose, 22-40% hemicelluloses, 27-32% lignin, and 2-3.5%
extractives [18, 19]. One of the thermochemical processes, combustion (Fig. 1), is suggested
as a viable method for valorizing wood waste into valuable products such as heat. Wood waste
direct combustion refers to the conversion process of burning woody waste biomass under a
fully oxidative environment such as air or Oz [20]. Combustion involves several key factors:

temperature, heating rate, heating duration, and feedstock composition.
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Fig. 1. A recycled wood waste combustion study via TGA was coupled with statistical analysis,
combustion indexes, and Al-aided.

If the combustion parameters are not well controlled, it can lead to the generation of
particulate matter (PM) or smoke [3] and high CO emissions [2]. Long-term exposure to PM
and CO emissions for more than its average level as World Health Organization (WHO)
standards 15 pgm™/24 h, 45 pgm=/24 h, and 7 pgm>/24 h for PM 2.5, PM 10, and CO [21],
respectively, are reported to be one of the root causes of respiratory disorders (asthma,
respiratory inflammation) and even cell death due to DNA damage. Additionally, in some
studies, the combustion analysis is crucial for safety reasons and energy conversion systems,
such as to prevent fire hazards due to overreactive biofuel on spontaneous ignition [22] and to
optimize the combustion process within the reactor [23, 24]. In this matter, evaluating the
physicochemical properties, thermodegradation behavior, and combustibility performance by
investigating the combustion parameter using integrated TGA and bioenergy-bioexergy

analyses to obtain the best condition for bioenergy production — avoiding PM or shoot
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generation, CO emissions, and considering the safety reasons from wood waste biofuel
feedstock is indeed essential.

The TGA method, which uses a thermogravimetry (TG) device, is one of the techniques
used to observe the degradation of material as a function of temperature or time [25]. By
performing the TGA method, the thermodegradation behavior of biomass feedstock, including
combustion, can be fully identified. Some of the valuable information that can be obtained
from the TGA method is the degradation curve of mass loss TGA, differential
thermogravimetry (DTQG), ignition temperature (7:), and burnout temperature (75).
Additionally, the biofuel quality during the combustion process can be evaluated by calculating
the fuel reactivity (Rser) and comprehensive combustion index (S»).

Among the types of bioexergy analysis, SCB is an effective way to evaluate renewable
energy in the circular bioeconomy concept from a biomass-based source. SCB focuses on
identifying the biofuel's energy according to the chemical composition of the biomass [26].
Previous studies claimed that exergy in biomass can be obtained by calculating the elemental
analysis (C, H, O, N, and S elements) and proximate analysis (ash content) [27, 28]. Performing
the SCB evaluation, which relies on the second law of thermodynamics on wood valorization
— can be used to identify the location, amount, quality, and cause of thermodynamic
inefficiencies (exergy destructions and losses), which is suggested to fully represent the actual
energy within the material compared to higher heating value (HHV) or lower heating value
(LHV).

The concept of recycling woody waste into biofuel is considered an effective method
that shares the goal of achieving the future United Nations — Sustainable Development Goals
(UN-SDGs) affordable and clean energy (SDG7), responsible consumption and production
(SDG12), and climate action (SDG13), industry, infrastructure, and innovation (SDG9), as well

as align to zero waste principle for managing waste generation. Furthermore, Al accelerates the
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transition rate to a sustainable energy future by enhancing renewable energy production and
development's reliability, affordability, and scalability [29, 30].

Numerous studies have been performed on biomass combustion. However, as far as the
authors' knowledge, no study has focused intensely on wood waste combustion in terms of
bioenergy (HHV) and bioexergy (SCB). There is a lack of knowledge on the related topic of
its technology and development. In this matter, a comprehensive study for biofuel production
through combustion has not yet been developed while considering the physicochemical,
thermodegradation behavior, and combustibility performance. Therefore, this study aims to
provide bioenergy and bioexergy analyses of wood waste (Fig. 1) via TGA in an all-inclusive
manner (Taguchi orthogonal array, statistical evaluation, combustibility performance, and Al
analysis). This study offers benefits for bridging the current bioenergy technology and
advancement gap. Furthermore, it gives researchers with related interests and professionals in
the industry a better understanding and helpful information, particularly for the development
of renewable bioenergy production and industrial scale-up using bioenergy woody-based

materials.

2. Materials and methods

2.1. Materials

The wood waste of this study was obtained from the timber industries in North-East
France. The woods (hardwood: beech - Fagus sylvatica and softwood: fir - Abies alba) were
harvested from the local forest for lumber production. The samples were classified into three
types of sample wood waste, including hardwood (HW), softwood (SW), and woods blend
(WB, 50-50 wt% mixture of HW and SW, respectively). The commercial high-pressure woody-
based briquettes solid biofuel in the European Union (EU) region from raw virgin wood was

certified by the Forest Stewardship Council (FSC) to be smokeless, 100% eco-friendly, and
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produced without binders-additives with the mixing ratio of 50-50 wt% HW and SW [31]. In
this regard, this study attempted to adopt the commercial wood mixing method for the mixture
of WB.

2.2. Methods

2.2.1. Sample preparation

The samples were open-air sun-dried for about 24 h. The dried samples were ground
and sieved individually to obtain a uniform particle size into three types of sizes, including 250,
500, and 1000 pm [29]. Furthermore, more biomass was broken down by heat transfer at
smaller particle sizes of less than 0.5 mm (500 um), which accelerated the thermochemical
process and increased biofuel output [26]. In this manner, the three chosen particle sizes from
250-1000 pm considered appropriate ways to investigate the thermodegradation of biomass.
All the samples were stored in sample storage at room temperature (RT) until the analyses were
performed.

