
Journal Pre-proof

Bioenergy and bioexergy analyses with artificial intelligence application on
combustion of recycled hardwood and softwood wastes

Ria Aniza, Wei-Hsin Chen, Christian J.A. Herrera, Rafael Quirino, Mathieu Petrissans,
Anelie Petrissans

PII: S0960-1481(24)01953-0

DOI: https://doi.org/10.1016/j.renene.2024.121885

Reference: RENE 121885

To appear in: Renewable Energy

Received Date: 6 July 2024

Revised Date: 8 November 2024

Accepted Date: 11 November 2024

Please cite this article as: Aniza R, Chen W-H, Herrera CJA, Quirino R, Petrissans M, Petrissans A,
Bioenergy and bioexergy analyses with artificial intelligence application on combustion of recycled
hardwood and softwood wastes, Renewable Energy, https://doi.org/10.1016/j.renene.2024.121885.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

https://doi.org/10.1016/j.renene.2024.121885
https://doi.org/10.1016/j.renene.2024.121885


Graphical abstract  
 

 

Jo
urn

al 
Pre-

pro
of



1 

 

Bioenergy and bioexergy analyses with artificial intelligence application on combustion 1 

of recycled hardwood and softwood wastes 2 

Ria Aniza 1,2,3,4, Wei-Hsin Chen 3,5,6,*, Christian J. A. Herrera 7, Rafael Quirino 7, Mathieu 3 

Petrissans 1, Anelie Petrissans 1,* 4 

1. Université de Lorraine, INRAE, LERMAB, F88000, Epinal, France 5 
2. International Doctoral Degree Program in Energy Engineering, National Cheng Kung University, Tainan 6 

701, Taiwan 7 
3. Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan 8 
4. Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, 9 

Tangerang Selatan 15314, Indonesia  10 
5. Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan 11 
6. Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan  12 
7. Chemistry Department, Georgia Southern University, Statesboro, GA-30460, USA 13 
 14 

* Corresponding author; Email: weihsinchen@gmail.com & chenwh@mail.ncku.edu.tw (W.-15 
H.Chen); anelie.petrissans@univ-lorraine.fr (A. Petrissans) 16 

Abstract  17 

Novel biomass bioenergy-bioexergy analyses via thermogravimetry analysis and 18 

artificial intelligence are employed to evaluate the three biofuels from wood wastes (softwood-19 

SW, hardwood-HW, and woods blend-WB). The chemical characterization of SW has the 20 

highest bioenergy (higher heating value – HHV: 18.84 MJ·kg-1) and bioexergy (specific 21 

chemical bioexergy – SCB: 19.65 MJ·kg-1) with the SCB/HHV ratio of wood waste as about 22 

1.043-1.046. The high C-element has a significant influence on the HHV-SCB. The SCB/HHV 23 

ratio of wood waste is recognized as about 1.043-1.046. The three distinct zones of wood waste 24 

combustion are identified: moisture evaporation (Zone I, up to 110 °C), combustion reaction – 25 

degradation of three major lignocellulosic components (hemicelluloses, cellulose, and lignin) 26 

at Zone II, 110-600 °C, and ash remains (Zone III, 600-800 °C). The ignition (Dig=0.01-0.04) 27 

and fuel reactivity (Rfuel=3.82-6.97 %·min-1·°C-1) indexes are evaluated. The comprehensive 28 

combustion index (Sn:>5×10-7%2·min-2·°C-3) suggests that wood waste has a better combustion 29 

performance than bituminous coal. The statistical evaluation presents that the highest HHV-30 

SCB values are obtained by performing combustion for SW-250 µm at 15 °C·min-1. The S/N 31 
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ratio and ANOVA results agree that the wood waste type and particle size denote the most 32 

influential parameters. The artificial neural network prediction shows an excellent result (R2=1) 33 

with 1 hidden layer and 5 neuron configurations.  34 

Keywords: Wood valorization; biochar; bioenergy-bioexergy; combustibility indexes; Taguchi 35 

method; artificial neural network.  36 
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Nomenclature  38 

Abbreviations  39 

A Ash  40 

AI Artificial intelligence 41 

ANN Artificial neural network 42 

ANOVA Analysis of variance 43 

Bioenergy Biomass energy 44 

Bioexergy Biomass exergy 45 

Biofuel Biomass fuel 46 

DoE Design of experiment 47 

EA Elemental analysis 48 

EU  European Union 49 

FA Fiber analysis 50 

FC Fixed carbon 51 

FSC Forest Stewardship Council  52 

FTIR Fourier transform infrared 53 

GC Gas chromatography  54 

HHV Higher heating value 55 

HL Hidden layer 56 

HW Hardwood 57 

IEA International Energy Agency 58 

M Moisture  59 

PA Proximate analysis 60 

PM Particulate matter 61 

RE Relative error  62 
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RT Room temperature  63 

SCB Specific chemical bioenergy 64 

SW Softwood 65 

TG  Thermogravimetry (device) 66 

TGA  Thermogravimetry analysis  67 

UN-SDGs United Nations' Sustainable Development Goals  68 

VM Volatile matter  69 

WB Woods blend 70 

WHO World Health Organization  71 

Symbols  72 

Dig Ignition index  73 

L9 Taguchi orthogonal array for nine runs  74 

p Probability value 75 

Rfuel            Fuel reactivity index 76 

Sn Comprehensive combustion characteristic index 77 

S/N Signal-to-noise ratio 78 

Tb  Burnout temperature 79 

Tig Ignition temperature 80 

W Weight in ANN analysis 81 

Greek letter 82 

α Confidence level on statistical analysis (α ≤0.05) 83 

  84 
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1. Introduction  85 

The global emission of CO2 was reported to reach over 36.8 Gt in 2022, which increased 86 

by 0.9% or 321 Mt from the observed point of 2021 [1]. According to the data on CO2 global 87 

emissions in 2022 stated by the International Energy Agency (IEA) [1], this number contributes 88 

to the increase of the emissions from coal-based energy sources – increased by 1.6% (from 89 

2021) or 243 Mt, far surpassing the last decade's average growth rate, and achieving a new all-90 

time high level of CO2 of almost 15.5 Gt. Unfortunately, the increase in fossil fuel usage such 91 

as coal is scientifically proven to trigger increases in several issues including environmental 92 

(anthropogenic air [2, 3], soil [4], water [5] pollution, global warming [6], extreme weather [7], 93 

flood [8], water resource challenges [9], and disruption of land and water ecosystems) [10] and 94 

human health (respiratory disorder [11], cancer [12], even premature death [13]).  95 

Wood waste or wood by-products has gained some attention worldwide as a second-96 

generation biomass fuel (biofuel), which may considered a potential sustainable material of 97 

lignocellulosic-based biomass for renewable energy production [14, 15]. Generally speaking, 98 

the lignocellulosic components define the chemical composition of both hardwood and 99 

softwood. The composition of hardwood species is 38-51% cellulose, 17-38% hemicelluloses, 100 

2-31% lignin, and 3% extractives [16, 17]. Softwood species, on the other hand, have a 101 

composition of 33-42% cellulose, 22-40% hemicelluloses, 27-32% lignin, and 2-3.5% 102 

extractives [18, 19]. One of the thermochemical processes, combustion (Fig. 1), is suggested 103 

as a viable method for valorizing wood waste into valuable products such as heat. Wood waste 104 

direct combustion refers to the conversion process of burning woody waste biomass under a 105 

fully oxidative environment such as air or O2 [20]. Combustion involves several key factors: 106 

temperature, heating rate, heating duration, and feedstock composition.  107 
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 108 

Fig. 1. A recycled wood waste combustion study via TGA was coupled with statistical analysis, 109 

combustion indexes, and AI-aided. 110 

 If the combustion parameters are not well controlled, it can lead to the generation of 111 

particulate matter (PM) or smoke [3] and high CO emissions [2]. Long-term exposure to PM 112 

and CO emissions for more than its average level as World Health Organization (WHO) 113 

standards 15 µgm-3/24 h, 45 µgm-3/24 h, and 7 µgm-3/24 h for PM 2.5, PM 10, and CO [21], 114 

respectively, are reported to be one of the root causes of respiratory disorders (asthma, 115 

respiratory inflammation) and even cell death due to DNA damage. Additionally, in some 116 

studies, the combustion analysis is crucial for safety reasons and energy conversion systems, 117 

such as to prevent fire hazards due to overreactive biofuel on spontaneous ignition [22] and to 118 

optimize the combustion process within the reactor [23, 24]. In this matter, evaluating the 119 

physicochemical properties, thermodegradation behavior, and combustibility performance by 120 

investigating the combustion parameter using integrated TGA and bioenergy-bioexergy 121 

analyses to obtain the best condition for bioenergy production ─ avoiding PM or shoot 122 
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generation, CO emissions, and considering the safety reasons from wood waste biofuel 123 

feedstock is indeed essential. 124 

The TGA method, which uses a thermogravimetry (TG) device, is one of the techniques 125 

used to observe the degradation of material as a function of temperature or time [25]. By 126 

performing the TGA method, the thermodegradation behavior of biomass feedstock, including 127 

combustion, can be fully identified. Some of the valuable information that can be obtained 128 

from the TGA method is the degradation curve of mass loss TGA, differential 129 

thermogravimetry (DTG), ignition temperature (Ti), and burnout temperature (Tb). 130 

Additionally, the biofuel quality during the combustion process can be evaluated by calculating 131 

the fuel reactivity (Rfuel) and comprehensive combustion index (Sn).  132 

Among the types of bioexergy analysis, SCB is an effective way to evaluate renewable 133 

energy in the circular bioeconomy concept from a biomass-based source. SCB focuses on 134 

identifying the biofuel's energy according to the chemical composition of the biomass [26]. 135 

Previous studies claimed that exergy in biomass can be obtained by calculating the elemental 136 

analysis (C, H, O, N, and S elements) and proximate analysis (ash content) [27, 28]. Performing 137 

the SCB evaluation, which relies on the second law of thermodynamics on wood valorization 138 

─ can be used to identify the location, amount, quality, and cause of thermodynamic 139 

inefficiencies (exergy destructions and losses), which is suggested to fully represent the actual 140 

energy within the material compared to higher heating value (HHV) or lower heating value 141 

(LHV).  142 

The concept of recycling woody waste into biofuel is considered an effective method 143 

that shares the goal of achieving the future United Nations – Sustainable Development Goals 144 

(UN-SDGs) affordable and clean energy (SDG7), responsible consumption and production 145 

(SDG12), and climate action (SDG13), industry, infrastructure, and innovation (SDG9), as well 146 

as align to zero waste principle for managing waste generation. Furthermore, AI accelerates the 147 
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transition rate to a sustainable energy future by enhancing renewable energy production and 148 

development's reliability, affordability, and scalability [29, 30].  149 

Numerous studies have been performed on biomass combustion. However, as far as the 150 

authors' knowledge, no study has focused intensely on wood waste combustion in terms of 151 

bioenergy (HHV) and bioexergy (SCB). There is a lack of knowledge on the related topic of 152 

its technology and development. In this matter, a comprehensive study for biofuel production 153 

through combustion has not yet been developed while considering the physicochemical, 154 

thermodegradation behavior, and combustibility performance. Therefore, this study aims to 155 

provide bioenergy and bioexergy analyses of wood waste (Fig. 1) via TGA in an all-inclusive 156 

manner (Taguchi orthogonal array, statistical evaluation, combustibility performance, and AI 157 

analysis). This study offers benefits for bridging the current bioenergy technology and 158 

advancement gap. Furthermore, it gives researchers with related interests and professionals in 159 

the industry a better understanding and helpful information, particularly for the development 160 

of renewable bioenergy production and industrial scale-up using bioenergy woody-based 161 

materials. 162 

2. Materials and methods 163 

2.1. Materials 164 

The wood waste of this study was obtained from the timber industries in North-East 165 

France. The woods (hardwood: beech - Fagus sylvatica and softwood: fir - Abies alba) were 166 

harvested from the local forest for lumber production. The samples were classified into three 167 

types of sample wood waste, including hardwood (HW), softwood (SW), and woods blend 168 

(WB, 50-50 wt% mixture of HW and SW, respectively). The commercial high-pressure woody-169 

based briquettes solid biofuel in the European Union (EU) region from raw virgin wood was 170 

certified by the Forest Stewardship Council (FSC) to be smokeless, 100% eco-friendly, and 171 
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produced without binders-additives with the mixing ratio of 50-50 wt% HW and SW [31]. In 172 

this regard, this study attempted to adopt the commercial wood mixing method for the mixture 173 

of WB.  174 

2.2. Methods  175 

2.2.1. Sample preparation  176 

The samples were open-air sun-dried for about 24 h. The dried samples were ground 177 

and sieved individually to obtain a uniform particle size into three types of sizes, including 250, 178 

500, and 1000 µm [29]. Furthermore, more biomass was broken down by heat transfer at 179 

smaller particle sizes of less than 0.5 mm (500 µm), which accelerated the thermochemical 180 

process and increased biofuel output [26]. In this manner, the three chosen particle sizes from 181 

250-1000 µm considered appropriate ways to investigate the thermodegradation of biomass. 182 

All the samples were stored in sample storage at room temperature (RT) until the analyses were 183 

performed. 184 

2.2.2. Design of experiment (DoE)  185 

The Taguchi orthogonal array is a tool for conducting experiments and efficiently 186 

optimizing product or process design. The main purpose of Taguchi orthogonal arrays is to 187 

create a matrix representing a set of experimental conditions to effectively reduce the number 188 

of experimental runs without losing the importance of the variable. Taguchi's methods enable 189 

efficient experimentation with minimal trials while providing reliable results. The factors 190 

(Table 1a) in this research based on the Taguchi method were considered: wood waste type, 191 

particle size, and heating rate. Additionally, three levels corresponding to these factors design 192 