2.2.2. Design of experiment (DoE)

The Taguchi orthogonal array is a tool for conducting experiments and efficiently
optimizing product or process design. The main purpose of Taguchi orthogonal arrays is to
create a matrix representing a set of experimental conditions to effectively reduce the number
of experimental runs without losing the importance of the variable. Taguchi's methods enable
efficient experimentation with minimal trials while providing reliable results. The factors
(Table 1a) in this research based on the Taguchi method were considered: wood waste type,
particle size, and heating rate. Additionally, three levels corresponding to these factors design
(1) hardwood (HW), softwood (SW), and woods blend (WB); (2) 250, 500, and 1000 pm; and
(3) 10, 15, and 20 °C-min’!. The design matrix involving the three factors and three levels of

design contained nine runs (Lo) of experiments (Table 1b).
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Table 1
Design of experiment (DoE) of direct combustion of recycled wood wastes (a) three factors

and three levels and (b) Taguchi orthogonal array for nine runs (Ly).

(@
Factors Control Levels
parameters 1 2 3
A Wastes type (%) Hardwood  Softwood Woods blend *#
(100%) (100%) (50%:50%)
B Particle size (um) 250 500 1000
C Heating rate (°C-min™") 10 15 20

a: woods blend contains 50% hardwood (beech) and 50% softwood (fir)

(b)
Run DoE combinations
A B C
1 Hardwood 250 um 10 °C-min’!
2 Hardwood 500 pm 15 °C-min!
3 Hardwood 1000 pm 20 °C-min’!
4 Softwood 250 pm 15 °C-min’!
5 Softwood 500 pm 20 °C-min’!
6 Softwood 1000 um 10 °C-min’!
7 Woods blend 250 um 20 °C-min’!
8 Woods blend 500 pm 10 °C-min’!
9 Woods blend 1000 um 15 °C-min’!

2.2.3. Statistical evaluation

The results acquired from the Taguchi orthogonal array were evaluated using the signal-
to-noise (S/N) ratio and analysis of variance (ANOVA) to identify which parameter and level
had significant influences on the bioenergy (HHV) and bioexergy (SCB) values.

In terms of the S/N ratio, the HHV and SCB were analyzed for the larger-is-the-better

characteristic (Eq. (1)) [29], as follows:

10
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Sn = —1010g(1/y2) (1)

where y represents the objective function of HHV or SCB of biofuel.
For ANOVA, the result was observed to calculate the differences between groups. The
characteristic of ANOVA was described in Eq. (2) [32] as follows:

ANOVA: a < 0.05 2)
where o represents a significant level, with 95% confidence and 5% of maximum risk. The
lack-of-fit test is used when dealing with data containing replicates or observations with
identical x-values. Because discrepancies between the observed response values can only be
caused by random variation, replicates are a representation of "pure error". One compares the
p-value to the significant level to ascertain whether the model fits the data appropriately. A
significance level of 0.05 is typically effective, also known as alpha or a. When a model has
an o of 0.05, there is only a 5% chance of finding that the data does not fit the model. In this
manner, a 5% significant level was considered to be utilized in this study. Additionally, to
quantify the accuracy of the result, the relative error (RE) of data was determined (Eq. (3)) [26,
29],

(A—-B)

RE (%) = |T| x 100 )

where A and B are observed (first trial) and measured (second trial) values, respectively.
2.2.4. Proximate, elemental, and calorific value analyses

Proximate analysis (PA) was performed by applying the ISO 18134-1:2022 [33], ISO
18123:2023 [34], and ISO 18122:2022 [35] for moisture (M), volatile matter (VM), and ash
(A) analysis, respectively. Proximate analysis of solid biofuels was using a muffled furnace —
Carbolite Furnace CSF 1200. Meanwhile, the fixed carbon (FC) was calculated by difference
(Eq. (4)) [36].

FC (%) =100% —M —VM — A 4)

11
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Elemental analysis (C, H, O, N, and S) was performed using an automatic elemental
analyzer (Thermo Flash Smart Elemental Analyzer). To determine the calorific value, the
higher heating values (HHVs) of the sample tests were calculated by employing the HHV in
Eq. (5) [37], as follows:

HHV =0.3491C+ 1.1783 H - 0.1034 0 — 0.0151 N + 0.1005 S — 0.0211 A4 (5)
where C, H, O, N, and S are the chemical compounds in EA and A is the ash content in PA.
2.2.5. Specific chemical bioexergy (SCB)

The bioexergy analysis of this study was evaluated by determining the chemical
compound in elemental analysis and considering the ash in proximate analysis. The calculation
of the SCB [27, 28] utilized the bioexergy equation in Eq. (6), as follows:

SCB =36.3439C + 107.5633 H — 8.6308 0 + 0.4147 N + 19.0798 S (6)

—21.100 A
2.2.6. Combustion experiment via TGA and product analysis via FTIR

The direct combustion of wood waste was carried out using the TG device NETZSCH
STA 449 F3 Jupiter. About 5 mg of the sample was loaded into a ceramic crucible about 90 pL.
size. For instance, the N2 gas was purged into the system for 100 mL-min™' in 5 min. Then, the
sample was heated using three heating rates, including 10, 15, and 20 °C-min™! from RT to 800
°C (Fig. 1). The solid remaining in the crucible was considered the ash content. The
experiments in this study, including proximate analysis, elemental analysis, calorific value, and
direct combustion, were performed in duplicate. The reproducibility of the data was managed
at >95% (maximum risk at 5%). Additionally, the Fourier Transform Infrared (FTIR)
Spectroscopy FTIR spectra were recorded using FTIR Shimadzu between 4000 and 600 cm™
by the potassium bromide pellet method to analyze the best wood waste type for the combustion

process.