(1) hardwood (HW), softwood (SW), and woods blend (WB); (2) 250, 500, and 1000 µm; and 193 

(3) 10, 15, and 20 °C·min-1. The design matrix involving the three factors and three levels of 194 

design contained nine runs (L9) of experiments (Table 1b).  195 
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Table 1 196 

Design of experiment (DoE) of direct combustion of recycled wood wastes (a) three factors 197 

and three levels and (b) Taguchi orthogonal array for nine runs (L9).  198 

(a)  199 

Factors Control  
parameters 

Levels 
1 2 3 

A Wastes type (%) Hardwood  
(100%) 

Softwood 
(100%) 

Woods blend  a 
(50%:50%) 

B Particle size (µm) 250 500 1000 
C Heating rate (°C·min-1) 10 15 20 

a: woods blend contains 50% hardwood (beech) and 50% softwood (fir) 200 

(b) 201 

Run DoE combinations 

A B C 

1 Hardwood 250 µm  10 °C·min-1 

2 Hardwood 500 µm  15 °C·min-1 

3 Hardwood 1000 µm 20 °C·min-1 

4 Softwood 250 µm  15 °C·min-1 

5  Softwood 500 µm  20 °C·min-1 

6  Softwood 1000 µm  10 °C·min-1 

7 Woods blend 250 µm  20 °C·min-1 

8 Woods blend 500 µm  10 °C·min-1 

9 Woods blend 1000 µm  15 °C·min-1 

 202 

2.2.3. Statistical evaluation  203 

The results acquired from the Taguchi orthogonal array were evaluated using the signal-204 

to-noise (S/N) ratio and analysis of variance (ANOVA) to identify which parameter and level 205 

had significant influences on the bioenergy (HHV) and bioexergy (SCB) values.  206 

In terms of the S/N ratio, the HHV and SCB were analyzed for the larger-is-the-better 207 

characteristic (Eq. (1)) [29], as follows:  208 
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𝑆𝑛 = −10 log (1
𝑦2⁄ ) (1) 

where y represents the objective function of HHV or SCB of biofuel.  209 

For ANOVA, the result was observed to calculate the differences between groups. The 210 

characteristic of ANOVA was described in Eq. (2) [32] as follows:  211 

ANOVA: α ≤ 0.05 (2) 

where α represents a significant level, with 95% confidence and 5% of maximum risk. The 212 

lack-of-fit test is used when dealing with data containing replicates or observations with 213 

identical x-values. Because discrepancies between the observed response values can only be 214 

caused by random variation, replicates are a representation of "pure error". One compares the 215 

p-value to the significant level to ascertain whether the model fits the data appropriately. A 216 

significance level of 0.05 is typically effective, also known as alpha or α. When a model has 217 

an α of 0.05, there is only a 5% chance of finding that the data does not fit the model. In this 218 

manner, a 5% significant level was considered to be utilized in this study. Additionally, to 219 

quantify the accuracy of the result, the relative error (RE) of data was determined (Eq. (3)) [26, 220 

29],  221 

𝑅𝐸 (%) = |
(𝐴 − 𝐵)

𝐴
|  ×  100 

(3) 

where 𝐴 and 𝐵 are observed (first trial) and measured (second trial) values, respectively.  222 

2.2.4. Proximate, elemental, and calorific value analyses 223 

Proximate analysis (PA) was performed by applying the ISO 18134-1:2022 [33], ISO 224 

18123:2023 [34], and ISO 18122:2022 [35] for moisture (M), volatile matter (VM), and ash 225 

(A) analysis, respectively. Proximate analysis of solid biofuels was using a muffled furnace – 226 

Carbolite Furnace CSF 1200. Meanwhile, the fixed carbon (FC) was calculated by difference 227 

(Eq. (4)) [36].  228 

𝐹𝐶 (%) = 100% − 𝑀 − 𝑉𝑀 − 𝐴 (4) 
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Elemental analysis (C, H, O, N, and S) was performed using an automatic elemental 229 

analyzer (Thermo Flash Smart Elemental Analyzer). To determine the calorific value, the 230 

higher heating values (HHVs) of the sample tests were calculated by employing the HHV in 231 

Eq. (5) [37], as follows:  232 

𝐻𝐻𝑉 = 0.3491 𝐶 + 1.1783 𝐻 − 0.1034 𝑂 − 0.0151 𝑁 + 0.1005 𝑆 − 0.0211 𝐴 (5) 

where C, H, O, N, and S are the chemical compounds in EA and A is the ash content in PA. 233 

2.2.5. Specific chemical bioexergy (SCB) 234 

The bioexergy analysis of this study was evaluated by determining the chemical 235 

compound in elemental analysis and considering the ash in proximate analysis. The calculation 236 

of the SCB [27, 28] utilized the bioexergy equation in Eq. (6), as follows:  237 

𝑆𝐶𝐵 = 36.3439 𝐶 + 107.5633 𝐻 − 8.6308 𝑂 + 0.4147 𝑁 + 19.0798 𝑆

− 21.100 𝐴 

(6) 

2.2.6. Combustion experiment via TGA  and product analysis via FTIR 238 

The direct combustion of wood waste was carried out using the TG device NETZSCH 239 

STA 449 F3 Jupiter. About 5 mg of the sample was loaded into a ceramic crucible about 90 µL 240 

size. For instance, the N2 gas was purged into the system for 100 mL·min-1 in 5 min. Then, the 241 

sample was heated using three heating rates, including 10, 15, and 20 °C·min-1 from RT to 800 242 

°C (Fig. 1). The solid remaining in the crucible was considered the ash content. The 243 

experiments in this study, including proximate analysis, elemental analysis, calorific value, and 244 

direct combustion, were performed in duplicate. The reproducibility of the data was managed 245 

at >95% (maximum risk at 5%). Additionally, the Fourier Transform Infrared (FTIR) 246 

Spectroscopy FTIR spectra were recorded using FTIR Shimadzu between 4000 and 600 cm-1 247 

by the potassium bromide pellet method to analyze the best wood waste type for the combustion 248 

process.  249 
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2.2.7. Combustion index calculation 250 

(1) Ignition index  251 

The ignition index Dig (%·min-3) was determined as follows [24, 38] (Eq. (7)):  252 

𝐷𝑖𝑔  =
(𝑑𝑤

𝑑𝑡⁄ )
𝑚𝑎𝑥

(𝑡𝑚𝑎𝑥 · 𝑡𝑖𝑔)
 (7) 

where (𝑑𝑤
𝑑𝑡⁄ )

𝑚𝑎𝑥
  (%·min-1) is the maximum combustion rate (DTG curve at the highest 253 

peak - DTGmax), tmax is the corresponding time when (𝑑𝑤
𝑑𝑡⁄ )

𝑚𝑎𝑥
  use equation the maximum 254 

combustion rate occurs, and tig was the ignition time. The ignition index implied the potential 255 

of accumulated fine fuels to ignite in the presence of a heat source (flammability behavior), 256 

demonstrating the fuels' tendency to receive heat and initiate combustion. The low ignition 257 

index indicated that the material ignited at high temperatures. In this regard, a higher heat 258 

supply was required to ignite the material. In contrast, the high ignition index indicated that the 259 

material ignited at low temperatures. 260 

(2) Reactivity index 261 

The combustion reactivity index (Rfuel, %·min-1·°C) facilitated the evaluation of the 262 

reactivity level of fuel in this study. It may be expressed as follows [39] (Eq. (8)):  263 

𝑅𝑓𝑢𝑒𝑙 =
(𝑑𝑤

𝑑𝑡⁄ )
𝑚𝑎𝑥

𝑇𝑚𝑎𝑥
     (8) 

where (𝑑𝑤
𝑑𝑡⁄ )

𝑚𝑎𝑥
  is data in the DTG curve known as DTGmax (%·min-1). Additionally, Tmax 264 

(°C) corresponded to the peak of the DTG curve. The reactivity index indicates how reactive 265 

the fuel could be when the heat source is present. The lowest to highest reactivity index value 266 

is about 0.00 to >0.05 %·min-1·°C. There are four distinguished regions in the reactivity index 267 

according to the value, including non-reactive (0.00-0.02), low-reactive (0.021-0.03), reactive 268 
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(0.031-0.05), and high reactive (>0.051). The highly reactive biofuel is unfavorable because it 269 

could trigger incomplete combustion and explosion.  270 

(3) Comprehensive combustion characteristic index  271 

The comprehensive combustion characteristic index (Sn) is a combustion index to 272 

evaluate the comprehensive behavior of biofuel combustion [40, 41]. It was defined as (Eq. 273 

(9)):  274 

𝑆𝑛  =
(𝑑𝑤

𝑑𝑡⁄ )
𝑚𝑎𝑥

(𝑑𝑤
𝑑𝑡⁄ )

𝑚𝑒𝑎𝑛
(𝑇𝑖𝑔

2  . 𝑇𝑏)
   (9) 

where (𝑑𝑤
𝑑𝑡⁄ )

𝑚𝑎𝑥
   and (𝑑𝑤

𝑑𝑡⁄ )
𝑚𝑒𝑎𝑛

   are the maximum and average weight loss rates, 275 

respectively. A higher Sn value indicated a better biofuel combustion performance. Meanwhile, 276 

Tig and Tb were the ignition and burnout temperatures, respectively. 277 

2.2.8.  Artificial neural network (ANN) analysis  278 

The ANN is one sort of computerized artificial intelligence that mimics how neurons in 279 

the human brain process information. ANN provides predictive benefits, such as indirectly 280 

detecting complex non-linear connections between variables and taking a small dataset to 281 

obtain a high-accuracy result. To validate the ANN model, the trained ANN's predictions of 282 

HHV-SCB values were compared to experiment data. Additionally, the sensitivity analysis was 283 

automatically calculated during the training process, and the result notified whether the model 284 

was overfitting or underfitting. The parameters were designed as input data to determine the 285 

influence of the HHV and SCB as the output data. The ten parameters used for feeding the 286 

input data include the duplicate of the Taguchi parameters (waste type, particle size, and heating 287 

rate-9 runs ): 18 data, EA (C-H-O): 18 data (HW, SW, and WB), and PA (M, VM, FC, Ash): 24 288 

data (HW, SW, and WB). The ANN model software used was Megaputer Polyanalyst 6.5. The 289 

hidden layer was designed for one layer with 1, 5, and 10 neurons (detailed in supplementary 290 

material Table S1). The activation functions used in this study were sigmoid and piecewise 291 
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linear in the hidden layers and output layer, respectively. The dataset (60 data in total) was 292 

divided into 80:20 for training (80%) and testing (20%) [26, 29]. The training algorithm used 293 

in this study was quick backpropagation (quick prop) [26]. The three configurations of the 294 

ANN model are illustrated in Fig. 2. 295 

 296 

 297 

Fig. 2. Configuration of the artificial neural network (ANN) model. 298 

 299 
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3. Results and discussion 300 

3.1. Properties of wood waste 301 

The initial characterizations of biomass feedstock, including HW, SW, and WB, are 302 

described in Table 2. For proximate analysis, HW, SW, and WB moisture contents are 5.94, 303 

4.00, and 3.00 wt%, respectively. The low moisture content in biofuel is favorable because it 304 

may increase the energy density, thereby improving combustion efficiency. The VM in all 305 

samples show > 80wt%, including HW (84.05 wt%), SW (83.50 wt%), and WB (83.67 wt%). 306 

A high VM in the sample indicates that the material has a high possibility of solid chemical 307 

compounds, such as lignocellulosic components (hemicelluloses, cellulose, and lignin) to 308 

devolatilize into gaseous chemical compounds.  309 

Table 2 310 

Raw wood waste properties of proximate analysis, elemental analysis, and bioenergy-311 

bioexergy values. 312 

Biomass 

properties  

Waste types 

Hardwood (HW) Softwood (SW)  Woods blend (WB) 

Proximate (wt%) 

M  5.94 4.00 3.00 

VM 84.05 83.50 83.67 

FC 10.00 12.50 13.32 

Ash <0.01 <0.01 0.01 

Elemental (wt%) 

C 45.99 47.26 46.58 

H 5.77 5.86 5.86 

O 45.05 44.36 45.32 

N < 0.05 < 0.05 < 0.05 

S < 0.05 < 0.05 < 0.05 

Bioenergy-HHV and bioerxergy-SCB (MJ·kg-1) 

HHV  18.20 18.84 18.52 
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SCB 19.03 19.65 19.32 

SCB/HHV ratio 1.046 1.043 1.043 

 313 

The gaseous compounds from biomass devolatilization can be condensed into liquid 314 

biofuel such as bio-oil, biodiesel, bioethanol, etc [26, 42]. In contrast, some studies suggested 315 

that the high VM in biomass feedstock tends to have a spontaneous ignition [43] and lower 316 

calorific value due to the high O-element. The samples have a slight amount of FC (FC, HW: 317 

10.00 wt%; SW: 12.50 wt%; and WB: 13.32 wt%) but very low ash content (A, HW: <0.01; 318 

SW: <0.01; WB: 0.01). The lower FC in biofuel implies that the ash formation is minor. The 319 

low ash content in biofuel is favorable because it may prevent clogging in the combustion 320 

chamber or utility [44].  321 

Moreover, the EA identification shows that the samples rich in C (HW: 45.99 wt%, SW: 322 

47.26 wt%, WB: 46.58 wt%) and O (HW: 45.05 wt%, SW: 44.36 wt%, WB: 45.32 wt%) 323 

elements, but slightly contain H (HW: 5.77 wt%, SW: 5.86 wt%, WB: 5.86 wt%) and very low 324 

of N (all samples < 0.05 wt%), and S (all samples < 0.05 wt%) elements. The H/C (0.13 for all 325 

samples) and C/O (HW: 0.98, SW: 0.92, and WB: 0.96) ratios indicate that the samples are far 326 

from the petroleum characteristics as reported in the Van Krevelen diagram (H/C < 1 and O/C 327 