12
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2.2.7. Combustion index calculation
(1) Ignition index
The ignition index Dig (% min) was determined as follows [24, 38] (Eq. (7)):

(™/ge) ™

9 (tmax ' tig)

where (dW/ dt) (% min™") is the maximum combustion rate (DTG curve at the highest
max

peak - DTGmax), tmax is the corresponding time when (dW/ dt) use equation the maximum
max

combustion rate occurs, and tig was the ignition time. The ignition index implied the potential
of accumulated fine fuels to ignite in the presence of a heat source (flammability behavior),
demonstrating the fuels' tendency to receive heat and initiate combustion. The low ignition
index indicated that the material ignited at high temperatures. In this regard, a higher heat
supply was required to ignite the material. In contrast, the high ignition index indicated that the
material ignited at low temperatures.
(2) Reactivity index

The combustion reactivity index (Rjies, % -min™'-°C) facilitated the evaluation of the
reactivity level of fuel in this study. It may be expressed as follows [39] (Eq. (8)):

(dw/ dt)max (8)

fuel =
Trmax

where (dW/ dt) is data in the DTG curve known as DTGmax (%-min™"). Additionally, Tmax

max

(°C) corresponded to the peak of the DTG curve. The reactivity index indicates how reactive
the fuel could be when the heat source is present. The lowest to highest reactivity index value
is about 0.00 to >0.05 %-min™!-°C. There are four distinguished regions in the reactivity index

according to the value, including non-reactive (0.00-0.02), low-reactive (0.021-0.03), reactive

13
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(0.031-0.05), and high reactive (>0.051). The highly reactive biofuel is unfavorable because it
could trigger incomplete combustion and explosion.
(3) Comprehensive combustion characteristic index

The comprehensive combustion characteristic index (Sz) is a combustion index to

evaluate the comprehensive behavior of biofuel combustion [40, 41]. It was defined as (Eq.

9)):
dw dw
S =( /dt)max( /dt)mean (9)
" (Tig - Tv)
where (dW/ dt)max and (dW/ dt)mean are the maximum and average weight loss rates,

respectively. A higher S» value indicated a better biofuel combustion performance. Meanwhile,
Tig and T» were the ignition and burnout temperatures, respectively.
2.2.8. Artificial neural network (ANN) analysis

The ANN is one sort of computerized artificial intelligence that mimics how neurons in
the human brain process information. ANN provides predictive benefits, such as indirectly
detecting complex non-linear connections between variables and taking a small dataset to
obtain a high-accuracy result. To validate the ANN model, the trained ANN's predictions of
HHV-SCB values were compared to experiment data. Additionally, the sensitivity analysis was
automatically calculated during the training process, and the result notified whether the model
was overfitting or underfitting. The parameters were designed as input data to determine the
influence of the HHV and SCB as the output data. The ten parameters used for feeding the
input data include the duplicate of the Taguchi parameters (waste type, particle size, and heating
rate-9 runs ): 18 data, EA (C-H-O): 18 data (HW, SW, and WB), and PA (M, VM, FC, Ash): 24
data (HW, SW, and WB). The ANN model software used was Megaputer Polyanalyst 6.5. The
hidden layer was designed for one layer with 1, 5, and 10 neurons (detailed in supplementary
material Table S1). The activation functions used in this study were sigmoid and piecewise

14
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299

linear in the hidden layers and output layer, respectively. The dataset (60 data in total) was
divided into 80:20 for training (80%) and testing (20%) [26, 29]. The training algorithm used
in this study was quick backpropagation (quick prop) [26]. The three configurations of the

ANN model are illustrated in Fig. 2.

Input layer Hidden Layer (1 neuron) Output layer

Waste type
Particle size .
Heating rate .
Moisture (M) .

Volatile matter (VM) .

Bioenergy (HHV)

Fixed carbon (FC) ()

Carbon (C)

Hydrogen (H) Bioexergy (SCB)

Oxygen (O)

Input layer Hidden Layer (5 neurons) Output layer

Waste type
Bioenergy (HHV)

N ) T

. 2
\}\\‘ 7,

Hydrogen (H) ; : 3 Bioexergy (SCB)

Oxygen (O)

Input layer Hidden Layer (10 neurons) Outputlayer

Bioenergy (HHV)

Carbon (C)

Hydrogen (H) g7 - Bioexergy (SCB)

Oxygen (O)

Fig. 2. Configuration of the artificial neural network (ANN) model.
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3. Results and discussion

3.1. Properties of wood waste

The initial characterizations of biomass feedstock, including HW, SW, and WB, are
described in Table 2. For proximate analysis, HW, SW, and WB moisture contents are 5.94,
4.00, and 3.00 wt%, respectively. The low moisture content in biofuel is favorable because it
may increase the energy density, thereby improving combustion efficiency. The VM in all
samples show > 80wt%, including HW (84.05 wt%), SW (83.50 wt%), and WB (83.67 wt%).
A high VM in the sample indicates that the material has a high possibility of solid chemical

compounds, such as lignocellulosic components (hemicelluloses, cellulose, and lignin) to

devolatilize into gaseous chemical compounds.