< 0.2) [45]. The raw biomass has the typical atomic values of low H/C and high O/C due to 328 

biomass generally containing hemicelluloses, cellulose, and lignin. 329 

3.2. Characterization of wood wastes 330 

3.2.1. Bioenergy and bioexergy analyses 331 

Bioenergy (HHV) and bioexergy (SCB) analyses of wood wastes are identified by 332 

analyzing four elements in EA (C, H, O, N, and S) and 1 component of PA (ash). However, the 333 

S-element in EA and the ash content in PA in the wood waste of this study reveal that they are 334 

negligible (Table 2). Accordingly, the terms of S and ash content in Eq. (6) for calculating SCB 335 

can be ignored. In Table 2, the HHV-SCB values of SW (HHV: 18.84 MJ·kg-1, SCB: 19.65 336 
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MJ·kg-1) are identified to possess the highest HHV-SCB values among all samples (WB – 337 

HHV: 19.32 MJ·kg-1, SCB: 18.52 MJ·kg-1 and HW –  HHV: 19.03 MJ·kg-1 and SCB: 18.20 338 

MJ·kg-1). These phenomena occur due to the SW having a higher C-element within SW (C: 339 

47.26 wt%) than WB (C: 46.58 wt%) or HW (C: 45.99 wt%). Although the H-element has the 340 

highest coefficient value in the SCB determination (Eq. (6)), the amount of H-element in the 341 

samples is identified as very low (about <6 wt%). Thus, the H element does not significantly 342 

influence the HHV-SCB values of wood waste samples. 343 

The FTIR spectrum of the highest HHV-SCB sample of SW is illustrated in Fig. 3. The 344 

FTIR analysis shows that about three peaks are noticeable at (1st) 1,158.50 cm-1; (2nd)  2,948.63 345 

cm-1; and (3rd) 3,425.40 cm-1. According to the FTIR spectrum, the 1st, 2nd, and 3rd peaks occur 346 

in the functional group in wavenumber 1,120-1,160 cm-1 (fingerprint skeletal region), 2,850-347 

2,950 cm-1 (single bond stretch), and 3,350-3,450 cm-1 (single bond stretch) correspond to the 348 

C-O-C polysaccharide, CH2 stretching aliphatic group, and OH functional groups, respectively 349 

[46]. The 1st peak at 1,158.50 cm-1 corresponds to the C-O-C polysaccharide functional group 350 

associated with the cellulose chemical compound [47] and the mannose group of 351 

hemicelluloses [48, 49]. The mannan-type hemicellulose group (mannose) is a polysaccharide 352 

composed of six-carbon sugar glucose. Mannose in softwood can be found as the most 353 

abundant sugar compared to other polysaccharide groups [50]. The asymmetric CH2 stretching 354 

vibration is classified as methylene and methine groups in the 2nd peak, correlated to the two 355 

types of hemicelluloses (xylan and mannose), cellulose, and lignin [47, 48]. Furthermore, the 356 

3rd peak is acknowledged at 3,425.40 cm-1, which is assigned to the OH molecules, associated 357 

with cellulose and hemicelluloses [51, 52]. 358 

Additionally, some absorbance with weak peaks is noticed in between the double and 359 

triple bonds region in FTIR spectra corresponding to the alkenes and alkynes, respectively (Fig. 360 

3). The double bond (alkenes) comprises carbon-carbon double bond (-C=C-), which appear in 361 
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the moderate band. The stretching vibration of the carbon double bond (-C=C-) is associated 362 

with aromatic compounds mostly found in lignin [48, 52]. The alkynes are comprised of 363 

carbon-carbon triple bonds (-C≡C-). Few organic compounds exhibit absorption in the triple 364 

bond region, where the -C≡C- stretch manifests as a weak band (Fig. 3). Organic molecules 365 

are considered to have rare triple bonds, but metallic compounds frequently have them. This 366 

could be because organic compounds lack valence d-orbitals, making creating triply-bound 367 

molecules using metallic atoms challenging. At present, the carbon-carbon triple bond is being 368 

massively explored to create organic semiconductors in solar energy systems – photovoltaic 369 

applications [53, 54]. 370 

Furthermore, the weight of O-element in all samples is identified as a high amount. The 371 

high level of O-element in biofuel feedstock is not recommended since it causes some 372 

problems, such as instability of combustion reaction [55], and decreased energy density [56]. 373 

Thus, the feedstock's deoxygenation prior to biofuel utilization is suggested to avoid rust 374 

formation, obtain better combustion performance, and increase the energy density of the 375 

feedstock. The biomass sample in the present study shows insignificant amounts of the N- and 376 

S-elements and low ash contents. Thus, the influences of N- and S-elements and ash content 377 

may be less in HHV-SCB values. In this manner, the terms for S-element and ash content in 378 

Eqs. (5) and (6) for HHV-SCB can be ignored. In the HHV calculation (Eq. (5)), C-H-S 379 

elements are considered energy sources that can be extracted during energy conversion. In 380 

contrast, O-N elements have contradictory influences and may not be considered an energy 381 

source. The HHV level rises in proportion to the biomass's C-H-S concentrations. In contrast, 382 

when the O-N composition of biomass rises, the HHV level falls. Nevertheless, the O-element 383 

alone remains the contradictory element for the SCB value, while the N-element has included 384 

(C-H-S-N) in the SCB computation (Eq. (6)) as an energy source that can be retrieved. 385 
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 386 

Fig. 3. A record of the FTIR spectrum of SW. 387 

According to certain studies, it has been possible to effectively synthesize fuels based on 388 

sulfur and nitrogen [57, 58] to meet the world's energy needs. In many applications, the S-N 389 

elements are suggested to be energy-storage materials. For instance, S- and N-based fuels may 390 

derived from biomass to produce advanced lithium-sulfur (Li-S) batteries [59] and liquid 391 

ammonia fuel [60], respectively. Although N and S influences are considered small, in this 392 

regard, by considering N-element as an energy source, the SCB computation provides a better 393 

insight than HHV to analyze the energy content within the biomass.  394 

3.2.2. Taguchi method analysis  395 

The Taguchi method aims to achieve a favorable product quality by design. The system 396 

design can reduce the number of experiments, time, energy, and cost by selecting the desirable 397 

factors (variable) and levels (variable intensity). The significant and insignificant parameters 398 
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that influence the outcomes can be adequately evaluated. By doing so, further investigation of 399 

the topic can be accomplished without repeating the same insignificant parameters. This 400 

condition can make the concept of further research more novel and explorative. 401 

Similar to the biomass feedstock with the bulk size, the feedstock with three different 402 

sizes (250, 500, and 1000 µm) has the typical characteristic (detailed in supplementary material 403 

Fig. S1) that is rich in C (47.32-48.82 wt%) and O (45.18-36.87 wt%), but very low in H (5.55-404 

6.27 wt%) elements. The proximate analysis also suggests that the samples contain very high 405 

VM (> 80 wt%), few FC (< 14 wt%), slightly M (< 9 wt%), and negligible A (< 0.01 wt%). In 406 

this regard, the combustibility performance of wood waste is dominated by the volatile 407 

compounds (VM) within biomass compared to the non-volatile compounds such as FC. To 408 

improve the energy density of the solid biofuel, some of the previous studies demonstrated 409 

several types of thermochemical conversion, such as torrefaction in low-temperature operation 410 

(< 350 °C) [15, 61] and pyrolysis (medium to high-temperature operation, 350-800 °C) [26, 411 

29].  412 

The HHV determination, according to the Taguchi orthogonal array, is 18.33-19.04 413 

MJ·kg-1. Meanwhile, SCB is 19.15-19.85 MJ·kg-1. These results (SCB: 19.15-19.85 MJ·kg-1) 414 

are aligned with the exergy of previous studies for alder-fir sawdust (SCB: 20.89 MJ·kg-1), 415 

beech bark (SCB: 19.63 MJ·kg-1), and wood residue (SCB: 20.15 MJ·kg-1) [27]. Compared to 416 

the biowaste from a previous study using a raw sample of mushroom log waste (12.48 MJ·kg-417 

1) [26], this study shows better results of SCB of raw biomass wood waste, about a 35-39 % 418 

increase. The correlation between HHV and SCB is noticed due to the similarity of the analysis, 419 

depending on the elemental and proximate analyses. The HHV calculation involves elemental 420 

components (CHONS) and proximate analysis (ash content) on a dry basis. Likewise, a similar 421 

identification occurs in SCB, which involves elemental and proximate components. According 422 

to Fig. 4, the linear correlation is acknowledged between HHV and SCB. The SCB value 423 
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increases when the HHV value increases. This phenomenon occurs in all samples of wood 424 

waste feedstocks. This linear correlation can be expressed in a ratio of SCB/HHV.  425 

 426 

Fig. 4. Bioenergy (HHV) and bioexergy (SCB) values of wood waste according to the Taguchi 427 

orthogonal array. 428 

 429 

The SCB/HHV ratio in Table 2 indicates that the ratio value of HHV and SCB is 1.043-430 

1.046. The highest HHV value (HHV-SW) coincides with the highest SCB value (SCB-SW), 431 

and the lowest HHV value (HHV-HW) coincides with the lowest SCB value (SCB-HW) (Fig. 432 

4). The typical evaluation of the energy density using HHV commonly applied for the biofuel 433 

product can be corrected by the SCB value through HHV = 1.043-1.046 × SCB. This result is 434 

similar to a previous study by Zhang et al. [62] that investigated the connection between exergy 435 

and HHV of rice residue. The study revealed that the exergy has a higher value of HHV with a 436 

detailed expression of exergy (kJ·kg-1) 𝐸𝑥 = 1312.038 + 0.977 𝐻𝐻𝑉. 437 
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In the biofuel field, the current indicator used to determine the quality of the material 438 

for renewable bioenergy production is the HHV value [15, 37]. However, the SCB analysis, 439 

using wood waste as the sample feedstock, reveals that the actual energy within the material is 440 

about 1.043-1.046 fold of HHV. The ratio of the SCB/HHV (1.043-1.046) indicates that the 441 

number range can be utilized as the factor correction on energy yield calculation. To minimize 442 

the error and avoid calculation failure, the result implies that the researcher and industrial 443 

practitioner should know vital information about the SCB/HHV ratio to determine the energy 444 

balance and production cost using renewable bioenergy feedstock.  445 

3.3. Thermodegradation behavior of wood waste under the combustion process 446 

The behavior of thermodegradation of wood waste under the combustion process is 447 

described in three conditions: wood waste, particle size, and heating rate (see the 448 

supplementary material Fig. S2). The thermodegradation behavior of 9 runs of wood waste 449 

(HW, SW, and WB) during the combustion process presents insignificant differences. This may 450 

be due to the similarity of the chemical element composition of the three wood wastes. Unlike 451 

the inert process of torrefaction or pyrolysis energy conversion, all organic chemical elements, 452 

including the three major lignocellulosic components, such as hemicelluloses, cellulose, and 453 

lignin, will burn completely during complete combustion to produce CO2 and H2O. Therefore, 454 

the thermodegradation behavior of the three components shows no apparent difference in 455 

TGA/DTG curves. Hemicelluloses and cellulose will thermally degrade in lower temperatures, 456 

around 200-315 °C and 300-400 °C, respectively. In contrast, lignin will thermally degrade in 457 

a wide temperature range of about 150-600 °C. 458 

The EA in Table 2 is performed in duplicate, revealing that the N and S elements are 459 

very low. The N and S elements are identified at around < 0.05 for all the samples. These 460 

phenomena suggest that the wood waste sample has an excellent chemical characteristic as a 461 

combustion feedstock. Thus, the chance of producing NOx and SOx from these samples during 462 
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combustion is relatively low. A few investigations suggest that short-term exposure to NOx and 463 

SOx might cause respiratory diseases, such as reduced pulmonary function, increased lung 464 

inflammation, and compromised immune system function [63, 64]. In this regard, choosing 465 

wood waste as a feedstock is an appropriate step to produce potential environmentally friendly 466 

biofuel through combustion conversion. The combustion via TGA of the nine samples exhibits 467 

a typical pattern of more than 80 wt% from 110 to 600 °C of VM release during 468 

devolatilization. Simultaneously, at temperatures >600 °C, the ash is formed after the FC is 469 

burned completely.  470 

Degradation zones of the wood waste are distinguishably identified in Fig. 5. The three 471 

zones can be noticed from TGA curves in Fig. 5a. Zone 1 occurs at about RT to 110 °C, where 472 

the moisture content evaporates. Zone 2 occurs at about 110-600 °C, where the activity of the 473 

combustion reaction is significantly detected. In Zone 2, two to three peaks are recognized from 474 

DTG curves (Fig. 5b), where the first peak appears between 250-300 °C (Runs 1, 6, and 8, 475 

with the lowest heating rate at 10 °C·min-1) which corresponds to the thermodegradation of 476 

lignocellulosic chemical compounds with light molecular weight (hemicelluloses) and some 477 

lignin. The second peak appears at about 300-400 °C (Runs 3, 5, and 7 with the highest heating 478 

rate at 20 °C·min-1) which corresponds to the thermodegradation of mostly cellulose and some 479 

lignin. The third peak appears at about 400-550 °C for all the Runs which corresponds to the 480 

thermodegradation of slightly cellulose and the rest of the lignin. The DTG curve reveals that 481 

the higher heating influences the significant mass loss rate [15, 65].  482 
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 483 