Table 2

Raw wood waste properties of proximate analysis, elemental analysis, and bioenergy-

bioexergy values.

Biomass Waste types
properties Hardwood (HW) Softwood (SW)  Woods blend (WB)
Proximate (wt%)
M 5.94 4.00 3.00
VM 84.05 83.50 83.67
FC 10.00 12.50 13.32
Ash <0.01 <0.01 0.01
Elemental (wt%)
C 45.99 47.26 46.58
H 5.77 5.86 5.86
O 45.05 44.36 45.32
N <0.05 <0.05 <0.05
S <0.05 <0.05 <0.05
Bioenergy-HHV and bioerxergy-SCB (MJ-kg™)
HHV 18.20 18.84 18.52
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SCB 19.03 19.65 19.32
SCB/HHYV ratio 1.046 1.043 1.043

The gaseous compounds from biomass devolatilization can be condensed into liquid
biofuel such as bio-oil, biodiesel, bioethanol, etc [26, 42]. In contrast, some studies suggested
that the high VM in biomass feedstock tends to have a spontaneous ignition [43] and lower
calorific value due to the high O-element. The samples have a slight amount of FC (FC, HW:
10.00 wt%; SW: 12.50 wt%; and WB: 13.32 wt%) but very low ash content (A, HW: <0.01;
SW: <0.01; WB: 0.01). The lower FC in biofuel implies that the ash formation is minor. The
low ash content in biofuel is favorable because it may prevent clogging in the combustion
chamber or utility [44].

Moreover, the EA identification shows that the samples rich in C (HW: 45.99 wt%, SW:
47.26 wt%, WB: 46.58 wt%) and O (HW: 45.05 wt%, SW: 44.36 wt%, WB: 45.32 wt%)
elements, but slightly contain H (HW: 5.77 wt%, SW: 5.86 wt%, WB: 5.86 wt%) and very low
of N (all samples < 0.05 wt%), and S (all samples < 0.05 wt%) elements. The H/C (0.13 for all
samples) and C/O (HW: 0.98, SW: 0.92, and WB: 0.96) ratios indicate that the samples are far
from the petroleum characteristics as reported in the Van Krevelen diagram (H/C < 1 and O/C
< 0.2) [45]. The raw biomass has the typical atomic values of low H/C and high O/C due to
biomass generally containing hemicelluloses, cellulose, and lignin.

3.2. Characterization of wood wastes
3.2.1. Bioenergy and bioexergy analyses

Bioenergy (HHV) and bioexergy (SCB) analyses of wood wastes are identified by
analyzing four elements in EA (C, H, O, N, and S) and 1 component of PA (ash). However, the
S-element in EA and the ash content in PA in the wood waste of this study reveal that they are
negligible (Table 2). Accordingly, the terms of S and ash content in Eq. (6) for calculating SCB
can be ignored. In Table 2, the HHV-SCB values of SW (HHV: 18.84 MJ-kg'!, SCB: 19.65
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MJ-kg™!) are identified to possess the highest HHV-SCB values among all samples (WB —
HHV: 19.32 MJ-kg!, SCB: 18.52 MJ-kg"! and HW — HHV: 19.03 MJ-kg"' and SCB: 18.20
MJ-kg™). These phenomena occur due to the SW having a higher C-element within SW (C:
47.26 wt%) than WB (C: 46.58 wt%) or HW (C: 45.99 wt%). Although the H-element has the
highest coefficient value in the SCB determination (Eq. (6)), the amount of H-element in the
samples is identified as very low (about <6 wt%). Thus, the H element does not significantly
influence the HHV-SCB values of wood waste samples.

The FTIR spectrum of the highest HHV-SCB sample of SW is illustrated in Fig. 3. The
FTIR analysis shows that about three peaks are noticeable at (1%%) 1,158.50 cm™'; (2°%) 2,948.63
cm’’; and (3™) 3,425.40 cm™!. According to the FTIR spectrum, the 1%, 2" and 3™ peaks occur
in the functional group in wavenumber 1,120-1,160 ¢cm™ (fingerprint skeletal region), 2,850-
2,950 cm! (single bond stretch), and 3,350-3,450 cm™! (single bond stretch) correspond to the
C-O-C polysaccharide, CHz stretching aliphatic group, and OH functional groups, respectively
[46]. The 1% peak at 1,158.50 cm™ corresponds to the C-O-C polysaccharide functional group
associated with the cellulose chemical compound [47] and the mannose group of
hemicelluloses [48, 49]. The mannan-type hemicellulose group (mannose) is a polysaccharide
composed of six-carbon sugar glucose. Mannose in softwood can be found as the most
abundant sugar compared to other polysaccharide groups [50]. The asymmetric CHz stretching
vibration is classified as methylene and methine groups in the 2" peak, correlated to the two
types of hemicelluloses (xylan and mannose), cellulose, and lignin [47, 48]. Furthermore, the
3 peak is acknowledged at 3,425.40 cm™!, which is assigned to the OH molecules, associated
with cellulose and hemicelluloses [51, 52].

Additionally, some absorbance with weak peaks is noticed in between the double and
triple bonds region in FTIR spectra corresponding to the alkenes and alkynes, respectively (Fig.

3). The double bond (alkenes) comprises carbon-carbon double bond (-C=C-), which appear in
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the moderate band. The stretching vibration of the carbon double bond (-C=C-) is associated
with aromatic compounds mostly found in lignin [48, 52]. The alkynes are comprised of
carbon-carbon triple bonds (-C=C-). Few organic compounds exhibit absorption in the triple
bond region, where the -C=C- stretch manifests as a weak band (Fig. 3). Organic molecules
are considered to have rare triple bonds, but metallic compounds frequently have them. This
could be because organic compounds lack valence d-orbitals, making creating triply-bound
molecules using metallic atoms challenging. At present, the carbon-carbon triple bond is being
massively explored to create organic semiconductors in solar energy systems — photovoltaic
applications [53, 54].

Furthermore, the weight of O-element in all samples is identified as a high amount. The
high level of O-element in biofuel feedstock is not recommended since it causes some
problems, such as instability of combustion reaction [55], and decreased energy density [56].
Thus, the feedstock's deoxygenation prior to biofuel utilization is suggested to avoid rust
formation, obtain better combustion performance, and increase the energy density of the
feedstock. The biomass sample in the present study shows insignificant amounts of the N- and
S-elements and low ash contents. Thus, the influences of N- and S-elements and ash content
may be less in HHV-SCB values. In this manner, the terms for S-element and ash content in
Egs. (5) and (6) for HHV-SCB can be ignored. In the HHV calculation (Eq. (5)), C-H-S
elements are considered energy sources that can be extracted during energy conversion. In
contrast, O-N elements have contradictory influences and may not be considered an energy
source. The HHV level rises in proportion to the biomass's C-H-S concentrations. In contrast,
when the O-N composition of biomass rises, the HHV level falls. Nevertheless, the O-element
alone remains the contradictory element for the SCB value, while the N-element has included

(C-H-S-N) in the SCB computation (Eq. (6)) as an energy source that can be retrieved.
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Fig. 3. A record of the FTIR spectrum of SW.

According to certain studies, it has been possible to effectively synthesize fuels based on
sulfur and nitrogen [57, 58] to meet the world's energy needs. In many applications, the S-N
elements are suggested to be energy-storage materials. For instance, S- and N-based fuels may
derived from biomass to produce advanced lithium-sulfur (Li-S) batteries [59] and liquid
ammonia fuel [60], respectively. Although N and S influences are considered small, in this
regard, by considering N-element as an energy source, the SCB computation provides a better
insight than HHV to analyze the energy content within the biomass.

3.2.2. Taguchi method analysis
The Taguchi method aims to achieve a favorable product quality by design. The system
design can reduce the number of experiments, time, energy, and cost by selecting the desirable

factors (variable) and levels (variable intensity). The significant and insignificant parameters
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that influence the outcomes can be adequately evaluated. By doing so, further investigation of
the topic can be accomplished without repeating the same insignificant parameters. This
condition can make the concept of further research more novel and explorative.

Similar to the biomass feedstock with the bulk size, the feedstock with three different
sizes (250, 500, and 1000 um) has the typical characteristic (detailed in supplementary material
Fig. S1) that is rich in C (47.32-48.82 wt%) and O (45.18-36.87 wt%), but very low in H (5.55-
6.27 wt%) elements. The proximate analysis also suggests that the samples contain very high
VM (> 80 wt%), few FC (< 14 wt%)), slightly M (< 9 wt%), and negligible A (< 0.01 wt%). In
this regard, the combustibility performance of wood waste is dominated by the volatile
compounds (VM) within biomass compared to the non-volatile compounds such as FC. To
improve the energy density of the solid biofuel, some of the previous studies demonstrated
several types of thermochemical conversion, such as torrefaction in low-temperature operation
(<350 °C) [15, 61] and pyrolysis (medium to high-temperature operation, 350-800 °C) [26,
29].

The HHV determination, according to the Taguchi orthogonal array, is 18.33-19.04
MJ-kg'!. Meanwhile, SCB is 19.15-19.85 MJ-kg!. These results (SCB: 19.15-19.85 MJ-kg ')
are aligned with the exergy of previous studies for alder-fir sawdust (SCB: 20.89 MJ-kg™),
beech bark (SCB: 19.63 MJ-kg ™), and wood residue (SCB: 20.15 MJ-kg™!) [27]. Compared to
the biowaste from a previous study using a raw sample of mushroom log waste (12.48 MJ-kg"
1) [26], this study shows better results of SCB of raw biomass wood waste, about a 35-39 %
increase. The correlation between HHV and SCB is noticed due to the similarity of the analysis,
depending on the elemental and proximate analyses. The HHV calculation involves elemental
components (CHONS) and proximate analysis (ash content) on a dry basis. Likewise, a similar
identification occurs in SCB, which involves elemental and proximate components. According

to Fig. 4, the linear correlation is acknowledged between HHV and SCB. The SCB value
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424  increases when the HHV value increases. This phenomenon occurs in all samples of wood

425  waste feedstocks. This linear correlation can be expressed in a ratio of SCB/HHV.
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427  Fig. 4. Bioenergy (HHV) and bioexergy (SCB) values of wood waste according to the Taguchi
428  orthogonal array.