Fig. 5. Combustion zone of (a) TGA and (b) DTG curvatures of wood waste via TGA approach.  484 
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Additionally, Zone 3 (600-800 °C) reveals no degradation (TGA) or peak (DTG) 486 

detected. This circumstance suggests that the FC has entirely burned and that ash is the only 487 

solid matter left (ash remains). The TGA curves show that Runs 3, 5, and 7, with the highest 488 

heating rate, have higher ash contents among the runs. It may be due to the combustion process 489 

having less time to burn the entire biomass. Therefore, the solid remains are detected higher 490 

than those with lower heating rates. Moreover, the Runs with the lower heating rate (Runs 1, 491 

6, and 8) illustrate that the peaks obtained are one extra in an early stage of the combustion 492 

process among other Runs. These conditions imply that the combustible component in the early 493 

stage can be evaluated using a lower heating. The ash formation of Runs 1, 6, and 8 also shows 494 

an insignificant amount – implying that the complete combustion is more pronounced. 495 

Unfortunately, the drawback of using the lower heating may lead to a more time-consuming 496 

process, equal to the energy consumption for the electricity supply to the TGA equipment and 497 

experimental cost.  498 

3.4. Combustibility of wood waste in terms of combustion indices   499 

The combustibility of biomass fuel refers to its ability to undergo combustion, releasing 500 

heat energy in the process. The chemical composition of biomass, particularly the presence of 501 

volatile organic compounds, influences its combustibility. As seen in Fig. 6, the ignition index 502 

(Dig) value increases as the heating rate for the combustion process increases [66]. The ignition 503 

index (Dig) measures a material's susceptibility to ignition under specific conditions. When the 504 

heating rate is increased, it means that the material is being heated at a faster rate. This can lead 505 

to several changes in the ignition process, including reducing heat transfer duration, reducing 506 

volatile matter release, and accelerating the chemical reaction. This is the primary reason why 507 

the ignition index increases accordingly.  508 

A high ignition index at the same heating rate supply suggests that the material is more 509 

likely to ignite at lower temperatures. This phenomenon implies that the material requires less 510 
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energy or heat than materials with lower ignition indexes to initiate the ignition process. 511 

Additionally, the criterion of self-ignition is classified into four classes, including non-reactive 512 

(Dig 0.00-0.02), low-reactive (Dig 0.021-0.03), reactive (Dig 0.031-0.05), and high-reactive 513 

(>0.051). 514 

 515 

Fig. 6. Ignition and burnout temperature (a) and Ignition index (Dig) (b) of wood waste.  516 

Among the Runs in the Taguchi method, Run 1 (HW 250), 6 (SW 1000), and 8 (WB 517 

500) utilize the lowest heating rate (HR) of 10 °C·min-1 have Dig values of 0.01 which belongs 518 

to the non-reactive region; Run 2 (HW 500), 4 (SW 250), and 9 (WB 1000) utilize the medium 519 
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heating rate (HR) of 15 °C·min-1 precisely have Dig of 0.02 which indicates in the low reactive 520 

region, and run 3 (HW 1000), 5 (SW 500), and 7 (WB 250) utilize the highest heating rate (HR) 521 

of 20 °C·min-1 have Dig values of 0.04 which suggests belonging to the reactive region. This 522 

implies that the higher heating rate of the combustion process may provide a higher ignition 523 

index of the material, which proves the ignition index theory [39]. According to the study, the 524 

higher heating rate (>20 °C·min-1) is not recommended since it may initiate the reactivity index 525 

value to reach out of the high-reactivity region. Additionally, due to the high volatile content 526 

of biomass, it is particularly vulnerable to devolatilization and subsequent volatile combustion 527 

in the surrounding gas, which makes these sub-mechanisms much more predominant in the 528 

behavior of biomass ignition and combustion. Thus, the highly reactive biofuel (>0.051) is not 529 

suggested due to safety concerns (fire, explosion), handling challenges (transporting, storing, 530 

packaging), and environmental impacts (air pollution).  531 

The reactivity fuel index analysis illustrates that the higher the heating rate, the higher 532 

the reactivity fuel index (Rfuel) (detailed in supplementary material Fig. S3). The Rfuel index 533 

values of the wood waste are about 3.82-6.97 %·min-1·°C-1. This result implies that the lowest 534 

heating rate (10 °C·min-1) may utilize about 3.82 wt% per minute of biofuel. In contrast, the 535 

highest heating rate (20 °C·min-1) may utilize about 6.97 wt% per minute of biofuel. The 536 

comprehensive combustion index (Sn) or combustibility index values of wood waste are about 537 

3.20–9.37 × 10-7 %2·min-2·°C-3. The results in the present study for Sn index are higher than the 538 

results from a previous study of biomass/bituminous coal (<5 × 10-7 %2·min-2·°C-3) by Liu et 539 

al. [55]. The higher Sn value of wood waste for biofuel production demonstrates that biomass 540 

has better combustion performance than solid fossil fuels such as coal. 541 

 542 

 543 
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3.5. Statistical evaluation (bioenergy and bioexergy) 544 

The criterion (larger-is-the-better characteristic of the S/N ratio) explains that the larger 545 

the value for the corresponding outcome in the matrix of Taguchi, the more favorable the 546 

research results are. Additionally, the criterion in ANOVA analysis is fixed with the significant 547 

value (α) ≥ 0.05, by means the parameter is considered to be significant when the P-value ≤ α 548 

(P ≤ 0.05; 5% risk). In the analysis of the S/N ratio for HHV, the results show that the wood 549 

waste type has the highest influence (delta) (see supplementary material Table S2) by 0.18, 550 

followed by particle size 0.13, then the heating rate 0.02 (insignificant). Align with the S/N 551 

ratio, the ANOVA analysis also shows that wood waste type has a higher influence (F: 29.93), 552 

with a significant value (P) of about 0.032, followed by particle size (P: 0.061) and heating 553 

rate (0.727). Likewise, in the S/N ratio for SCB (see supplementary material Table S2), the 554 

result describes that wood waste type (delta: 0.19) has a higher value of influence, followed by 555 

particle size (delta: 0.12) and heating rate (delta: 0.01). Moreover, the ANOVA analysis for 556 

SCB shows that wood waste type and particle size significantly influence about 53.53 and 557 

20.67, with p-values of 0.018 and 0.046, respectively. Meanwhile, the heating rate is 558 

recognized as an insignificant parameter. For the optimum result, the highest HHV and SCB 559 

are obtained by experimenting with waste type level 2 (softwood), particle size level 1 (250 560 

µm), and heating rate (insignificant) level 2 (15 °C·min-1). The optimum results are combined 561 

in Run 4 of the Taguchi orthogonal array.  562 

3.6. ANN analysis for bioenergy and bioexergy prediction 563 

The AI-ANN analysis is carried out with the configuration of one hidden layer (HL) 564 

but in three different configurations, including 1, 5, and 10 neurons (N) (detailed in 565 

supplementary material Table S3). The number of neurons is considered by the number of input 566 

parameters [61, 67]. Although the ANN analysis has no fixed rules to train the model, the 567 

convenient way to decide the neuron in the hidden layer is by determining the number of 568 
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neurons based on the amount of the input layer. The five input parameters, including wood 569 

waste type, particle size, heating rate, elemental analysis (C, H, O), and proximate analysis (M, 570 