429

430 The SCB/HHV ratio in Table 2 indicates that the ratio value of HHV and SCB is 1.043-
431 1.046. The highest HHV value (HHV-SW) coincides with the highest SCB value (SCB-SW),
432 and the lowest HHV value (HHV-HW) coincides with the lowest SCB value (SCB-HW) (Fig.
433 4). The typical evaluation of the energy density using HHV commonly applied for the biofuel
434  product can be corrected by the SCB value through HHV = 1.043-1.046 x SCB. This result is
435  similar to a previous study by Zhang et al. [62] that investigated the connection between exergy
436  and HHV of'rice residue. The study revealed that the exergy has a higher value of HHV with a

437  detailed expression of exergy (kJ-kg!') Ex = 1312.038 + 0.977 HHV .
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In the biofuel field, the current indicator used to determine the quality of the material
for renewable bioenergy production is the HHV value [15, 37]. However, the SCB analysis,
using wood waste as the sample feedstock, reveals that the actual energy within the material is
about 1.043-1.046 fold of HHV. The ratio of the SCB/HHV (1.043-1.046) indicates that the
number range can be utilized as the factor correction on energy yield calculation. To minimize
the error and avoid calculation failure, the result implies that the researcher and industrial
practitioner should know vital information about the SCB/HHYV ratio to determine the energy
balance and production cost using renewable bioenergy feedstock.

3.3. Thermodegradation behavior of wood waste under the combustion process

The behavior of thermodegradation of wood waste under the combustion process is
described in three conditions: wood waste, particle size, and heating rate (see the
supplementary material Fig. S2). The thermodegradation behavior of 9 runs of wood waste
(HW, SW, and WB) during the combustion process presents insignificant differences. This may
be due to the similarity of the chemical element composition of the three wood wastes. Unlike
the inert process of torrefaction or pyrolysis energy conversion, all organic chemical elements,
including the three major lignocellulosic components, such as hemicelluloses, cellulose, and
lignin, will burn completely during complete combustion to produce CO2 and H20. Therefore,
the thermodegradation behavior of the three components shows no apparent difference in
TGA/DTG curves. Hemicelluloses and cellulose will thermally degrade in lower temperatures,
around 200-315 °C and 300-400 °C, respectively. In contrast, lignin will thermally degrade in
a wide temperature range of about 150-600 °C.

The EA in Table 2 is performed in duplicate, revealing that the N and S elements are
very low. The N and S elements are identified at around < 0.05 for all the samples. These
phenomena suggest that the wood waste sample has an excellent chemical characteristic as a

combustion feedstock. Thus, the chance of producing NOx and SOx from these samples during
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combustion is relatively low. A few investigations suggest that short-term exposure to NOx and
SOx might cause respiratory diseases, such as reduced pulmonary function, increased lung
inflammation, and compromised immune system function [63, 64]. In this regard, choosing
wood waste as a feedstock is an appropriate step to produce potential environmentally friendly
biofuel through combustion conversion. The combustion via TGA of the nine samples exhibits
a typical pattern of more than 80 wt% from 110 to 600 °C of VM release during
devolatilization. Simultaneously, at temperatures >600 °C, the ash is formed after the FC is
burned completely.

Degradation zones of the wood waste are distinguishably identified in Fig. 5. The three
zones can be noticed from TGA curves in Fig. 5a. Zone 1 occurs at about RT to 110 °C, where
the moisture content evaporates. Zone 2 occurs at about 110-600 °C, where the activity of the
combustion reaction is significantly detected. In Zone 2, two to three peaks are recognized from
DTG curves (Fig. 5b), where the first peak appears between 250-300 °C (Runs 1, 6, and 8,
with the lowest heating rate at 10 °C-min!) which corresponds to the thermodegradation of
lignocellulosic chemical compounds with light molecular weight (hemicelluloses) and some
lignin. The second peak appears at about 300-400 °C (Runs 3, 5, and 7 with the highest heating
rate at 20 °C-min’") which corresponds to the thermodegradation of mostly cellulose and some
lignin. The third peak appears at about 400-550 °C for all the Runs which corresponds to the
thermodegradation of slightly cellulose and the rest of the lignin. The DTG curve reveals that

the higher heating influences the significant mass loss rate [15, 65].
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Additionally, Zone 3 (600-800 °C) reveals no degradation (TGA) or peak (DTQG)
detected. This circumstance suggests that the FC has entirely burned and that ash is the only
solid matter left (ash remains). The TGA curves show that Runs 3, 5, and 7, with the highest
heating rate, have higher ash contents among the runs. It may be due to the combustion process
having less time to burn the entire biomass. Therefore, the solid remains are detected higher
than those with lower heating rates. Moreover, the Runs with the lower heating rate (Runs 1,
6, and 8) illustrate that the peaks obtained are one extra in an early stage of the combustion
process among other Runs. These conditions imply that the combustible component in the early
stage can be evaluated using a lower heating. The ash formation of Runs 1, 6, and 8 also shows
an insignificant amount — implying that the complete combustion is more pronounced.
Unfortunately, the drawback of using the lower heating may lead to a more time-consuming
process, equal to the energy consumption for the electricity supply to the TGA equipment and
experimental cost.

3.4. Combustibility of wood waste in terms of combustion indices

The combustibility of biomass fuel refers to its ability to undergo combustion, releasing
heat energy in the process. The chemical composition of biomass, particularly the presence of
volatile organic compounds, influences its combustibility. As seen in Fig. 6, the ignition index
(Dig) value increases as the heating rate for the combustion process increases [66]. The ignition
index (Dig) measures a material's susceptibility to ignition under specific conditions. When the
heating rate is increased, it means that the material is being heated at a faster rate. This can lead
to several changes in the ignition process, including reducing heat transfer duration, reducing
volatile matter release, and accelerating the chemical reaction. This is the primary reason why
the ignition index increases accordingly.

A high ignition index at the same heating rate supply suggests that the material is more

likely to ignite at lower temperatures. This phenomenon implies that the material requires less
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511  energy or heat than materials with lower ignition indexes to initiate the ignition process.
512  Additionally, the criterion of self-ignition is classified into four classes, including non-reactive
513  (Dig 0.00-0.02), low-reactive (Dig 0.021-0.03), reactive (Dig 0.031-0.05), and high-reactive

514 (>0.051).
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516  Fig. 6. Ignition and burnout temperature (a) and Ignition index (Djg) (b) of wood waste.

517 Among the Runs in the Taguchi method, Run 1 (HW 250), 6 (SW 1000), and 8 (WB
518  500) utilize the lowest heating rate (HR) of 10 °C-min’! have Dj, values of 0.01 which belongs

519 to the non-reactive region; Run 2 (HW 500), 4 (SW 250), and 9 (WB 1000) utilize the medium

27



520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

heating rate (HR) of 15 °C-min™' precisely have Di; of 0.02 which indicates in the low reactive
region, and run 3 (HW 1000), 5 (SW 500), and 7 (WB 250) utilize the highest heating rate (HR)
of 20 °C-min"! have Djg values of 0.04 which suggests belonging to the reactive region. This
implies that the higher heating rate of the combustion process may provide a higher ignition
index of the material, which proves the ignition index theory [39]. According to the study, the
higher heating rate (>20 °C-min™") is not recommended since it may initiate the reactivity index
value to reach out of the high-reactivity region. Additionally, due to the high volatile content
of biomass, it is particularly vulnerable to devolatilization and subsequent volatile combustion
in the surrounding gas, which makes these sub-mechanisms much more predominant in the
behavior of biomass ignition and combustion. Thus, the highly reactive biofuel (>0.051) is not
suggested due to safety concerns (fire, explosion), handling challenges (transporting, storing,
packaging), and environmental impacts (air pollution).

The reactivity fuel index analysis illustrates that the higher the heating rate, the higher
the reactivity fuel index (Rfuel) (detailed in supplementary material Fig. S3). The Ryier index
values of the wood waste are about 3.82-6.97 %-min™'-°C!. This result implies that the lowest
heating rate (10 °C-min’") may utilize about 3.82 wt% per minute of biofuel. In contrast, the
highest heating rate (20 °C-min’') may utilize about 6.97 wt% per minute of biofuel. The
comprehensive combustion index (S») or combustibility index values of wood waste are about
3.20-9.37 x 1077 %?-min-°C-. The results in the present study for S, index are higher than the
results from a previous study of biomass/bituminous coal (<5 x 107" %2-min2-°C~) by Liu et
al. [55]. The higher S» value of wood waste for biofuel production demonstrates that biomass

has better combustion performance than solid fossil fuels such as coal.
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3.5. Statistical evaluation (bioenergy and bioexergy)

The criterion (larger-is-the-better characteristic of the S/N ratio) explains that the larger
the value for the corresponding outcome in the matrix of Taguchi, the more favorable the
research results are. Additionally, the criterion in ANOVA analysis is fixed with the significant
value (o) > 0.05, by means the parameter is considered to be significant when the P-value < a
(P < 0.05; 5% risk). In the analysis of the S/N ratio for HHV, the results show that the wood
waste type has the highest influence (delta) (see supplementary material Table S2) by 0.18,
followed by particle size 0.13, then the heating rate 0.02 (insignificant). Align with the S/N
ratio, the ANOVA analysis also shows that wood waste type has a higher influence (F: 29.93),
with a significant value (P) of about 0.032, followed by particle size (P: 0.061) and heating
rate (0.727). Likewise, in the S/N ratio for SCB (see supplementary material Table S2), the
result describes that wood waste type (delta: 0.19) has a higher value of influence, followed by
particle size (delta: 0.12) and heating rate (delta: 0.01). Moreover, the ANOVA analysis for
SCB shows that wood waste type and particle size significantly influence about 53.53 and
20.67, with p-values of 0.018 and 0.046, respectively. Meanwhile, the heating rate is
recognized as an insignificant parameter. For the optimum result, the highest HHV and SCB
are obtained by experimenting with waste type level 2 (softwood), particle size level 1 (250
um), and heating rate (insignificant) level 2 (15 °C-min™"). The optimum results are combined
in Run 4 of the Taguchi orthogonal array.

3.6. ANN analysis for bioenergy and bioexergy prediction

The AI-ANN analysis is carried out with the configuration of one hidden layer (HL)
but in three different configurations, including 1, 5, and 10 neurons (N) (detailed in
supplementary material Table S3). The number of neurons is considered by the number of input
parameters [61, 67]. Although the ANN analysis has no fixed rules to train the model, the

convenient way to decide the neuron in the hidden layer is by determining the number of
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neurons based on the amount of the input layer. The five input parameters, including wood
waste type, particle size, heating rate, elemental analysis (C, H, O), and proximate analysis (M,
VM, FC, and A), are simulated to predict the output result. Therefore, the neurons to
accommodate the input data are considered about 1 (5x0=1), 5 (5%1=5), and (5%2=10).

The training specification of the models shows that the three configurations for HHV
prediction have excellent results with a fit-quality value (R?) of precisely 1.0000. The standard
deviation values for the three configurations for HHV model prediction are 0.000080,
0.000013, and 0.000022 for 1HL-1N, 1HL-5N, and 1HL-10N, respectively. The model with
IHL-1IN configuration shows that the heating rate is the most significant parameter that
influences the HHV prediction. However, the other two prediction models (1HL-5N and 1HL-
10N) show that waste type is the most prominent input parameter. Meanwhile, the standard
deviation for the SCB model prediction (R?>=1.0000) with the configuration of 1HL-1N, 1HL-
5N, and IHL-10N are 0.014582, 0.000014, and 0.000015, respectively. The three
configurations agree that the waste type is the most influential parameter for SCB prediction.