VM, FC, and A), are simulated to predict the output result. Therefore, the neurons to 571 

accommodate the input data are considered about 1 (5×0=1), 5 (5×1=5), and (5×2=10).  572 

The training specification of the models shows that the three configurations for HHV 573 

prediction have excellent results with a fit-quality value (R2) of precisely 1.0000. The standard 574 

deviation values for the three configurations for HHV model prediction are 0.000080, 575 

0.000013, and 0.000022 for 1HL-1N, 1HL-5N, and 1HL-10N, respectively. The model with 576 

1HL-1N configuration shows that the heating rate is the most significant parameter that 577 

influences the HHV prediction. However, the other two prediction models (1HL-5N and 1HL-578 

10N) show that waste type is the most prominent input parameter. Meanwhile, the standard 579 

deviation for the SCB model prediction (R2=1.0000) with the configuration of 1HL-1N, 1HL-580 

5N, and 1HL-10N are 0.014582, 0.000014, and 0.000015, respectively. The three 581 

configurations agree that the waste type is the most influential parameter for SCB prediction.  582 

Among the configurations, the best result of the ANN model for HHV and SCB model 583 

predictions with the lowest standard deviation is obtained using a 1 HL with 5 N for HHV with 584 

the fit quality precisely (R2) 1. In this regard, the wood waste type is the most influence factor 585 

in bioenergy analysis (HHV), followed by FC, O, C, H, particle size, A, heating rate, VM, and 586 

M. Likewise, the configuration of 1HL with 5N illustrates the best result prediction for the 587 

bioexergy analysis (SCB). The most influential parameters are wood waste type, followed by 588 

H, FC, C, O, A, particle size, heating rate, M, and VM. The validation of the model shows that 589 

all the models are not underfitting or overfitting. The values between the experiment data and 590 

the ANN model (Table 3) reveal that the configuration using the formula of 1HL and 5N is 591 

suitable for executing the wood waste combustion in this study. In this manner, the models are 592 

considered to be well-trained. Compared to the previous studies in the bioenergy production 593 
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field (detailed in supplementary material Table S4), the present study shows the best results. 594 

Some previous studies showed that fewer hidden layers and neurons would provide the best-595 

fit quality of the model [26, 68]. However, in the present study, the number of input parameters 596 

is about five in general, but in the overall calculation, the input parameters are 10 in total. For 597 

1HL with 1N, excellent results are obtained with R2=1. Nevertheless, the stopping criterion 598 

describes the maximum epoch that is reached. This result implies that the model reaches the 599 

saturation process. Additionally, the higher epoch in the training model in machine learning 600 

may lead the model to the underfit or overfit level [29]. Moreover, the 1HL with 10 N displays 601 

good results, but the standard deviations for HHV and SCB prediction models are higher than 602 

1HL with 5N. These results indicate that providing more neurons in the hidden layer does not 603 

necessarily improve the model prediction. Likewise, the fewer neurons in a hidden layer may 604 

lead to the model having a higher standard deviation level due to insufficient neurons to execute 605 

the task. This phenomenon implies that 1 neuron is insufficient in this study, but 10 neurons 606 

are abundant to accommodate the model prediction. The optimum for five neurons to execute 607 

the task is considered ideal in the ANN model prediction of this study.  608 

 609 
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Table 3 611 

ANN training numerical analysis using 1HL-5N configuration compared to the experiment data. 612 

Wood waste Particle  
size  

Heating  
rate 

C H O HHV SCB M VM FC A *ANN  
(HHV) 

 

*ANN  
(SCB) 

Hardwood 250 10 46.130 6.030 44.100 18.649 19.445 4.950 84.219 10.831 0.000 18.649 19.445 
Hardwood 500 15 45.880 5.850 41.440 18.625 19.390 4.950 84.219 10.831 0.000 18.625 19.390 
Hardwood 1000 20 45.880 5.900 44.880 18.328 19.147 4.000 82.292 13.708 0.000 18.328 19.147 
Softwood 250 15 47.020 6.180 45.080 19.035 19.846 5.000 85.263 9.737 0.000 19.035 19.846 
Softwood 500 20 47.380 5.950 44.270 18.974 19.799 8.000 83.696 8.284 0.020 18.974 19.799 
Softwood 1000 10 47.190 5.820 44.100 18.772 19.605 4.950 83.167 11.883 0.000 18.772 19.605 
Wood blends 250 20 46.500 6.110 45.080 18.771 19.581 5.000 84.211 10.789 0.000 18.771 19.581 
Wood blends 500 10 46.650 5.980 45.810 18.595 19.433 2.970 84.541 12.479 0.010 18.595 19.433 
Wood blends 1000 15 46.630 5.770 44.300 18.497 19.330 4.950 82.292 12.748 0.010 18.497 19.330 

Particle size (µm) 613 
Heating rate (°C·min-1) 614 
HHV and SCB (MJ·kg-1) 615 
Standard deviation (SD): HHV (0.000013) and SCB (0.000014) 616 
*: ANN model prediction  617 
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4. Conclusions  618 

This study has explored wood wastes (HW, SW, and WB) for the behavior of 619 

combustion thermodegradation via the TGA method integrated with the Taguchi orthogonal, 620 

statistical analysis, combustibility indexes, and AI model prediction. The physicochemical 621 

analyses show that all wood waste feedstock is high in VM (>80 wt%), rich in C and O, but 622 

low in ash, N, and S contents. The evaluation shows that the SCB is typically higher (about > 623 

19 MJ·kg-1) than HHV (about 18 MJ·kg-1), with SW reported to possess the highest HHV 624 

(18.84 MJ·kg-1) and SCB (19.65 MJ·kg-1) values. The TGA/DTG curves obtained, using 625 

typical heating rates of 10, 15, and 20 °C·min-1, suggest there are 3 zones distinguished, and 626 

hemicelluloses (< 275 °C), while cellulose and lignin degradation have more way to undergo 627 

in about 275–600 °C. The combustibility indexes indicate that wood waste has 4 classes of 628 

ignition index (non-reactive to high-reactive), reactivity fuel index at higher heating rate 629 

utilizing more feedstock (3.82–6.97 %·min-1·°C-1), comprehensive combustion characteristic 630 

index of wood waste has better combustion performance than solid fossil fuel of bituminous 631 

coal. Unlike the heating rate, the wood waste type and particle size significantly influence the 632 

HHV and SCB. The optimum Run is achieved with SW250 at 20 °C·min-1 heating rate. The 633 

ANN model with 1HL–5N configuration successfully predicts the values of HHV and SCB 634 

with excellent fit-quality values (R2=1). This study has limitations on the molecular interaction 635 

of lignocellulosic components during the combustion conversion process.  However, because 636 

the exploration is not feasible to Run by TGA only, this study's findings offer new potential 637 

information for further investigation. Research on kinetics, by-products in molecular 638 

approaches, and catalytic co-combustion are potential topics for future work.   639 
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