Among the configurations, the best result of the ANN model for HHV and SCB model
predictions with the lowest standard deviation is obtained using a 1 HL with 5 N for HHV with
the fit quality precisely (R?) 1. In this regard, the wood waste type is the most influence factor
in bioenergy analysis (HHV), followed by FC, O, C, H, particle size, A, heating rate, VM, and
M. Likewise, the configuration of 1HL with 5N illustrates the best result prediction for the
bioexergy analysis (SCB). The most influential parameters are wood waste type, followed by
H, FC, C, O, A, particle size, heating rate, M, and VM. The validation of the model shows that
all the models are not underfitting or overfitting. The values between the experiment data and
the ANN model (Table 3) reveal that the configuration using the formula of 1HL and 5N is
suitable for executing the wood waste combustion in this study. In this manner, the models are

considered to be well-trained. Compared to the previous studies in the bioenergy production
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field (detailed in supplementary material Table S4), the present study shows the best results.
Some previous studies showed that fewer hidden layers and neurons would provide the best-
fit quality of the model [26, 68]. However, in the present study, the number of input parameters
is about five in general, but in the overall calculation, the input parameters are 10 in total. For
1HL with 1N, excellent results are obtained with R>=1. Nevertheless, the stopping criterion
describes the maximum epoch that is reached. This result implies that the model reaches the
saturation process. Additionally, the higher epoch in the training model in machine learning
may lead the model to the underfit or overfit level [29]. Moreover, the IHL with 10 N displays
good results, but the standard deviations for HHV and SCB prediction models are higher than
IHL with 5N. These results indicate that providing more neurons in the hidden layer does not
necessarily improve the model prediction. Likewise, the fewer neurons in a hidden layer may
lead to the model having a higher standard deviation level due to insufficient neurons to execute
the task. This phenomenon implies that 1 neuron is insufficient in this study, but 10 neurons
are abundant to accommodate the model prediction. The optimum for five neurons to execute

the task is considered ideal in the ANN model prediction of this study.
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Table 3

ANN training numerical analysis using IHL-5N configuration compared to the experiment data.

Wood waste  Particle Heating C H (0 HHV SCB M VM FC A *ANN  *ANN
size rate (HHV) (SCB)
Hardwood 250 10 46.130 6.030 44.100 18.649 19.445 4950 84.219 10.831 0.000 18.649  19.445
Hardwood 500 15 45880 5.850 41.440 18.625 19.390 4950 84.219 10.831 0.000 18.625  19.390
Hardwood 1000 20 45880 5.900 44.880 18.328 19.147 4.000 82.292 13.708 0.000 18.328  19.147
Softwood 250 15 47.020 6.180 45.080 19.035 19.846 5.000 85.263  9.737 0.000 19.035 19.846
Softwood 500 20 47380 5.950 44270 18.974 19.799 8.000 83.696  8.284 0.020 18.974  19.799
Softwood 1000 10 47.190 5.820 44.100 18.772 19.605 4.950 83.167 11.883 0.000 18.772  19.605
Wood blends 250 20 46.500 6.110 45.080 18.771 19.581 5.000 84.211 10.789 0.000 18.771  19.581
Wood blends 500 10 46.650 5980 45.810 18.595 19.433 2970 84.541 12479 0.010 18.595 19.433
Wood blends 1000 15 46.630 5.770 44300 18.497 19.330 4.950 82.292 12.748 0.010 18.497  19.330

Particle size (um)
Heating rate (°C-min™")
HHV and SCB (MJ-kg™)

Standard deviation (SD): HHV (0.000013) and SCB (0.000014)

*: ANN model prediction
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4. Conclusions

This study has explored wood wastes (HW, SW, and WB) for the behavior of
combustion thermodegradation via the TGA method integrated with the Taguchi orthogonal,
statistical analysis, combustibility indexes, and Al model prediction. The physicochemical
analyses show that all wood waste feedstock is high in VM (>80 wt%), rich in C and O, but
low in ash, N, and S contents. The evaluation shows that the SCB is typically higher (about >
19 MJ-kg!) than HHV (about 18 MJ-kg'!), with SW reported to possess the highest HHV
(18.84 MJ-kg!) and SCB (19.65 MJ-kg!) values. The TGA/DTG curves obtained, using
typical heating rates of 10, 15, and 20 °C-min’!, suggest there are 3 zones distinguished, and
hemicelluloses (< 275 °C), while cellulose and lignin degradation have more way to undergo
in about 275-600 °C. The combustibility indexes indicate that wood waste has 4 classes of
ignition index (non-reactive to high-reactive), reactivity fuel index at higher heating rate
utilizing more feedstock (3.82-6.97 % -min'-°C!), comprehensive combustion characteristic
index of wood waste has better combustion performance than solid fossil fuel of bituminous
coal. Unlike the heating rate, the wood waste type and particle size significantly influence the
HHYV and SCB. The optimum Run is achieved with SW250 at 20 °C-min"! heating rate. The
ANN model with THL-5N configuration successfully predicts the values of HHV and SCB
with excellent fit-quality values (R>=1). This study has limitations on the molecular interaction
of lignocellulosic components during the combustion conversion process. However, because
the exploration is not feasible to Run by TGA only, this study's findings offer new potential
information for further investigation. Research on kinetics, by-products in molecular

approaches, and catalytic co-combustion are potential topics for future work.
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